
New Applications of Failure Functions

D. S. HIRSCHBERG

University of California at Irvine, Irvine, California

AND

L. L. LARMORE

California State University, Dominguez Hills, California

Abstract. Presented are several algorithms whose operations are governed by a principle of failure
functions: When searching for an extremal value within a sequence, it sufftces to consider only the
subsequence of items each of which is the first possible improvement of its predecessor. These algorithms
are more effkient than their more traditional counterparts.

Categories and Subject Descriptors: E.l [Data]: Data Structures-arrays; lists; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-computations on
discrete structures

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Dynamic programming, failure functions

1. Introduction
The notion of failure functions is often associated with the linear-time substring
recognition algorithm [1, 41. The principle of failure functions is disarmingly
simple: When searching for an extremal value within a sequence, it suffices to
consider only the subsequence of items, each of which is the first feasible alternative
of its predecessor. The value of the failure function is a pointer to that first feasible
alternative. Implementing this function in isolation will not yield any advantage
since the effort required to determine the first feasible alternative is equal to the
hoped for savings, which is not having to consider many losing alternatives. The
preprocessing costs negate the run-time savings. (In practice, the preprocessing may
be chronologically interspersed with the processing.) However, if many such
searches are contemplated and they are closely related, the preprocessing costs may
be spread over the multiple searches with some additional intersearch fix-up costs.
The net effect may be some real savings. This was the case for the pattern-matching
algorithm, and is also the case for the algorithms given in this paper.

This research was supported in part by National Science Foundation grant MCS 82-00362.
Authors’ addresses: D. Hirschberg, Department of Information and Computer Science, University of
California, Irvine, CA 927 17; L. Larmore, Department of Computer Science, California State University,
Dominguez Hills, CA 94707.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0004-541 l/87/0700-0616 $01.50

Journal ofthe Association for Computing Machinay, Vol. 34, No. 3, July 1987, pp. 616-625.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28869.28875&domain=pdf&date_stamp=1987-07-01

New Applications of Failure Functions 617

We first consider the problem of determining the optimum way to break a
paragraph (scroll of words) into lines, provided the penalty function (for a line
being too long or too short) is linear. Our algorithm for this problem is linear time.
We then exhibit an algorithm for more general penalty functions that is linear time
in the case of a piecewise quadratic function.

We also consider the problem of finding the minimum sum of key length
pagination of a scroll of n items. We present a linear-time algorithm, improving
on the O(nlogn) result of Diehr and Faaland [2].

2. Breaking a Paragraph into Lines
We are given a paragraph consisting of a scroll of n words, where the ith word has
length wi > 0, and a nonnegative-valued function penalty(x), which is defined over
the closed interval [lmin, lmax], where 0 < lmin < lmax. We assume that there is
an optimum line length lopt E [lmin, lmax] for which penalty(lopt) = 0. We define
a break sequence of the paragraph to be a monotone increasing sequence 1 = b,,
h b, 5 n of integers. The break sequence defines lines, where the kth
line begins with the b&h word, and its length is lengthk = wbk + - . . + ~b~+,-~
(where b,+, is taken to be n + 1). We say that a break sequence is admissible if
lengthk E [lmin, lmax] for all k < m, and length,,, I lmax.

The total penalty of a given break sequence is defined to be the sum of the
penalties of the lines, but where the last line is not penalized for being too short.
The problem is to find an admissible break sequence with minimum total penalty.

In practice, text editors use penalty functions more general than the ones given
in this paper. For example, there could be a special penalty for hyphenation, or the
penalty for a line being the wrong length could depend on the number of words in
the line. Additionally, there could be a penalty that is a function of the number of
lines required. Our methods can be easily extended to cover these cases.

2.1 THE TRADITIONAL LINE-BREAKING ALGORITHM. For each i I n + 1, define
f[i] to be the lowest total penalty of any break sequence of the subscroll Wi - - - w,,.
We let f[n + l] = 0 by default. The traditional algorithm (see, e.g., [3]) uses
dynamic programming.

