

Edinburgh Research Explorer

TASSAL

Citation for published version:
Fowkes, J, Chanthirasegaran, P, Ranca, R, Allamanis, M, Lapata, M & Sutton, C 2016, TASSAL:
Autofolding for Source Code Summarization. in ICSE '16 Proceedings of the 38th International Conference
on Software Engineering Companion. ACM, pp. 649-652, 38th International Conference on Software
Engineering Companion, Austin, Texas, United States, 14/05/16. https://doi.org/10.1145/2889160.2889171

Digital Object Identifier (DOI):
10.1145/2889160.2889171

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ICSE '16 Proceedings of the 38th International Conference on Software Engineering Companion

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1145/2889160.2889171
https://doi.org/10.1145/2889160.2889171
https://www.research.ed.ac.uk/en/publications/fbf03012-a35e-4d01-83d9-494b57f3c031

TASSAL: Autofolding for Source Code Summarization

Jaroslav Fowkes* Pankajan
Chanthirasegaran*

Razvan Ranca†

Miltiadis Allamanis* Mirella Lapata* Charles Sutton*

*School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
{jfowkes, pchanthi, m.allamanis, csutton}@ed.ac.uk; mlap@inf.ed.ac.uk

†Tractable, Oval Office, 11-12 The Oval, London, E2 9DT, UK
razvan@tractable.io

ABSTRACT
We present a novel tool, TASSAL, that automatically cre-
ates a summary of each source file in a project by folding
its least salient code regions. The intended use-case for our
tool is the first-look problem: to help developers who are
unfamiliar with a new codebase and are attempting to un-
derstand it. TASSAL is intended to aid developers in this
task by folding away less informative regions of code and
allowing them to focus their efforts on the most informative
ones. While modern code editors do provide code folding
to selectively hide blocks of code, it is impractical to use
as folding decisions must be made manually or based on
simple rules. We find through a case study that TASSAL
is strongly preferred by experienced developers over sim-
ple folding baselines, demonstrating its usefulness. In short,
we strongly believe TASSAL can aid program comprehen-
sion by turning code folding into a usable and valuable tool.
A video highlighting the main features of TASSAL can be
found at https://youtu.be/_yu7JZgiBA4.

1. INTRODUCTION
Developers spend more of their time reading and browsing

source code than actually writing it [11, 13]. Despite much
research [20], there is still a need for better tools that aid
program comprehension and thereby reduce the cost of soft-
ware development. This raises new opportunities for tools
that can summarize source code and aid the developer in
their comprehension task.
Often during development and maintenance, developers

skim the code in order to quickly understand it [19]. A good
summary of the source code aims to support this use case:
by eliding less-important details, a summary can be easier
to read quickly and help the developer to gain a high-level
conceptual understanding of the code. This is particularly
the case for the first-look problem when developers need to
quickly familiarize themselves with the core parts of a large
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889171

code base, for example when joining an existing open source
project.
Many code editors provide a feature called code folding,

which allows developers to selectively display or hide blocks
of source code. This feature is commonly supported and fa-
miliar to developers [8, 12, 17]. However, in current IDEs,
folding quickly becomes cumbersome because folding deci-
sions must be done manually by the programmer, or based
on simple rules, such as folding code blocks based on depth
[2], that some IDEs take automatically. This creates an ob-
vious chicken-and-egg problem, because the developer must
already understand the source file in order to decide what
should be folded.
In this paper, we propose that code folding can be a valu-

able tool for aiding program comprehension, provided that
folding decisions are made automatically based on the code’s
content. We therefore introduce a novel autofolding method
for source code summarization, called TASSAL, that auto-
matically creates a code summary by folding non-essential
code elements that are not useful on first viewing. The main
idea behind TASSAL is to define a textual salience measure
of how representative the code in each block is to the overall
text of the source file. Less representative blocks are the first
to be folded. Our demo of TASSAL can be found at http:
//groups.inf.ed.ac.uk/cup/tassal/demo.html and the source
code for TASSAL itself is available at https://github.com/
mast-group/tassal. A video highlighting the main features of
TASSAL can be found at https://youtu.be/_yu7JZgiBA4.
At present, the demo only supports Java source files, how-
ever the core tool itself is language agnostic and can be easily
extended to any language for which an AST can be defined.
More broadly, we hope that TASSAL will aid program

comprehension by turning code folding, perhaps an over-
looked feature, into a useful, usable and valuable tool.

