

Edinburgh Research Explorer

A Bayesian Approach to Parameter Inference in Queueing
Networks

Citation for published version:
Wang, W, Casale, G & Sutton, C 2016, 'A Bayesian Approach to Parameter Inference in Queueing
Networks', ACM Transactions on Modeling and Computer Simulation, vol. 27, no. 1, 2.
https://doi.org/10.1145/2893480

Digital Object Identifier (DOI):
10.1145/2893480

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Modeling and Computer Simulation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1145/2893480
https://doi.org/10.1145/2893480
https://www.research.ed.ac.uk/en/publications/ea978ece-8cfa-4ee5-8b06-86b1d8c416dc

00

A Bayesian Approach to Parameter Inference in Queueing Networks

Weikun Wang, Imperial College London, UK, weikun.wang11@imperial.ac.uk
Giuliano Casale, Imperial College London, UK, g.casale@imperial.ac.uk
Charles Sutton, University of Edinburgh, UK, csutton@inf.ed.ac.uk

The application of queueing network models to real-world applications often involves the task of estimating

the service demand placed by requests at queueing nodes. In this paper, we propose a methodology to esti-

mate service demands in closed multi-class queueing networks based on Gibbs sampling. Our methodology
requires measurements of the number of jobs at resources and can accept prior probabilities on the demands.

Gibbs sampling is challenging to apply to estimation problems for queueing networks since it requires
to efficiently evaluate a likelihood function on the measured data. This likelihood function depends on the

equilibrium solution of the network, which is difficult to compute in closed models due to the presence of the

normalizing constant of the equilibrium state probabilities. To tackle this obstacle, we define a novel iterative
approximation of the normalizing constant and show the improved accuracy of this approach, compared

to existing methods, for use in conjunction with Gibbs sampling. We also demonstrate that, as a demand

estimation tool, Gibbs sampling outperforms other popular Markov Chain Monte Carlo approximations.
Experimental validation based on traces from a cloud application demonstrates the effectiveness of Gibbs

sampling for service demand estimation in real-world studies.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Modeling Techniques

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Queueing, demand estimation, Gibbs sampling, normalizing constant
approximation

1. INTRODUCTION
Queueing networks are popular models for the description of complex stochastic sys-
tems, including for example call centers [Koole et al. 2002] and web applications [Ur-
gaonkar et al. 2005]. In real-world studies, the analyst is often left with the problem of
assigning realistic values for the parameters of the model, in particular for the service
demand placed by requests at queueing nodes. The service demand is the cumulative
execution time a request seizes from a server, excluding contention overheads due to
other concurrently executing requests. Unfortunately, real-world measurements often
include these overheads, therefore requiring inference to determine the true demand
value. In this work, we propose a new methodology to support the inference of ser-
vice demands. This is a challenging task because it is difficult to filter out contention
overheads from measurements, particularly in those cases where monitoring data is
aggregated or incomplete.

We here focus on closed queueing network models, which are a popular class of
stochastic networks. They are popular for example in software system modelling since
complex applications are layered and the interactions between layers typically hap-
pen under admission control or finite threading limits [Rolia and Sevcik 1995]. For
these models, the service demand at each physical resource needs to be determined
from empirical data. Existing approaches perform demand inference in different ways:
regression-based estimation procedures [Rolia and Vetland 1995], nonlinear numerical
optimization based on queueing formulas [Liu et al. 2005], and maximum likelihood
methods [Kraft et al. 2009]. Recent comparative studies indicate that existing meth-
ods work in a number of cases, but they are not always accurate and there is no clear
winner [Kraft et al. 2009; Spinner et al. 2015]. In this paper, we push the bound-
ary of demand estimation methods by presenting a new inference procedure based on
Gibbs sampling that applies to multi-class networks. Compared to previous work, our
Bayesian methodology requires independent samples of the number and class of jobs

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:2

at the resources observed at random times. Compared to utilization data, such queue-
length samples can also be obtained when the monitoring cannot fully access physical
resources, since they only require to count the number of queued requests in a system
or software component. This quantity is also simpler to obtain than response times,
which require tracking of individual requests. Unfortunately, there is a shortage of es-
timation methods that rely only on queue-length data and this paper proposes a tech-
nique to fill this gap. Furthermore, by allowing the specification of prior probabilities,
our method enables the use of known information about the demands in the estimation
procedure, an important feature missing in existing estimation methods. For example,
this can be used to exclude infeasible values, such as incorrect zero demand estimates
that are frequently returned by linear regression methods [Casale et al. 2008].

