Check for
Updates

A Database Disk Buffer Management Algorithm based on Prefetching

H. Seok Jeon*

Sam H. Noh

Department of Computer Engineering
Hong-Tk University
Mapo-Gu Sangsoo Dong 72-1 Seoul, Korea 121-791
tel) +82-2-320-1470 fax) +82-2-320-1105
email: {hsjeon, noh}@cs.hongik.ac.kr
(* Also, with Thinkware Systems Corp.
Poi-Dong 196-2, Kangnam-Gu, Seoul, Korea 135-260

tel) +82-2-571-9160

Abstract

This paper proposes a prefetch-based disk buffer man-
agement algorithm, which we call W2 R (Weighing/Waiting
Room). Instead of using elaborate prefetching schemes
to decide which block to prefetch and when, we simply
follow the LRU-OBL (One Block Lookahead) approach
and prefetch the logical next block along with the block
that is being referenced. The basic difference is that
the W2 R algorithm logically partitions the buffer into
two rooms, namely the Weighing Room and the Waiting
Room. The referenced, hence fetched block is placed in
the Weighing Room, while the prefetched logical next
block is placed in the Waiting Room. By so doing, we al-
leviate some inherent deficiencies of blindly prefetching
the logical next block of a referenced block. Specifically,
a prefetched block that is never used may replace a pos-
sibly valuable block and a prefetched block, though ref-
erenced in the future, may replace a block that is used
earlier than itself. Using the DB2 and OLTP traces,
we show through trace driven simulation that for the
workloads and the environments considered the W?R
algorithm improves the hit rate by a maximum of 23.19
percentage points compared to the 2Q algorithm and
a maximum of 9.27 percentage points compared to the
LRU-OBL algorithm.

1 introduction

Many algorithms for improving the performance of database
disk buffer management have been proposed. A large
group of work can be categorized into those that tune
the buffer management algorithm based on informa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CIKM 98 Bethesda MD USA

Copyright ACM 1998 1-58113-061-9/98/11...85.00

167

fax) +82-2-571-0515)

tion from the query optimizer regarding the plan of the
query. Examples of these are the Hot Set model [SS86]
and the DBMIN algorithm [CD85]. Many extensions
and variants of these algorithms have also been reported
[ABGM90, COL92, FNS91, FNS95, JCL90, YC91).

Another category of works rely on the judicious re-
placement of buffers as it has been pointed out that
for multitasking environments, information from query
optimizer may not be inappropriate for performance en-
hancement. [OOW93]. Algorithms such as the LRU, the
LRU-K [OOW93], the 2Q [JS94], and the FBR [RD90]
are examples. Specifically, while the LRU algorithm
bases its replacement decision on a block’s most recent
reference, the LRU-K algorithm considers multiple past
references, specifically K past references, in making its
decision. This allows the algorithm to observe the im-
portance of the block over a longer time span, instead
of deciding the block’s importance over a single refer-
ence. The 2Q algorithm considers a block “worthwhile
to retain” in the cache only after it is referenced more
than once. Upon the first reference, the block is put
in a “probationary” part of the cache referred to as the
Al queue. Only after a second reference, is the block
inserted into the “main” part of the cache referred to as
the Am queue, hence the name 2Q. Basically, a block is
upgraded to the main queue only after its “hotness” is
proven.

While the LRU-K and 2Q algorithms base their re-
placement decision basically on the recency of block ref-
erences, the FBR algorithm makes its decision on the
frequency of block references. In so doing, Robinson
and Devarakonda observe that the filtering of correlated
references is an important factor in the efficiency of the
algorithm.

The LRU-K, 2Q, and the FBR algorithms do not use
any form of prefetching. Recent developments in buffer
management replacement algorithms has lead to the in-
vestigation of incorporating prefetching to the replace-
ment algorithms. It has been shown that for some work-
loads incorporating prefetching can result in consider-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288627.288654&domain=pdf&date_stamp=1998-11-01

able improvement in the performance of buffer manage-
ment [Smi78, Smi85].