2. OVERVIEW OF TASSAL
Our tool, TASSAL or Tree-based Autofolding Software

Summarization ALgorithm, is based on optimizing the sim-
ilarity between a summary of a source file and the source
file itself. This is, to our knowledge, the first content-based
autofolding method for code summarization.
The outline of TASSAL is as follows: TASSAL takes as

input a set of source files along with a desired compression
ratio and outputs a summary of each file where uninforma-
tive regions of code have been folded. In order to achieve
this TASSAL first parses the code’s AST to obtain suitable

1

https://youtu.be/_yu7JZgiBA4
http://dx.doi.org/10.1145/2889160.2889171
http://groups.inf.ed.ac.uk/cup/tassal/demo.html
http://groups.inf.ed.ac.uk/cup/tassal/demo.html
https://github.com/mast-group/tassal
https://github.com/mast-group/tassal
https://youtu.be/_yu7JZgiBA4

regions to fold. It then applies a source code language model
to each foldable region. The aim of this model is to identify,
for every source file, which tokens specifically characterize
the file, as opposed to project-specific or Java-generic tokens
that are not as informative for understanding the file. Using
this ranking TASSAL then leverages an optimization algo-
rithm to determine the most uninformative regions to fold
while achieving the desired level of compression. This is a
novel optimization procedure that takes the structure of the
code into account.
When we say that TASSAL folds a source code region we

mean that the region is replaced by a symbol indicating that
the region was folded. To encourage intuitive summaries, we
let TASSAL perform folding only on code blocks, comment
blocks, import statements and fields. Our reasoning for this is
that such code regions are natural units for summarization
since they take advantage of the code structure specified by
the programmer. However, since our approach works within
the code’s AST, it can be trivially extended to fold any
contiguous region of interest, e.g. statements (or a carefully
designed subset thereof).
To determine which non-essential regions should be folded,

TASSAL has a choice of using two source code language
models: the first, which enables us to summarize source files
in real-time, is based on a vector space model (VSM) [14] for
source code tokens. In the VSM, we choose to unfold (i.e.,
include in the summary) those source code regions that are
closest in the vector space to the full unfolded file. The sec-
ond, which gives better summaries but requires pre-training
on the source files, makes use of a novel topic model [1]
for code, which separates tokens according whether they
best characterize their file, their project, or the corpus as
a whole. Then, we choose to unfold (i.e., include in the
summary) those code regions for which the largest number
of tokens come from the file-specific topic rather than the
project-specific or general-Java topics. For technical details
of TASSAL and the above models, as well as more extensive
evaluation, we refer the interested reader to our preprint [5].

3. TASSAL IN ACTION
We created a demo of TASSAL using the Play Framework

(https://www.playframework.com) to showcase how it can
be used to summarize open-source Java projects on GitHub
(however note that TASSAL can summarize the source code
of any Java project). A screenshot of the demo is shown
in Figure 1 and as one can see from the figure, the basic
layout of the demo is very simple. On the left hand side
is a tree view showing all the Java source files for a user-
selected project on GitHub. Upon clicking on a source file,
the remainder of the screen uses the Javascript-based ACE
code editor (https://ace.c9.io) to show a summary of the file
where less informative code regions have been folded. The
user can adjust the conciseness of the summary using the
compression ratio slider at top-left, ranging from viewing the
complete file (0%) to folding all the foldable regions (100%).
As a sanity check, the fold icons () to the left of the line
numbers denote the code regions that were marked as folded
by TASSAL. Note that while TASSAL is able to fold fields,
we did not find a satisfactory way to implement this in ACE
and therefore omitted it from the demo (however the fold
icons for fields are still displayed).
If the user wishes to unfold a folded region, they can do