Bayesian inference of queueing model parameters from response time measure-
ments has received some attention in the recent literature [Kraft et al. 2009; Sut-
ton and Jordan 2011]. Maximum likelihood methods have shown potential in [Kraft
et al. 2009]. However, with the exception of [Sutton and Jordan 2011], classic Bayesian
methods such as Markov-Chain Monte Carlo (MCMC) have not been applied before
to the problem of parameter estimation in queueing networks. The proposed MCMC
method is promising, but compared to the present work it applies to open queueing
networks and single class systems.

We define inference based on queue-length data by looking at the equilibrium state
distribution of the queueing network model. Differently from response time and uti-
lization distributions, the equilibrium distribution of queue-lengths is easy to deal with
since, under the BCMP theorem assumptions, it takes a convenient product-form ex-
pression [Bolch et al. 2006]. This tractability makes the BCMP equilibrium distribu-
tion a suitable candidate to define a Bayesian estimation method. In order to efficiently
apply Gibbs sampling to likelihood functions computed with the BCMP product-form,
we show that one needs to obtain an approximation of the normalizing constant of the
state probabilities. Unfortunately, no efficient approximation exists for the normaliz-
ing constant of closed multi-class queueing networks unless one looks at asymptotic
limits with many jobs and many queues [Knessl and Tier 1992], but existing limits in
this regime cannot express think times (i.e., cumulative delays at −/GI/∞ nodes).

We show that the problem of approximating the normalizing constant can be effi-
ciently solved by applying existing local iterative approximations, such as the Bard-
Schweitzer algorithm [Bolch et al. 2006] or AQL [Bolch et al. 2006], to a first-order
Taylor expansion of the normalizing constant. We call this method the Taylor Expan-
sion (TE) method for computing the normalizing constant. The TE method provides,
as a by-product, a general-purpose approximation algorithm for computing the nor-
malizing constant not based on asymptotic limits. The scope of this approximation
algorithm goes outside the span of demand inference, as it allows the approximate
solution of arbitrary closed queueing networks. In addition to TE, we introduce a vari-
ant of Monte-Carlo integration (IMCI) for the normalizing constant [Ross et al. 1994]
based on approximate mean-value analysis (AMVA). We compare TE with this new im-
plementation (IMCI) together with the original MCI proposed by [Ross et al. 1994] and
show that TE is more effective for use in Gibbs sampling. Using randomly generated
instances and a real-world case study based on a cloud application, we show that our
Gibbs demand estimation method is helpful in practical estimation problems. This pa-
per is an extension of the work in [Wang et al. 2013] with a revisited implementation
of the Monte Carlo sampling based method for estimating the normalizing constant
and new validations against other sampling algorithms.

Summarizing, the main contributions of this work are:

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:3

— A novel demand estimation approach that use observations on the state of the sys-
tem, described by the number of jobs observed at the resources.

— The ability to integrate in the estimation procedure prior information on the service
demands.

— A novel deterministic method for approximating the normalizing constant of multi-
class product-form queueing networks, which is particularly suited for application
in conjunction with Gibbs sampling, but can also be used as a stand-alone algorithm.

— A variant of the Monte-Carlo integration method proposed in [Ross et al. 1994],
which uses importance sampling to estimate the normalizing constant. Our variant
leverages AMVA methods in the choice of the parameters of importance sampling.

— An experimental study showing that the proposed method makes accurate esti-
mates of normalizing constants and service demands in real-world web applications.

The rest of this paper is organized as follows. Section 2 gives background of the demand
estimation problem. In Section 3, we introduce the novel approximation algorithm for
the normalizing constant of multi-class queueing networks. In Section 4, a demand
estimation based on Gibbs sampling algorithm is proposed. Section 5 and Section 6
evaluate the proposed algorithm against simulation data and a real-world case study,
respectively. Related work is discussed in Section 7 and Section 8 concludes the paper.

2. BACKGROUND AND PROBLEM STATEMENT
We consider systems that can be modelled as closed queueing networks, for example
web applications [Urgaonkar et al. 2005],[Zhang et al. 2007]. The reference model has
M queueing nodes and R classes of jobs. We assume the model to include a popula-
tion of Kj users for class j = 1, . . . , R having a known average think time Zj > 0. We
assume that service times and scheduling policies follow the BCMP theorem assump-
tions [Baskett et al. 1975]. This means that the distribution of think times is general
i.i.d. and queues can either be processor sharing with general i.i.d. service times or
first-come first-served with exponential service distributions, having identical means
across classes. We point to [Bolch et al. 2006] for a description of other cases where the
BCMP theorem holds. The system is assumed to be at steady-state and samples of its
state are assumed to be sufficiently spaced in time to be approximately independent
of each other. Moreover, in our experiment we notice that even with small sampling
interval the samples can still be treated as approximately independent.

