Check for
Updates

Direction as a Spatial Object: A Summary of Results *

Shashi Shekhar, Xuan Liu
Computer Science Department, University of Minnesota
EE/CS 4-192, 200 Upion St. SE., Minneapolis, MN 55455
telephone: (612)624-8307
[shekhar|zliu]@cs.umn.edu
hitp:/ /www.cs.umn.edu/research/shashi-group

Abstract

Direction is an important spatial relationship that is used
in many fields such as geographic information systems(GIS)
and image interpretation. It is also frequently used as a
selection condition in spatial queries. Previous work has
modeled direction as a relationship predicate between spa-
tial objects. Conversely, in this paper, we model direction
as a new kind of spatial object using the concepts of vec-
tors, points and angles. The basic approach is to model
direction as a unit vector. Given an ordered pair (pi,p2)
of spatial points, one can define a direction, which can take
the values of North, Northwest, 3 o'clock, etc. to repre-
sent the corresponding qualitative directional predicates on
(p1,p2) in previous work. Direction objects can also have
quantitative operations such as direction-composition and
direction-reverse. This novel view of direction has several
obvious advantages: First, it allows us to define the orienta-
tion of spatial objects; Second, a richer set of predicates and
operators on direction and orientation can be defined; Third,
new spatial data types such as oriented spatial objects and
unbounded spatial objects can be defined. Finally, the ob-
ject view of direction makes it easy to do direction reasoning,
which is useful in spatial query processing and optimization.

Keywords: Direction, Orientation, unbounded object, ori-
ented spatial object.

1 Introduction

Direction is often used in daily life when people commu-
nicate about a geographic space. It is frequently used as
a selection condition in spatial queries or used for similar-
ity accessing in image databases. Example queries used in
army battlefield visualization are "Is there anything over

1This work is sponsored in part by the Army High Performance
Computing Research Center under the auspices of the Department of
the Army, Army Research Laboratory cooperative agreement number
DAAF04-95-2-0003/contract number DAAH04-95-C-0008, the con-
tent of which does not necessarily reflect the position or the policy of
the government, and no official endorsement should be inferred. This
work was also supported in part by NSF grant #9631539.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

caopies are not made or distributed for profit or commercial advan-

1age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, 10 post on servers or to

redistribute 1o lists, requires prior spetific permission and/er a fee.

ACM GIS “88 11/98 Washington, D.C., USA

© 1998 ACM 1-58113-115-1/98/0011...$5.00

the ridge?,” "Put me in the tank left of that building,” and
"Let’s move to the north of the tree.” The first example
refers to a viewer-based orientation, the second can be de-
fined on either the intrinsic orientation of the building(object-
based) or a viewer, and the third example refers to the ab-
solute direction with respect to the tree. In order to handle
the kind of queries that contain direction constraints in the
selection criteria, a spatial database system should provide
a way for users to specify the absolute direction and the
viewer/object based orientation.

The common means of dealing with direction in GIS is
to view direction as a spatial relation between objects[4, 18,
8, 22, 3, 14, 9, 6, 20, 13]. In this paper, we view direction
from a different perspective: as a spatial object. The ba-
sic approach here is to model direction as a unit vector and
orientation as a set of directions. As a spatial object, di-
rection can have its own attributes, its own operators, so
that a richer set of predicates and operators on direction
and orientation can be defined. Second, new spatial data
types such as oriented spatial objects and unbounded spa-
tial objects, can be easily defined using the direction ob-
ject. The object view of direction also makes it easy to do
quantitative direction reasoning by using only simple vec-
tor algebra, which also reduces the large number of infer-
ence rules that is commonly needed. This is useful in the
processing and optimization of spatial queries that contain
direction constraints. We propose a new spatial object hier-
archy and model the direction for three systems: absolute,
object-based and viewer-based orientation.