so by clicking on the symbol denoting the fold () and

conversely, they can fold any foldable region by clicking on
the down arrow (H) to the right of the line numbers as
is standard in modern editors. One can see from the ex-
ample (StatusLine.java from the bigbluebutton project
displayed at 50% compression) that the header has been
folded, as have the toString, getCode, getReason, clone
and equals methods, i.e., Java boilerplate code — precisely
the less salient code regions. Note also, how by folding the
less informative regions the code remains readable and nav-
igable and no information is lost. This is not true of other
summarization approaches to source code [4, 6, 7, 9, 15, 16,
18].
As for the choice of language model, using TASSAL with

the topic model will in general produce better summaries,
however training a topic model is too expensive for an in-
teractive system. Therefore, we train the topic model in ad-
vance on a small set of projects and cache the topic assign-
ments. If the user requests summaries of GitHub projects
for which we have not run the topic model, we fall back to
the the VSM model. When both language models are avail-
able, the user can toggle between them by means of a radio
button in the top-left corner.

4. EVALUATION
We evaluated TASSAL against simple heuristic folding

baselines and found that it was strongly preferred by ex-
perienced developers. The baselines we used were chosen
to represent more naïve approaches for autofolding source
code. All the baselines start from a fully folded source file
and gradually unfold foldable regions until they reach the
required compression ratio. For consistency, if a foldable re-
gion is to be unfolded, all of its parent regions in the AST
are unfolded as well. The baselines are:

Shallowest unfold the shallowest available foldable re-
gion in the AST first, choosing randomly if there is more
than one.
Largest unfold the largest available foldable region first,
as measured by the number of tokens, breaking ties ran-
domly.
Javadoc first unfold all Javadoc comments (in random
order) and then fallback at random to an available fold-
able region, unfolding method blocks last.

Each of the baselines represents a possible assumption that
we can make about summarizing source code. The Largest
baseline assumes that the largest nodes are more valuable in
a summary, the Shallowest baseline is representative of the
folding approach used in the Code Bubbles IDE [2] and the
Javadoc baseline is representative of the current rule-based
defaults in IDEs such as Eclipse.
We asked developers to rate the summaries produced by

our best content-based method, TASSAL using the topic
model, and the three non-content-based baselines at a com-

Conciseness Usefulness
Summary Mean St. dev. Mean St. dev.
TASSAL 3.27 1.01 3.18 0.97
Javadocs* 3.07 1.03 2.69 1.09
Shallowest* 2.97 1.05 2.50 1.15
Largest* 3.08 1.07 2.67 1.06

Table 1: Mean and standard deviation averaged across devel-
oper ratings for summaries produced by the four autofolding
systems at a compression ratio of 50%. *significantly differ-
ent from TASSAL.

2

https://www.playframework.com
https://ace.c9.io

Figure 1: A screenshot of our source code autofolding tool being used to summarize StatusLine.java from bigbluebutton.
pression ratio of 50% (as can be seen in Figure 1, 50% is often
a substantial compression ratio, because the uncompressed
lines include blank lines, method headers, etc.). All four sys-
tems were allowed to fold code blocks, comment blocks and
import statements. We recruited six experienced developers
for our study. All were computer science masters students
with an average 5.3 years Java programming experience and
4 years industry programming experience.
We randomly selected four projects from the top six high-

quality popular projects on GitHub (storm, elasticsearch,
spring-framework, libgdx, bigbluebutton, netty) and five
files from each project for the study, resulting in 20 files in
total. For every file, developers were presented with each of
the possible summaries in random order and asked to rate
the conciseness and usefulness of each summary on a five-
point Likert scale (higher is better). Developers were allowed
to browse the full source code of each project during the
study.
We show the average ratings across all six developers in

