
Nikos Mamoulis
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

mamoulis@cs.ust.hk

Dimitris Papadias
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

dimitris@cs.ust.hk

1. ABSTRACT
Spatial joins constitute one of the most active
research topics in spatial query processing. This
paper deals with the processing of clique
intersection joins using R-trees. A clique
intersection join will retrieve all n-tuples of
objects that pair-wise overlap. The corresponding
MBR-based filter step retrieves n-tuples of
rectangles that intersect at some common point.
Here we modify three algorithms, first proposed
in [13], for the specific problem and
experimentally evaluate their performance using
data sets of various densities.
1.1 Keywords
Spatial joins, spatial query processing, multi-way joins

2. INTRODUCTION
Spatial queries can be classified in two major categories
[3]: the first one includes single-scan queries, which apply
a selection condition over a spatial relation. A typical query
in this category is the range query (e.g. find all cities within
300km distance from Hong Kong). The cost of single-scan
queries is at most linear to the number of participating
objects in the spatial relation. The second category includes
multiple-scan queries that involve more than one spatial
relations. Objects may have to be accessed several times
and, in general, the execution time is superlinear to the size
of participating relations. The most important representative
of multiple-scan queries is the spatial join.

The spatial join operation selects from two spatial relations
the pairs that satisfy some spatial predicate. A typical
spatial join example is “find all cities that are crossed by a
river”. Here, two spatial relations, “Cities” and “Rivers”,

are joined using the spatial predicate cross. The main
difficulty in processing spatial joins, is the fact that there
does not exist a total ordering of objects in the
multidimensional space that preserves spatial proximity.
This characteristic does not permit the application of
traditional relational join algorithms such as sort-merge
join. As a consequence, several specialized methods have
been developed for the computation of spatial joins. These
methods can be classified in two categories.

The first category includes approaches (e.g., [3], [10])
which assume that the relations to be joined are indexed on
the spatial attributes, an assumption which is true for most
modern spatial databases, since spatial indexing facilitates
fast execution of selection queries. Methods in the second
category do not take under consideration an existing spatial
index on the joined attributes, but instead they either use
special built indices for spatial joins [14], or employ on-the-
fly indexing mechanisms [11].

A complete query processor should be able to handle join
of multiple (>2) inputs, without interrupting data between
the join operators [5]. Unfortunately, the above techniques
do not consider this issue; in other words, there is no
systematic way to handle multi-way spatial joins. To the
best of our knowledge, previous work on multi-way joins
has concentrated mainly on the relational model. Query
evaluation techniques for multiple relational joins include
computation of optimal execution orderings [15], and
parallel execution engines [6].

An interesting fact about multi-way joins is that they can be
seen as constraint satisfaction problems (CSPs). A CSP [12]
is defined as a set of variables, whose domain values are
restricted by a number of constraints. A solution to a CSP is
an assignment of a value to each variable, such that all
constraints are satisfied. Although CSPs are in general NP-
complete, there exist several systematic search algorithms
that solve moderate size problems. One such algorithm,
experimentally proven [1] to outperform the rest for a wide
range of application domains, is forward checking [9].

In [13] we investigated the computation of multi-way joins
that involve a set of spatial relations given in a specific
order determined by some cost model [16]. Assuming that
the spatial relations are indexed by R-trees, we presented
three hybrid algorithms, which enhance forward checking

Constraint-Based Algorithms for Computing Clique
Intersection Joins

by taking advantage of spatial indexing. In this paper we
adapt the algorithms to deal with clique intersection joins
(the join condition is overlap between all pairs of spatial
relations) and experimentally evaluate their performance.
Figure 1 illustrates three objects that pair-wise overlap.
Observe that if any set of objects satisfy the clique
intersection property, their minimum bounding rectangles
(MBRs) have a non-empty intersection (gray area).

Figure 1: Clique intersections

The paper is organized as follows: Section 3 describes the
common approach for computing pair-wise spatial joins
using R-trees. The relation between multi-way spatial joins
and CSPs, as well as a description of the general forward
checking algorithm are given in section 4. In sections 5,6,
and 7 we describe three systematic algorithms for
computing clique intersection joins. Section 8 presents a
performance comparison of the algorithms for a range of
data sets and join sizes. Finally, section 9 concludes the
paper.

