
———— —.— —____-—

Direction as a Spatial Object: A Summary of Results *

Shashi Shekhaq Xuan Liu
Computer Science Department, University of Minnesota

EE/CS 4192, 200 Union St. SE., Minneapolis, MN 55455
telephone (612)624-8307

[shekharlxl@&.s.umn.edu

htip//www.cs.umn.edu/research/shashi-group

Abstract

Direction is an important spatial relationship that is used
in many fields such as geographic information systems(GIS)
and image interpretation. It is also frequently used as a
selection condition in spatial queries. Previous -work has
modeled direction as a relationship predicate between spa-
tial objects. Conversely, in this paper, we model **ion
as a new kind of spatial object using the concepts of vec-
tOX-S,points ad angle-s. The basic approach is to model
direction as a unit vector. Gkwn an ordered pair (P1,P2)
of spatial points, one can define a direction, which can take
the values of N’orth, Northwest, 3 o’clock, etc. to repre-
sent the corresponding qualitative directional predicates on
(P1,P2) in previous work. Direction objects can also have
quantitative operations such as direction-composition and
direction-reverse. This novel tie-w of direction has several
obvious advantages First, it allows us to deiine the orienta-
tion of spatial object% Second, a richer set of predicates and
operators on direction and orientation can be define~ Third,
new spatial data ~TPessuch as oriented spatial objects and
unbounded spatial objects can be defined- Finally, the ob-
ject view of direction makes it easy to do direction reasoning,
which is useful in spatial query processing and optimization-

Key-worck Dwection, Orientatio~ unbounded object, ori-
ented spatial object.

1 Introduction

Dxection is often used in daily life when people commu-
nicate about a geographic space. It is frequently used as
a selection condition in spatial queries or used for similar-
ity accessing in image databases. I&le queries used in
army battkiield visualization are ‘Is there anything over

1This -work is sponsored in part by the Army High Performance
Computing Research Center under the auspices of the Department of
the .kw, AmY Research Laboratory ~oper’ati~re asreemmt n~ber
DAAI%04-9S-2-0003/contract number DA.AH04-95-GOO08, the con-
tent of whkb does not necessarily reflect the position or the policy of
the government, and no official endorsement should be inferred. This
work was afso supported in part by NSF grant #9631539.

Perm’k+sionto make dig”til or hard copies of all or pan of this work for
personal or classroom use is granted W-hhcut fee provided that
copies are not made or ddbuted for profn or commercial advan-
Tage and zhst copiss bear this notice and the full c-mtion on the first page.
To copy otherwse, torepubfiih, to post on sewers or to
reddbme to Ms. requires prior specific permission andhx a fee.
ACM GIS .98 11/98 Washington, D.C., USA
@ 1998 ACfJ 1-58113-115-1/98/0011 . ..$5.00

the ridge?,” ‘Put me in the tank left of that building? and
“Let’s move to the north of the tree.” The fit example
refers to a viewer-based orientation, the second can be de-
fined on either the intrinsic orientation of the building(object-
based) or a viewer, and the third example refers to the ab-
solute direction with respect to the tree. In order to handle
the kind of queries that contain direction constraints in the
selection criteria, a spatial database system should provide
a way for users to specify the absolute direction and the
viewer/object based orientation.

The common means of dealing with direction in GIS is
to view direction as a spatial relation behveen object8[4, 18,
8, 22, 3, 14, 9, 6, 20, 13]. In this paper, we view direction
horn a dif%rent perspective as a spatial object. The ba-
sic approach here is to model direction as a unit vector and
orientation as a set of directions. As a spatial object, di-
rection can have its own attributes, its own operators, so
that a richer set of predicates and operators on direction
and orientation can be deiined. Second, new spatial data
types such as oriented spatial objects and unbounded spa-
tial objects, can be easily defied using the direction ob-
ject. The object view of direction also makes it easy to do
quantitative direction reasoning by using only simple vec-
tor algebra, which also reduces the large number of infer-
ence rules. that is commonly needed. Thk is useful in the
processing and optimization of spatial queries that contain
direction constraints. We propose a new spatial object hier-
archy and model the direction for three system. absolute,
object-based and viewer-based orientation.