Table 1 along with the average standard deviations. One can
see that summaries produced by TASSAL score around 0.2
points higher on conciseness and 0.5 points higher on useful-
ness than the three baselines. We performed ANOVA on the
developer conciseness and usefulness ratings for the differ-
ent summaries and found that the difference between TAS-
SAL and the baselines was significant (p < 0.05) as denoted
in Table 1. This lends support to our belief that TASSAL
can improve upon existing rule-based autofolding systems
present in modern IDEs and aid program comprehension.

5. RELATED WORK
There is some existing work on the use of code folding

(also known as code elision) to aid comprehension. In par-
ticular, Cockburn et al. [3] find that illegible elision of all
method bodies in a class improves programmer efficiency in
editing and browsing tasks. Rugaber et al. [17] consider a
conceptual model for manual folding, extending it to non-

contiguous regions of code. Kullbach et al. [12] develop the
GUPRO IDE to aid in the comprehension of C preprocessor
code via rule-based folding of macro expansions and file in-
cludes. Also, Hendrix et al. develop the GRASP program com-
prehension tool, combining control structure diagramming
with manual folding [8]. Bragdon et al. [2] perform code
autofolding of long methods based on code block depth in
their proposed Code Bubbles IDE. Additionally, most mod-
ern IDEs and code editors already have extensive support
for folding specific code regions as well as the ability to fold
regions based on user-specified rules. However, to the best
of our knowledge the problem of automatically determining
which regions to fold based on their content is novel.
We are aware of only a few previous methods that con-

sider the problem of code summarization. One of the first
approaches is program slicing [18, 9] which hides irrelevant
LOC for a chosen program path – essentially a very spe-
cific form of query-based summarization. Most similar to
our work are Haiduc et al. [6, 7] and the follow up work
by Eddy et al. [4] and Rodeghero et al. [16], who also con-
sider the problem of summarizing source code, particularly
methods and classes, but in their work code fragments are
summarized by a short list of keywords. For example, the
StatusLine constructor in Figure 1 might be summarized
by the list of terms (status, line, code, reason). McBurney
et al. [15] take this idea further and present the keywords
in a navigable tree structure, with more general topics near
the top of the tree. In our work, we summarize code with
code, which we would argue has the potential to provide a
much richer and more informative summary.
Also, Ying et al. [21] consider the problem of summarizing

a list of code fragments, such as those returned by a code
search engine. They use a supervised learning approach at
the level of lines of code. Because they consider the results
of code search, their classifier uses query-level features, e.g.,
whether a line of code uses any identifiers that were present
in the query. This is a source of information that is not avail-

3

able in our problem setting. In contrast, we target use cases
in which the developer is skimming the source code to get
an overview of its operation, rather than performing a di-
rected keyword search. Kim et al. [10] develop a system that
augments API documentation with code example summaries
but these are mined from the web and are therefore limited
to APIs which have examples already written for them —
our approach is applicable to any source file.
On a more technical level, our folding-based summaries

are distinguished from this previous work in that our sum-
maries are coherent with respect to the programming lan-
guage’s syntax. Indeed, Eddy et al. [4] observe that devel-
opers prefer summaries with a natural structure. Folding on
code blocks also enables us to retain method headers in the
summary — identified by Haiduc et al. [7] as highly relevant
to developers and accounting for the high scores of their best
performing method.

6. CONCLUSIONS
We presented a novel tool that summarizes source code

files by automatically folding their least informative code re-
gions. Unlike existing work on code summarization, our tool
demonstrates that the folding procedure common to IDEs
can serve as the basis of an automatic summary. Indeed, our
proposed method builds on this previous work using disjoint
line- and term-level code summaries and introduces a new
contiguous parse subtree as its summary. Our evaluation
demonstrates that our summarizer is favoured by experi-
enced developers over methods currently used as standard
in modern IDEs. In future we would like to extend our tool
to generate targeted summaries for specific software engi-
neering tasks such as bug localization or code review.

