
Complete Inverted Files for Efficient Text Retrieval
and Analysis

A. BLUMER, J. BLUMER, D. HAUSSLER, AND R. MCCONNELL

University of Denver, Denver, Colorado

AND

A. EHRENFEUCHT

University of Colorado at Boulder, Boulder, Colorado

Abstract. Given a finite set of texts S = (wi , *.., wk) over some fixed finite alphabet 2, a complete
inverted tile for S is an abstract data type that provides the functionsfind(which returns the longest
prefix of w that occurs (as a subword of a word) in S, freq(w), which returns the number of times w
occurs in S, and locations(w), which returns the set of positions where w occurs in S. A data structure.
that implements a complete inverted file for S that occupies linear space and can be built in linear time,
using the uniform-cost RAM model, is given. Using this data structure, the time for each of the above
query functions is optimal. To accomplish this, techniques from the theory of finite automata and the
work on suffix trees are used to build a deterministic finite automaton that recognizes the set of all
subwords of the set S. This automaton is then annotated with additional information and compacted
to facilitate the desired query functions. The result is a data structure that is smaller and more flexible
than the s&ix tree.

Categories and Subject Descriptors: E. 1 [Data Structures]: Graphs; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Nonnumerical Algorithms and Problems--pattern matching; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing-indexing methods

General Terms: Algorithms, Verification

Additional Key Words and Phrases: DAWG, inverted tile, string matching, suffix tree, text retrieval

1. Introduction
The notion of an inverted file for a textual database is common in the literature
on information retrieval, but precise definitions of this concept vary [9, 13, 231.
We propose the following definition: Given a finite alphabet Z, a set of keywords
K C 8+, and a finite set of text words S G Z+, an invertedfile for (2, K, S) is an

The research of A. Blumer and D. Haussler was supported by National Science Foundation grant IST
83-17918 and the research of A. Ehrenfeucht was supported by National Science Foundation grant
MCS 83-05245.
Authors’ present addresses: A. Blumer, Department of Computer Science, Tufts University, Medford,
MA 02 155; J. Blumer and D. Haussler, Department of Computer and Information Science, University
of California at Santa Cruz, Santa Cruz, CA 95064; A. Ehrenfeucht, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO 80302; R. McConnell, Department of Mathematics
and Computer Science, University of Denver, Denver, CO 80208.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0004-541 l/87/0700-0578 $01.50

Joumal of the Association for Computing Machinery, Vol. 34, No. 3, July 1987, pp. 578-595.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28869.28873&domain=pdf&date_stamp=1987-07-01

Complete Inverted Files for Eficient Text Retrieval and Analysis 579

abstract data type that implements the following functions:

(1) find: Z+ + K U (X), where find(w) is the longest prefix x of w such that
x E K U 1X) and x occurs in S, that is, x is a subword of a text in S.

(2) freq: K + N, where freq(w) is the number of times w occurs as a subword of
the texts in S.

(3) locations: K + 2NxN, where locations(w) is a set of ordered pairs giving the
text numbers and positions within the texts in which w occurs.

This definition is simple, and includes many of the essential features of the
notions of inverted files in the literature, as well as those of other more general
“content addressable” data structures [14, 161.

In this paper, we consider the problem of constructing a complete invertedfile
for a finite set S. This is an inverted file for S in which the set of keywords K is
sub(S), that is, every substring of S is a keyword. We describe a data structure that
implements a complete inverted file for S that occupies space linear in the size of
S, can be built in linear time, and is structured such that each of the query functions
takes optimal time. Specifically, the time for find(w) is proportional to the length
of the output string x, the time for freq(w) is proportional to the length of w, and
the time for locations(w) is proportional to the length of w plus the number of
locations retrieved. Time and space bounds are given using the uniform cost RAM
model of computation [I].

The existence of a data structure with these properties is not hard to demon-
strate. It is essentially implied in the early work of Morrison on PATRICIA trees
[181, which are further refined to the compact position trees of Weiner [24] and
the suffix trees of McCreight [2, 171; see also [21]. Our primary contribution is a
new set of basic data structures that are functionally superior to suffix and position
trees, and are smaller. Using methods based on the theory of finite automata, we
replace the trees used in earlier work with more compact acyclic graphs derived
from the directed acyclic word graph (DAWG) [8] (see Figures 1 and 4). These
data structures are currently used in programs for analyzing and finding patterns
in DNA sequences [1 I], calculating distances between strings and clustering using
the string metric defined in [121, and as part of the user interface and “name
generating” software for a set of programs that provide computer-aided instruction
in assembly tasks [3].

In Section 2 we describe the basic data structure that we build to implement a
complete inverted tile, give space bounds for this structure, and indicate how the
retrieval functions are implemented using it. Sections 3-5 are devoted to demon-
strating that this data structure can be built in linear time, assuming that the size
of the alphabet is constant. In Sections 3 and 4 we extend the definition and on-
line construction algorithm of the DAWG to apply to a finite set of texts and give
linear size bounds on this structure. Section 5 shows how to add a linear post-
processing phase to this algorithm to create the final data structure that implements
the inverted file. This graph is essentially a labeled suffix tree with isomorphic
subtrees collapsed. Section 6 introduces a symmetric version of this data structure
with edges that allow one to extend a query by adding letters either before the first
letter or after the last letter.

Throughout this paper Z denotes an arbitrary nonempty finite alphabet and
I;* denotes the set of all strings over Z. The empty word is denoted by X.
Z+ denotes Z* - 1X). S always denotes a finite subset of Z+. For any w E Z*,
] w] denotes the length of w.]] S I] = JLES (w].Ifw=xyzforwordsx,y,zEZ*,

580 A. BLUMER ET AL.

then y is a subword of w, x is a prejx of w, and z is a suffix of w. sub(S) denotes
the union of all subwords of the members of S. For w E 2*, 1 w 1 = n, w has n + 1
positions, numbered from 0 to II. Position 0 is at the beginning of w, before the
first letter, and subsequent positions follow the corresponding letters of w. For
s= {w,,..., wk), S has I] S 11 + k positions, each denoted by a pair (i, j) where
1 5 i I k and j is a position in wi. For any x E sub(S), endposs(x) denotes the
set of all positions (i, j) in S immediately following occurrences of x and
beginposs(x) denotes the set of all positions immediately preceding occurrences
of x. For x 4 sub(S), beginposs(x) = endposs(x) = 0.