‘We will not discuss the philosophical issue of whether
directions are object/entities or not in the strictest sense.
Absolute directions like North, South, East, West can be
defined using a coordinate system without reference to any
other spatial object. Thus these can be considered to ob-
jects in their own right. Object view for relative directions
(e.g. left, front) needs further thought because they are de-
fined with respect to coordinate systems attached to other
objects. This issue gets complicated by the fact that a vec-
tor can be defined in Mathematics independently in context
of a vector space or via referring to an ordered pair of points
in an affine space. The issue needs to be explored further.

The organization of this paper is as follows: In section
2, we do a literature survey of the work on modeling direc-
tion and compare it to our work. We define a mathematical
framework and propose ADTs in section 3. Direction mod-
eling for three systems are defined in section 4, and a new
spatial object hierarchy is developed in section 5. In section
6, we model directions between non-point spatial objects
by using new spatial objects defined in section 5. Finally,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288692.288706&domain=pdf&date_stamp=1998-11-01

we conclude the paper with discussions and suggestions for
future research.

2 Related work and our contributions

The research work on direction modeling has been carried
out in several areas such as geographic information systems
and image analysis. Most of the work is on how to capture
the semantics of direction relations, and further, how to do
spatial reasoning on the direction[3, 4, 6]. There are two
major direction reference frames used to model direction in
2D space: the cone-based model{14], and the projection-
based model[4, 6]. Frank[l] compared these two models and
found the projection-based reference frame to be better in
many aspects. Most attention has been paid to point-based
objects. The most common way to model directions be-
tween extended objects is through the object’s Minimum
Bounding Rectangle(MBR), where direction relations are
obtained by applying Allen’s [2] interval relations along the
x and y axis, in which case, 169 different relations3] can
be distinguished. some work based on MBR has been pro-
posed on picture indexing in pictorial databases[16, 22] and
some work aligns each boundary box to the object’s major
axis[12], which makes it possible to satisfy different reference
frames[9]. But since MBRs are geometric approximations of
spatial objects, they may be too coarse, and hence result
in inconsistency and misinterpretation. Freska [5] proposed
an alternative method: semi-intervals to formalize the one-
dimensional temporal relation based on incomplete knowl-
edge of the object. To overcome the limitations of MBR
for the extended object model, Egenhofer [8] introduced a
Direction-Relation Matrix to represent cardinal directions.
Based on the projection-based frame, it partitions the space
around the reference object and records into which direction
tiles a target object falls. But this model still has limitations
in the modeling of line objects, and it is limited to 2D space.
Little work has been done on directions in 3D space [7].

The previous work modeled direction as a boolean spa-
tial relation between spatial objects. This seems to be a
natural mapping of direction relations that is used in geo-
graphic space. But this modeling method has some limita-
tions. Operations on direction are limited. It is not possible
to perform quantitative operations, such as vector-addition,
translation, etc. Oriented(directed) objects and unbounded
objects cannot be represented in the spatial data model.

This paper models direction as a spatial object: a unit
vector. This novel view of direction has several advantages
over the binary boolean relation view. Being modeled as a
spatial object, a direction object can have its own attributes
and operator set. The implementation of operators can use
vector algebra, making a richer set of predicates and op-
erators on direction feasible. Secondly, new spatial data
types such as oriented objects and unbounded objects can
be defined at the abstract object level. The object view of
direction also makes direction reasoning easy. Basic vector
algebra is sufficient for inferencing new directions, and no
special or new qualitative rules are needed. This reduces the
complexity of direction reasoning, and involving appropriate
quantitative information is useful in spatial query processing
and optimization in spatial databases.

70

3 Basic Concepts and proposed ADTs

3.1 Points, Vectors, Angles

The basic concepts we use here are points, vectors and an-
gles, as illustrated in figure 1. A point has a position in

Points P and Q are different,
vectors u and v are same, and
© is the angle between vector vand t

Figure 1: Diagram of points, vectors and angles

space, which can be described using coordinates in a coordi-
nate system. The only characteristic that distinguishes one
point from another is its position. A vector, in contrast, has
both magnitude and direction but no fixed position in space.
An angle between two vectors represents the direction devi-
ation from one vector to the other. Here, by angle we mean
the smaller one between two vectors, like § in diagram 1.
In this paper, we denote points by capitalized letters, such
as P, and denote vectors as lower case letters with an arrow
above, such as 7.