ForanylIi~jsn+l,letLine(i,j)=~~+...+wj-~,andletLegal(i,j)
be the Boolean function which is true if and if Line(i, j) E [lmin, lmax].

Algorithm 1: Traditional Algorithm
f[n + l] co

Loop: for i from n downto 1 do
if Line(i, n + 1) 5 lopt then

begin
fM +-- 0
nextbreak[i] c n + 1

end
else if Legal (i, j) for some j then

begin
Choose: Choose r such that Legal(i, r) andf[r] + penalty(Line(i, r)) is minimized

f[i] tf[r] + penalty(Line(i, r))
nextbreak[i] c r

end
else

Ai1 - 00
iff[l] < 00 then Define-break-sequence

618 D. S. HIRSCHBERG AND L. L. LARMORE

The subroutine Define-break-sequence recovers the breakpoint vector b from
the array nextbreak.
Subroutine Define-break-sequence
SC1
tt1
while t 5 n do

begin
b[s] t t
sts+ 1
t t nextbreak[t]

end

The bottleneck in the Traditional Algorithm is the Choose step, since all other
steps can be done in time O(n). The total time for all executions of the Choose
step is O(nM), where M is an upper bound on the number of words that could
possibly occur in a line (we could set it4 = Imax/ W, where W is the minimum
value of wi). If M is considered to be bounded, then the Traditional Algorithm is
linear. However, if we consider a class of problems in which M, as well as n, grows
then the Traditional Algorithm is no longer linear,

2.2 LINEAR PENALTY FUNCTION. We consider the case that penalty is linear
and the optimum line length is either the minimum or maximum permissible.
That is, lopt = either Zmin or Imax, and for all x E [Imin, Imax], penalty(x) =
C(X - Zopt), for some constant C that may be positive or negative. We define
penalty(x) = 00 if x @ [Imin, lmax].

We use dynamic arrays leftlow and rightlow, which have pointer (actually index)
values, and dynamic arrays f and g, which have penalty values. The array f is
identical to thefin the traditional algorithm, and g is a modified array that always
satisfies the equation g[k] =f[k] + C Line(1, k). At any given time, rightlow[k] is
the smallest I > k such that g[Z] I g[k], and leftZow[k] is the largest I c k such that
g[l] < g[k]. leftlow is used as a failure function for choosing the previous breakpoint
(beginning of a line) corresponding to a current end of line, and rightlow is used as
a failure function for updating the leftlow values.
Algorithm 2: Linear Penalty Algorithm

g[n + 2]+ --oo
f[n+ 114-O
g[n + l] t C Line(1, n + 1)
rtn+ 1
rightlow[n + l] t n + 2

Loop: for i from n downto 1 do
begin

if Line@‘, n + 1) 5 lopt then
begin

fV1 6 0
nextbreak[i] t n + 1

end
else

begin
Choose. 1: while Line(i, r) > lmax do r c r - 1
Choose2: while leftflow[r] defined and Legal(i, leftfw[r]) do r c leftlow[r]

f[i] tf[r] + penalty(Line(i, r))
iff[i] < 00 then nextbreak[i] c r

end
fi] ‘;+fr] + C Line (1, i)

c’

New Applications of Failure Functions 619

Update: while g[k] > g[i] do
begin

leftlow[k] c i
k t rightlow[k]

end
rightlow[i] t k

end (of Loop)
if f [l] < 03 then Define-break-sequence

We can prove the correctness of the Linear Penalty Algorithm by showing that
it simulates the Traditional Algorithm. We need three lemmas.

LEMMA 1. For a fixed value of i, among the set ofj for which Legal(i, j), that j
which minimizes g[j] also minimizes f [j] + penalty(Line(i, j)).

PROOF. We show that the difference between g[j] and f [j] + penalty(Line(i,
j)) is constant.

f [j] + penalty(Line(i, j)) - g[j] = penalty(Line(i, j)) - C Line(1, j)
= -C(lopt + Line(1, i)),

which is constant for fixed i. Cl

LEMMA 2. Thefollowing holds after each iteration of the main loop of the Linear
Penalty Algorithm, where i is the value of the loop variable.