3. BACKGROUND ON SPATIAL JOINS
The R-tree [7] is a multi-dimensional extension of the B-
tree, used in many commercial GIS and DBMS. The MBRs
of the actual data objects are stored in the leaf nodes of the
tree and intermediate nodes are built by grouping rectangles
at the lower level. Each node of the tree corresponds to a
disk page and is associated with some rectangle which
encloses all rectangles that correspond to lower level nodes.
The processing of a traditional overlap query in R-trees
involves the following procedure: Starting from the top
node, exclude the nodes that are disjoint with the query
window, and recursively search the remaining ones. Among
the entries of the leaf nodes retrieved, select the ones that
overlap the query window.

When two MBRs are disjoint we can conclude that the
objects that they represent are also disjoint. If the MBRs
however share common points, no conclusion can be drawn
about the spatial relation between the objects. For this
reason, spatial queries involve the following two step
strategy: first a filter step uses the tree to rapidly eliminate
objects that could not possibly satisfy the query. The result
is a set of candidates, which includes all the results and
possibly some false hits. Then during a refinement step each
candidate is examined (by using computational geometry
techniques) and false hits are detected and eliminated.
Several variations of the original R-trees have been
proposed to increase efficiency. In our implementation we
use R*-trees [2] which employ the same data structure but a

different insertion algorithm in order to minimize the
overlapping area of R-tree nodes.

The most influential approach for efficiently computing
pair-wise, intersection joins using R-trees is presented in
[3]. The algorithm is based on the enclosure property: if
two intermediate nodes of the R-trees to be joined do not
intersect, there can be no MBRs below them that intersect.
The algorithm first joins the high level nodes of the trees
and then follows the links in order to find qualifying pairs
below them:
SpatialJoin(R,S: R_Node) /* R,S have equal height */
 FOR (all ES ∈ S) DO /* for all entries in S */
 FOR (all ER ∈ R with ER.rect ∩ ES.rect ≠ ∅) DO
 IF (R is a leaf page)

 THEN output (ER, ES)
 ELSE
 ReadPage(ER.ref); ReadPage(ES.ref);
 SpatialJoin(ER.ref, ES.ref)

Two CPU time optimization techniques, namely search
space restriction and plane sweep, are used to improve the
CPU speed of the above algorithm. In addition, [3] applies
I/O time optimization methods to determine an optimal
page fetching policy during spatial joins. [10] extends
SpatialJoin by introducing an on-the-fly indexing
mechanism to optimize the execution order of matches at
intermediate levels of the joined trees, while [4] exploits
parallel execution of pair-wise spatial joins. In the rest of
the paper we apply CSP search techniques to process clique
intersection joins.

4. MULTIWAY SPATIAL JOINS AS CSPs
A constraint satisfaction problem [12] is defined over a
finite set of variables, each with a finite domain of potential
values. Formally, a binary CSP consists of:

• A set of n variables, V1, V2, … ,Vn

• For each variable Vi a finite domain Di ={u1,…, uN} of
potential values

• For each pair of variables Vi,Vj a binary constraint Cij
which is simply a subset of Di × Dj. If (uk,ul) ∈ Cij then
the assignment {Vi ← uk, Vj ← ul} is consistent.

A solution is an assignment {V1← up, … ,Vn ← ur}, such
that for all i,j: {Vi ← uk, Vj ← ul} is consistent. A spatial
join can be mapped to a CSP as follows:

• Each joined attribute is a variable, e.g., the query “find
all cities that are crossed by a river” contains two
variables, V1 and V2, for rivers and cities respectively.

• The domain of each variable Vi is the corresponding
spatial relation Ri (e.g., R1 is the set of cities). Vi can
only take as a value a rectangle rik from relation Ri.

• Each join predicate (e.g. "crossed by") corresponds to
a binary spatial constraint. In clique intersection joins
the constraint is overlap between all pairs of variables.

One of the most effective algorithms for solving CSPs is
forward checking (FC) [9]. FC works as follows: when a
variable Vi is assigned a value uk, the domain of each future

(un-instantiated) variable Vj is pruned according to uk and
the constraint Cij (all values that are inconsistent with Cij

and uk are removed from Dj); the values of variables
V1,…,Vi will constitute a consistent partial solution, and
the domains of the future variables Vj (i<j ≤n) will be
consistent with all constraints Chj, where h≤i.