We will not discuss the philosophical issue of whether
directions are object/entities or not in the strictest sense.
Absolute directions like North, South, East, West can be
defined using a coordinate system without reference to any
other spatial object. Thus these can be considered to ob-
jects in their own right. Object view for relative directions
(e.g. left, front) needs further thought because they are de-
iined with respect to coordinate systems attached to other
objects. This issue gets complicated by the fact that a vec-
tor can be defied in Mathematics independently in context
of a vector space or via referring to an ordered pair of points
in an &e space. The issue needs to be explored further.

The organization of this paper is aa followsx In section
2, we do a literature survey of the work on modeling direc-
tion and compare it to our work. We define a mathematical
framework amd propose ADTs in section 3. Direction mod-
eling for three systems are defined in section 4, and a new
spatial object hierarchy is developed in section 5. In section
6, we model directions between non-point spatial objects
by using new spatial objects defined in section 5. Finally,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288692.288706&domain=pdf&date_stamp=1998-11-01

..—. .— —
.,=’

we conclude the paper with discussions and suggestions for
future research.

2 Related work and our contributions

The researih work on direction modeling has been carried
out in several areas such as geographic information systems
and image analysis. Most of the work is on how to capture
the semantics of direction relations, and further, how to do
spatiaJ reasoning on the direction[3, 4, 6]. There are two
major direction reference frames used to modeI direction in
2D .wace the cone-based model[14], and the projection-
based model[4, 6]. l?rank[l] compared these two models and
found the projection-based reference &me to be better in
many aspects. Most attention has been paid to point-based
objects. The most common way to model directions be-
tween extended objects is through the object’s Minimum
Bounding Rectamgle@IBR), where direction relations are
obtained by applying Allen’s [2] interval relations along the
x and y axis, in which case, 169 difkrent relations[31 can
be distiiguished. some work based on hfBR has been pro-
posed on picture indexing in pictorial databases[16, 22] and
some work aligns each boundary box to the object’s major
axis[12], which mikes it possible to satisfy di.fkrent reference
fkmws[9]. But since MBRs zue geometric approximations of
spatial objects, they may be too coarse, and hence result
in inconsistency and misini%pretation. Fresh [5] proposed
au alt emative method semi-intervals to formalize the on-
dimensiomd temporal relation based on incomplete knowl-
edge of the object. To overcome the limitations of hfBR
for the extended object model, Egerdtofer [8] introduced a
Direction-Relation Matrix to represent cardinal directions.
Based on the projection-based frame, it partitions the space
around the reference object imd records into which direction
tiles a tmget object falls. But this model still has limitations
in the modeling of line objects, and it is limited to 2D space.
Little work has been done on directions in 3D space [7].

The previous work modeled direction as a boolean spa-
tial relation between spatial objects. This seems to be a
natural mapping of direction relations that is used in geo-
graphic space. But this modeling method has some limitat-
ions. Operations on direction are limited. It is not possible
to perform qurmtitative operations, such as vector-addition,
translation, etc. Oriented(directed) objects and unbounded
objects cannot be represented in the spatial data model.

This paper models direction as a spatial objectz a unit
vector. This novel view of direction has several advantages
over the binary boolean relation view. Being modeled as a
spatiil object, a direction object can have its own attributes
and operator set. The implement atiim of operators can use
vector algebra, making a richer set of predicates and op-
erators on direction feasible. Secondly, new spatial data
types such as oriented objects and unbounded objects can
be defined at the abstract object level. The object view of
direction also makes direction reasoning easy. Basic vector
algebra is ticient for iuferencing new directions, and no
special or new qualitative rules are needed. This reduces the
complexity of direction reasoning, and involving appropriate
quantitative information is useful in spatial query processing
and optimization in spatial databases.