Research in incorporating prefetching have mainly
been conducted in the systems arena, and again be cate-
gorized into three groups depending on when and which
block to prefetch. The first group of algorithms main-
tain a history of past behavior of the applications [LD97,
CKV93, KE93, PZ91]. This speculative approach, how-
ever, may result in performance degradation due to in-
accurate prefetching and history maintenance overhead.

The second category of algorithms obtain hints from

applications themselves [CFKL95, CF96, PGGt95, TPGI7]

prior to execution. This approach, though promising,
has not yet proven itself in general workload environ-
ments. Though it has been shown that hints may be ob-
tainable for specific applications within a specific enviro-
nment [MDK96], how this will be applicable to buffer
management in general is still an open question.

The final approach does not require any information
neither from the application nor from observations of
past behavior. The LRU-OBL (One Block Lookahead)
algorithm [Smi78, Smi85] (and its variant of prefetching
multiple blocks at once) is the only algorithm known
to date using this approach. This algorithm simply
prefetches the logical next block of the currently ref-
erenced block if it is not resident in cache. It has been
shown that through this simple algorithm, improvements
of up to 80% in the hit rate was possible for some work-
loads [Smi85]. Another practical benefit of this algo-
rithm is that it is simple to implement, and prefetching
does not require any additional overhead from the user
nor the system.

The algorithm that we propose in this paper, re-
ferred to as the W? R (Weighing/Waiting Room) algo-
rithm, extends the LRU-OBL algorithm and borrows
from the 2Q algorithm. It prefetches blocks exactly like
the LRU-OBL algorithm requiring no overhead in deter-
mining which block to prefetch and when. However, the
management of these blocks is different. The W?R algo-
rithm partitions the buffer into two rooms where one is
used to manage referenced blocks and the other used to
manage prefetched blocks. We show that by such par-
titioning some deficiencies inherent to the LRU-OBL
algorithm are alleviated resulting in enhanced perfor-
mance. Through trace driven simulation using the DB2
and OLTP database traces, we show that the W2R al-
gorithm improves the hit rate of the buffer by a max-
imum of 23.19 percentage points compared to the 2Q
algorithm and 9.27 percentage points compared to the
LRU-OBL algorithm for the environments that we con-
sidered.

Another advantage of the W2 R algorithm compared
to the LRU-OBL algorithm is its modularity. Whereas
the LRU-OBL algorithm inherently intertwines the re-
placement and prefetching concepts into one algorithm,
the structure of the proposed algorithm clearly divides
these two concepts making it simple to incorporate new
buffer management replacement algorithms, possibly im-
proving its performance even more.

The rest of the paper is organized as follows. Sec-
tion 2 discusses in more detail the motivation behind the

168

W?2R algorithm and the algorithm itself. In Section 3,
the experiments and the results of these experiments
are discussed. The modularity of the W2 R algorithm
is discussed in Section 4. Finally, Section 5 concludes
with a summary and directions for further research.

2 The W2R (Weighing/Waiting Room) Algorithm

Recall the actions of the LRU-OBL algorithm. Man-
agement of the buffer itself is done using the LRU algo-
rithm while in prefetching blocks a simple approach is
used. That is, it prefetches the logical next block of the
currently referenced block. This basically requires no
overhead to determine the block to prefetch and when
to prefetch.

However, because it does a simple-minded prefetch,
the prefetched block may actually do harm instead of
good to the performance of buffer management. There
are two sources from which harm may be induced. First,
consider a block in the disk that is referenced for the
first time and brought into the buffer replacing the LRU
block. This block is placed at the most recently used
(MRU) position. More significantly, the logical next
block, if not currently in the buffer, is also brought into
the buffer replacing the current LRU block in the buffer.
Not only that, this prefetched block is also placed at the
MRU position. The problem with this action is that the
prefetched block may never be referenced in the future,
and if this is the case, the prefetched block has simply
removed a potentially valuable block and taken its place,
resulting in wasted buffer space.