Let nij be the number of jobs of class j at station i. Define θij to be the demand
of class j requests at resource i, which is the product of the mean service time of a
request (i.e., its execution time when running alone) and the mean number of visits
of the request at resource i before completion. Also, let the service demand matrix
be θ = (θ11, . . . , θMR). Under the above assumptions, the probability for state n =
(n01, . . . , nMR) admits the following product-form expression [Bolch et al. 2006]

P (n|θ) =
Zn01

1

n01!
· · ·

Zn0R

R

n0R!

M∏
i=1

ni!

R∏
j=1

θ
nij

ij

nij !G(θ)
, (1)

where Zj is the think time of class-j requests at the delay server and G(θ) is the
normalizing constant of the state probabilities ensuring that

∑
n P (n|θ) = 1. Notice

that G(θ) is expressed as a function of the demands θ, as opposed to the more common
dependence on the job populations.

The problem under study is the estimation of the θij parameters given observations
of the state probability (1) and assuming to know the vector of mean think times Z =
(Z1, . . . , ZR). The knowledge of the think times is required for the problem to be well-
defined, since two closed models having respectively demands θij and θij/cj , 1 ≤ i ≤

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:4

M , 1 ≤ j ≤ R, have identical stationary queue-length distribution for any cj > 0,
thus any estimation problem formulated only on the stationary distribution of these
models would not be able to distinguish them. In the presence of positive think times
Zj > 0, this ambiguity does not arise and we can therefore define an estimator for the
unknown demands θij .

In a Bayesian setting, (1) may be seen as the likelihood of observing state n given a
particular guess of the unknown demands θ. However, the efficient evaluation of (1) is
complicated by the presence of the normalizing constant G(θ), which requires expen-
sive algorithms for its computation. Efficiently computing normalizing constants may
be performed by several recursive algorithms, e.g., [Bolch et al. 2006; Casale 2006].
However, none of these existing methods can compute G(θ) in polynomial time as the
number of jobs, classes and queues grow large simultaneously. Summarizing, in order
to tackle the estimation of the service demands θij we need to define:

— A method to efficiently evaluate the likelihood function P (n|θ) for different guesses
of the unknown demands θ. We address this problem in Section 3 by defining the
TE approximation scheme for the normalizing constant G(θ).

— A search strategy for the optimal demand estimate θ, which we address in Section 4
by defining a Gibbs sampling algorithm for demand estimation in closed networks.

3. NORMALIZING CONSTANT APPROXIMATION
3.1. Motivating Problem
Gibbs sampling is a Markov Chain Monte Carlo [Brooks et al. 2011] method, a popular
class of algorithms to draw S samples from high dimensional spaces to solve integra-
tion problems. In our setting, Gibbs sampling involves the generation of samples of the
service demands, whose empirical distribution will provably converge to the posterior
distribution p(θ|n) of the demands θ. This posterior distribution accounts for both the
data and the prior probabilities. In the special case where the prior probabilities on
the demands are uniform, the resulting estimator is a maximum likelihood one and
therefore the estimation focuses on iteratively evaluating the likelihood function (1).
Unfortunately computing the normalizing constant G(θ) in the likelihood (1) can be
computationally expensive. This is because, as the number of classes, queues and jobs
increases, the direct computation of the equilibrium probability distribution (1) re-
quires an exponentially increasing effort in both time and space [Bolch et al. 2006].
For example, generating just 50 samples for each demand θij by Gibbs sampling for
a small model with M = 4 nodes and R = 4 classes can require a time between half
hour and one hour on a commodity laptop, mainly due to the cost of computing the nor-
malizing constant by the convolution algorithm [Bolch et al. 2006]. On larger models,
it becomes even impossible to compute it for a single likelihood evaluation. Therefore,
in order to make Bayesian estimation viable for closed queueing networks, we need
techniques to efficiently approximate the value of the normalizing constant.

In the next subsections we compare two strategies to address this issue, a new imple-
mentation of an existing approach based on Monte Carlo Integration (MCI) proposed
in [Ross et al. 1994] and our novel method based on Taylor expansion (TE).