3 Basic Concepts and proposed ADTs

3.1 Points, Vectors, Angles

The basic concepts we use here are points, vectors and au-
gles, as illustrated in figure 1. A point has a position in

&
Ut

PointsP andQ aredifferent,
P

0“. veetcnsu andv aresame,and

Q e istireanglebetweenvectorv andt

Figure 1: Diagram of points, vectors and angles

space, which can be described using coordinates in a coordi-
nate system. The only characteristic that distinguishes one
point from another is its position. A vector, in contrast, has
both magnitude and direction but no fixed position in space.
An angle between two vectors represents the direction devi-
ation from one vector to the other. Here, by angle we mean
the smaller one between two vectors, like 0 in diagram 1.
In this paper, we denote points by capitalized letters, such
as P, and denote vectors as lower case letters with an arrow
above, such as G.

For simplicity we will use the Cartesian coordinate sys-
tem to represent points and vectors in this paper. The
Cartesian coordinate system in 3D is a right-handed rect-
angular coordinate system, with three axes x, y and z per-
pendicular to each other and intersecting at the origin. A
point Pin space is represented as an ordered triple (z, y, z),
where x, y and z are rectangular components of P on the x, y
and z axes , respectively. Let ~=, U; and ~. represent three
unit vectors which are the basis vectors of the coordinate
system. A vector Z can be defined as a linear combination
of these basis vectors in the form ofi 3 = au. + b~y -I-c~=,
where a, b and c are some numbers.

where m is a number
Point, + R = ~+if = R(xp+z., Vp+y., ZP+Z.)

Vector a point away from P with distance Iii{
along the direction of ~

Table 1: Operations on vectors and points

Table 1 summarizes representative operations on points
and vectors. Here P(zP, yP,ZP) and Q(ccQ,gg, Zg) are two
points, 0 is the angle between vectors ii and & where ii =

- WeZau: + Y(zUY-1-ZIJUZand b = %buz + Ybuy + Zbuz.

can see that subtraction operation(-) is applied to point

70

. ——— —— -- ..—— —— -_---- ;. _

pairs, resulting in a vector. The operations of addition(+),
subtraction(-), scale multiplication,- dot product (0), and
cross product(x) are available between vector operands. The
ddn.itions are giveztin terms of the components in the Carte
sian coordinate system. There is only one operation(+)
available between a point and a vector which actually pro-
duces another point. The associatitiw, commutativity and
distribution properties of these operators will be examined
in the future work towards integrating vector objects in
query languages.

3.2 Direction and Orientation

Drection is deilned as a unit vector, i.e-, a vector with its
magnitude equal to 1. Table 2 de.iines the operations On
directions.

Operations Definition

composition di+d>=~

deviation Coso = dl o CZ2

reverse (–1) x k

betweenl d between dl and dz if 3CI >0, cz >0 s.t.
z= cllZ + C2Z2

among d among dl,-dz an! ds ti-3cI >.0, C2 >
0, C3>0 s-t-d= Cldl -1-czdz i- czds

Table 2 Op=ations of D~ection

The operations on directions can be classified into three
categories. The &t category is the operations that pro-
duce new directions. Composition and reverse are opera-
tions in this category. The mmpositfon operation is actu-
ally achieved by mctor-additioq and the resulting vector is
scaled down by its magnitude to be a unit vector, which
represents the new direction. The reverse operator pro-
duces the opposite direction vector. The second category
is to calculate the deviation between two directions. Opera-
tor deviation calculates the cosine of the angle between two
directions, and hence gives the direction deviation of one
direction born the other. A pair of vectors are orthogonal
if their dot-product returns zero, i.e-, they have 90° devi-
ation. The last category is to test the relationship among
directions. The omrators between and amen.qbelong to this+-
category. In figure 2, d-is between dl and dz; however, d; is

not between ~and d~. As -wewill see in later sections, these

d

“/

d]

\
d2

Figore 2 between operator

three categories of direction opmations make the modeling
of direction concise and fkxible.