Given a directed acyclic graph G with edges labeled from Z+, a path p in G is a
sequence of nodes connected by edges, or just a single node. For any edge e in G,
label(e) denotes the label of e. label(p) is the word obtained by concatenating the
labels of the edges along p. lubel(p) = X if p is a single node.

2. Implementing a Complete Inverted File

We begin by describing the basic data structure used to implement a complete
inverted file for a set of texts S.

Definition. A rule of S is a “production” x +S rxp where x E sub(S), y,
/3 E Z*, and every time x occurs in S, it is preceded by y and followed by 0.
x -Q rxp is a prime rule of S if it is a rule of S and y and /I are as long as
possible (i.e., for no 6, 7 E Z*, where 6~ # X is x -Q S~X@T a rule of S). If
x +s rxp is a prime rule of S, then rxp is called the implication of x in S, denoted
imps(x). P(S) = (imps(x): x E sub(S)]. The members of P(S) are called the prime
subwords of S.

For example, if S = (ubabc, ubcub), then imp&) = A, imps(u) = imp,(b) = ub,
imps(cu) = ubcub and P(S) = (A, ub, ubc, ububc, ubcub). (It is not true in general
that the words of S can be formed by concatenating shorter prime subwords of S.)

Definition. The compact DA WG of S is the directed graph CS = (V, E) with
edges labeled with words in Z+, where I/ = P(S) and E = ((x, imps(xu)): a E Z,
xu E sub(S)). lubel((x, TX@)) = up. The node X is called the source of CS.

The compact DAWG for S = (ububc, ubcub) is given in Figure 1. For comparison,
the suffix tree [171 for S’ = (ubub4Jl, ubcub&) is given in Figure 2. Here we
assume the natural extension of McCreight’s data structure from individual words
to sets of words, using unique endmarkers. In the proof of Theorem 1 below, we
show that the compact DAWG will always be smaller than the corresponding suffix
tree. In fact, the compact DAWG for S can be obtained from the suffix tree for S’
by merging isomorphic (edge labeled) subtrees in this structure and deleting the
structure associated with the endmarkers.’ The relevant nodes of the s&ix tree are
indicated by the solid circles. We elaborate further on the connection between the
suffix tree and the compact DAWG in Section 3.

The fundamental properties of CS are given in the following lemma:

LEMMA 1. For any x E sub(S) there is a single path p in CS from the source to
imps(x) such that x is a prefix of label(p) and x is not a prefix of the label of any
proper initial segment of p. Conversely, for any path p from the source to imps(x),
lubel(p) is a sufjix of imps(x) and for any prejx y of lubel(p) that is not a prefix of
the label of a proper initial segment of p, imps(y) = imps(x).

’ A similar observation was made for the DAWG (see Section 3) in [lo].

Complete Inverted Files for Efficient Text Retrieval and Analysis 581

FIG. 1. Compact DAWG CS, for S = (ababc, ubcub].

/ a&/ \ ./--..

FIG. 2. Suffix tree for S’ = {ababC&, abC&z).

PROOF. These properties follow easily from the definition of CS. Cl

Informally, this lemma says that for any x, y E sub(S), x and y “lead to the same
node” in CS if and only if imps(x) = imps(y). Thus the nodes of CS represent
the equivalence class of sub(S) with respect to the following equivalence relation
on 2*.

Definition. For x, y E sub(S), x es y if and only if imps(x) = imps(y). If
x 4 sub(S) there are two cases: if y 66 sub(S), then x =S y; otherwise, x fs y.

582 A.BLUMERETAL.

Each equivalence class in s&(S) is uniquely represented by a prime subword of
S that is the implication of all other words in the class. Thus all the words in any
one of these equivalence classes occur with the same frequency and in roughly the
same locations in S.

A complete inverted file for a finite set of texts S is implemented using the
compact DAWG, CS, annotated with certain additional information to facilitate
the retrieval functions.

Definition. The labeled compact DAWG is the graph IS, obtained from CS by
adding the following labeling to each node x.

(1) A frequency label, that is, an integer indicating the number of times that x
occurs in S.

(2) A (possibly empty) list of identijication pointers indicating all texts of S of
which x is a suffix.

The labeled compact DAWG for S = (ababc, abcab] is given in Figure 3. Note
that the identification pointers play a role analogous to the endmarkers in the
suffix tree. It is not generally the case that each node has a nonempty list of
identification pointers.

In the actual implementation of IS, we assume that the texts of S are stored in
RAM, and that the strings labeling the edges of IS are each given by a pointer to
an occurrence of the string in S and a length. Optionally, the nodes of IS may also
be labeled with the prime subwords that represent them in the same manner.
This allows some additional query functions (discussed below) to be implemented
on 1,. Using the uniform-cost RAM model, the space required for each of these
labels is constant, as is the size of each frequency label and identification pointer.
The overall size bounds for IS are given in the following theorem:

THEOREM 1. Let Is = (V, E). Let k be the number of words in S and let m be
the number of identification pointers in Is. Then 1 V 1 5 11 S II + k and I E I + m 5
2(IISll +w- 1.

PROOF. This bound is related to the well-known bounds for suffix trees [171.
Assume S = 1 w1 , . . . , wkJ and let T be the suffix tree for S’ = (wl&, . . . , w&j.
Twill have one leaf for each nonempty suffix in S’, for a total of 11 S 11 + k leaves.
Let n(T) denote the set of all nodes of T and let I be the number of internal nodes.
Then the total number of nodes in T can be written as

I+ IISII +k=(nZT,degO)+ 1, (1)

where deg(n) denotes the outdegree of the node n. Every internal node of T has
outdegree at least 2. Furthermore, since the words in S are nonempty, there are at
least k + 1 distinct letters occurring in the words of S’; hence the outdegree of the
root of T is at least k + 1. Thus,

(°(n))+ 1 rk+ 1 +2(1- I)+ 1 =2I+k.