3.2. Improved Monte Carlo integration (IMCI)
In [Ross et al. 1994], the authors propose a method based on Monte Carlo integration to
approximate the normalizing constant. The idea is to express the normalizing constant
as a multidimensional integral and approximate it by averaging random samples. In
order to reduce the variance of the result, an importance sampling technique based
on exponentially distributed samples is defined [Asmussen et al. 2007] by which the
variance of the expectation can be significantly reduced. The accuracy of the procedure

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:5

grows with the number of samples, which we denote by IMCI , generated by the im-
portance sampling method. Two alternative variance reduction techniques based on
antithetic variates and quasi-Monte Carlo methods can be found in [Tuffin 1997].

In detail, the authors in [Ross et al. 1994] exploit the fact that the normalizing
constant of a product form queueing network can be expressed as the following multi-
dimensional integral

G(θ) =
1∏R

j=1Kj !

∫
Q+

exp(−1u)

R∏
j=1

(Zj + θju)Njdu (2)

whereu = (u1, . . . , uM)′ and Q+ = {u ∈ RM :ui≥ 0}. This integral can be then approx-
imated with Monte Carlo integration and importance sampling by averaging a set of
samples, with cardinality IMCI , of the integrand, i.e.,

G(θ) ≈ 1

IMCI

IMCI∑
s=1

exp(−1V s)
∏R
j=1(Zj + θjV

s)Nj

p(V s)

1∏R
j=1Kj !

=
1

IMCI

IMCI∑
s=1

Hs = H (3)

where V s = (V s1 , . . . , V
s
M)′ is the s-th sample vector generated from a new proposal

distribution p(·) defined over Q+. The proposal distribution is introduced to reduce
the variance on the result by generating samples that are localized in a region of the
state space that most contributes to G(θ). Since the value of the normalizing constant
can easily exceed the floating-point range, the above expression may be equivalently
computed in terms of its logarithm as

logHs = −
M∑
i=1

V si +

R∑
j=1

Nj log

(
Zj +

M∑
i=1

θijV
s
i

)
− log(p(V s))−

R∑
j=1

Nj∑
u=1

log(u). (4)

In [Ross et al. 1994], the authors chose p(V)=
∏M
i=1 pi(Vi) and each pi(Vi) is an expo-

nential probability density function with mean λ−1
i . The authors assume to know the

utilization Ui of server i and define λi = 1 − Ui for near-optimal reduction in variance
of sampling G(θ) and Ui is approximated as

∑R
j=1Njθij(

∑M
t=1 θtj)

−1 for each station i.
The authors suggest in follow-up work [Ross et al. 1997] to use a pilot run for deter-
mining Ui if the system is near critical usage. In particular, λi is redefined as

λi =

1− Ui, Ui < 0.9,
1√

max(N1, . . . , NR)
, Ui ≥ 0.9.

(5)

However, not full detail is given on how to recompute the utilization in the following
steps and the software is no longer available. Hence we recompute the utilization with

Ui =
R∑
r=1

G(N − 1r)

G(N)
θir (6)

in MCI where G(N−1r) is the normalizing constant in a new model created by remov-
ing one job of class r from the original model.

However, we have found that it is much more effective, in general, to approximate
Ui by the Bard-Schweitzer AMVA algorithm [Bolch et al. 2006]. The Bard-Schweitzer
AMVA method approximates the standard MVA by estimating the mean queue length
of one job less population n̄ij(K − 1r) by interpolating n̄ij(K) with (Kr − 1)/Kr so
as to reduce the total iterations of MVA. Besides this, our MCI implementation also
introduces several other improvements compared to the original description in [Ross
et al. 1994], as shown in the pseudo code in Algorithm 1. First, it copes with floating-

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:6

Algorithm 1 Improved Monte Carlo Integration (IMCI)
Require: IMCI , Iiter,θ, Z, N , ρ

[εmin, εmax]:= floating-point range bounds
for t = 1 : bIMCI/Iiterc do

for s = 1 : Iiter do
estimate utilization Ui with the Bard-Schweitzer algorithm for each station i
generate V si from an exponential distribution parametrized with (1− Ui)−1

generate logHs by (4) using V s

end for
if maxs logHs < log(εmax) and maxs logHs > log(εmin) then
G̃(θ) =

∑
s exp(logHs)