For simplicity we will use the Cartesian coordinate sys-
tem to represent points and vectors in this paper. The
Cartesian coordinate system in 3D is a right-handed rect-
angular coordinate system, with three axes x, y and z per-
pendicular to each other and intersecting at the origin. A
point P in space is represented as an ordered triple (z,y, 2),
where x, y and z are rectangular components of P on thex, y
and z axes , respectively. Let UL, TJ-';, and U; represent three
unit vectors which are the basis vectors of the coordinate
system. A vector ¥ can be defined as a linear combination
of these basis vectors in the form of: 7 = aU, + b(fy + cU.';,
where a, b and ¢ are some numbers.

Operands | OPs | Definition ,
Point(s) | - |#a=Q—P = (5, — 2,)0s + (v —
yp)Uy + (zq —zp)Us

+ [@+8= (2o +26)0 + (¥a + 46)Uy +
(za. +zb)Uz

— [@=F= (e —)0z + (e —w0)Ty +
(za — z)U;

Vector(s) G0Ob = |a|jb] cosd = TaTs+Yays+2azs

@ x b = |a||b] sin(8) @, where @ is a
unit vector, perpendicular to @ and b

X

mad = mz Uz + myUy + mz.Us,
where m is 2 number

scale

Point,
Vector

R=P+d = R(zp+Ta, Yp+Ya,2p+2a)
a point away from P with distance |a]
along the direction of @

Table 1: Operations on vectors and points

Table 1 sumimarizes representative operations on points
and vectors. Here P(Zp,yp,2p) and Q(xq,¥q,2) are two
points, 6 is the angle between vectors & and b, where @ =
2aUz + yaUy + 2Us and b = 20z + Uy + zUs. We
can see that subtraction operation(-) is applied to point

pairs, resulting in a vector. The operations of addition(+),
subtraction(-), scale multiplication, dot product(®), and
cross product(x) are available between vector operands. The
definitions are given in terms of the components in the Carte-
sian coordinate system. There is only one operation(+)
available between a point and a vector which actually pro-
duces another point. The associativity, commutativity and
distribution properties of these operators will be examined

in the future work towards integrating vector objects in

query languages.

3.2 Direction and Orientation

Direction is defined as a unit vector, ie., a vector with its
magnitude equal to 1. Table 2 defines the operations on
directions.

Operations | Definition

composition | dl+d2= ﬁi—ﬁﬁ

deviation cosf=dy Odz

Teverse (—1) x d1

between? d between dy and ds if 3e; > 0,¢2 > 0s.t.
d=cdi+ codz

among d among d1, do and ds if e > 0,2 >
0,cs >0 std= cld1+02d2+03d3

Table 2: Operations of Direction

The operations on directions can be classified into three
categories. The first category is the operations that pro-
duce new directions. Composition and reverse are opera-
tions in this category. The composition operation is actu-
ally achieved by vector-addition, and the resulting vector is
scaled down by its magnitude to be a unit vector, which
represents the new direction. The reverse operator pro-
duces the opposite direction vector. The second category
is to calculate the deviation between two directions. Opera-
tor deviation calculates the cosine of the angle between two
directions, and hence gives the direction deviation of one
direction from the other. A pair of vectors are orthogonal
if their dot-product returns zero, i.e., they have 90° devi-
ation. The last category is to test the relationship among
directions. The operators between and among belong to th1s
category. In figure 2, dis between di and da; however, di is
not between d and do. As we will see in later sections, these

—-—le
\dz

Figure 2: between operator

three categories of direction operations make the modeling
of direction concise and flexible.