It follows from (1) and (2) that I 5 I] S I].

(2)

We use these bounds on the number of internal and leaf nodes of T to obtain
bounds on the size of IS. Suppose that x is a prime subword of S. If x occurs two
or more times in S, then x occurs two or more times in S’, and since it is a prime

Complete Inverted Files for Efficient Text Retrieval and Analysis

l%G. 3. IS for s = (WI, WZ), where wI = ababc, wz = abcub.

subword of S, there are at least two distinct letters that follow occurrences of x in
S’. This implies that there is a path in T leading from the root to an internal node
that is labeled with the letters of x. Since each internal node of T is uniquely
associated with a subword of S in this manner, this implies that the number of
prime subwords of S that occur more than once in S is bounded by the number of
internal nodes of T, which is at most 11 S 11. If x is a prime subword of S that occurs
only once in S, then x must actually be a word in S. Thus since S has only k words,
the total number of prime subwords of S, and hence the number of nodes in Is, is
bounded by 11 S 11 + k.

Now assume that (x, rxap) is an edge in IS. Again, this implies that x is a prime
subword in S that occurs followed by at least two distinct letters in S’ (one of them
the letter a). Thus there will be an internal node in T corresponding to the word x
and this node will have an outgoing edge with a label beginning with a. Now
suppose instead (or in addition) that x has an identification pointer that points to
the word Wi E S. Thus x is a suffix of wi. If x occurs more than once in S then x
occurs followed by $i and at least one other letter b # $i in S’. Hence again there
is an outgoing edge (this time labeled $i) in T from an internal node corresponding
to x. As above, each edge in T can correspond to at most one edge or identification
pointer in I,. This accounts for all but at most k identification pointers, which are
the identification pointers for prime subwords of S that occur only once in S.
There can be at most k of these. Since the total number of nodes in T is at most
2 11 S 11 + k, the number of edges in T is at most 2 11 S 11 + k - 1. Thus the number
of edges and identification pointers in 1~ is bounded by 2(11 S 11 + k) - 1. Cl

A simple example of a sequence of text sets S, for which 1~ reaches these upper
bounds is S, = {a”) where a is a single letter. Preliminary experimental evidence
indicates expected sizes of 0.26 to 0.29 11 S 11 nodes and 0.9 to 1.0 11 S 11 edges and
identification pointers for 1s when S is a single English text. These data are based
on the analysis of 12 fairly tales (2000 to 20,000 characters), converted to use only
lowercase letters and blank. Each text was taken as one long word. For comparison,

584 A.BLUMERETAL.

the suffix trees for these texts had approximately 1.5 11 S 11 nodes and the same
number of edges. For DNA sequences (four-letter alphabet) the size of IS is higher
at 0.53 11 S I] nodes and 1.4 I] S 11 edges and identification pointers when S is a
single “strand.” These data are based on the analysis of the DNA of the viruses
ms2, fd, and t7 (approximately 3500, 6500, and 40,000 characters, respectively).
Suffix trees for these DNA samples had approximately 1.6 11 S 11 nodes and edges.
A more detailed average case analysis of these structures, including approximate
formulas for the average size of the compact DAWG for a single randomly
generated text (equiprobable, independent characters) is given in [5].

We now turn our attention to implementing the functions Jind, f?eq, and
locations.

LEMMA 2. Using Is, for any word w E Z*, x = find(w) can be determined in
time 0(I x I). For any x E sub(S), fieq(x) can be determined in time 0(I x I) and
if the nodes of Is are labeled with the prime subwords that represent them, imps(x)
can also be determined in time 0(1 x I).

PROOF. To implement find, we begin at the source of 1s and trace a path
corresponding to the letters of w as long as possible. By Lemma 1, this “search
path” is determined and continues until the longest prefix x of w in sub(S) has
been found. To implement fieq, we note that fieq(x) = fieq(imps(x)) for any
x E sub(S). Thusfreq(x) can be obtained by following the procedure offind and
then returning the frequency label of the node that the final edge of this search
path leads to, which will be imps(x). If this node is labeled, a pointer to the string
for imps(x) can be recovered as well. Clearly all queries are 0(] x]). El

In implementing locations, let us assume that S = (wl, . . . , wk) and that for
each i, 1 5 i 5 k, the length of wi is available. Assume further that locations(x)
returns beginposs(x), as described above.

LEMMA 3. Let x E sub(S) and imps(x) = TX@. Let L = U,,, locations(xl3a).
Let T=((i,j): x@isas@xofw;andj= IwiI -Ix@/). Thenlocations(
L U T.

PROOF. Since imps(x) = -yxp, every occurrence of x is followed by /3.
Thus occurrences of x can be classified as those that are occurrences of xpa for
some a E Z, that is, those followed by still more letters, and those that are
occurrences of x/3 at the end of a word. These sets correspond to the sets L and T,
respectively. El

From the above lemma, it is clear that there is a simple recursive procedure for
computing locations(x) for any word x E sub(S), given that we are at the node
7x8 = imps(x) and we have the length of ,& We simply compute the list L described
above recursively by examining each of the nodes reached by outgoing edges of
imps(x) and then concatenate this list with the list T, obtained from the list of
identification pointers associated with the node -yx& Since all sublists involved in
this computation are obviously disjoint and each recursive call produces a non-
empty list, the time required is clearly linear in the size m of the final list. Since
the time for the initial step of finding the node imps(x) and the length of p is
0(] x I), the total time for locations(x) is 0(1 x] + m). Thus we have

THEOREM 2. Using Is, thefunctionsfind, freq, and locations can be implemented
in optimal time.