Oriatation is modeled as a spatial object which consists
of a point of origin and N pair-wise orthogonal directions,
where N is the dimension of the embedding space. The ori-
gin point and the N directions form a Cartesian coordinate

lThis definition works well as long as vector dz k not parallelto
vector & The parallel case can be handled in a user deiined manner.

system. In 3D space, the three directions may be labeled
the Back-Front, Left-Right, and Below-Above directions of
the orientation. Formally, we can deiine orientation and its
operations in 3D space as follows:

Orientation is a quadruple40= (OP, ~r~+t, ri~ht, ab~e),

where OP is a point, and f Tent, ri~ht, aboue are three or-
thogonal directions. It has two operations

● t7-anslate(O, ~ = Orientation 01 = (translate(OP,

q, f Tat, ~i~ht, ab~e);

● Totate(O, rotationkfatrix) = Orientation 0’ =

(OP, fTc%t.,Tig%~, abo%@,

where (fn%t~, ~ight~, abcwe~)= (f Tat, ?’i~ht, ab~ve)@
TOtatimMUtTiX;

An example of the rotationMatrix which rotates the orien-
tation al&g the a&e axis for an angle O is[17]:

[

cm(e) –sin(e) o
~:b;ve= s~n(q cm(o) o

0 01 1
Table 3 gives an &stration of these op~ations.

translate(O, Z)

above

above A right

A

.“
.--v

.

right

Table 3: Operations on orientation

3.3 Abstract Data Types for Modeling Oirection

As a summary of the above discussion, we give the defini-
tion of ADTs for vector, direction and orientation in Table
4. The C++ like syntax is used here. The column labeled
attributes declares the member variables of each class, and
the operations column declares the interfaces of operations
for each class. The vector class haa three member variables
of the real type. These variables represent the three coeff-
icients when the vector is written as the linear combination
of basis vectors of the coordinate system. The constructor
constructs a vector object, given three real arguments. The
five vector operators are declared as member operator frmc-
tions. Direction is deiined as a subclass of the vector class.
It can be constructed either from a vector or from an ordered
triple. Besides inheriting attributes and operators from vec-
tor class, direction also adds new operators such as between
and among. The orientation class has four member vari-
ables which form a Cartesian coordinate system. Translate
and rotate are declared as the member operator functions of
the orientation class.

4 Applications

In this section, we will deal with point-based objects for
sirnplici@. There zwethree different perspective systems We
define absolute directions(e.g. north, south), object-based
directions(e.g. left, above), and viewer-based directions.

-——.

ADT
vector

dwection

subclass
of vector

orientation

attributes
x-comp %oa~

y-comp floa~

z-comp floati

constraint =

zmit magnitude

OP: poin~

f%at: direction;
rl~ht: direction;
ab%e : direction;

representative operations
Vector(float, %oat, float);
// conkwtor “”
float magnitude;
vector operator + (vector);
vector operator - (vector);
vector operator scale(~
float operator @ (vector};
vector operator X- (\,ector);

direction(float, float, float);
direction(vector);
direction operator

Composition(direction);
diiection operator reverseo;
%oat operator deviation

(direction);
boolean between (direction,
direction);
boolean among(direction, di-
rection, directi;i); -
orientation (float, direction,

direction,direction);

orientation operator

translate(vectm);

orientation operator
rotate(rotat+matrix);

Table 4 Abstract Data Types for direction and orientation

4.1 Absolute Direction

Absolute direction in embedding space is defined as a rela-
tionship among objects b~ed on their locations in embed-
ding space. For simplicity her% we will ignore the elevation
and earth’s curvature, and use a projection-based model to
map the space to a 233 local coordinate system with north
Up and east rightz.

We modd absolute directions in two ways constant di-
rection objects and direction predicates. Constant direc-
tion objects ar~ creat~d for ~equ~tly-ask~d directions, e.~
e;st, w;st, north, south, MV, NE, SE,SW. Table 5 i.Uus-
trates how we can deiine the constant directions in terms
of coordinates in local embedding space. The unit vector
is demoted by an ordered pair(a, b) which represents vector
aueast + Mxnmth.

unit vector (1,0) I (0,1) (-1,0) (0,-1)
dkections ea-si north UEst south

unit ve~ors (*>*) (–*> *) (–*>–*) (*>–*)

dkections NE NW SW SE

Table 5: constant absolute direction

Introducing constant direction objects provides much flex-
ibility in dexribmg and deciding any directiom By using the
operator deviatio% for any given direction, we can calculate
ho-ivmuch de~<ation is born one constant direction. We can
also produce a new directio~ given the deviation ilom a
specific constant direction. This is very useful in the layout
of facilities.

