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1. TABLED-BASED EXECUTION OF LOGIC PROGRAMS

Resolution methods based on tabling [Tamaki and Sato 1986; Warren 1992; Chen
and Warren 1996] evaluate programs by recording subgoals (referred to as calls)
and their provable instances (referred to as answers) in a global store called a table.
Predicates are designated a priori as either tabled or nontabled, and execution
proceeds as follows. For nontabled predicates the call is resolved against program
clauses. For tabled predicates, if the call is new to the evaluation, it is entered
in the table and Prolog-style program clause resolution is used to compute its set

of answers which are also recorded in the table. If, on the other hand, the call is
already present in the table, then it is resolved against its recorded answers. By
using answer tables for resolving subsequent invocations of the same call, tabled
execution prevents many cases of in�nite looping which normally occur in Prolog-
style SLD evaluation and avoids performing redundant subcomputations. As a
result, tabling signi�cantly extends the range of applications of logic programming
(LP). Moreover, because of the better termination and complexity properties of
tabled execution, tabled-based systems such as XSB [Sagonas et al. 1994] make a
good �rst step in ful�lling the promise of declarativeness: allow a programmer to
write problem speci�cations, and then use meaning-preserving transformations or
use tabled execution selectively to turn these speci�cations into e�ective programs.

2. PARTIAL DEDUCTION AND TABLING

So, tabling makes more speci�cations executable. Obviously, it is of great interest,
that these speci�cations are executed eÆciently. Partial evaluation [Jones et al.
1993; Jones 1996; Danvy et al. 1996] aims at exactly this: improve the performance
by carrying out part of the program's execution (for input of a particular form) at
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compile-time, thus specialise the program for this input and leave less computation
for run-time. In the LP context, where computation is logical deduction, partial
evaluation is logically called partial deduction (PD) [Lloyd and Shepherdson 1991;
Komorowski 1992]. It is natural then, to try to extend PD to tabling, i.e., to improve
eÆciency of tabled execution through (fully) automatic program transformation
[Pettorossi and Proietti 1994] or specialisation [Gallagher 1993].

2.1 Partial Deduction of Tabled Execution: Some Results

Unfortunately, no methodology for the partial deduction of tabled logic programs
currently exists. All techniques stay within the context of Prolog-style untabled
execution. Although one may expect that results established in the \classic" LP
setting more or less carry over, this turned out to be far from obviously true as the
di�erences between the execution models are signi�cant. Therefore, providing such
a methodology is still a challenging research problem.
In [Leuschel et al. 1997], we provided a �rst investigation of the specialisation

and transformation of tabled logic programs through unfolding. We mainly con-
centrated on issues related to the safety of the unfolding rule since it the major
transformation rule applied by PD. We showed that | surprisingly | unfolding,
even determinate, can worsen the termination behaviour in the context of tabling.
To reason about the safety of unfolding, we also developed in [Decorte et al. 1997]
a framework that captures their (quasi-) termination (under the left-to-right se-
lection rule) and showed that termination of tabled execution is not closed under
substitution. Using this framework, we de�ned applicability conditions that ensure
the intended equivalence property between the original and the transformed pro-
gram. In summary, results regarding unfolding in the context of tabled execution
are:

|As in SLD, unfolding preserves the set of computed answer substitutions (c.a.s.).
|Left-most unfolding or unfolding without any left-propagation of bindings pre-
serves termination of tabled logic programs.

|Even though left-propagation of bindings through unfolding can worsen the ter-
mination characteristics of tabled programs, left-propagation of grounding sub-
stitutions is safe w.r.t. termination.

Regarding folding, we conjecture that contrary to Prolog-style evaluation, in tabled
execution folding is always safe w.r.t. termination (but may change the set of c.a.s.).

2.2 Tabled Execution for Partial Deduction

Note that tabled execution has a lot to o�er to partial deduction. Firstly, it can
provide (part of) the control necessary to ensure termination. In an o�-line set-
ting tabling can even be used to obtain a binding time analysis by executing an
abstract version of the program to be specialised as shown recently in [Bruynooghe
et al. 1998]. Secondly, by creating a partial deduction methodology based upon
tabled resolution, one can achieve an elegant integration of partial deduction and

abstract interpretation: program clause resolution performs top-down unfolding
steps while answer clause resolution performs bottom-up abstract interpretation
steps. Prospects of such an integration are discussed in e.g. [Leuschel and De Schr-
eye 1996; Jones 1997; Puebla et al. 1997]. A technique to use tabling for controlling
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program transformation can be found in [Boulanger and Bruynooghe 1993].
Moreover, a particular instance of tabled resolution, SLG resolution [Chen and

Warren 1996], can be viewed as a partial deduction procedure where given a pro-
gram P , a query Q is transformed step by step into a residual program P 0 consisting
of all (conditional) answers of Q plus all answer clauses upon which these answers
(conditionally) depend upon. P 0 is such that all dependencies between atoms in
its clauses have been simpli�ed w.r.t. the well-founded partial model of P . Thus,
a direct way of performing partial deduction of LPs is to enforce the truth value
unde�ned to atoms that cannot be partially evaluated and evaluate the rest of the
atoms under the well-founded semantics.

3. SKETCH OF SOME OPEN ISSUES

Several open issues in the PD of tabled LPs exist and most of them have to do with
guaranteeing that PD will result in no performance loss. An extended discussion
can be found in [Leuschel et al. 1997], but we identify some of them here. To ensure
the independence condition of [Lloyd and Shepherdson 1991] and allow unlimited
polyvariance without the use of abstraction, most specialisers use a technique called
renaming. In SLD execution, renaming might increase the code size, but it is always
bene�cial in terms of the number of primitive operations executed. As tabling rec-
ognizes and avoids redundant subcomputations based on mainly syntactic identity
of atoms, through renaming this possibility can be lost and the specialised program
might thus be less eÆcient than the original one. Similar diÆculties can arise when
performing conjunctive partial deduction [De Schreye et al. 1997] (as well as tupling
or deforestation). Ensuring that PD will cause no loss in performance is a general
issue, but because tabled execution adds a global store where results are materi-
alised and can then be eÆciently retrieved without recomputation, the problem
appears particularly severe in this context.
Finally, an independent but perhaps more promising and challenging problem is

to obtain automatic partial deducers that understand and fully exploit the prop-
erties of tabled execution. Tabled execution transforms a set of program clauses
into a set of answers; clauses or derivation paths that produce answers identical

to those obtained through other clauses are obviously redundant, and the corre-
sponding derivation paths are e�ectively treated as fail branches. So can be some
branches of the trees constructed by the PD of tabled programs. In order to obtain
an \optimal" residual program, a partial deducer (for tabling) needs to be able to
recognize this dead-wood and remove it from (the forest and) the residual program.
For this it has to understand termination of tabled resolution and detect completion

of tabled goals (i.e., when all answers to the goals have been produced) to know
that it can already completely evaluate parts of the computation at compile-time
and transform these computations to just (answer) table lookups. Tabling might
thus also provide a general mechanism to perform powerful optimisations| outside
the reach of current partial deduction techniques | which view the c.a.s. of logic
programs as a set rather than as a sequence.
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