Complete Inverted Files for Eficient Text Retrieval and Analysis 585

3. TheDAWG

As a preliminary step in building IS, we construct a directed graph called the
directed acyclic word graph (DAWG) for S. This graph is essentially a deterministic
finite automaton that recognizes the set of subwords of S. The DAWG for a single
word is defined in [8]. Here we extend that definition to a set of words S.

Definition. Let x and y in Z* be right equivalent on S if endposs(x) = endposs(y).
This relation is denoted by x =$ y. For any word x, the equivalence class of x with
respect to =g is denoted [xl+. The equivalence class of all words that are not
subwords of S is called the degenerate class. All other classes are nondegenerate.

It follows from the definition of =$ that if x and y are strings in the same
nondegenerate equivalence class, then either x is a suffix of y, or vice versa.
Therefore, each nondegenerate equivalence class has a unique longest member,
and all other members of the equivalence classes are suffixes of this longest member.

Definition. The unique longest member of a nondegenerate equivalence class
under 5: is called the representative of that class. If x is the representative of
[xl+, then we say that x represents this class.

Obviously =$ is a right invariant equivalence relation on Z* of finite index.
Thus, since sub(S) is the union of all nondegenerate classes of 18, using standard
methods [191, we can define from =d a deterministic finite automaton that accepts
sub(S). Removing the one nonaccepting state, which corresponds to the degenerate
class of ~5, we obtain the following graph [6, 81.

Definition. The DAWG for S, denoted Ds, is the directed graph (V, E) with
edges labeled with letters in 2, where V is the set of all nondegenerate equivalence
classes in =$ and E = (([xl+, [xa]+): x E Z*, a E Z, and xa E sub(S)]. The edge
([xl+, [xa]+) is labeled a. [Xl+ is called the source of Ds.

The DAWG for the set S = (ababc, abcab} is given in Figure 4.
It is enlightening to compare the DAWG for S to the compact DAWG CS

(Figure 1) and to the suffix tree for S’ (Figure 2), imagining the endmarkers
removed. The remaining nodes of the suffix tree (shown with solid circles) naturally
correspond to left invariant equivalence classes of S because of equivalence of
sets of beginning positions in S; that is, x =k y if and only if beginposs(x) =
beginposs(y). This correspondence is analogous to that described for the equiv-
alence classes of CS in Lemma 1. In fact, the nodes of CS represent the classes of
the union of these two equivalence relations.

LEMMA 4. =s is the transitive closure of =k U =b.
’ ,I:

PROOF. For any x, y E Z*, if x =g y or x =f y, then it is clear that imps(x) =
imps(y), hence x =S y. On the other hand, if imps(x) = CL@ = (Y ‘yP ’ = imps(y)
for some CX, /3, (Y’, p’ E Z*, then x =$ cux =$ CVX/~ = (~‘y/3’ =$ a’y =g y. 0

From Lemma 4, it follows that the compact DAWG can be obtained either by
identifying nodes of the suffix tree that are equivalent under =d, or by identifying
nodes of the DAWG that are equivalent under =$. This can be reduced to either
identifying isomorphic subtrees of the suffix tree or “compacting” the edges of the
DAWG. It is easier and more efficient computationally to use the DAWG. As is
the case for the suffix tree, it can be shown that the size of the DAWG for S is
linear in]] S I]. In order to do so, it is useful to examine another relationship
between the DAWG and the suffix tree.

586 A.BLUMERETAL.

F1c.4. DAWGforS= (ububc,abcub).

Given two strings x, y E sub(S), if endposs(x) n en&oss(v) # 0, then either x
must be a sufftx of y, or vice versa. This in turn implies that enu’poss(x) E
endpo& v), or vice versa. Therefore, the sets of the form endposs(x) for x E sub(S)
form a subset tree, which we call T(S). This tree is illustrated in Figure 5 for
S = (ababc, abcab), where each node of the tree is labeled with the word that
represents the equivalence class for the corresponding set of positions.

LEMMA 5. If x is the representative of [xl,:, then any class is a child of [xl+
in T(S) if and only if that class can be expressed as [ax],: where a E Z and
ax E sub(S).

PROOF. The children of [x] I$ correspond to the maximal proper subsets of
endposs(x) that are equivalence classes under =$. Any such equivalence class must
be endposs(vx) for some nonnull word v. Since x is the longest string in its
equivalence class, the equivalence class of any string ax, a E Z, must be a proper
subset of [xl+ and these will obviously be maximal. 0

It follows from Lemma 5 that when every word in S begins with a unique
letter, T(S) is isomorphic to the suffix tree for the set consisting of the reverses
of all the words in S, except that the edges are unlabeled [8]. We make use of this
correspondence in Section 6.

LEMMA 6. Assume 11 S 11 > 1. Then the DA WG for S has at most 211 S 11 - 1
nodes.

PROOF. In the special case where all of the words in S are strings of the form
a” for a single letter a E Z, T(S) is a simple chain of k + 1 nodes where k is the
length of the longest word in S. Since I] S I] > 1, k must be at least two and so the
bound holds. In the remaining case, we show that T(S) has at most I] S]I

Complete Inverted Files for Efficient Text Retrieval and Complete Inverted Files for Efficient Text Retrieval and Analysis 587

FIG. 5. T(S) for S = {ababc, abcub).

nonbranching nodes (nodes of outdegree less than 2), and hence at most]] S]I - 1
branching nodes, for a total of at most 211 S]I - 1 nodes.

Let x represent the equivalence class of a node in T(S). By Lemma 5, this node
is a branching node if and only if there exist distinct letters a, b E Z such that ax
and bx are both in sub(S). If every occurrence of x is preceded by a single letter
a E Z, then ax =d x, which contradicts the maximality of x. Thus, if x represents
a nonbranching node in T(S), it must be the prefix of some word in S. However,
since S contains at least two distinct letters, [Xl+ must have at least two children.
Thus T(S) has at most]I S]I branching nodes, since there are at most]I S]I nonnull
prefixes of the words in S. Cl

LEMMA 7. Assume II S II > 1. If the DA WG for S has N nodes and E edges, then
E I N + II S II - 2.