The numbers in Table 1 support this conjecture.
Taking the OLTP and DB2 traces (which we describe
in more detail later) we counted the number of blocks
prefetched using the LRU-OBL algorithm for various
buffer sizes. These numbers are shown in the second
row. The third row shows the percentage of the prefetchec
blocks that are never referenced. Note that the per-
centage of blocks prefetched but never referenced are
roughly 46% to over 66% of the prefetched blocks.

The second source of possible harm due to blindly
prefetching the logical next block is that even if the
prefetched block is referenced at some future time, by
prefetching the block right along with the referenced
block, it may be replacing a block too early. This may
result in replacing a block that is used earlier than the
prefetched block. This is a typical situation of prefetch-
ing at the wrong time [CFKL95].

The W2R algorithm tackles these sources of harm
by partitioning the buffer into two rooms, that is, the
Weighing Room and the Waiting Room. To describe
the W2R algorithm, and also the management of the
buffer in general, we use the weight analogy. In gen-
eral, the block to be replaced by the incoming block is
the block that is considered to be the least likely to be
re-referenced. This likelihood can be represented as a
weight. Each block is given a weight, and the heav-
ier block is considered more likely to be re-referenced.
Then, in general, the lightest block is replaced by the
incoming block as it is considered to be the least likely
to be referenced again.

Table 1: The number of prefetched blocks using the LRU-OBL algorithm and the percentage of those that are never

referenced for the DB2 and OLTP traces.

Buffer Size 500 1000 2000 3000
Number of Blocks Prefetched 233,859 | 200,484 | 172,773 | 156,418
Blocks Prefetched but Never Referenced (%) 62.13% | 56.86% | 51.15% | 46.81%

(a) DB2 trace

Buffer Size

500 1000 2000 3000

Number of Blocks Prefetched

748,806 | 688,834 | 610,019 | 560,201

Blocks Prefetched but Never Referenced (%)

66.26% | 66.04% | 63.94% | 61.80% |

(b) OLTP trace

Waiting Room {«—— Prefetch

Figure 1: Structure of the W?R algorithm.

The actual weight of each block in the buffer is de-
termined by the algorithm that is being used. For exam-
ple, the LRU algorithm assumes that the MRU block is
the most likely to be re-referenced, hence is considered
the heaviest. Conversely, the LRU block is considered
the lightest. In its implementation, the weight of each
block would be represented by the position in the list of
blocks.

The Weighing Room, in the W? R algorithm, is where
the weights of the blocks are contested, and rank is
formed among the blocks. Only blocks that have been
referenced have weights associated with them. In buffer
management algorithms such as the LRU or 2Q, the
whole buffer is simply the Weighing Room as only blocks
that have been referenced are brought into the buffer.

The Waiting Room is where the blocks remain and
wait until they obtain permission to be weighed with
the other blocks. This permission is obtained when and
only when the block has actually been referenced. Until
this time, the prefetched blocks are weightless. They
obtain weight only when referenced.

Figure 1 shows the logical structure of the W2R al-
gorithm.

By partitioning the buffer into a Weighing Room
and a Waiting Room, the first source of harm men-
tioned above is alleviated because blocks that are not
referenced after being prefetched are not promoted to
the Weighing Room. Hence, a prefetched block that is
never referenced cannot replace a block that has some
weight (that is, in the Weighing Room). That is to say,

169

the wrong block may be prefetched into the buffer, but
will not replace a block that has proven its worth by
having been referenced.

The second source of harm is completely resolved as
the prefetched block enters the Weighing Room only af-
ter it is referenced. Hence, the prefetched block does not
replace a block that is referenced prior to the prefetched
block. The block being promoted to the Weighing Room
is promoted right when it is needed, and never before.