LB 1: For all i I s I n + 1, rightlow[s] = t, where t > s is the smallest value such
that g[t] 5 g[s].

LB2: For all i < s 5 n + 1, leftlow[s] = t, where i 5 t < s is the largest value
such that g[t] < g[s], provided such a t exists. Thus, in this case, for all
leftlow[s] <j c s, g[j] L g[s]. Otherwise, leftlow[s] is undefined.

PROOF. We prove Lemma 2 by induction on i, the loop variable of the main
loop. Initially (i.e., before the main loop iterates at all), we can take i = n + 1.
Then, LB2 holds vacuously, while LB1 holds by initial assignment.

Our inductive hypothesis is that LB1 and LB2 are true for all values of the loop
variable that are greater than i. Thus, before execution of the Update loop, for all
i+ 1 SsSn+ 1:

(a) rightlow[s] = t, where t > s is the smallest value such that g[t] 5 g[s].
(b) leftlow[s] = t, where i + 1 I t < s is the largest value such that g[t] < g[s],

provided such a t exists. Otherwise, leftlow[s] is undefined.

Thus, we need to prove only that, at the end of an iteration of the main loop,
rightlow[i] has the correct value, and that lefttlow[s] = i if i < s 5 n + 1 and
g[i] < g[s] and leftlow[s] was undefined before the Update loop.

Let ko . - - k, be the sequence of values of k produced in the Update loop, that
is, ko = i + 1, and kt+, = rightlow[kr] for 0 I I< m. Note that g[k,] 5 g[ki] and
g[kt] > g[ki] for ail 0 I I< m.

SUBLEMMA. For all 0 I 1~ m, andfor all i < s I kt , g[s] z g[kt]. Furthermore,
$1 r 1 and s < kr, g[s] 2 g[k,-J.

PROOF. By induction on 1. For 1 = 0, the sublemma holds since we must have
s = ko = i + 1. For the inductive step, assume the sublemma holds for 1 - 1. If
i < s I: kt, then, because kt = rightlow[kt-,] > kt-, by LBl, either (i) s I ktml,
or(ii)k/-,<s<k,,or(iii)s=k,.

620 D. S. HIRSCHBERG AND L. L. LARMORE

If case (i) is true, then by the inductive hypothesis, g[s] 2 g[k,-,I.
If case (ii) is true, then ki = rightlow[ktel], by the second assignment of

the Update loop. By LBl, g[ki] I g[ki-,] and, for any s between ki-, and ki,
&I ’ dkr-11.

In either of these two cases, g[s] > g[ki], since g[ki] I g[ki-,I. Case (iii) is
trivial. Cl

PROOF OF LEMMA 2, CONTINUED. By the sublemma, all i < s I ki are unsuitable
values for leftlow[ki] since g[s] L g[ki]. Therefore, for any I< m, leftlow[ki] should
be assigned the value i if g[i] < g[ki]. The first assignment of the Update loop does
exactly that. We now show that rightlow[i] should be assigned the value k,. That
is, we need to show that g[s] > g[i] and that g[k,] 5 g[i], for i < s < k,,,.

Since the Update loop no longer iterates when k = k,, g[k,] I g[i]. We now
show that g[s] > g[i] for all i < s < k,,,. If m = 0, this is vacuously true since
ko = i + 1. Otherwise, g[s] 2 g[k,-11 by the sublemma, and g[k,-II > g[i] because
the Update loop continues to iterate when k = k,-, .

Thus, the Update loop makes the correct assignment to rightlow[i]. 0

LEMMA 3. After execution of the Choose loops, one of the following two condi-
tions holds.

(I) There is no j I n + 1 such that Legal(i, j), and r is the largest possible value
ofj 5 n + 1 such that Line(i, j) s lmax.

(II) Among all j such that Legal(i, j), r is the choice of j that minimizes g[j].

PROOF. We prove Lemma 3 by induction on the loop variable i. Condition (I)
holds before the first iteration of the main loop, letting i = n + 1. We define loop
conditions, LC, and we show that they always are true.

LCl: For all r < j I n + 1 such that Line(i, j) 5 lmax, g[j] L g[r].
LC2: If r C n + 1, Line(i, r + 1) 2 lmin.