The above procedure is called check forward. If, after a
check forward, the domain of a future variable is exhausted,
FC un-assigns the current variable’s value, and restores the
corresponding eliminated values of future variables. When
the domain of the current variable is exhausted the
algorithm backtracks to the previous variable and assigns a
new value to it. FC outputs a solution whenever the last
variable is given a value, and terminates when it backtracks
from the first variable.
FC()
 i := 1; /*index to the current variable*/
 WHILE (TRUE) {
 new_value := getNextValue(i);
 IF new_value = NULL /*empty domain*/
 THEN IF i=1 /*first variable*/
 THEN RETURN; /*termination of the algorithm*/
 ELSE i:=i-1; CONTINUE; /*backtrack*/
 ELSE /*non-empty domain*/
 instantiations[i] := new_value; /*store instantiation*/
 IF i = n /*last variable instantiated*/
 THEN output_solution(instantiations);
 ELSE /*intermediate variable instantiated*/
 IF check_forward(i) /*successful instantiation*/
 THEN i := i+1; /*proceed to the next variable*/
 ELSE restore_eliminations(i); /*restore eliminated values*/
 } /*end WHILE*/

BOOLEAN check_forward(int i)
 FOR j = i+1 TO n DO /*for all uninstantiated variables*/
 FOR all not already eliminated values ul ∈ Dj

 IF inconsistent (instantiations[i], ul)
 THEN eliminate (ul); /*var. Vj cannot take value ul */
 IF Dj = ∅ /*the whole domain of Vj has been eliminated */
 THEN RETURN FALSE;
 RETURN TRUE;

The application of FC for computing multi-way spatial
joins is illustrated though the following example. Consider
the multi-way intersection join of the spatial relations R1,
R2, R3, R4, as shown in Figure 2. The problem is to find all
4-tuples (r1i, r2j, r3k, r4l), r1i ∈ R1, r2j ∈ R2, r3k ∈ R3, r4l ∈ R4,
such that r1i, r2j, r3k, r4l share some common point.

Initially, V1=r11. Check forward reduces the domain of V2

to {r21, r22}, as these are the only rectangles that intersect
the current value of V1, i.e., r11. Moving one step further, all
values from the domain of V3 are eliminated. At this point,
there is no reason for proceeding to variable V4, because all
assignments having V1 = r11 are inconsistent with R3. FC
now sets V1 = r12. After checking forward, the domains of
future variables V2, V3, V4 become {r21, r22}, {r 33, r34},
{r 42}, respectively. No future variable has been eliminated,
thus we can proceed to the next instantiation level. After
setting V2 = r21, r33 is eliminated from R3. FC goes forward
twice, and outputs the first valid assignment (r12, r21, r34,
r42). As r34 and r42 were the only valid values for variables

V3 and V4, respectively, the algorithm backtracks twice to
V2 to change its value to r22. Notice that when V2 is un-
assigned the value r21, the domain of V3 becomes again {r33,
r34}, because the eliminated value r33 due to V2 = r21 is
restored. FC continues and completes the solution set {(r12,
r21, r34, r42), (r12, r22, r33, r42), (r12, r22, r34, r42)}.

r11

r12

r13

r14 r21

r22

r23

r24

r31

r32

r33

r34

r41

r42

r43

r44

Figure 2: Example of FC

During the backtracking phase, values of future variables
excluded due to an inconsistent instantiation should be
restored. In order to keep track of the consistent values for
each variable at every instantiation level, FC uses a domain
table of size O(n2N), where n is the number of the variables
(usually < 10) and N the size of the domain. If the size of
the domain is prohibitively large, as is the case for most
spatial applications, the algorithm is inapplicable. Another
drawback of plain FC is the fact that it does not utilize
possibly existing spatial indices. In the next sections we
propose some methods that combine the basic idea of FC
with spatial indexing and can effectively compute clique
intersection joins for large spatial databases.

5. THE ADAPTED WR ALGORITHM
In this section, we present and analyze a version of the
Window Reduction (WR) algorithm, proposed in [13],
adapted for the clique intersection join problem. This
algorithm, assuming that the joined spatial relations are
indexed by R-trees, considers the domains of the variables
as windows and takes advantage of spatial indexing to
avoid main memory limitations and accelerate the retrieval
of qualifying tuples.