Once a block is promoted to the Weighing Room,
how much weight it will have is a matter of the algo-
rithm used in the Weighing Room, that is, what kind
of scale is used to weigh the blocks. The algorithm for
the W2 R algorithm with the LRU algorithm used as the
scale in the Weighing Room is shown Figure 2. Upon
a request for block ¢, it is checked if block ¢ is in either
the Weighing or Waiting Rooms. If block i is not in the
buffer, it is fetched from the disk and moved directly to
the Weighing Room (line 21 of Algorithm WZ2R). Ifit
is, it is moved to the head of the Weighing Room, that
is, it becomes the heaviest block in the room (lines 5
and 14 of Algorithm W?2R). Note that the actions of
lines 5, 14, and 21 (marked by ’*’) are specific to the
LRU algorithm being used in the Weighing Room.

As for the logical next block i+1, action is taken only
when it is not found in either of the two rooms. When
this happens, the block is prefetched from disk and put
in the Waiting Room. The blocks in the Waiting Room
are organized in a FIFO manner. When a block in this
queue is accessed, it is moved to the Weighing Room.
Otherwise, it is simply pushed off the queue as new
blocks come in.

A new parameter is introduced in the W?R algo-
rithm. Given a fixed buffer size, one now has to decide
how to partition it into two rooms. By introducing the
Waiting Room, we are in effect, reducing the size of the
Weighing Room compared to conventional buffer man-
agement algorithms. A judicious selection of the room
size is necessary for efficient management of the buffer.
This matter is discussed in the next section along with
the experiments.

Algorithm WZ2R:

input : requested block number i
output : requested block

ifi ¢s in Weighing Room then

* putiat head of Weighing Room

if i+1 is not in either Room then
prefetch i+1 from disk and
put at head of Waiting Room

LIRS TS MRS R RN

LS
O ©

end if
else ifi is in Waiting Room then

[
o

18 remove i from Waiting Room

14 =+ putiat head of Weighing Room
15 if i+1 is not in either Room then
16 prefetch 1+1 from disk and
17 put at head of Waiting Room
18 end if

19 else

20 fetchi from disk

21 x putiat head of Weighing Room

22 if i+1 is not in either Room then
23 prefetch i+1 from disk and
24 put at head of Waiting Room
25 end if

26 end if

Figure 2: Algorithm for the W?R algorithm using the
LRU algorithm in the Weighing Room.

3 Experimental Results

In this section, we discuss the experimental evaluation of
the W2R algorithm. A description of the simulator and
the traces that were used is given in the next subsection.
In the subsequent subsection, we report and discuss the
results of these experiments.

3.1 The Simulator and Traces

The simulator developed to evaluate the algorithm is
programmed in C++. The basic component in this
simulator is the buffer cache module which takes the
traces as input. The buffer cache module checks if the
block number is in the buffer. If it is a hit, appropri-
ate action, which is dependent on the algorithm used,
is taken. Otherwise, a block fetch request action to the
disk is emulated. The block size, size of the buffer, and
the algorithm used for managing the buffer are control-
lable parameters. Figure 3 shows the composition of the
simulator.

- The traces used to drive the simulator are the DB2
and OLTP traces [J594). These traces are those iden-
tical to the traces used in the papers by Johnson and
Shasha [JS94] and by O’Neil and others [OOW93]. The
DB2 trace is obtained from running a DB2 commer-
cial application and contains 500,000 block requests to
75,514 distinct blocks. Obtained from the On-Line Trans-

action Processing System, the OLTP trace contains records

170

/ * Weighing Room managed as an LRU queue * [

/ * Waiting Room is managed as ¢ FIFO queue * |

Trace

(block number)

Hit Ratio
Return
- '
Y
4 N\
Buffer Cache
g J
Y }
0)
Disk Simulator

_ J

\ J

Figure 3: Components of the simulator.

of block requests to a CODASYL database for a window
of one hour. It contains a total of 914,145 requests to
186,880 distinct blocks.

3.2 The Results

Table 2 shows the hit rates of the W? R algorithm com-
pared with the LRU, 2Q, and the LRU-OBL algorithms.
For the W2R algorithm, the best hit rate that was ob-
tained in the experiments that we conducted are re-
ported.