PROOF. Note that the DAWG is a directed acyclic graph with a single source
corresponding to [Xl,, R and one or more sinks, each of which corresponds to
[WI+ where w is a word in S. Every node in the DAWG lies on a path from the
source to at least one sink, and the sequence of labels on each such distinct path
from source to sink spells out a distinct nonempty suffix of the word w to which
the sink corresponds.

Any such directed acyclic graph has a directed spanning tree rooted at its source,
so we may choose one such spanning tree. This tree will have N - 1 edges. It
remains to show that there are at most]I S I] - 1 additional edges that are not in
the spanning tree.

With each of the edges of the DAWG that is not in the spanning tree, we can
associate a distinct sulix of one of the words in S as follows: For each edge there is
a path along the spanning tree to the tail of the edge, along the edge, and finally to
some sink in any convenient way. Each of these paths is distinct, and traces out a
distinct suffix of some word in S. (The paths must differ in the first edge that is
not in the spanning tree.) There are at most]I S]I distinct suffixes of the words
in S. For each sink, there must be a path from the source to that sink that lies
entirely within the spanning tree. As there is at least one sink, there are at most
I] S I] - 1 distinct paths in the DAWG that may be associated with edges not in the
spanning tree. Cl

588 A.BLUMERETAL.

Worst case examples that asymptotically achieve the bounds given in
Lemmas 6 and 7 are given in [8] for the special case where S contains only one
word.

Using Lemmas 6 and 7, we can give bounds on the total size of the DAWG for
S as follows:

THEOREM 3. Assume 11 S 11 > 1. Then the DA WGfir S has at most 211 S II - I
nodes and 3 II S 11 - 3 edges.

The size of the DAWG in the average case is discussed in [5].

4. Constructing the DA WG
We now turn to the problem of constructing the DAWG for S. The algorithm we
have developed builds the DAWG in a simple on-line fashion, reading each word
from S and updating the current DAWG to reflect the addition of the new word.
Individual words are also processed on-line in one left-to-right scan.

The algorithm is a simple extension of the algorithm given in [8] to build the
DAWG for a single word. Additional steps required are indicated by starred lines.
The heart of the algorithm is given in the function update, and its auxiliary
function, split. Given a DAWG for the set S = (wl, . . . , Wi) (annotated with certain
additional information described below), a pointer to the node represented by Wi
(called activenode) and a letter a, update modifies the annotated DAWG to create
the annotated DAWG for S’ = (w, , . . . , W&l, WiU). When processing on a new
word begins, activenode is set to the source. Split is called by update when an
equivalence class from =$ must be partitioned into two classes in ~8.

Two types of annotation are required. First, each of the transition edges of the
DAWG is labeled either as a primary or as a secondary edge. The edge labeled a
from the class represented by x to the class represented by y is primary if xu = y.
Otherwise, it is secondary. The primary edges form a directed spanning tree of the
DAWG defined by taking only the longest path from the source to each node. The
second kind of annotation is the addition of a sufix pointer to each node. The
suffix pointer of a node in the DAWG points to the parent of the corresponding
node in the tree T(S). Equivalently, there is a suffix from the node represented by
x to the node represented by y whenever y is the largest suffix of x that is not
equivalent to x under =s” (Lemma 5). The source is the only node that does not
have a suflix pointer. Suffix pointers are analogous to those used by McCreight
[171 and correspond to pointers used by Pratt, who gives an algorithm related to
ours in [20].

The algorithm to build the DAWG is given in the Appendix. In consists of the
main procedure builddawg and auxiliary functions update and split.

The key to the linear time bound for this construction algorithm is that using
suffix pointers and primary or secondary marked edges, all of the structures that
must be modified by update can be located rapidly. Here it is important that suffix
pointers allow us to work from the longest suffixes backward to successively shorter
suffixes, stopping when no more work needs to be done. Simpler methods that
involve keeping track of all “active sullixes” will be potentially O(n2) (e.g., [151).
In addition, it is important that the states do not need to be marked with structural
information about the equivalence classes they represent. This is in contrast to the
O(n2) methods of [22], that build similar structures by directly partitioning the
equivalence classes in an iterative manner.

In [8] we prove that the version of the algorithm that builds the DAWG for a
single word is linear in the length of the word for an alphabet of fixed size. In

Complete Inverted Files for Eficient Text Retrieval and Analysis 589

[4], a formal proof of correctness for this algorithm is given. It is readily verified
that the modifications to that algorithm introduced here to build the DAWG for
several words do not substantially affect any of the details of these proofs. Thus we
have the following result.

THEOREM 4. The DA WG for S can be built on-line in time linear in 11 S 11.

5. Creating an Inverted File from the DA WG
It remains to demonstrate how the DAWG can be compacted and labeled to create
the data structure IS described in Section 2.

First, let us assume that the DAWG construction algorithm given in the previous
section has been extended so that each node of the DAWG is labeled with the
word that represents it. This will be accomplished by installing a pointer to the end
position of the first occurrence of this word in S, along with the length of the word.
The functions update and split are easily extended so that they maintain this
information during the construction of the DAWG. Installing the pointers requires
only that update have the current location in S at the time it adds a new node
represented by wia, as described above. New nodes created by split can simply take
these pointers from the original nodes being split. To keep track of lengths, every
time a new node is created, when the primary edge leading to this node is installed,
the length of the representative of the new node is set to one greater than the length
of the representative at the source of the incoming primary edge. These additions
will not affect the linear time bound for construction.

We also assume that each node is augmented with a list of identification pointers,
that indicate all texts in S, if any, of which the representative of the equivalence
class of this node is a suffix. After the DAWG is built, these pointers can be added
by a procedure that traces the suffix pointers from the node represented by Wi to
the source for each Wi E S, adding identification pointers for Wi to each node
visited. The additional time and space for this procedure is bounded by the number
of suffies of the words in S, and hence is O(11 S 11).