The original WR algorithm incrementally assigns values to
variables, just like plain FC does. After an assignment,
instead of updating the domain of the future variables, it
calculates the domain windows, which contain all the
potential values for each future variable. For instance after
Vi is instantiated to uk, the domain window dwij, of
(subsequent) variable Vj contains all the possible values for
Vj, which are consistent with uk and the input constraints.
WR stores the domain windows of the variables in a n×n
array (instead of n×n×N for simple forward checking),
analogous to the domain table of FC, in order to facilitate
restoration of the domain windows after backtracking.
When WR reaches at instantiation level i (for variable Vi),
it performs a window query on relation Ri, using the domain
window dwii. After choosing a value for Vi the algorithm
updates the domain windows of the future variables. Hence,
while moving forward, the domains of the last variables
become gradually smaller. If the domain window of a
variable becomes empty, the variable has been eliminated
and the algorithm backtracks.

The adapted version of WR for clique intersection joins
(WR-I), has the following differences from the original
WR:

• The domain window of all future variables is the same
and equal to the intersection area of the instantiations so
far (because of the non-empty intersection of MBRs as
in Figure 1). Thus, WR-I does not need to keep the
domain windows in a n×n array, rather they are kept in a
one dimensional array as opposed to the original WR.
When backtracking, restoring is done using the previous
level’s domain window.

• As a result of the previous property, WR-I can be
thought of as type of forward checking with depth 1. If
new_value is the rectangle assigned to currently
instantiated variable Vi, the new domain window
becomes dwi+1=dwi∩new_value for all future variables.

WR-I(RTree rt[])
 i := 1; /* index to the current variable */
 domainWindow[1] = U; /* the first variable has universal domain */
 WHILE (TRUE) {
 new_value := getNextValue(i, rt[i], domainWindow[i]);
 IF new_value = NULL /*empy domain*/
 THEN IF i = 1 /*first variable*/
 THEN RETURN; /*termination of the algorithm*/
 ELSE i := i-1; CONTINUE; /*backtrack*/
 ELSE /*non-empy domain*/
 instantiations[i] := new_value; /*store instantiation*/
 IF i= n /*last variable has been instantiated*/
 THEN output_solution(instantiations);
 ELSE /*update the window for all next variables */
 domainWindow[i+1] = domainWindow[i] ∩ new_value;
 i=i+1; /*proceed to the next variable*/
} /*end WHILE*/

To comprehend the functionality of WR-I consider the
example of Figure 3. Suppose that we want to join the three
images which are indexed by the respective R-trees. The
domain window of the first variable is the whole data space;
WR-I cannot avoid assigning all possible values to the first
variable. After V1 gets value a1, dw2 becomes U∩a1 = a1;
all candidate values for V2 should intersect a1. A window
search in R2 retrieves b1, as candidate value for V2 and dw3

becomes dw2∩b1, i.e. a1∩b1. Next, the algorithm searches
in R3 for rectangles that intersect dw3 and gets c1. After
finding solution (a1,b1,c1), the algorithm backtracks from V3

to V2 and subsequently backtracks from V2, because no
other value in R2 intersects a1. Similarly, WR-I finds the
second solution (a2,b2,c3) and finishes, after it fails to find
values in R2 that intersect a3, a4 and a5.

a1 a2 a3 a4 a5

A1 A2

b1 b2 b3 b4

B1 B2

c1 c2 c3 c4

C1 C2

c5

a1

a2

a3

a4

a5

A1

A2

b1

b2

b3 b4

B2B1

c1

c2

c3 c4 c5

C2

C1

R1
R2 R3

Figure 3: Three images and their respective R-trees

6. THE ADAPTED JWR ALGORITHM
Although WR-I works fast once the first variable has been
instantiated, it seems to suffer from the large number of
values V1 has to take, most of which may be redundant. To
address this issue, we implemented a modified version of
the Join Window Reduction (JWR) [13] for the specific
problem. The following JWR-I algorithm applies
SpatialJoin [3] to first compute the pair-wise overlap join
of the first two variables. It then employs the window
reduction technique to compute the desired multi-way join.
JWR-I(Rtree rt[])
 i := 2; /*values for the first 2 variables come as pairs*/
 WHILE (TRUE) {
 IF i = 2 /*values of first two variables*/
 THEN IF getNextPair(rt[1], rt[2], instantiations) = NULL
 THEN RETURN;/*termination-backtrack from first 2 variables*/
 ELSE domainWindow[3] := instantiations[1] ∩ instantiations[2];
 ELSE /*values of third and subsequent variables*/
 new_value := getNextValue(i, rt[i], domainWindow[i]);
 IF new_value = NULL /*empy domain for 3rd or later variable*/
 THEN i := i-1; CONTINUE; /*backtrack*/
 ELSE /*non-empy domain for 3rd or later variable*/
 instantiations[i] := new_value;
 IF i = n /*last variable has been instantiated*/
 THEN output_solution(instantiations);
 ELSE /*update the window for all next variables */
 domainWindow[i+1] = domainWindow[i] ∩ new_value;
 i = i+1;
 } /* end WHILE */