Second, we also provide corresponding direction predi-
cates to make it convenient for users to speci& the direction
re3ation between two objects. They are East, West, South,
North, Northwest, NorthEast, SouthWest, SouthEast.

2For a global view, we can extend to the ellipsoidal coordinate
systern]ll]

For any two objects, assuming their centroids are PI, P2,
we represent the relationship “PI is to the east of Pz” by
predicate East(Pl, Pz). The predicate is true H equation
ec~~~%-% = 1 holds. Otha predicat~ can be defined si3Ri-

1P2-PII
larly.

The above constant directions and predicates give precise
direction calculation, that is, only one angle matches each
case. Sometimes users may only be interested in approxi-
mate direction, such as a direction range between north and
northwest. The operator between makes this approximate di-
rection predicate possible. If we want to test whether PI is
between north and northwest of Pg, we can use the between
operator in C++ notation as: Pz-Pl.between(n&h, IV-W).

4.2 Object-based direction

Object-based direction is the direction of the target object
with respect to the orientation of the reference object. The
reference object is an oriented object, while the target object
may or may not have orientation. We will use OB to rep-
resent the orientation of object B, and OB. f T&t, OB .ri~ht

and OB .aboue are the three directions of B’s orientation.
By using the direction operator rever-se , the directions of
B’s behind, left and below can be described as ‘OB.fT&t,

–oB.Ti~ht and –oB.abi%e, respectively.
Given a target point object A, and a reference point ob-

ject B, we can decide which direction A is relative to B by the
vector dot-product. Fret, a vector B-A = A —B is obt tied.
The direction of point object A with respect to point object
B’s orientation can be decided by the do~product b~tween
vector B-A and the three directions OB. f mrzt, OB .Tight and
OB.ab&e.

Dkection predicates FDP RDP ADP

A in front of B= front(A, ~) >0 0 0
A bebind of B = behind(A, B) <o 0 0
A right to B = ~ight(A, B) o >0 0
A left to B = left(A, B) o <o 0
A above B = aboue(A, B) o 0 >0
A below B = below(A, B) o .0 <o
BA.between(OB .f rent, OBright) >0 >0 0
BA.among(OB. f rent, OB .aboue, >0 >0 >0

OR.ri~ht)

Table 6: Object-based orientation

Table 6 gives some examples of calculating object-based
direction. The 13rstcolumn comsists of example direction
predicates and the remaining three columns are the condi-
tions needed to satisfy the predicates. Here, FDP, RDP,
and ADP represent three dot p~oducts B-A o OB.f&zt ,
B-A (3 OB.Ti~htand B-A@ OB.above respectively. The pred-
icat e returns true if and only if all three corresponding con-
ditions hold- The fist six rows illustrate the calculation of
straight directions, such as: front, left, above, etc. As in row
1, if the dot-product of vector B-A and direction OB. f T&t is

great= than zero, and the dot-products between vector B-A
and the other two directions of orientation OB are both zeros
, then fTont(A, B) = true, which means that A is in front of
B. These direction predicates are for precise direction check-
ing, whereas the other two categories of predicates are for
direction range checking. Operator between is used to test
if A is located in the region between two directions. Here

72

—.. . ——— - -. <. .~.y.—— —.— ---- ~.,. ~,

between is used in C+-I- notation. The predicates in this
category axe for the directions in 2D space. The predicates
in third categories test if A is among three directions in a
3D space. M’e represent these predicates using the operator
among.

4.3 Viewer-based direction

Viewer-based direction refers to the direction relation which
is measured horn the viewer’s perspectke

There are three related components in this system: tar-
get object A, reference object B, and the viewer. The viewer
has his/her own orientation, where objects A and B may or
may not be oriented objects. Gkwn th=e three components,
we can estimate the direction of object A relative to object B
horn the ~ievxzr’s perspective in a way similar to that used
with the object-based system- The similar predicates but
-w.r.t. the viewer are deiined, and are calculated by the dot-
product between vector B-A and the three directions of the
reference orientation. The reference orientation here is the
\<ewer’s orientation OV, and hence the three dot-products
needed to calculate are B-A@ Ov.f r;nt , B-A o Ov.ri~ht,
and B-A @ Ov.ab%e. A similar table can be obtained.