Notice that the hit rates of the 2Q algorithm ob-
tained through our simulator are slightly worse than
those reported by Johnson and Shasha [JS94]. In their
paper, Johnson and Shasha point out that the size of
the Al queue could be critical on the performance of
the algorithm. To minimize the effect of this queue, the
Al queue was modified to hold pointers to blocks in-
stead of the blocks themselves. This allowed the queue
to hold much more information regarding the access of
the blocks. However, when the block pointed to in the
Al queue is moved to the Am queue, an extra disk ac-
cess is inevitable, possible having other effects on the
performance. To make a fair comparison among the al-
gorithms, we implemented the 2Q algorithm with the
A1 queue holding actual blocks instead of pointers to
blocks. Hence, we see that the 2Q algorithm performs
slightly worse than was originally reported.

To obtain the hit rates for the W2 R algorithm the
experiments were conducted by varying the Waiting Room
sizes. For the given buffer size, the Waiting Room size
was set to a fixed size starting from 1 increasing in incre-
ments of 1. For each fixed size the hit rate was obtained
through the simulator. The results show that the W3R
algorithm shows substantial hit rate improvements com-
pared to the 2Q algorithm, the increase being at least 14
percentage points or more. Compared to the LRU-OBL
algorithm, the W2 R algorithm still performs consider-
ably better, with a minimum increase in the hit rate of

1.58 percentage points to a maximum of 4.43 percentage
points,

Along with the best hit rates, Table 2 also shows the
range of the size of the Waiting Room at which the best
hit rate occurs. These are shown in parentheses on the
W?2R hit rate row. Note that the best hit rate occurs
when the Waiting Room size is relatively small ranging
in the 20’s to 30’s for both traces, and that these value
ranges overlap considerably for each of the traces.

The reason behind these results can be explained
through Figures 4(a) and (b). These figures show the
position at which a block in the Waiting Room is ref-
erenced and moved to the Weighing Room for each of
the traces. That is, consider a block that first enters the
Waiting Room. It is put at position 0 when it enters and
as time progresses and new blocks come in, this block
moves up in position until it is referenced and moved to
the Weighing Room, or simply falls off the FIFO queue.
The y-axis in these figures represent the position when
either the move to the Weighing Room or the falling-off
occurs for the blocks of each trace. The z-axis is simply
the time sequence. These figures were obtained when
using the W2 R algorithm for a total buffer size of 3000
with the Waiting Room size fixed to 2700.

In these figures we notice a thick dark shade along
the 0 location throughout the time sequence. Closer ob-
servation shows that the position at which most of the
blocks are referenced is below the 30th position for the
DB2 trace and below the 50th position for the OLTP
trace. The rest of the blocks are referenced at random
positions without any regularity. This implies that a
small Waiting Room of roughly 20 to 50 blocks in size,
is enough to reap a majority of the benefit provided
by the Waiting Room. Keeping a Waiting Room larger
than this brings about only marginal benefits and can
even result in poor performance as a result of reducing
the Weighing Room size. For the traces and buffer sizes
considered Waiting Room sizes starting from roughly 10
(that is, close to 1% of the total buffer size) to about
30% of the total buffer size resulted in better perfor-
mance than the LRU-OBL algorithm.

As the reference characteristics of the DB2 and OLTP
traces are typical of database workloads, Waiting Room
sizes in the 20-50 range is conjectured to be sufficient
to reap the benefits of the W? R algorithm for efficient
database buffer management.

4 Modularity of the W2 R Algorithm

The W2R algorithm has another advantage in that it
is modular. That is, any known buffer management
replacement’ algorithm may be used for the Weighing
Room. As stated previously, the hit rate of the Weigh-
ing Room is dependent on the workload and the algo-
rithm used. Recent results have shown that the LRU
algorithm may not be the best block replacement al-
gorithm [RD90, OOW93, JS94]. As new algorithms
that show better performance are developed and im-
plemented, these algorithms may be incorporated into
the W2 R algorithm.