We establish that LC holds initially (i.e., before the main loop, consider i =
n + I), and that LC is preserved by each execution of the while loops of the choose
block, as well as when i is decremented in the main loop.

Initially, LC holds vacuously. Decrementing i cannot cause LC to fail, because
Line(i, j) is monotone decreasing on the first argument. An iteration of Choose1
preserves LC2 because, immediately after any such iteration, Line(i, r + 1) >
lmax 2 lmin. Also, if Choose1 iterated one or more times, LCl holds vacuously.

We now show that an iteration of Choose2 preserves LC. r’ denotes the value of
r after the iteration.

If LC holds before an iteration then, by LC 1, g[j] L g[r] for all r < j I n + 1
such that Line(i, j) I lmax. In order for Choose2 to iterate, leftlow[r] is defined
and Line(i, leftlow[r]) 2 lmin.

LC2 will hold after the iteration, since Line(i, leftlow[r] + 1) > Line(i, leftlow[r])
I lmin and thus Line(i, r’ + 1) 2 lmin.

To prove that LCl is preserved, consider j such that r’ = leftlow[r] < j 5 n + 1
and Line(i, j) I lmax. We need to show that g[j] 2 g[leftlow[r]] = g[r’]. If r <
j I n + 1, then g[j] L g[r] by LCl and g[r] L g[r’] by LB2. If r’ = leftlow[r] <
j I r, then g[j] 2 g[r] > g[leftlow[r]] by LB2.

Thus, LC is loop invariant.
Consider the caSe when Legal (i, r) after Choose 1 has executed. By LC 1, g[j] r

g[r] for any j > r such that Legal(i, j). If j < r and Legal (i, j), then, since Choose2

New Applications of Failure Functions 621

has ceased iterating, either leftlow[r] is undefined, or Line(i, leftlow[r]) < lmin,
which implies by monotonicity of Line that leftlow[r] < j C r. In either case, by
LB2, g[j] L g[r]. Thus case (II) of Lemma 3 holds.

Otherwise, not Legal(i, r) after Choose1 has executed. In this case, Line(i, r) I
lmax since Choose1 did not iterate again, and therefore Line(i, r) 5 lmin since
otherwise Legal(i, r). Thus, Choose2 cannot iterate by the monotonicity of Line
and the fact that if le$low[r] is defined then leftlow[r] < r. Now, either Choose1
iterated once or more, or it did not iterate. If Choose1 iterated, Case (I) of
Lemma 3 holds, since then Line(i, r + 1) > lmax (and Choose2 did not iterate).
If Choose1 did not iterate, r has the same value as it did after execution of
Choose2 of the previous iteration of the main loop. By the inductive hypothesis,
Lemma 3 held for i + 1. Case (II) cannot have held, because then Line(i, r) >
Line(i + 1, r) 2 lmin, which would imply that Legal(i, r). Thus Case (I) of
Lemma 3 held for i + 1. Since Line is monotone decreasing on its first parameter,
Case (I) of Lemma 3 then holds for i. 0

We now prove the correctness of the Linear Penalty Algorithm, assuming that
the traditional algorithm is correct. We need to show that the Choose steps of the
Linear Penalty Algorithm are equivalent to the Choose step of the traditional
algorithm. By Lemmas 1 and 3 (only case 3(11) applies since we are within the
Else ifclause), the value of r after execution of Choose2 is the same as the value of
r chosen in the Choose step of the traditional algorithm, provided such a legal r
exists. El

Time Complexity. We can use O(n) preprocessing time to compute Line(1, i)
for all i. Then Line(i, j) (and hence Legal(i, j)) can be computed in O(1) time by
the formula Line(i, j) = Line(1, j) - Line(1, i).

The Choose loops appear to iterate O(n) times within each iteration of the main
loop. However, r decreases with each iteration of each of those loops. Thus, the
total number of such iterations cannot exceed n.

The Update loop also appears to iterate O(n) times within each iteration of the
main loop. Note, by LB2, the value of leftlow[k], once defined, is never redefined.
It follows that the total number of iterations of the Update loop, over all iterations
of the main loop, is at most n.