In the views-based direction system, the viewer may
change &s/her orientation or position(unlike objects, which
are still). Using the operators rotate and translate on the
orientation, we can easily generate new orientations.

5 Defining New Spatial Types Using Oirection and Vector

Some -work has been done on modeling space into a spatial
geometry hierarchy. Open GIS Consortium[lO] proposed a
spatial object hierarchy for bounded shape objects in 2D
.~ace as shown in iigure 3. The hierarchy consists of four

Figure 3: Bounded Spatial Object Hierarchy

spatial data types points, curves, surfaces, and solids. Each
data type can be further classified into several subtypes.
Site these data types model only bounded shape objects,
the hierarchy has limitations in modeling objects such as
maps, rivers, roads and buildings which have their own di-
rections/orientations. For ~ple, with few exceptions,
printed maps are all oriented with north up. This is not
only for better %alization, but for more flexibti~ with
spatial queries. It allows queries Iik “which state is to
the Zeftof Minnesota?” which are frequently asked by non-
geographers who have little sense of north, west, etc.

By using the direction and orientation objects we de-
fined above, -we can esteud the spatial hierarchy to include
oriented objects and unbounded objects. In the new spa-
tial hierarchy, maps and roads cm be deiined as oriented
objects.

5.1 Oriented(directed) spatial object

There are many objects in geographic space that have their
intrinsic directions/orientations in addition to their loca-
tions and shapes, such as buildings, rivers and roads. As
we discussed above, modeling maps as oriented objects pro-
vides users more flexibtity in query specification. It does
allow users who have little knowledge of geographic space
can query about directions intuitively based on his/her own
orientation.

Table 7 gives some queries that can only be answered
when the reference objects and/or viewers are modeled as
oriented objects.

Put me in front of the building.
Is there anything behind the ridge?
Let’s move back a little.
How far is the next intersection down this road?

Table 7 Queries Need Orientation Information

Introducing Orientation class into spatial object hierar-
chy makes it easy to formalize oriented objects. In addition
to the attributa such as locakn and shape for the geo-
metric shape objects, an oriented object has an attribute
orientation, which is an instance object of class orientation. ”
The operators available for oriented objects include both
topological operators and direction and orientation opera-
tors.

5.2 Open Shapes

Open shapes mean the geometries whose boundaries are un-
known, or unimportant, or infinite.

Examples of open spatial objects are open lines, open
planes, and open spaces. A common way to define these in
3D Cartesian geometry is in terms of an equation such as the
parametric equation[15]: x = ZO+at, y = yO+bt, z = 20+ct
for a line through the point (ZO,yo, ZO),Ax+By+C=O for a
plane, and Ax+C=O for a 3D space. It would be more con-
venient if there were corresponding object classes so that
users could describe them at au abstract level and use them
to describe the space. The direction object could be used
for this purpose.

Defining Open line, Open Rectangle

We deti.ne open lines and open rectangle regions using
directions and points here. Table 8 explains how to formalize
each open object with examples in figure 4.

Figure 4 Examples of open shapes

There are several subtypes in each type. For an open line,
it could be l-end open(figure 4a), which needs a start point
and a direction to deiine it, or it could be 2-end open(4b),
which needs au intermediate point and a direction to de-
scribe it. The open rectangle also has three subtypes l-side

..— —. ._ -—- —. .—-__,.. A,,..

Type Descriptions figure
openlinel (l-end open line) stsrt-point, dkection ()
openline2(2-end open line) intermediate-point, (:)

duection
openrectl Vertezl, verteza, dwection (c)
(l-side open rectangle) where direction perpendic-

ular to segment formed by
the two &tices

openrectl! two l-end open Iiies from (d)
(2-side open region) the only wrtex
openrect3 2-end open linq direction (e)
(3-side open rectangle)

Table S: 13&ning open objects

open rectangle (4c), described by two vertices of the rect-
aagle and one direction which is perpendicular to the edge
connected by the two vertices. A 2-side open rectangle is
described using two l-end open lines which start from the
verteY of the rectangle. Also a 3-side open rectangle could
be detined by a 2-end open line and a direction. It is obvious
that a~tending to an open cube is easy.