Acknowledgments
This work was supported by the Engineering and Physical
Sciences Research Council (grant number EP/K024043/1)
and by Microsoft Research through its PhD Scholarship Pro-
gramme. We are also grateful to Rebecca Mason for letting
us adapt her topic model implementation to source code and
would like to thank Brian Doll for useful discussions.

References
[1] D. Blei. Probabilistic topic models. Communications

of the ACM, 55(4):77–84, 2012.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri,
W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. LaViola Jr. Code bubbles: rethinking the user
interface paradigm of integrated development environ-
ments. In ICSE, pages 455–464, 2010.

[3] A. Cockburn and M. Smith. Hidden messages: evaluat-
ing the efficiency of code elision in program navigation.
Interacting with Computers, 15(3):387–407, 2003.

[4] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C.
Carver. Evaluating source code summarization tech-
niques: Replication and expansion. In ICPC, pages 13–
22, 2013.

[5] J. Fowkes, R. Ranca, M. Allamanis, M. Lapata, and
C. Sutton. Autofolding for source code summarization.
arXiv preprint arXiv:1403.4503, 2014.

[6] S. Haiduc, J. Aponte, and A. Marcus. Supporting pro-
gram comprehension with source code summarization.
In ICSE, pages 223–226, 2010.

[7] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques
for summarizing source code. In WCRE, pages 35–44,
2010.

[8] T. D. Hendrix, J. H. Cross II, L. A. Barowski, and K. S.
Mathias. Visual support for incremental abstraction
and refinement in Ada 95. In ACM SIGAda Ada Letters,
volume 18, pages 142–147, 1998.

[9] Y. P. Khoo, J. S. Foster, M. Hicks, and V. Sazawal.
Path projection for user-centered static analysis tools.
In PASTE, pages 57–63, 2008.

[10] J. Kim, S. Lee, S.-W. Hwang, and S. Kim. Enriching
documents with examples: A corpus mining approach.
Transactions on Information Systems, 31(1):1, 2013.

[11] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung.
An exploratory study of how developers seek, relate,
and collect relevant information during software main-
tenance tasks. Transactions on Software Engineering,
32(12):971–987, 2006.

[12] B. Kullbach and V. Riediger. Folding: An approach
to enable program understanding of preprocessed lan-
guages. In WCRE, pages 3–12, 2001.

[13] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
ICSE, pages 492–501, 2006.

[14] C. D. Manning, P. Raghavan, and H. Schütze. Introduc-
tion to Information Retrieval. Cambridge University
Press, 2008.

[15] P. W. McBurney, C. Liu, C. McMillan, and
T. Weninger. Improving topic model source code sum-
marization. In ICPC, pages 291–294, 2014.

[16] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch,
and S. D’Mello. Improving automated source code sum-
marization via an eye-tracking study of programmers.
In ICSE, pages 390–401, 2014.

[17] S. Rugaber, N. Chainani, O. Nnadi, and K. Stirewalt.
A conceptual model for folding. Technical Report GT-
CS-08-09, Georgia Institute of Technology, 2008.

[18] J. Silva. A vocabulary of program slicing-based tech-
niques. ACM Computing Surveys, 44(3):12, 2012.

[19] J. Starke, C. Luce, and J. Sillito. Searching and skim-
ming: An exploratory study. In ICSM, pages 157–166,
2009.

[20] M.-A. Storey. Theories, methods and tools in program
comprehension: Past, present and future. In IWPC,
pages 181–191, 2005.

[21] A. T. T. Ying and M. P. Robillard. Code fragment
summarization. In FSE, pages 655–658, 2013.

4

