
Extending partial deduction to tabled execution: some results and open issues

Konstantinos Sagonas and Michael Leuschel

ACM Computing Surveys, Vol. 30, No. 3es, September 1998

Article 16

Permission to make digital/hard copy of part or all of this work for
personal or classroom use is granted without fee provided that the
copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its
date appear, and notice is given that copying is by permission of
the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a
fee.

Copyright 1998 ACM 0360-0300/98/03es- . . . $5.00

Extending Partial Deduction to Tabled Execution:

Some Results and Open Issues

KONSTANTINOS SAGONAS and MICHAEL LEUSCHEL

Katholieke Universiteit Leuven

1. TABLED-BASED EXECUTION OF LOGIC PROGRAMS

Resolution methods based on tabling [Tamaki and Sato 1986; Warren 1992; Chen
and Warren 1996] evaluate programs by recording subgoals (referred to as calls)
and their provable instances (referred to as answers) in a global store called a table.
Predicates are designated a priori as either tabled or nontabled, and execution
proceeds as follows. For nontabled predicates the call is resolved against program
clauses. For tabled predicates, if the call is new to the evaluation, it is entered
in the table and Prolog-style program clause resolution is used to compute its set

of answers which are also recorded in the table. If, on the other hand, the call is
already present in the table, then it is resolved against its recorded answers. By
using answer tables for resolving subsequent invocations of the same call, tabled
execution prevents many cases of in�nite looping which normally occur in Prolog-
style SLD evaluation and avoids performing redundant subcomputations. As a
result, tabling signi�cantly extends the range of applications of logic programming
(LP). Moreover, because of the better termination and complexity properties of
tabled execution, tabled-based systems such as XSB [Sagonas et al. 1994] make a
good �rst step in ful�lling the promise of declarativeness: allow a programmer to
write problem speci�cations, and then use meaning-preserving transformations or
use tabled execution selectively to turn these speci�cations into e�ective programs.

2. PARTIAL DEDUCTION AND TABLING

So, tabling makes more speci�cations executable. Obviously, it is of great interest,
that these speci�cations are executed eÆciently. Partial evaluation [Jones et al.
1993; Jones 1996; Danvy et al. 1996] aims at exactly this: improve the performance
by carrying out part of the program's execution (for input of a particular form) at

Authors' address: Departement Computerwetenschappen, K.U.Leuven, Celestijnenlaan 200A, B-
3001 Heverlee, Belgium. E-mail : fkostis,michaelg@cs.kuleuven.ac.be
Authors are Post-doctoral Fellows of the K.U. Leuven ResearchCouncil and the Fund for Scienti�c
Research | Flanders Belgium, respectively.
Permission to make digital or hard copies of part or all of this work for personal or classroomuse is
grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � Konstantinos Sagonas and Michael Leuschel

compile-time, thus specialise the program for this input and leave less computation
for run-time. In the LP context, where computation is logical deduction, partial
evaluation is logically called partial deduction (PD) [Lloyd and Shepherdson 1991;
Komorowski 1992]. It is natural then, to try to extend PD to tabling, i.e., to improve
eÆciency of tabled execution through (fully) automatic program transformation
[Pettorossi and Proietti 1994] or specialisation [Gallagher 1993].

2.1 Partial Deduction of Tabled Execution: Some Results

Unfortunately, no methodology for the partial deduction of tabled logic programs
currently exists. All techniques stay within the context of Prolog-style untabled
execution. Although one may expect that results established in the \classic" LP
setting more or less carry over, this turned out to be far from obviously true as the
di�erences between the execution models are signi�cant. Therefore, providing such
a methodology is still a challenging research problem.
In [Leuschel et al. 1997], we provided a �rst investigation of the specialisation

and transformation of tabled logic programs through unfolding. We mainly con-
centrated on issues related to the safety of the unfolding rule since it the major
transformation rule applied by PD. We showed that | surprisingly | unfolding,
even determinate, can worsen the termination behaviour in the context of tabling.
To reason about the safety of unfolding, we also developed in [Decorte et al. 1997]
a framework that captures their (quasi-) termination (under the left-to-right se-
lection rule) and showed that termination of tabled execution is not closed under
substitution. Using this framework, we de�ned applicability conditions that ensure
the intended equivalence property between the original and the transformed pro-
gram. In summary, results regarding unfolding in the context of tabled execution
are:

|As in SLD, unfolding preserves the set of computed answer substitutions (c.a.s.).
|Left-most unfolding or unfolding without any left-propagation of bindings pre-
serves termination of tabled logic programs.

|Even though left-propagation of bindings through unfolding can worsen the ter-
mination characteristics of tabled programs, left-propagation of grounding sub-
stitutions is safe w.r.t. termination.