Orientation is modeled as a spatial object which consists
of a point of origin and N pair-wise orthogonal directions,
where N is the dimension of the embedding space. The ori-
gin point and the N directions form a Cartesian coordinate

1This definition works well as long as vector di is not parallel to
vector do. The parallel case can be handled in a user defined manner.

system. In 3D space, the three directions may be labeled
the Back-Front, Left-Right, and Below-Above directions of
the orientation. Formally, we can define orientation and its
operations in 3D space as follows:

Orientationis a quadruple O= (OP front right, above),
where OP is a point, and front rzght above are three or-
thogonal directions. It has two operations:

o translate(0,%) = Orientation O’ =

@), front, right, above);

{translate(OP,

. rotate(O rotationM atri:z:) Orientation 0' =
(0P, frontn) rzght,,, abo'uen),
where (fronta, rightn, aboven)= (front, right, above)®
rotationMatriz;

An example of the rotationMatrix which rotates the orien-

tation along the above axis for an angle 8 is[17]:

cos(f) —sin(6) 0
:b&;e = [sin(f) cos(8) 0]
0 01

Table 3 gives an illustration of these operations.

translate(O,)

rotate(O, R’ -)

~above
g

Table 3: Operations on orientation

3.3 Abstract Data Types for Modeling Direction

As a summary of the above discussion, we give the defini-
tion of ADTs for vector, direction and orientation in Table
4. The C++ like syntax is used here. The column labeled
atiributes declares the member variables of each class, and
the operations column declares the interfaces of operations
for each class. The vector class has three member variables
of the real type. These variables represent the three coeffi-
cients when the vector is written as the linear combination
of basis vectors of the coordinate system. The constructor
constructs a vector object, given three real arguments. The
five vector operators are declared as member operator func-
tions. Direction is defined as a subclass of the vector class.
It can be constructed either from a vector or from an ordered
triple. Besides inheriting attributes and operators from vec-
tor class, direction also adds new operators such as between
and aemong. The orientation class has four member vari-
ables which form a Cartesian coordinate system. Translate
and rotate are declared as the member operator functions of
the orientation class.

4 Applications

In this section, we will deal with point-based objects for
simplicity. There are three different perspective systems We
define absolute directions(e.g. north, south), object-based
directions(e.g. left, above), and viewer-based directions.

ADT
vector

attributes
x-comp: float;

representative operations

vector(fioat, float, float);

// constructor

float magnitude();

vector operator 4 (vector);

vector operator - (vector);

vector operator scale();

float operator © (vector);

vector operator X (vector);

direction(Hoat, float, float);

direction(vector);

direction operator
Composition(direction);

direction operator reverse();

float operator deviation
(direction);

boolean between (direction,

direction);

boolean among(direction, di-

rection, direction);

orientation(float, direction,
direction,direction);

orientation operator
translate(vector);

orientation operator
rotate(rotate-matrix);

y-comp: float;
z~comp: foat;

direction constraint =

subclass
of vector

unit magnitude

orientation | OP : point;

Front : direction;
right : direction;
above : direction;

Table 4: Abstract Data Types for direction and orientation

4.1 Absolute Direction

Absolute direction in embedding space is defined as a rela-
tionship among objects based on their locations in embed-
ding space. For simplicity here, we will ignore the elevation
and earth’s curvature, and use a projection-based model to
map the space to a 2D local coordinate system with north
up and east right®.

‘We model absolute directions in two ways: constant di-
rection objects and direction predicates. Constant direc-
tion objects are created for frequently asked directions, e.g:
east, west, north, south, N, NE,SE,SW. Table 5 illus-
trates how we can define the constant directions in terms
of coordinates in local embedding space. The unit vector
is denoted by an ordered pair(a,b) which represents vector

aUeast + bUnorth'

unit vector {1,0) (0,1) (-1,0) (0,-1)
directions east north west south

unit vectors | (55, 75) | O 8) [s —28) | G =)
directions NE NW SW SE

Table 5: constant absolute direction

Introducing constant direction objects provides much flex-
ibility in describing and deciding any direction. By using the
operator deviation, for any given direction, we can calculate
how much deviation is from one constant direction. We can
also produce a new direction, given the deviation from a
specific constant direction. This is very useful in the layout
of facilities.

Second, we also provide corresponding direction predi-
cates to make it convenient for users to specify the direction
relation between two objects. They are East, West, South,
North, Northwest, NorthEast, SouthWest, SouthEast.