Piecewise Linear Penalty Function. The algorithm may be easily generalized to
cover the case of a piecewise linear penalty function. For example, if lmin <
lopt < lmax, the penalty function penalty(x) = C . 1 x - lopt] is piecewise linear.
The method uses independent copies of the Linear Penalty algorithm, one for each
linear piece of the penalty function. These procedures are synchronized and
exchange information once during each iteration of the main loop to decide on the
best value for nextbreak[i].

2.3 GENERAL CONCAVE PENALTY FUNCTION. We say that a function p(x) is
concave if, for any x < y < z in its domain, (z - x)p(y) I (y - x)p(z) +
(z - y)p(x). For example, any quadratic function with nonnegative leading
coefficient is concave.

We now consider the breaksequence problem where penalty(x) is nonnegative
and concave for x E [lmin, lmax]. As before, penalty(x) = 03 for x 4 [lmin, lmax],
and there is no penalty for the last line if its length does not exceed lopt.

The time bottleneck in the General Concave Algorithm (GCA) given below is
the evaluation of the Boolean function Bridge. All other parts of the algorithm run

622 D. S. HIRSCHBERG AND L. L. LARMORE

in linear time, and Bridge needs to be evaluated O(n) times. If penalty is quadratic,
Bridge can be evaluated in U(1) time, and hence the entire algorithm is linear.
Generally, Bridge can be evaluated in O(logM) time by binary search, making the
entire algorithm O(nlogM). We leave open the possibility that a faster general
algorithm exists.

Notation. For convenience, we let F(i, j) = f[j] + penalty(Line(i, j)), the least
cost of a paragraph beginning at the ith word whose second line begins at the jth
word.

The Boolean Function Bridge. Bridge(j, k, I) is defined for 1 < j < k < 1 I
n + 1. If true, it means that k need not be considered as a choice for nextbreak[i]
for any “future” i (i.e., i cj), since either j or 1 is always (i.e., for any i) at least as
good a choice as k. Formally, for the algorithm to run correctly, it suffices that
Bridge satisfy the following two conditions:

Brl: If 1 I i < j < k < 1 I n + 1 such that Legal(i, k) and Bridge(j, k, 1), then
F(i, k) 2 min(F(i, j), F(i, I)}.

Br2: If 1 5 i <j < k < 15 n + 1 such that Legal(i, k) and not Bridge(j, k, I), then
F(i, k) RC max(F(i, j), F(i, 1)).

There is an allowed ambiguity in the definition of Bridge. Any function that
satisfies Brl and Br2 will work. For example, one possible Bridge function is
such that it is false if and only if there exists some i such that F(i, k) is less than
min(F(i, j), F(i, I)]. To compute this particular function, we can determine
whether such an i exists by binary search since, by concavity of penalty, F(i, j) 5
F(i, k) implies that i is too low and F(i, I) I F(i, k) implies that i is too high.
Because we can restrict our initial search domain to no more than A4 possible
values of i, Bridge can be computed in O(logM) time.

Quadratic Case. Suppose that penalty(x) = ax* + bx + c for x E [lrnin, lmax],
where a 2 0. Then for any j < k < 1, let Bridge(j, k, 1) be true if and only if the
following two conditions hold:

Ql: f[k] + penalty(lmax - Line(k, 1)) 1 f[j] + penalty(1ma.x - Line(j, 1))
42: Line(j, l)f[k] 2 Line(j, k)f[l] + Line(k, l)f[j] + a Line(j, k)Line(j, 1)

. Line(k, 1)

Ql and Q2 can both be computed in 0(1) time. Thus, we have a linear time
algorithm for the case of a quadratic penalty function.

Data Structure. We make use of an input-restricted deque S of integers. Integers
can be deleted from both the top and bottom ends of S, but can only be inserted
to the top end. Deque S is used to choose r, similar in function to the 1eftIow
pointer array in the Linear Penalty Algorithm (LPA). The chosen value of r will
be at the bottom of S. Let us define time i to be the point in an algorithm when
the main loop variable has value i (smaller values of i are later).