Regarding folding, we conjecture that contrary to Prolog-style evaluation, in tabled
execution folding is always safe w.r.t. termination (but may change the set of c.a.s.).

2.2 Tabled Execution for Partial Deduction

Note that tabled execution has a lot to o�er to partial deduction. Firstly, it can
provide (part of) the control necessary to ensure termination. In an o�-line set-
ting tabling can even be used to obtain a binding time analysis by executing an
abstract version of the program to be specialised as shown recently in [Bruynooghe
et al. 1998]. Secondly, by creating a partial deduction methodology based upon
tabled resolution, one can achieve an elegant integration of partial deduction and

abstract interpretation: program clause resolution performs top-down unfolding
steps while answer clause resolution performs bottom-up abstract interpretation
steps. Prospects of such an integration are discussed in e.g. [Leuschel and De Schr-
eye 1996; Jones 1997; Puebla et al. 1997]. A technique to use tabling for controlling

Extending Partial Deduction to Tabled Execution � 3

program transformation can be found in [Boulanger and Bruynooghe 1993].
Moreover, a particular instance of tabled resolution, SLG resolution [Chen and

Warren 1996], can be viewed as a partial deduction procedure where given a pro-
gram P , a query Q is transformed step by step into a residual program P 0 consisting
of all (conditional) answers of Q plus all answer clauses upon which these answers
(conditionally) depend upon. P 0 is such that all dependencies between atoms in
its clauses have been simpli�ed w.r.t. the well-founded partial model of P . Thus,
a direct way of performing partial deduction of LPs is to enforce the truth value
unde�ned to atoms that cannot be partially evaluated and evaluate the rest of the
atoms under the well-founded semantics.

3. SKETCH OF SOME OPEN ISSUES

Several open issues in the PD of tabled LPs exist and most of them have to do with
guaranteeing that PD will result in no performance loss. An extended discussion
can be found in [Leuschel et al. 1997], but we identify some of them here. To ensure
the independence condition of [Lloyd and Shepherdson 1991] and allow unlimited
polyvariance without the use of abstraction, most specialisers use a technique called
renaming. In SLD execution, renaming might increase the code size, but it is always
bene�cial in terms of the number of primitive operations executed. As tabling rec-
ognizes and avoids redundant subcomputations based on mainly syntactic identity
of atoms, through renaming this possibility can be lost and the specialised program
might thus be less eÆcient than the original one. Similar diÆculties can arise when
performing conjunctive partial deduction [De Schreye et al. 1997] (as well as tupling
or deforestation). Ensuring that PD will cause no loss in performance is a general
issue, but because tabled execution adds a global store where results are materi-
alised and can then be eÆciently retrieved without recomputation, the problem
appears particularly severe in this context.
Finally, an independent but perhaps more promising and challenging problem is

to obtain automatic partial deducers that understand and fully exploit the prop-
erties of tabled execution. Tabled execution transforms a set of program clauses
into a set of answers; clauses or derivation paths that produce answers identical

to those obtained through other clauses are obviously redundant, and the corre-
sponding derivation paths are e�ectively treated as fail branches. So can be some
branches of the trees constructed by the PD of tabled programs. In order to obtain
an \optimal" residual program, a partial deducer (for tabling) needs to be able to
recognize this dead-wood and remove it from (the forest and) the residual program.
For this it has to understand termination of tabled resolution and detect completion

of tabled goals (i.e., when all answers to the goals have been produced) to know
that it can already completely evaluate parts of the computation at compile-time
and transform these computations to just (answer) table lookups. Tabling might
thus also provide a general mechanism to perform powerful optimisations| outside
the reach of current partial deduction techniques | which view the c.a.s. of logic
programs as a set rather than as a sequence.

ACKNOWLEDGMENTS

We thank Bern Martens and David S. Warren for interesting ideas and discussions.

4 � Konstantinos Sagonas and Michael Leuschel

REFERENCES

Boulanger, D. and Bruynooghe, M. 1993. Deriving Fold/Unfold Transformations of
Logic ProgramsUsing ExtendedOLDT-Based Abstract Interpretation. Journal of Symbolic
Computation 15, 5 & 6, 495{521.