5.3 New Spatial Data Type Hierarchy

Figare 5 illustrates the extended spatial data type hierarchy
-which consists of shape objects, vectors and oriented(directed)
objects. The spatial data types and their operators can be
embedded in an extended query language to implement a
spatial query lamguage.

-.”-- =1 j rEiaa
.“

RPO1nl:.
Curre

.

.

+=

Sm-hce

Solid
:

.’
.

—

zVeanr

1=
O&urd
Obird

diroaion
mimed

Oim

dimzled
line

Onrmed
solid

l—

:.1 .– “.“
.-..-------

Figure 5: E\tended Spatial Data Type Hierarchy

Many new operators are available in the extended spatial
object model. Between vector objects and shape objects,
ai%ne transformations can be performed. The addition of
these operations males some GIS applications easy. For es-
=ple, Urban planning needs interactive placement/orientation
of facilities, location-based query exploration can use afiine
operations, and using these operations also can improve
viewer flesibfity, so that we do not have to look down on
earth from space Instead, a viewer can view from any di-
rection by performing rotation transformation-

6 Modeling Direction Between Non-point Objects

The ~~%endedspatial object hierarchy increases our power
to describe geographic space by providing new spatial types

such as open shapes. We can use open shapes to model
the directions between extended objects by converting the
calculation of directional relationships to the calculation of
topological relationships between objects.

Given two objects TO and RO, we want to decide the
direction of target object TO related to reference object RO.
Using the approach in [8], ii.rst we obtain the MBR of ob-
ject RO and partition the space around object RO into nine
direction tiles based on the MBR of object RO, which is a
rectangle ABCD- as in figure 6. We represent each direction
tile by the object in new spatial hierarchy as in table 9.

w

Sw I s I SE

Figure 6 Object TO and RO

Sw &e7zrect2~+enkze2(D, –Z), ope7zline2(D, –6))
w open~ectl(A, D, –U)
o rectanzle(A.B.C. D)

Table 9: Dmection tile

Eight of the nine direction tiles are open rectangles. NW,
NB, SE, SW are 2-side open rectangles, and N, W, E, S are 1-
side open rectangles. In order to test the direction of object
TO related to object RO, we can test into which direction
tile TO falls. The calculation is then converted to the over-
lap relationship between object TO and the direction tiles.
For example,

North(TO, RO) <==> Overlap(TO, N)
NorthWest(TO, RO) <==> Overlap(TO, NW)

we can calculate the other directions in the same way. FL
nally, we union all the tiles that overlap with A. For example,
in figure 6, A is North and NW and West of object B.

7 Discussions

In this paper, we model direction as a new kind of spatial
object using the concepts of vectors, points and angles. The
basic approach here is to model direction as a unit vector.
Besides enabling qualitative reasoning on which most of the
previous work has focused, direction objects can also have
quantitative operations such as direction-addition, dimction-
rmltiplication and operator trarwlate on orientation. This
novel object view of direction has several obvious advan-
tag~ It allows the definition of the orientation of spatial

..— —— _--LL__ .—— .&. . ..— — .—. — ——-. . .

objectq it gives a riiher set of predicates and operators on
direction ad orientation. And new spatial data @-pes such
as oriented spatiil objects and unbounded spatial objects
can be defined. Finally, quarkitati%’e direction reasoning,
which is useful in spatial query processing and optimization,
can be implemented simply by basic vector algebra.

The bemfits of the new viewpo-mt are obvious and promis-
ing. In future work, -wewould inte~ate vector abstract data
@pes with an estemible query kmguage to evaluate their ef-
ficiency in the contex% of various GIS applications[19, 21].
We -i&Id also like to ecplore the use of vectors to model
due-s of spatial attributes such as wind-velocity, magnetic
field of the earth, etc.

Acknowledgments

This -work is sponsored in part by the Army High Perfor-
mance Computing Research Center under the auspices of
the Department of the Army, Army Research Laboratory co-
operative agreement number DAAH0495-2-0003/contract
number DAAH0495-GOC)08, the content of which does not
necessarily reflect the position or the policy of the govern-
ment, and no official endorsement should be inkred. This
-work was also supported in part by NSF grant #9631539
Thanks to Dr. Sanjay Chawla for technical commentary and
to Christiame McCarthy for helping to improve the readabd-
ity of the paper.