2For a global view, we can extend to the ellipsoidal coordinate
system[11]

72

For any two objects, assuming their centroids are P;, P,
we represent the relationship ”P; is to the east of P»” by
predicate East(Pi,P2). The predicate is true iff equation

__J_Le';f;?; ;P =1 holds. Other predicates can be defined simi-

larly.

The above constant directions and predicates give precise
direction calculation, that is, only one angle matches each
case. Sometimes users may only be interested in approxi-
mate direction, such as a direction range: between north and
northwest. The operator between makes this approximate di-
rection predicate possible. If we want to test whether P; is
between north and northwest of P, we can use the befween

operator in C+-+ notation as: P, Py.between(north, NW).

4.2 Object-based direction

Object-based direction is the direction of the target object
with respect to the orientation of the reference object. The
reference object is an oriented object, while the target object
may or may not have orientation. We will use O to rep-
resent the orientation of object B, and Ogp. fr?ont, OB.rz’g;ht
and Op.above are the three directions of B’s orientation.
By using the direction operator reverse , the directions of
B’s behind, left and below can be described as —Oj.front,
—OB.rz'g;ht and ——OB.abgve, respectively.

Given a target point object A, and a reference point ob-
ject B, we can decide which direction A is relative to B by the
vector dot-product. First, a vector BA = A— B is obtained.
The direction of point object A with respect to point object
B’s orientation can be decided by the dot-product between
vector BA and the three directions Op.front, Op .rz'_ffht and
Og.above.

Direction predicates ¥FDP | RDP | ADP
A'in front of B= froni(A, B) >0 0 0
A behind of B = behind(A, B) <0 0 0
A right to B = right(4, B) 0 >0]
A Teft to B = left(4, B) 0 <0 0
A above B = above(A4, B) Q Q >0
A below B = below(A, B) 0 .0 <0
BA.between(Op.front, Og.right) | >0 >0 0
B].among(oa.f;;t, Og.above, >0 >0 >0
Og.right)

Table 6: Object-based orientation

Table 6 gives some examples of calculating object-based
direction. The first column consists of example direction
predicates and the remaining three columns are the condi-
tions needed to satisfy the predicates. Here, FDP, RDP,
and ADP represent three dot products: BA ® Op.front ,
BA®Og.right and BA® Op.above respectively. The pred-
icate returns frue if and only if all three corresponding con-
ditions hold. The first six rows illustrate the calculation of
straight directions, such as: front, left, above, etc. Asin row
1, if the dot-product of vector BA and direction Op.front is
greater than zero, and the dot-products between vector BA
and the other two directions of orientation Op are both zeros
, then front(A4, B) = true, which means that A is in front of
B. These direction predicates are for precise direction check-
ing, whereas the other two categories of predicates are for
direction range checking. Operator between is used to test
if A is located in the region between two directions. Here

between is used in C-++ notation. The predicates in this
category are for the directions in 2D space. The predicates
in third categories test if A is among three directions in a
3D space. We represent these predicates using the operator
among.

4.3 Viewer-based direction

Viewer-based direction refers to the direction relation which
is measured from the viewer’s perspective.

There are three related components in this system: tar-
get object A, reference object B, and the viewer. The viewer
has his/her own orlentation, where objects A and B may or
may not be oriented objects. Given these three components,
we can estimate the direction of object A relative to object B
from the viewer’s perspective in a way similar to that used
with the object-based system. The similar predicates but
w.r.t. the viewer are deﬁngd, and are calculated by the dot-
product between vector BA and the three directions of the
reference orientation. The reference orientation here is the
viewer’s orientation: Ov, and hence the three dot-products
needed to calculate are BA®Ov.front , BA® Ov.right,
and BA ® Ov.abore. A similar table can be obtained.

In the viewer-based direction system, the viewer may
change his/her orientation or position(unlike objects, which
are still). Using the operators rotate and translate on the
orientation, we can easily generate new orientations.