171

Weighing Room

——— Miss

o

{ea——— Prefetch

Waiting Room

Figure 5: The W?R algorithm using the 2Q algorithm
for the Weighing Room.

To incorporate a different algorithm in the Weighing
Room, the only modifications that need to be made to
Algorithm W2 R of Figure 2 are to lines 5, 14, and 21 (as
marked by **’). Line 5 needs to be replaced with the ac-
tions taken when a block within the buffer is referenced.
For instance, in the 2Q algorithm, when a block is hit
within the buffer the block is checked to see if it is in
the Am queue or the Al queue, and thereafter, appro-
priate action is taken. Hence, to use the 2Q algorithm
in the Weighing Room, line 5 would be replaced with
the following lines of code.

ifi is in Am queue then
put i at head of Am queue
else ifi is in Alout queue then
remove i from Alout queue
put i at head of Am queue
else
./ * Do Nothing ! =/

Lines 14 and 21, on the other hand, need only be re-
placed by the actions taken when a block is fetched from
disk and moved to the buffer. For the 2Q algorithm, it
is simply

put i at head of Alin queue.

Note that for the LRU algorithm, the action taken
when a block is hit within the buffer and when a block is
fetched from disk and moved to the buffer is the same.
Hence, lines 5, 14, and 21 are identical in Algorithm
W2R.

As the 2Q algorithm, to date, is the algorithm re-
porting the best hit rate we chose to incorporate this
algorithm into the W2 R algorithm. Figure 5 shows the
structure of the W2R algorithm that incorporates the
2Q algorithm in the Weighing Room, which we denote
as W2R-2Q. The results of the experiments using the
W?2R-2Q algorithm, compared to those reported in the
previous section are shown in Figure 6. The W3R al-
gorithm with the LRU algorithm used in the Weighing
Room is now denoted as W2 R-LRU.

For the LRU-OBL and the W2 R-LRU algorithms,
the points in the graph are those listed in Table 2.
For the W2 R-2Q algorithm, we used approximately the

Table 2: The hit rates of various algorithms for the traces used. The last two rows show the difference in hit rate
between the W2 R algorithm and the 2Q and LRU-OBL algorithms.

DB2 OLTP
Buffer Size 1000 2000 3000 1000 2000 3000
LRU 65.44 70.38 72.95 32.83 42.47 47.10
2Q 66.92 71.93 74.29 37.70 43.95 47.81
LRU-OBL 79.68 84.33 87.29 51.62 60.43 65.48
W*R 81.87 86.40 88.88 56.05 64.64 68.88
(Waiting Room Size) (23-25) | (20-28) | (22-28) || (35-36) | (32-35) | (32-45)
Difference: W2 R~ 2Q 14.95 14.47 14.59 18.35 20.69 21.07
Difference: W*R— LRU-OBL | 2.19 2.07 1.59 4.43 4.21 3.4
3000 3000 T
profech OLTP" -

Location in Waitng Room

10000 20000 30000

40000

(a) DB2 trace

Location in Waiting Room

(b) OLTP trace

Figure 4: Position of the blocks in the Waiting Room when a reference to the block occurs.

same Waiting Room size as those of the W?R-LRU al-
gorithm, as listed in Table 2.

The increase in performance when using the W?R-
2Q algorithm is mainly due to the improvement in the
hit rate at the Weighing Room. Because the blocks re-
siding in the Weighing Room change when the algorithm
is changed, the blocks in the Waiting Room will also be
slightly affected. Overall though, we see that using an
improved algorithm for the Weighing Room results in
an improvement in the total hit rate. Specifically, the
difference in the total hit rate between the W?R-2Q
algorithm and the LRU-OBL algorithm, as listed in Ta-
ble 3, show that a maximum of 23.19 percentage point
and a maximum of 9.27 percentage point improvements
are made compared to the 2Q and the LRU-OBL algo-
rithms, respectively.