References

[1]

]2]

[3]

14]

[5]

16]

[7]

[8]

19]

110]

A.Frank. Qualitative Spatial Reasonin~ Cardinal Di-
rections as an Example. lntemational Journal of &o-
gm@.ical Information Systems, 10(3):26%290, 1996.

J. Allen. Maintaining Knowledge about Temporal In-
tervals. Communications of the ACM, 26(11):S32-843,
1983.

D.Papadias, M- Egenhofer, and J. Sharma. Hierarchical
Rcmouing about Dxection Relations. In Fourth ACM
WoTksbop on Aifwunces in Geographic Infonnafion Sys-
tems, pages 105-112. ACM, 1996.

A. Frank. Qualitative Spatial Reasoning about Cardi-
nal Dwections In Auto cm-to 10, D.Mark and D. White,
&., Baltimore, MD, pages 148-167, 1991.

c. l%ksa. Temporal Retsoning Based on Semi-
Intervals. An!ijicial Intelligent 5Lk199-227, 1992.

C. Fkeksa. Using Orientation Information for Qual-
itative Spatial Reasoning. Theories and Methods oj
Spatio-Temporal Rensoning Gwgmphic Spaq 639:162–
178, 1992.

Klaus-Peter Gapp. Basic Meanings of Spatial rela-
tioIM Computation and Evaluation in 3D space. AAA~
2:1393-1398, 1994.

R. Go-yal and M. Egenhofer. The Duection-Relation
Matrk A Representation of Direction Relations for
Extended Spatial Objects. In UCGIS Annual Assembly
and Summer Retreat, Bar Harbor, h!E3 1997.

G.Retz-Schmidt. Various Views on Spatial Preposi-
tions. AI Maga.zinq 9(2):95-105, 1988.

Open GIS Consortium Inc. Opengis simple features
specification for sql. http//~.opengis.org.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Open GIS Consortium Inc. Spatial reference systems.
http//www.opengis.org/techno/specs.htm.

E. Jungert. The observer’s point of view An Ex-
tension of Symbolic Projections. Theories and Meth-
ods of Spatial-Temporal Ren-soning in Geographic Space,
639:179-195, 1992.

D. Papadias and T. Sellis. Quahtative representation of
Spatial Knowledge in Two-Dnensional Space. VLDB
Journal, 3(4):479-516, 1994.

Donna J. Peuquet and Zhan Ci-Xiang. An Algo-
rithm to Determine the Directional Relationship Be-
tween Arbitrarily-shaped Polygons in the plane. Pat-
tern Recognition, 20(1):65-74, 1987.

M-H. Protter and C.B. Morrey. Modern Mathematical
Analysis. Addison-Wesley Publishing Company, Inc.,
1996.

P.W.Huang and Y.R. Jean. Using 2D C+-String As
Spatial Knowledge Representation For Image Database
Systems. Pattern Recognition, 30(10):1249-1257, 1994.

David F. Rogers. Mathematical Elements foT Computer
Graphics. McGraw-Hill Publishing Company, 1990.

S. Shekhar, S. Ravada A.Fetterer, X.Liu, and C.T.
Lu. Spatial Databases: Accomplishments and Resemch
Needs. University of Minnesota technical report, Csci
TR97-016, 1997.

S. Shekhar, S. Ravada, V. Kumar, and etc. Paralleliziig
a GIS on a Shared-Address Space Architecture. IEEE
Computer, 29(12):42-48, December 1996.

Shashi Shekhar, Mark Coyle, and etc. Data Models in
Geographic Information Systems. CACM, 40(4):103-
111,1997.

Shashi Shekhar and Duen-Ren Liu. CCAM A
Connectivity-Clustered Access Method for Networks
and Network Computations. TKDE, 9(1):102-119,
1997.

Y.I.Chang and B.Y. Yang. A Prime-Number-Based
Matrix Strategy for Efficient Iconic Indexing of Sym-
bolic Pictures. Pattern Recognition, 30(10):1–13, Octo-
ber 1997.