5 Defining New Spatial Types Using Direction and Vector

Some work has been done on modeling space into a spatial
geometry hierarchy. Open GIS Consortium(10] proposed a
spatial object hierarchy for bounded shape objects in 2D
space as shown in figure 3. The hierarchy consists of four

Spatial
T

{
I Point | Curve ISurﬁu:e I Sohd

Post Sxmple
Cluster ’ Oump]ex

Figure 3: Bounded Spatial Object Hierarchy

Volume l

Void l

spatial data types: points, curves, surfaces, and solids. Each
data type can be further classified into several subtypes.
Since these data types model only bounded shape objects,
the hierarchy has limitations in modeling objects such as
maps, rivers, roads and buildings which have their own di-
rections/orientations. For example, with few exceptions,
printed maps are all oriented with north up. This is not
only for better visualization, but for more fexibility with
spatial queries. It allows queries like: ®Which state is to
the left of Minnesota?” which are frequently asked by non-
geographers who have little sense of north, west, etc.

By using the direction and orientation objects we de-
fined above, we can extend the spatial hierarchy to include
criented objects and unbounded objects. In the new spa-
tial hierarchy, maps and roads can be defined as oriented
objects.

5.1 Oriented(directed) spatial object

There are many objects in geographic space that have their
intrinsic directions/orientations in addition to their loca-
tions and shapes, such as buildings, rivers and roads. As
we discussed above, modeling maps as oriented objects pro-
vides users more flexibility in query specification. It does
allow users who have little knowledge of geographic space
can query about directions intuitively based on his/her own
orientation.

Table 7 gives some queries that can only be answered
when the reference objects and/or viewers are modeled as
oriented objects.

Queries

Put me in front of the building.

Is there anything behind the ridge?

Let’s move back a little.

How far is the next intersection down this road?

Table 7: Queries Need Orientation Information

Introducing Orientation class into spatial object hierar-
chy makes it easy to formalize oriented objects. In addition
to the attributes such as location and shape for the geo-
metric shape objects, an oriented object has an attribute
orientation, which is an instance object of class orientation.-
The operators available for oriented objects include both
topological operators and direction and orientation opera-
tors.

5.2 Open Shapes

Open shapes mean the geometries whose boundaries are un-
known, or unimportant, or infinite.

Examples of open spatial objects are open lines, open
planes, and open spaces. A common way to define these in
3D Cartesian geometry is in terms of an equation such as the
parametric equation[l5]: = = zo+at,y = yo+bt,2 = z0+ct
for a line through the point (o, yo, 20}, Ax+By+C=0 for a
plane, and Ax-}C=0 for a 3D space. It would be more con-
venient if there were corresponding object classes so that
users could describe them at an abstract level and use them
to describe the space. The direction object could be used
for this purpose.

Defining Open line, Open Rectangle
‘We define open lines and open rectangle regions using

directions and points here. Table 8 explains how to formalize
each open object with examples in figure 4.

u
B u
P u P v _| T P
P2 P v
@ ®) @ ©

Figure 4: Examples of open shapes

There are several subtypes in each type. For an open line,
it could be 1-end open(figure 4a), which needs a start point
and a direction to define it, or it could be 2-end open(4b),
which needs an intermediate point and a direction to de-
scribe it. The open rectangle also has three subtypes: 1-side

Type Descriptions figure

openlinel{l-end open line) | start-point, direction (a)

openline2{2-end open line} | intermediate-point, (b)
direction

openrectl vertezs,vertezs,direction (c)

where direction perpendic-
ular to segment formed by
the two vertices

(1-side open rectangle)

openrect2 two 1-end open lines from (d)
(2-side open region) the only vertex
openrect3 2-end open line, direction (e)

(3-side open rectangle)

Table 8: Defining open objects

open rectangle (4c), described by two vertices of the rect-
angle and one direction which is perpendicular to the edge
connected by the two vertices. A 2-side open rectangle is
described using two 1-end open lines which start from the
vertex of the rectangle. Also a 3-side open rectangle could
be defined by a 2-end open line and a direction. It is obvious
that extending to an open cube is easy.