The main difference between JWR-I and WR-I is the
introduction of getNextPair(), which returns a joined pair of
values for the first two variables. This function is the
SpatialJoin algorithm (with the two CPU-time optimization
techniques [3]). In the 3-way join example of Figure 3
JWR-I retrieves one by one the pairs (a1,b1) and (a2,b2)
using SpatialJoin and then applies the window reduction
technique to complete the solutions.

7. THE ADAPTED MFC ALGORITHM
An alternative multi-way spatial join algorithm is Multilevel
Forward Checking (MFC) [13]. MFC is an extension of
SpatialJoin, that takes advantage of the enclosure property
of the high level R-tree nodes to prune out the search space.
Here we present MFC-I, an adapted MFC for the clique
intersection joins problem. The key idea behind MFC-I is
the fact that if the intermediate nodes at the high levels of
the R-trees do not pair-wise intersect, there can be no
rectangles under these nodes that may pair-wise intersect.
Following this observation, we can apply FC to the
intermediate nodes of the trees and follow the links from
solutions at the high levels to find solutions at the lower
levels of the trees.

To clarify the above idea, consider again the three images
of Figure 3. Observe that since (A2,B2,C2) do not formulate
a solution to the problem (they do not pair-wise intersect),
there can be no combination of values (ai,bj,ck), ai ∈ A2, bj

∈ B2, ck ∈ C2, such that (ai,bj,ck) is a solution. This
property is very useful especially when it excludes
combinations of nodes at high-levels of the indices, as the

search space can be dramatically reduced. A pseudo-code
for MFC-I is given below:
MFC-I(RTreeNode[] nodes)
 i := 1; /*index to the current variable at this level*/
 WHILE (TRUE) {
 new_value := getNextValue(i); /*as in plain FC*/
 IF new_value = NULL /*empty domain*/
 THEN IF i=1 THEN RETURN; /*return to the upper tree level*/
 ELSE i:=i-1; CONTINUE; /*backtrack (at the current level)*/
 ELSE /*non-empty domain*/
 instantiations[i]:=new_value;
 IF i = n /*last variable instantiated*/
 THEN IF level>0 /*intermediate level*/
 THEN MFC-I(instantiations, n); /*go to lower level*/
 ELSE output (instantiations); /*solution found*/
 ELSE /*intermediate variable instantiated*/
 IF check_forward(nodes, i); /*succesful instantiation*/
 THEN i = i+1; /*proceed to the next variable*/
 ELSE /*unsuccessful instantiation*/
 restore_eliminations(i);
 } /*end WHILE*/

BOOLEAN check_forward(Node[] nodes, int i)
 FOR j = i+1 TO n DO /*for all uninstantiated variables*/
 FOR all not eliminated entries Ejl ∈ nodes[j]
 IF Ejl ∩ instantiations[i] = ∅
 THEN eliminate (Ejl); /*var. Vj cannot take value Ejl*/
 IF Dj = ∅ /*the whole domain of Vj has been eliminated */
 THEN RETURN FALSE;
 RETURN TRUE;

The parameters of MFC-I at the first call are the roots of the
R-trees of the relations to be joined. When a solution is
retrieved at the intermediate levels of the trees, MFC-I is
recursively called, taking as parameter the references to the
underlying nodes. Solutions at the leaf level correspond to
joined tuples and are output.

Consider again the example in Figure 3. Initially, MFC-I is
applied for the root level of the trees. The first solution at
this level is (A1,B1,C1). After following the links and
applying forward checking at the succeeding level, MFC-I
outputs the solution (a1,b1,c1). Next, the algorithm returns to
the root level and identifies the tuple (A1,B1,C2). Going
down one level again, we obtain (a2,b2,c3). The last root-
level solution (A2,B2,C1) does not lead to any leaf-level

solution, and after going up from the root, the algorithm
terminates.