5 Conclusion

In this paper, we proposed a prefetch-based database
disk buffer management algorithm, which we call the
W?2R algorithm. Instead of using elaborate prefetching
schemes to decide which block to prefetch and when,
we simply follow the LRU-OBL approach and prefetch
the logical next block along with the block that is be-

172

Table 3: Difference in the hit rate between the W? R-2Q
and the 2Q and LRU-OBL algorithms.

2Q LRU-OBL
Buffer Size | 1000 | 2000 | 3000 || 1000 | 2000 [3000
[~ DB2 trace | 16.03 | 15.67 | 15.85 || 3.37 | 3.27 | 2.85
OLTPD trace | 23.19 | 22.83 | 22.51 || 9.27 | 6.35 | 4.84

ing referenced. The difference being that the referenced
block is placed in the Weighing Room, which holds ref-
erenced blocks only, while the prefetched logical next
block is placed in the Waiting Room, which holds blocks
prefetched but never referenced. By so doing, we allevi-
ate some inherent deficiencies of blindly prefetching the
logical next block of a referenced block. Specifically, a
prefetched block that is never used may replace a pos-
sibly valuable block and a prefetched block, though ref-
erenced in the future, may replace a block that is used
earlier than itself. Using the DB2 and OLTP traces,
we show through trace driven simulation that for the
workloads and the environments considered the W?R
algorithm improves the hit rate by a maximum of 23.19
percentage points compared to the 2Q algorithm and
a maximum of 9.27 percentage points compared to the

Hit Ratio Compansan

Hit Ratio Companson

Hit Ratio(%)

Hit Refio(%)

1500 2000
Butter Cache Size(Number o blocks)

(a) DB2 trace

~
S
T

'58328888288

1500 2000
Butter Cache Size(Number of blocks)

(b) OLTP trace

Figure 6: Hit rate using the 2Q algorithm in the Weighing Room for the W?2R algorithm.

LRU-OBL algorithm

To make this algorithm a resilient one, however, there
still needs to be a simple standard guideline on how
to partition the buffer into the Weighing Room and
the Waiting Room. So far, the results presented here
imply that for database workloads the Waiting Room
should be made small, somewhere in the 30 to 50 block
range. However, as only two traces were used further
studies are still needed before a general conclusion can
be drawn.

Also, we are currently conducting research in ways
to make the algorithm adapt itself such that the per-
formance is maximized. Even for the two traces, the
Waiting Room size showing the maximum performance
was slightly different. To resolve this problem a dy-
namic version of the W? R algorithm that finds the best
Waiting Room size on-line is being pursued.

References

[ABGM90] R. Alonso, D. Barbara, and H. Garcia-
Molina. Data caching issues in an informa-
tion retrieval system. ACM Transactions on
Database Systems, 15(3):359-384, 1990.

H. T. Chou and D. DeWitt. An evalua-
tion of buffer management strategies for re-
lational database systems. In Proceedings of
the 11th ACM SIGMOD Conference, pages
127-141, 1985.

Pei Cao and Edward W. Felton. Implemen-
tation and Performance
of Integrated Appplication-Controlled File
Caching, Prefetching, and Disk Scheduling.
ACM Transactions on Computer Systems,
14(4):311-343, November 1996.

Pei Cao, Edward W. Felten, Anna R. Kar-
lin, and Kai Li. A study of integrated

[CDs85]

[CF96]

[CFKL95]

173

[CKV93]

[COL92]

[FNS91]

[FNS95]

[ICL90)

[JS94]

prefetching and caching strategies. In Pro-
ceedings of the Joint International Confer-
ence on Measurement & Modeling of Com-
puter Systems (SIGMETRICS ‘95 and Per-
formance ‘95), pages 188-197, 1995.

K. Curewitz, P. Krishnan, and J.S. Vit-
ter. Practical Prefetching via Data Com-
pression. In Proceedings of the 1993 ACM
Conference on Management of Data (SIG-
MOD), pages 257-266, May 1993.