We note that the GCA is not a generalization of the LPA; the GCA constructs
and traverses a failure structure in a different manner than does the LPA.

After it is completely evaluated, the leftlow pointer array is a failure forest that
can be thought of as being rooted at 0. At any time in the LPA, the leftlow failure
tree is only partially constructed. During each loop, the LPA progressively develops
the failure tree (in Update) and eliminates from consideration some candidates by
consideration of lmax (in Choosel) and by following a chain in the failure tree (in

New Applications of Failure Functions 623

Choose2). In the GCA, deque S at time i corresponds to the frontier of the
developing failure tree in the LPA at the lastest time j when Line(i, j) L lmin. The
following operators on S are used:

Functions:

ISI = current cardinality of S
TOP = value of the top element of S
Bottom = value of the bottom element of S
2Top = value of the second from the top element of S
2Bottom = value of the second from the bottom element of S

Procedures:

Pop delete the top element of S
Drop delete the bottom element of S
Push(x) insert x at the top of S

Algorithm 3: General Concave Algorithm

Loop:

Choosel:
Update:

Choose2:

f[n+ l]tO
foT;F;pty lW

for i from n down to 1 do
begin

while S nonempty and Line(i, Bottom) > lmax do Drop
while Line(i, eol) 2 lmin do

begin
while S nonempty and F(i, eol) 5 F(i, Top) do Pop
while I S I B 2 and Bridge(eo1, Top, 2Top) do Pop
if Line(i, eol) s lmax then Push(eo1)
eolteol- 1

end (of Update)
while 1 S 1 2 2 and F(i, 2Bottom) 5 F(i, Bottom) do Drop
if Line@ n + 1) s lopt then

begin
nextbreak[i] t n + 1

eL[il + 0

else if S nonempty then
begin

nextbreak[i] c Bottom
en<[i] t F(i, Bottom)

else (i.e., S = A)
SPI + 03

end (of Loop)
iff[l] < 03 then Define-break-sequence

Piecewise Concave Penalty Function. If the penalty function is piecewise con-
cave, the algorithm can be generalized, using one deque for each concave piece.
The running times are simply added. If there are I? concave pieces, the running
time for the combined algorithm is O(nI’(1 + log(M/I’)). In the case in which the
function is piecewise linear or piecewise quadratic, the running time is O(nI’).

The method is essentially to use independent copies of the general concave
algorithm, one for each concave piece of the penalty function. These procedures
are synchronized and meet once during each iteration of the main loop to exchange
information and decide which one has the best value for nextbreak[i].

624 D. S. HIRSCHBERG AND L. L. LARMORE

3. Pagination of Scrolls

A boundary sequence for a scroll is a sequence 0 = SO < s1 < . . + < s”+~ = n + 1
such that C.sk-,<i<q Wi E [lmin, Imax] for all 1 I k I v + 1, where 0 I lmin < lmax
are fixed. The length of that boundary sequence is defined to be &5kSv wSk.
McCreight [6] asks whether we can “quickly” find a boundary sequence of
minimum length.

Diehr and Faaland [2] develop an algorithm that finds the minimum length
boundary sequence in O(n log n) time. We present a linear-time algorithm.

For convenience, assign any positive value, say 1, to wn+] and wo.
Define Gap(a, b) as the sum of the lengths of the scroll wi, strictly between the

ath and the bth items. Note that Gap(a, a + 1) = 0. Define Gap(a, a) = -w,.
Define Boolean function Page(a, b) to be true iff Gap(a, b) E [lmin, lmax].
For any 0 I a 5 b s n + 1, we define an admissible path from a to b to be a

sequence so, sI, . . . , sy such that Page(sk-,, sk) for each 0 < k I v. The length of
that path is CllkSv wSk. If there exists an admissible path from j to n + 1, we say
that j is accessible.

For any 0 5 i 5 n + 1, define f (i) to be the minimum length of all paths from i
to n + 1. If i is inaccessible, let f (i) = m.