8. EXPERIMENTS
In order to compare the performance of WR-I, JWR-I, and
MFC-I, we implemented and tested the algorithms under
several conditions. The implementation language was C++,
and all experiments were run on a SUN UltraSparc2
(200MHz) workstation with 256 MB of RAM.

For our experiments we created a number of synthetic data
sets each consisting of 10,000 uniformly distributed
rectangles. As we are interested on the behaviour of the
algorithms under several density conditions1, we created 4
classes of data sets of densities 0.2, 0.4, 0.6, and 0.8,
respectively. Each class consists of 8 data sets with the
same density. Every data set was stored in an R*-tree [2] of
page size 1KB. We also implemented a cache with an LRU
buffer that fits 128 blocks (a typical value), in order to
measure the performance of the algorithms by means of I/O
page accesses.

The experiments focus on the performance of the
algorithms when computing clique intersection joins of data
sets of the same density. Figure 4 shows the performance
for all 4 classes of data sets. From the results we observe
the following:

• JWR-I outperforms WR-I in all the cases by a constant
factor. Since the only difference of the algorithms is the
calculation of the first instantiation pair, we expected
this constant factor improvement.

• JWR-I behaves totally differently from MFC-I. As an
overall conclusion, we can say that JWR-I is better
than MFC-I only when the joined data sets are sparse
(density 0.2, 0.4) and the number of joined relations is
large (>5). In this case, MFC-I does a lot of redundant
work at the high levels of the trees, being unable to

1 Density is defined as the sum of areas of all rectangles divided
by global space [16].

D=0.2

0

5

10

15

20

3
(3594)

4
(1277)

5
(355)

6
(109)

7 8
 (30) (11)

WR-I

JWR-I

MFC-I

D=0.4

0

10

20

30

40

3 4 5 6 7 8
(14218) (9913) (6500) (3665) (1775) (1058)

WR-I

JWR-I

MFC-I

D=0.6

0

20

40

60

80

100

3 4 5 6 7 8
(31709) (33371) (31194) (27275) (20632) (17757)

WR-I

JWR-I

MFC-I

D=0.8

0

100

200

300

3 4 5
(102918)

6
(117839)

7
(126658)

8
(139403)(57757) (81681)

WR-I

JWR-I

MFC-I

D=0.2

0

2000

4000

6000

3 4 5 6 7 8

WR-I

JWR-I

MFC-I

D=0.4

0

2000

4000

6000

3 4 5 6 7 8

WR-I

JWR-I

MFC-I

D=0.6

0

2000

4000

6000

8000

3 4 5 6 7 8

WR-I

JWR-I

MFC-I

D=0.8

0

2000

4000

6000

8000

3 4 5 6 7 8

WR-I

JWR-I

MFC-I

Figure 4: Performance of the algorithms in terms of CPU seconds (first row) and disk accesses (second row) for various densities of
data sets. The values on the x-axis correspond to the number of relations and the parentheses enclose the number of solutions.

detect early the small fraction of successful tuples. In
most other cases, MFC-I outperforms JWR-I.

• JWR-I is almost always better than MFC-I by means of
I/O page accesses, even for large density files. The
CPU-time overhead makes the overall performance of
JWR-I worse (we typically charge 10ms for each disk
access [10]), but it is interesting to notice that the
window reduction policy saves disk accesses.

• MFC-I presents a similar behaviour under all data
densities; the running cost grows superlinearly to the
number of joined relations, in both CPU-time and I/O
page faults, independently of the problem conditions.
The running time of JWR-I almost stabilises when the
number of solutions shrinks with the number of joined
relations.

Ordering WR-I JWR-I MFC-I

D1, D2, D3, D4 17.24 1808 12.71 1494 4.65 1679

D4, D3, D2, D1 32.62 2065 27.31 1728 5.55 1763

Table 1: Performance of the algorithms (sec/page faults) for
two different orders of the same data sets.