Bruynooghe, M., Leuschel, M., and Sagonas, K. 1998. A Polyvariant Binding Time
Analysis for O�-line Partial Deduction. In C. Hankin Ed., Proceedings of the European
Symposium on Programming, LNCS (Lisbon, Portugal, April 1998). Springer-Verlag.

Chen, W. and Warren, D. S. 1996. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM 43, 1 (January), 20{74.

Danvy, O., Gl�uck, R., and Thiemann, P. Eds. 1996. Proceedings of the 1996 Dagstuhl
Seminar on Partial Evaluation, Number 1110 in LNCS (Schlo� Dagstuhl, February 1996).
Springer-Verlag.

De Schreye, D., Gl�uck, R., J�rgensen, J., Leuschel, M., Martens, B., and S�rensen,

M. H. 1997. Conjunctive Partial Deduction: Foundations, Control, Algorithms and
Experiments. Submitted for Publication.

Decorte, S., De Schreye, D., Leuschel, M., Martens, B., and Sagonas, K. 1997. Ter-
mination Analysis for Tabled Logic Programming. In N. Fuchs Ed., Proceedings of LOP-
STR'97: Logic Program Synthesis and Transformation, LNCS (Leuven, Belgium, July
1997). Springer-Verlag.

Gallagher, J. 1993. Tutorial on Specialisation of Logic Programs. In ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation (Copen-
hagen, Denmark, June 1993), pp. 88{98. ACM Press.

Jones, N. D. 1996. An Introduction to Partial Evaluation.ACM Computing Surveys 28, 3
(September), 480{503.

Jones, N. D. 1997. Combining Abstract Interpretation and Partial Evaluation (brief
overview). In P. Van Henteryck Ed., Proceedings of the Fourth International Symposium
on Static Analysis, Number 1302 in LNCS (Paris, France, September 1997), pp. 396{405.

Jones, N. D., Gomard, C. K., and Sestoft, P. 1993. Partial Evaluation and Automatic
Program Generation. Prentice Hall International Series in Computer Science.

Komorowski, J. 1992. An Introduction to Partial Deduction. In A. Pettorossi Ed., Pro-
ceedings of META-92: Meta-Programming in Logic, Number 649 in LNCS (Uppsala, Swe-
den, June 1992), pp. 49{69. Springer-Verlag.

Leuschel, M. and De Schreye, D. 1996. Logic Program Specialisation: How To Be More
Speci�c. In H. Kuchen and S. D. Swierstra Eds., Proceedings of the International Sym-
posium on Programming Languages, Implementations, Logics and Programs (PLILP'96),
Number 1140 in LNCS (Aachen, Germany, September 1996), pp. 137{151. Springer-Verlag.

Leuschel, M., Martens, B., and Sagonas, K. 1997. Preserving Termination of Tabled
Logic Programs While Unfolding. In N. Fuchs Ed., Proceedings of LOPSTR'97: Logic
Program Synthesis and Transformation, LNCS (Leuven, Belgium, July 1997). Springer.

Lloyd, J. W. and Shepherdson, J. C. 1991. Partial Evaluation in Logic Programming.
Journal of Logic Programming 11, 3 & 4 (October/November), 217{242.

Pettorossi, A. and Proietti, M. 1994. Transformation of Logic Programs: Foundations
and Techniques. Journal of Logic Programming 19 & 20, 261{320.

Puebla, G., Gallagher, J., and Hermenegildo, M. 1997. Towards Integrating Partial
Evaluation in a Specialisation Framework based on Generic Abstract Interpretation. In
M. Leuschel Ed., Proceedings of the International Workshop on Specialisation of Declar-
ative Languages and its Applications (Port Je�erson, N.Y., October 1997), pp. 29{38.

Sagonas, K., Swift, T., and Warren, D. S. 1994. XSB as an EÆcient DeductiveDatabase
Engine. InProceedings of the ACM SIGMOD International Conference on the Management
of Data (Minneapolis, Minnesota, May 1994), pp. 442{453. ACM Press.

Tamaki, H. and Sato, T. 1986. OLD Resolution with Tabulation. In E. Shapiro Ed.,
Proceedings of the Third International Conference on Logic Programming , Number 225 in
LNCS (London, July 1986), pp. 84{98. Springer-Verlag.

Warren, D. S. 1992. Memoing for Logic Programs.Commun. ACM 35, 3 (March), 93{111.