Given these extensions to the DAWG construction algorithm, it remains to show
how the DAWG can be compacted to form Is, and how the frequency labels are
added.

In view of Lemma 4, each of the equivalence classes represented by the nodes of
Is are composed of one or more right equivalence classes represented by nodes in
the DAWG. The process of “compacting” the DAWG essentially consists of
removing all but one of the nodes for each equivalence class, replacing the chains
of classes removed by multiletter edges (see Figures 1 and 4). As a preliminary step
to compaction, we make a recursive depth-first search of the DAWG adding the
following pointers to the nodes.

Definition. If x represents a node A in the DAWG for S, the implication pointer
of A is a pointer to the node B represented by Crxp, where Crxp = imps(x). The
length of this implication pointer is I /3 I.

LEMMA 8. Let A be a node of the DA WG for S. If A has a single outgoing edge
labeled a leading to a node B and an empty set of identification pointers, then the
implication pointer of A is equal to the implication pointer of B, except that its
length is one longer. Otherwise, the implication pointer of A points to A itself and
has length zero.

PROOF. Assume A is represented by x. If A has an identification pointer or two
or more outgoing edges, then there is no one letter that always follows x. Since x

590 A.BLUMERETAL.

represents a node in the DAWG, there is no one letter that always precedes x
either. Hence imps(x) = x. If A has a single outgoing edge labeled a and no
identification pointers, then x is always followed by a. Hence, imps(x) =
imps(xa) = rxaP for some y, /3 E Z*. Thus the implication pointers of x and xa
are the same, but the former has length 1 ap 1 and the latter length 1 p 1. 0

From the above lemma, it is clear that we can install implication pointers in the
DAWG using a simple recursive depth-first search. Since the size of the DAWG
for S is linear in 11 S 11 (Theorem 3), this procedure is linear in 11 S 11.

By installing implication pointers, we have identified the nodes of the DAWG
represented by prime subwords of S, which will be the only survivors of the
“compaction” process that creates IS. These are the nodes whose implication
pointers point to themselves. We can also derive the edges of 1~ from these
implication pointers. If x is a prime subword of S (representing a node A in the
DAWG), then x will have an outgoing edge in Is leading to imps(xa) for each
a E Z such that xa E sub(S). A node B for any such xa can be found by following
the DAWG edge labeled a from A. The node for imps(xa) can then be found using
the implication pointer in this node. If imps(xa) = rxap, then the label of this edge
will be a/3. Since the length of ,6 is given by the length of the implication pointer in
B, and the node represented by rxa/3 contains a pointer to an occurrence of TX@
and its length, we can compute this label directly. It too will be represented using
a pointer and a length. Thus with one more traversal of the DAWG, the nodes of
Is can be identified and edges between them installed. This traversal also takes
time proportional to the size of the DAWG and hence is O(11 S 11).

A final pass can remove remaining nodes of the DAWG and all DAWG edges.
Since lists of identification pointers have already been added to the nodes of the
DAWG, the resulting graph will be Is, without the frequency labels. To finish the
construction, we can add the frequency labels using another simple recursive
procedure, analogous to that used to compute locations (see Lemma 3).

Since each step of the construction of Is from the DAWG for S is linear in S,
we have the following theorem:

THEOREM 5. Is can be built in time linear in II S 11.

6. A Symmetric Version of the Compact DA WG
The suffix tree for a set of words S and the suffix tree for the reversed words of S
are quite different objects. There is in general no one-to-one correspondence
between the nodes of these trees. The same holds for the DAWG. However, by the
definition of prime subwords, it is clear that the prime subwords of the reversed
words of S are simply the reverses of the prime subwords of S. Indeed the partition
of sub(S) induced by =s is invariant under reversal in this manner. Thus the
structure of equivalence classes represented by the nodes of the compact DAWG
does not depend on whether the words are read left to right or right to left.

The edge structure on the compact DAWG is dependent on reading direction,
however. We have defined what might be called right extension edges of the form
(x, imps(xa)) where x is a prime subword and a E Z is appended to the right of x.
By adding the corresponding le3 extension edges, we obtain a structure that is fully
invariant under reversal (up to the labeling of the edges and/or nodes).

Definition. The symmetric compact DAWG of S is the graph C2s =
(V, ER, EL) with two sets of edges ER and EL, called right and left

Complete Inverted Files for Efficient Text Retrieval and Analysis

FIG. 6. Left extension
s = (ababc, abcub} .

edges for c2s,

591

extension edges, respectively, where V and ER are the nodes and edges of the
compact DAWG of S, and EL = ((x, imps(ax)):x E P(S), a E 2, ax E sub(S)).
label((x, rax@)) = ya.

C2s is illustrated in Figure 6 for S = (ababc, abcab). To avoid confusion, only
the left extension edges are drawn. The right extension edges are given in Figure 1.

The symmetric compact DAWG for S is a very flexible tool for exploring the
subword structure of S. Let us assume that the nodes of C2s are labeled with the
prime subwords of S that identify them (using the usual location/length represen-
tation) and their frequencies. Using the procedure find in the same manner it is
used in Is, given any word w, we can determine if w is a subword of S in optimal
time O(1 w 1) and if it is, we can go on to retrieve its frequency in constant time.
With the additional node labels, we can also go on to retrieve a pointer to imp,(w)
in constant time. We can then explore any other subwords that contain w by
appending various letters to the left or right of imps(w) and following appro-
priate edges in C2s to other prime subwords. Each time we make an extension,
the prime subword that is implied and its frequency can be recovered in constant
time.

We conclude this section by demonstrating that C2s can be built in linear time.
To do this, we add one more pass to the process of compacting the DAWG for S
described in the previous section. In this pass, we exploit the suffix pointers left
behind by the construction of the DAWG.