Table 1 shows the performance of the algorithms when
computing the clique intersection join of 4 data sets D1, D2,
D3, D4, with density 0.2, 0.4, 0.6, 0.8, respectively, in two
different orders. Observe that the order of the data sets is
crucial, especially for the window reduction algorithms.
The optimal order for the specific problem is D1, D2, D3,
D4. Clearly, as the data sets consist of the same number of
rectangles, the density is the only remaining factor that
determines the cost of pair-wise joins [16]. The side-effects
of ordering are smaller in MFC-I because false
instantiations of the former variables are detected early at
the high levels of the trees.

9. CONCLUSIONS
A multi-way spatial join can be defined as follows: Given a
set of spatial relations {R1, R2, … ,Rn} and a set of binary
spatial predicates {Cij | i ≠ j, 1 ≤ i,j ≤ n} find all tuples {u1,
… ,un | ui ∈ Ri, 1 ≤ i ≤ n}, such that for each i,j, i ≠ j, 1 ≤
i,j ≤ n, ui Cij uj.

In this paper we dealt with a specific instance of the above
problem where for each i,j the spatial predicate Cij is
overlap. We adapted the three general multi-way spatial
join algorithms proposed in [13] for this problem and tested
their performance with several spatial data sets of various
densities. The results show that if the density (and
consequently the number of expected solution tuples is
large), MFC-I outperforms the other algorithms. Notice that
in the experimental evaluation of [13] with real data sets of
density around 0.2 and various types of spatial constraints,
JWR ouperformed MFC by orders of magnitude, implying
that the properties of the data and the types of constraints
have a serious effect on performance.

In our future work, we are interested in investigating page
fetching policies in order to improve the performance of
MFC-I in terms of I/O page accesses. Especially for large
number of joins, this number grows at prohibitively high
levels. We believe that a good I/O optimization policy will
make this method applicable for real spatial database
systems.

10. REFERENCES
[1] Bacchus, F., van Run, P. "Dynamic Variable Ordering

in CSPs", International Conference on Principles and
Practice of Constraint Programming, 1995.

[2] Beckmann, N., Kriegel, H.P. Schneider, R., Seeger, B.
"The R*-tree: an Efficient and Robust Access Method
for Points and Rectangles". ACM SIGMOD, 1990.

[3] Brinkhoff, T., H.-P. Kriegel, B. Seeger "Efficient
processing of spatial joins using R-trees". ACM
SIGMOD, 1993.

[4] Brinkhoff T., Kriegel H.-P., Seeger B. "Parallel
Processing of Spatial Joins Using R-trees". Proc. of the
12th International Conference on Data Engineering,
1996.

[5] Graefe G., “Query Evaluation Techniques for Large
Databases”. ACM Computing Surveys, vol. 25, no. 2,
pp. 73-170, 1993.

[6] Graefe G., “Volcano, An Extensible and Parallel
Dataflow Query Processing System”. IEEE
Transactions on Knowledge and Data Engineering, vol.
6, no. 1, pp. 120-135, 1994.

[7] Guttman, A. "R-trees: A Dynamic Index Structure for
Spatial Searching". ACM SIGMOD, 1984.

[8] Güting, R-H. "An Intoduction to Spatial Database
Systems". VLDB Journal 3(4), 357-399, 1994.

[9] Haralick R.M., Elliot G.L., “Increasing tree search
efficiency for constraint satisfaction problems”.
Artificial Intelligence, vol 14, pp.263-313, 1980.

[10] Huang, Y-W, Jing, N, Rundensteiner, E. "Spatial Joins
using R-trees: Breadth First Travesral with Global
Optimizations". VLDB, 1997.

[11] Koudas N., Sevcik K., “Size Separation Spatial Join”.
ACM SIGMOD, 1997.

[12] Mackworth A.K. “Constraint Satisfaction”. In S.C.
Shapiro editor, Encyclopedia of Artificial
Intelligence”. John Wiley and Sons, New York, 1987.

[13] Papadias, D., Mamoulis, N., Delis, B. “Algorithms for
Querying by Spatial Structure”. VLDB, 1998.

[14] Rotem, D. "Spatial Join Indices". IEEE International
Conference on Data Engineering, 1991.

[15] Swami A., Gupta A., “Optimization of Large Join
Queries”. ACM SIGMOD, 1988.

[16] Theodoridis Y., Stefanakis E., Sellis T., "Cost Models
for Join Queries in Spatial Databases", Proc. of the 14th

International. Conference on Data Engineering, 1998.