5.3 New Spatial Data Type Hierarchy

Figure 5 illustrates the extended spatial data type hierarchy
which consists of shape objects, vectors and oriented(directed)
objects. The spatial data types and their operators can be
embedded in an extended query language to implement a
spatial query language.

classigal type
g []
- l Shape ‘ :‘ lOﬁcmmionl I Vecmr]
;:lcloscd shape] R i open shape |
openTectangie

Figure 5: Extended Spatial Data Type Hierarchy

Many new operators are available in the extended spatial
object model. Between vector objects and shape objects,
affine transformations can be performed. The addition of
these operations makes some GIS applications easy. For ex-

ample, Urban planning needs interactive placement forientation

of facilities, location-based query exploration can use affine
operations, and using these operations also can improve
viewer flexibility, so that we do not have to look down on
earth from space. Instead, a viewer can view from any di-
rection by performing rotation transformation.

6 Modeling Direction Between Non-point Objects

The extended spatial object hierarchy increases our power
to describe geographic space by providing new spatial types

such as open shapes. We can use open shapes to model
the directions between extended objects by converting the
calculation of directional relationships to the calculation of
topological relationships between objects.

Given two objects TO and RO, we want to decide the
direction of target object TO related to reference object RO.
Using the approach in [8], first we obtain the MBR of ob-
ject RO and partition the space around object RO into nine
direction tiles based on the MBR of object RO, which is a
rectangle ABCD. as in figure 6. We represent each direction
tile by the object in new spatial hierarchy as in table 9.

u

N NE
v

w E

sw S SE

Figure 6: Object TO and RO

Rectangle | representation for figure 6

NW openrect2(openline2(A, i), openline2(A, —%))
N openrectl(A, B, i)

NE openrect2(openline2(B, i), openline2(B, 7))

B openrectl(B, C, V)

SE openrect2(openline2(C, —i), openline2(C, 7))

S openrectl(C, D, —7)

SW openrect2(openline2(D, —%), openline2(D, —7))
W openrectl(A, D, —v)

(0] rectangle(A,B,C, D)

Table 9: Direction tile

Eight of the nine direction tiles are open rectangles. NW,
NE, SE, SW are 2-side open rectangles, and N, W, E, S are 1-
side open rectangles. In order to test the direction of object
TO related to object RO, we can test into which direction
tile TO falls. The calculation is then converted to the over-
lap relationship between object TO and the direction tiles.
For example,

North(TO, RO) <==> Overlap(TO, N)

NorthWest(TO, RO) <==> Overlap(TO,NW)
we can calculate the other directions in the same way. Fi-
nally, we union all the tiles that overlap with A. For example,
in figure 6, A is North and NW and West of object B.

7 Discussions

In this paper, we model direction as a new kind of spatial
object using the concepts of vectors, points and angles. The
basic approach here is to model direction as a unit vector.
Besides enabling qualitative reasoning or which most of the
previous work has focused, direction objects can also have
quantitative operations such as direction-addition, direction-
maultiplication and operator trenslate on orientation. This
novel object view of direction has several obvious advan-
tages: It allows the definition of the orientation of spatial

objects; it gives a richer set of predicates and operators on
direction and orientation. And new spatial data types such
as oriented spatial objects and unbounded spatial objects
can be defined. Finally, quantitative direction reasoning,
which is useful in spatial query processing and optimization,
can be implemented simply by basic vector algebra.

The benefits of the new viewpoint are obvious and promis-
ing. In future work, we would integrate vector abstract data
types with an extensible query language to evaluate their ef-
ficiency in the context of various GIS applications[19, 21].
We would also like to explore the use of vectors to model
values of spatial attributes such as wind-velocity, magnetic
field of the earth, etc.

Acknowledgments

This work is sponsored in part by the Army High Perfor-
mance Computing Research Center under the auspices of
the Department of the Army, Army Research Laboratory co-
operative agreement number DAAH04-95-2-0003/contract
number DAAH04-95-C-0008, the content of which does not
necessarily reflect the position or the policy of the govern-
ment, and no official endorsement should be inferred. This
work was also supported in part by NSF grant $9631539
Thanks to Dr. Sanjay Chawla for technical commentary and
to Christiane McCarthy for helping to improve the readabil-
ity of the paper.