For each 0 s i < n + 1 such that Page(i, k) for some k, define p(i) to be the
unique number that satisfies the following three conditions:

(ii) f (p(i)) is minimized subject to (i)
(iii) p(i) is maximized subject to (i) and (ii)

If there is no k which Page(i, k) is true, then p(i) is undefined. Also, p(n + 1) is
undefined.

Computation off and p clearly suffices to find the minimum-length boundary
sequence. A boundary sequence exists if and only if f (0) < m, and the minimum-
length boundary sequence can be found by using p.

Algorithm 4: Scroll Pagination
Compute Sum[i] = C&i w[k], 0 52 i 5 n + 1
leftlow[i]t-l,Olisn+ 1
M:]r”

Loop: for i from n downto 0 do
begin

Choose 1: while Gap(i, r) > lmax do r c r - 1
Choose2: while r < leftlow[r] and Gap(i, lejilow[r]) 2 lmin do r t lejilow[r]

if Page(i, r) then
begin

f[il +--f[r1 + w[il
Ail +- r

end
else
k f[ij +‘;w

Update: w&f[k] >f[i] do
begin

leftlow[k] c i
kc rightlow[k]

end
rightlow[i] c k

end (of Loop)

New Applications of Failure Functions 625

It is important to distinguish between the functions f(i) and p(i) on the one
hand, which are defined abstractly, and the arrays f[i] and p[i], whose values are
assigned dynamically during execution of the algorithm. Also, we remind the reader
that, for all 0 < i s n + 1, eitherf(i) = 00 orf(i) =f(p(i)) + Wi.

Intuitively, the algorithm works as follows. r is a running temporary p(i), which
never decreases. When r is too large because Gap(i, r) > Imax, r is decremented by
1 until Gap is small enough. We then need to decrease r, minimizing thefvalue,
thus obtaining p(i). In [2], a heap of possible values is maintained, and it takes
0(logn) time to find p(i). In Algorithm 4, the pointer leftlow tells us where to look
next. Even though it might take 0(n) time to find p(i) for a particular i, the total
time for these searches over all i is still only O(n), since r never increases. Thus,
leftlow is a failure function. The pointer array rightlow is used for updating leftlow,
and also for updating itself. It too is used as a failure function.

Loop Invariant. For any 0 I i 5 n + 1, the following conditions hold after
n + 1 - i iterations of the loop of Main:

Ll(i): If p(i) is defined, r = p(i). Otherwise, r is the largest j such that Gap(i, j) I
lmax.

L2(i): For all i cj 5 n + l,f[j] =f(j).
L3(i): For all i 5 j I n + 1, if p(j) is defined, p[j] = p(j). Otherwise, p[j] is

undefined.
LA(i): For all i 5 j I n + 1, leftlow[j] is the largest i 5 k <j such thatf(k) <f(j),

provided there is such a k. Otherwise, leftlow[j] = -1.
L5(i): For all i 5 j c n + 1, rightlow[j] is the smallest j < k I n + 1 such that

f(k) = ft.0

The reader is referred to [SJ for a detailed demonstration of the loop variants.

REFERENCES
1. AHO, A. V., HOECRO~, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1974, pp. 329-335.
2. DIEHR, G., AND FAALAND, B. Optimal pagination of B-trees with variable-length items. Commun.

ACM27,3 (Mar. 1984), 241-247.
3. KNUTH, D. E., AND PLASS, M. F. Breaking paragraphs into lines. Softw. &act. Exper. II, 12

(1981), 1119-1184.
4. KNUTH, D. E., MORRIS, J. H., AND PRATT, V. R. Fast pattern matching in strings. SIAM J.

Comput. 6,2 (June 1977), 323-350.
5. LARMORE, L. L., AND HIRSCHBERG, D. S. Efficient optimal pagination of scrolls. Commun. ACM

28,8 (Aug. 1985), 854-856.
6. MCCREIGHT, E. M. Pagination of B*-trees with variable-length records. Commun. ACM 20, 9

(Sept. 1977), 670-674.

RECEIVED NOVEMBER 1984; REVISED MAY 1985; ACCEPTED JUNE 1986

Journal of the Association for Computing Machinery, Vol. 34, No. 3, July 1987.