C. Y. Chan, B. C. Ooi, and H. Lu. Ex-
tensible buffer management of indexes. In
Proceedings of the 18th VLDB Conference,
pages 444-454, 1992,

Christos Faloutsos, Raymond Ng, and
Timos Sellis. Predictive load control for
flexible buffer allocation. In Proceedings of
the 17th VLDB Conference, pages 265-274,
1991.

Christos Faloutsos, Raymond Ng, and
Timos Sellis. Flexible and Adaptable Buffer
Management Techniques for Database Man-
agement Systems. IEEE Transactions on
Computers, 44(4):546-560, 1995.

R. Juahari, M. Carey, and M. Linvy. Pri-
ority hints: An algorithm for priority-based
buffer management. In Proceedings of the
16th VLDB Conference, 1990.

Theodore Johnson and Dennis Shasha. 2Q:
A Low Overhead High Performance Buffer
Management Replacement Algorithm. In
Proceedings of the 20th VLDB Conference,
pages 439-450, 1994.

[KE93]

David Kotz and Carla Schlatter Ellis. Prac-
tical Prefetching Techniques for Multipro-
cessor File Systems. Journal of Distributed
and Parallel Databases, 1(1):33-51, January

1993.

[LD97]

[MDK96]

[oow93)

[PGG*95]

[PZ91]

[RD90]

[Smi78]

[Smi85)

[SS86]

[TPG97]

Hui Lei and Dan Duchamp. An Analytical
Approach to File Prefetching. In Proceed-
ings of the USENIX 1997 Annual Technical
Conference, pages 275-288, January 1997.

Todd C. Mowry, Angela K. Demke, and Or-
ran Krieger. Automatic Compiler-Inserted
I/O Prefetching for Out-of-Core Applica-
tions. In USENIX 2nd Symposium on Oper-
ating Systems Design and Implementation,
October 1996.

Elizabeth J. O’Neil, Patrick E. O’Neil, and
Gerhard Weikum. The LRU-K Page Re-
placement Algorithm For Database Disk
Buffering. In Proceedings of the 1998
ACM SIGMOD International Conference
on Management of Data, pages 297-306,
May 1993.

R. Hugo Patterson, Garth A. Gibson, Eka
Ginting, Daniel Stodolsky, and Jim Zelenka.
Informed Prefetching and Caching. In Pro-
ceedings of the 15th Symposium on Operat-
ing System Principles, pages 79-95, Decem-
ber 1995.

Mark Palmer and Stanley B. Zdonik. FIDO:
A cache that learns to fetch. In Proceed-
ings of the 17th International Conference
on Very Large Data Bases, pages 255-264,
September 1991.

J. T. Robinson and N. V. Devarakonda.
Data Cache Management Using Frequency-
Based Replacement. In Proceedings of
the 1990 ACM SIGMETRICS Conference,
pages 134-142, 1990.

Alan Jay Smith.
prefetching in memory heirarchies.
Computer, 3(3):7-21, December 1978.

Sequential program
IEEE

Alan Jay Smith. Disk cache-miss ratio anal-
ysis and design considerations. ACM Trans-
actions on Computer Systems, 3(3):161-

. 203, August 1985.
'G. M. Sacco and M. Schkolnick. Buffer

management in relational database systems.
ACM Transactions on Database Systems,
11(4):473-498, 1986.

Andrew Tomkins, R. Hugo Patterson, and
Garth A. Gibson. Informed Multi-Process
Prefetching and Caching. In Proceedings
of the International Conference on Mea-
surement & Modeling of Computer Systems

174

[YCo1]

(SIGMETRICS ‘97), pages 100-114, June
1997.

P.S. Yuand D. W. Cornell. Optimal buffer
allocation in a multi-query environment. In
Proceedings of the 7th International Confer-
ence on Data Engineering, pages 622-631,
1991.