Recall that there is a suffix pointer in DAWG from the node represented by x
to the node represented by y whenever y is the longest suffix of x that is not
equivalent to x (under ~5). Since y is a proper suffix of x, there is a nonempty
word y such that x = yy. We call y the label of the suffix pointer from x to y. We
assume that each node of the DAWG has a pointer and length indicating the word
that represents it, so y is easily computed in constant time and need not be
explicitly stored. We show that the left extension edges of C2s correspond to the
reversed suffix pointers of the DAWG for S.

592 A.BLUMERET AL.

LEMMA 9

(i) If x and y represent nodes in the DA WG for S and there is a suffixpointerfrom
x to y labeled y, then there is a left extension edge from imps(y) to imp,(x)
labeled y in C2s.

(ii) For every left extension edge in C2s there exist x and y as described in (i).

(i) Since y represents a node in the DAWG for S, y is either a prefix of a word
in S or occurs preceded by two distinct letters. Hence imps(y) = y@ for some
/I E Z*. Since every occurrence of y is followed by /3, every occurrence of x = ry
is followed by /3. Since, in addition, x represents a node in the DAWG for S,
imps(x) = x@ for some 6 E Z*. Let y = y’a where a E Z. By the definition of the
suffix pointer, ay =s ry, hence ay + yy. Thus imps(ay@) = imps(ry@) = xpS.
Hence there is a left extension edge labeled y from imps(y) to imps(x).

(ii) Assume there is a left extension edge labeled y from u to v in C2s. Then
y = y’a for some a E t; and imps(au) = 7~6 = v for some 6 E 2*. This implies
that yu represents a node in the DAWG for Sand au =$ yu. Since u also represents
a node in the DAWG for S and u is not equivalent to yu under =:, there must be
a suffix pointer from the node represented by yu to the node represented by u
labeled 7: Obviously imps(u) = u and imps(ru) = v. Cl

We can install the left extension edges of C2s on nodes of the DAWG for S
represented by prime subwords as we did the right extension edges in the previous
section. We simply traverse the DAWG, and for each node x with sufix pointer
to y labeled y, we install a left edge from imps(y) to imp,(x) labeled y. Assuming
that implication pointers have been put into place in a previous pass, nodes for
imps(y) and imps(x) can be located in constant time. Care must be taken to avoid
installing duplicate edges. However, the labels of the outgoing left extension edges
of a node all have distinct final letters, so we can check for duplicates in constant
time, since we are assuming a fixed alphabet size.

The remainder of the construction of C2s, which installs the right extension
edges and deletes the superfluous nodes and edges from the DAWG, can be
accomplished as described in the previous section. Thus we have the following
result.

THEOREM 6. C2s can be built in time linear in 11 S 11.

7. Conclusions

Retrieval structures based on the compact DAWG or suffix tree are considerably
more powerful than conventional keyword-based retrieval structures [23] in that
they allow queries for arbitrary strings, rather than restricting the user to a
preselected keyword set. This feature is essential in situations in which there is no
obvious notion of a reasonable keyword set, for example, in a library of DNA
sequences [1 I]. It is also helpful in certain textual databases (e.g., in chemical
abstracts) where one might want to search for various stems, suffixes, or prefixes
of chemical compounds that would not be included even in a “full text” keyword
set.

The drawback of the suffix tree is the large space that it occupies. Although
significantly smaller than the suffix tree in many cases, the compact DAWG for a
large set of texts, say 1 megabyte, still requires considerable storage space, depending
on the implementation perhaps an order of magnitude more space than the text

Complete Inverted Files for Efficient Text Retrieval and Analysis 593

itself. This is compounded by the fact that it is difficult to build a large linked
graph such as the compact DAWG or suffix tree on conventional computer systems
with limited random access memory, without running into the problem of
“thrashing,” in which most of the time is spent moving the data to and from the
disk [151. Unless these problems can be overcome, the applications of the compact
DAWG will be limited to smaller, intensively searched or analyzed text collections
for which conventional keyword-based systems are inadequate, for example, the
DNA example cited above.

In addition to the problems of space requirements and thrashing, the research
presented here also brings up other interesting questions, which are outlined below.

(1) Theorem 1 shows that the maximal number of prime subwords of a set S of
k words is]I S]I + k. The worst case that we have found is]I S]I + 1, one of which
is always the empty word. Is it true that for any finite set of words S, S has at most
I] S]I nonempty prime subwords? (This stronger result was claimed in [7], but the
sketch of proof given there was incorrect.)

(2) Can a complete theoretical analysis of the expected size of IS for a random
text be given? In particular, how many prime subwords are expected for various
notions of random text? How many in other types of text? Some results along these
lines are given in [5].

(3) What are the most efficient methods of updating Is when new texts are added
to S? Can two complete inverted files be merged in linear time?

(4) Do IS or C2s have applications in other areas of text processing, for ex-
ample, spelling correction, inexact match searching, data compression or pattern
recognition?

Appendix
The following is a detailed algorithm to build the DAWG for a set of texts S.

builddawg(S)
1. Create a node named source.
2. Let activenode be source.
3. For each word w of S do:*

A. For each letter a of w do:
Let activenode be update (activenode, a).

B. Let activenode be source.
4. Return source.

update (activenode, a)
1. If activenode has an outgoing edge labeled a, then*

A. Let newactivenode be the node that this edge leads to.*
B. If this edge is primary, return newactivenode.*
C. Else, return split (activenode, newactivenode).*

2. Else
A. Create a node named newactivenode.
B. Create a primary edge labeled a from activenode to newactivenode.
C. Let currentnode be activenode.
D. Let suflxnode be undefined.
E. While currentnode isn’t source and sufixnode is undefined do:

i. Let currentnode be the node pointed to by the sufftx pointer of currentnode.
ii. If currentnode has a primary outgoing edge labeled a, then let sufixnode be the

node that this edge leads to.
iii. Else, if currentnode has a secondary outgoing edge labeled a then

a. Let childnode be the node that this edge leads to.
b. Let suffixnode be split (currentnode, childnode).

iv. Else, create a secondary edge from currentnode to newactivenode labeled a.