References

[1] A.Frank. Qualitative Spatial Reasoning: Cardinal Di-
rections as an Example. International Journal of Geo-
graphical Information Systems, 10(3):269-290, 1996.

[2] J. Allen. Maintaining Knowledge about Temporal In-
tervals. Communications of the ACM, 26(11):832-843,
1983.

[8] D.Papadias, M. Egenhofer, and J. Sharma. Hierarchical
Reasoning about Direction Relations. In Fourth ACM
Workshop on Advances in Geogrephic Information Sys-
tems, pages 105-112. ACM, 1996.

14 A. Frank. Qualitative Spatial Reasoning about Cardi-
nal Directions. In Auto carto 10, D.Mark and D. White,
eds., Baltimore, MD, pages 148-167, 1991.

[5] C. Freksa. Temporal Reasoning Based on Semi-
Intervals. Artificial Intelligence, 54:199-227, 1992.

[6] C. Freksa. Using Orientation Information for Qual-
itative Spatial Reasoning. Theories and Methods of
Spatio-Temporal Reasoning Geographic Space, 639:162-
178, 1992.

[7] Klaus-Peter Gapp. Basic Meanings of Spatial rela-
tions: Computation and Evaluation in 3D space. AAAJ
2:1393-13098, 1994

I8] R. Goyal and M. Egenhofer. The Direction-Relation
Matrix: A Representation of Direction Relations for
Extended Spatial Objects . In UCGIS Annual Assembly
and Summer Retreal, Bar Herbor, ME, 1997.

[9] G.Retz-Schmidt. Various Views on Spatial Preposi-
tions. AJ Magazine, 9(2):95-105, 1988.

[10] Open GIS Consortium Inc. Opengis simple features
specification for sql. http://www.opengis.org.

f11] Open GIS Consortium Inc. Spatial reference systems.
http:/ /www.opengis.org/techno/specs.htm.

[12] E. Jungert. The observer’s point of view: An Ex-
tension of Symbolic Projections. Theories and Meth-
ods of Spatial-Temporal Reasoning in Geographic Space,
639:179-195, 1992.

[13] D. Papadias and T. Sellis. Qualitative representation of
Spatial Knowledge in Two-Dimensional Space. VLDB
Journal, 3(4):479-516, 1994.

[14] Donna J. Peuquet and Zhan Ci-Xiang. An Algo-
rithm to Determine the Directional Relationship Be-
tween Arbitrarily-shaped Polygons in the plane. Pat-
tern Recognition, 20(1):65-74, 1987.

[15] M.H. Protter and C.B. Morrey. Modern Mathematical
Analysis. Addison-Wesley Publishing Company, Inc.,
1996.

[16] P.W.Huang and Y.R. Jean. Using 2D C*-String As
Spatial Knowledge Representation For Image Database
Systems. Pattern Recognition, 30(10):1249-1257, 1994.

[17] David F. Rogers. Mathematical Elements for Computer
Graphics. McGraw-Hill Publishing Company, 1990.

[18] S. Shekhar, S. Ravada A.Fetterer, X.Liu, and C.T.
Lu. Spatial Databases: Accomplishments and Research
Needs. University of Minnesota technical report, Csci
TRY97-016, 1997.

[19] S. Shekhar, S. Ravada, V. Kumar, and etc. Parallelizing
a GIS on a Shared-Address Space Architecture. JEEE
Computer, 29(12):42-48, December 1996.

[20] Shashi Shekhar, Mark Coyle, and etc. Data Models in
Geographic Information Systems. CACM, 40(4):103-
111, 1997.

[21] Shashi Shekhar and Duen-Ren Liu. CCAM: A
Connectivity-Clustered Access Method for Networks
and Network Computations. TKDE, 9(1):102-119,
1997.

" [22] Y.1.Chang and B.Y. Yang. A Prime-Number-Based

Matrix Strategy for Efficient Iconic Indexing of Sym-
bolic Pictures. Pattern Recognition, 30(10):1-13, Octo-
ber 1997.