594 A. BLUMER ET AL.

F. If sufixnode is still undefined, let suffixnode be source.
G. Set the suffix pointer of newactivenode to point to sufixnode.
H. Return newactivenode.

split (parentnode, childnode)
1. Create a node called newchildnode.
2. Make the secondary edge from parentnode to childnode into a primary edge from

parentnode to newchildnode (with the same label).
3. For every primary and secondary outgoing edge of childnode, create a secondary outgoing

edge of newchildnode with the same label and leading to the same node.
4. Set the suffix pointer of newchildnode equal to that of childnode.
5. Reset the suffix pointer of childnode to point to newchildnode.
6. Let currentnode be parentnode.
7. While currentnode isn’t source do:

A. Let currentnode be the node pointed to by the suffrx pointer of currentnode.
B. If currentnode has a secondary edge to childnode, then make it a secondary edge to

newchildnode (with the same label).
C. Else, break out of the while loop.

8. Return newchildnode.

ACKNOWLEDGMENTS. D. Haussler would like to thank Prof. Jan Mycielski for
several enlightening discussions on these and related topics. We would also like to
thank Joel Seiferas for pointing out his recent work in this area [lo], and for
sending us this work and several related papers.

REFERENCES

1. AHO, V., HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer Algorithms
Addison-Wesley, Reading, Mass., 1974.

2. A~~STOLICQ A., AND PREPARATA, F. P. The myriad virtues of suffix trees. In Proceedings of the
NATO Advanced Research Workshop on Combinatorial Algorithms on Words (Maratea, Italy, June
18-22). Springer-Verlag, New York, 1985.

3. BAGCETT, P., EHRENFEUCHT, A., AND PERRY, M. A technique for designing computer access and
selecting good terminology. In Proceedings of the 1st Annual Rocky Mountain Conference on
Artificial Intelligence. Breit International Inc., Boulder, Colo., 1986.

4. BLUMER, J. Correctness and linearity of the on-line directed acyclic word graph algorithm. Tech.
Rep. MS-8410, Univ. of Denver, Denver, Colo., 1984.

5. BLUMER, A., HAUSSLER, D., AND EHRENFEUCHT, A. Average sixes of sutlix trees and DAWGs.
Presented at the 1st Montreal Conference on Combinatorics and Computer Science, Univ. of
Montreal, Canada, May 1987.

6. BLUMER, A., BLUMER, J., EHRENFEUCHT, A., HAUSSLER, D., AND MCCONNELL, R. Linear size
finite automata for the set of all subwords of a word: An outline of results. Bull. Eur. Assoc. Theoret.
Comput. Sci. 21 (1983), 12-20.

7. BLUMER, A., BLUMER, J., EHRENFEUCHT, A., HAUSSLER, D., AND MCCONNELL, R. Building a
complete inverted tile for a set of text files in linear time. In Proceedings of the 16th ACM
Symposium on the Theory of Computing. ACM, New York, 1984, pp. 349-358.

8. BLUMER, A., BLUMER J., EHRENFEUCHT, A., HAUSSLER, D., CHEN, M. T., AND SEIFERAS, J. The
smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci., 40 (1985) 3 l-55.

9. CARDENAS, A, F. Analysis and performance of inverted data base structures. Commun. ACM 18,
5 (May 1975), 253-263.

10. CHEN, M. T., AND SEIFERAS, J. Efficient and elegant subword-tree construction. Univ. ofRochester
1983-84 CS. and C.E. Res. Rev., Univ. of Rochester, N.Y., 1984, pp. 10-14.

11. CLIFT, B., HAUSSLER, D., MCCONNELL, R., SCHNEIDER, T. D., AND STORMO, G. D. Sequence
Landscapes. Nucleic Acids Res., 14, 1 (1986), 141-158.

12. EHRENFEUCHT, A., AND HAUSSLER, D. A new distance metric on strings computable in linear
time. Tech. Rep. UCSC-CRL-86-27, Dept. of Computer and Information Sciences, Univ. of
California at Santa Crnz, Oct. 1986.

13. GOLDSMITH, N. An appraisal of factors affecting the performance of text retrieval systems. ZnJ
Tech.: Res. Dev. I (1982), 41-53.

14. KOHONEN, T. Content-Addressable Memories. Springer-Verlag, New York, 1980.

Complete Inverted Files for Efficient Text Retrieval and Analysis 595

15. MAJSTER, M. E., AND REISER, A. Efficient on-line construction and correction of position trees.
SIAM J. Comput 9,4 (Nov. 1980), 785-807.

16. MALLER, V. The content addressable file store-A technical overview. Angwte. ZnJ 3 (1981),
100-106.

17. MCCREIGHT, E. M. A space-economical suffix tree construction algorithm. J. ACM 23, 2
(Apr. 1976), 262-272.

18. MORRISON, D. R. PATRICIA-Practical algorithm to retrieve information coded in alpha-
numeric. J. ACM IS,4 (Oct. 1968), 514-534.

19. NERODE, A. Linear automaton transformations. Proc. AMS 9 (1958), 541-544.
20. PRAIT, V. R. Improvements and applications for the Weiner repetition finder. Unpublished

manuscript, Mar. 1975.
2 1. SLISENKO, A. 0. Detection of periodicities and string matching in real time (English translation).

J. Sov. Math. 22, 3 (1983), 1316-1387. (Originally published 1980).
22. TANIMOTO, S. L. A method for detecting structure in polygons. Pattern Rec. 13, 6 (1981),

389-394.
23. VAN RIJSBERGEN, C. J. File organization in library automation and information retrieval. J. Dot.

32,4 (Dec. 1976), 294-3 17.
24. WEINER, P. Linear pattern matching algorithms. In IEEE 14th Annual Symposium on Switching

and Automata Theory. IEEE, New York, 1973, pp. l-l 1.

RECEIVED FEBRUARY 1985; REVISED MARCH 1986; ACCEPTED JUNE 1986

Journal of the Association for Computing Machinery, Vol. 34, No. 3, July 1987.