IMCI

else
G̃(θ) = emaxs logHs

end if
G(θ)(t) = G̃(θ)

t+1 + G(θ)(t−1)

t+1 t

if |G(θ)(t)−G(θ)(t−1)|
G(θ)(t−1) < ρ then

return G(θ)(t)

end if
end for
return G(θ)(t)

point range exceptions that affect the original sampling method. When the normalizing
constant G(θ) is very large or very small, we have found that it is often impossible to
calculate its estimate H without incurring floating-point range exceptions. A common
approach in the queueing network literature to address floating point issues is to use
scaling of demands, as first proposed by [Lam. 1982]. Unfortunately, this is always
effective for single-class models, but not always effective in multiclass models. This is
because no scaling factor is known to renormalize correctly all the classes and ensure
that the normalizing constant falls within the floating point range on all instances. In
this case, instead of approximating G(θ) ≈ H, we use logG(θ) ≈ log maxsH

s, since the
maximum of the IMCI samples Hs is representative of the order of magnitude of G(θ).
Furthermore, our MCI implementation includes a stop condition that splits the IMCI

samples into several separate runs and checks after each run if the current estimate
has converged within a tolerance ρ. To be more specific, if at the tth run the generated
normalizing constant is G̃(θ), then the cumulative moving average will be

G(θ)(t) =
G̃(θ)

t+ 1
+
G(θ)(t−1)

t+ 1
t.

In the next section, we refer to Algorithm 1 as IMCI. The main difference between
IMCI and MCI is the choice of Ui, which is later in Section 3.4 shown to create a
large performance difference between the two implementations in favour of IMCI.The
floating-point range limit is set to εmax = ε−1

min = 1.7 · 10308. The number of samples
generated for each iteration is denoted by Iiter. In the experiments reported later, we
always set this parameter to be Iiter = 500. One thing to notice is that even for the
same tolerance, IMCI returns randomized results for different runs. As we show later
in Section 5 that this randomization significantly affects the Gibbs sampling process.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:7

3.3. Taylor expansion method (TE)
In addition to the IMCI, we introduce a new approach to approximate the normalizing
constant for computing the likelihood function (1). Our approach consists in applying a
Taylor expansion ofG(θ) along a given dimension of the demands θ, and iteratively use
an AMVA algorithm to approximate the first-order derivative in the expansion. To the
best of our knowledge, this is the first time that a technique is proposed to approximate
normalizing constants without considering asymptotic limits or sampling.

The proposed approximation is denoted by TE and defined as follows. Recall from
sensitivity analysis of queueing networks that [de Sousa e Silva and Muntz 1988]

dG(θ)

dθij
=
Qij(θ)

θij
G(θ) (7)

where Qij(θ) is the mean queue-length of jobs of class j at queueing station i. Consider
now a first-order Taylor expansion of G(θ)

G(θ + dθij) = G(θ) +
dG(θ)

dθij
dθij + o(θ2

ij)

where dθij updates only dimension ij. Using (7) and ignoring higher-order terms we
obtain the approximation

G(θ + ∆θij) ≈ G(θ)

(
1 +

Qij(θ)

θij

)
∆θ (8)

where ∆θij = ∆θ·1ij , in which 1ij is a vector of zeros except for a one in position ij. The
quantity ∆θ is referred to as the step size of the TE algorithm. The above expression
readily implies that

logG(θ + ∆θij) ≈ logG(θ) + log

(
1 +

Qij(θ)

θij

)
+ log ∆θ. (9)

which can be iteratively evaluated at each step for increasing values of θij if we are
able to efficiently compute Qij(θ). This can be done using an AMVA algorithm, e.g.,
the Bard-Schweitzer or AQL [Cremonesi et al. 2002], which can return an estimate
in fractions of seconds, with a computational complexity of just O(MR) and O(MR2)
per iteration, respectively. In our experiments, these AMVA algorithms typically com-
pleted in tens or hundreds of milliseconds even on large models with tens of queues
and classes.

Based on this observation, it is possible to see that the value of G(θ) can be itera-
tively approximated as follows. We start from any value of θ for which G(θ) is known,
for example setting all θij equal to zero such that

G(0) =

∏R
j=1 Z

Nj

j

Nj !
, 0 = (0, . . . , 0). (10)

Then, we iterate (8) along all of the dimensions of θ, one at a time. For each dimen-
sion, we increase θij by ∆θ and compute G(θ + ∆θij) from the previously computed
value G(θ) using (9), where the Qi,j(θ) terms are computed by an AMVA algorithm,
initialized with the mean queue-lengths found at the last invocation of AMVA. At the
first invocation of AMVA, we initialize the algorithm with a balanced distribution of
jobs across the stations. Finally, the value of logG(θ) is obtained and either be used
directly or exponentiated to obtain G(θ). As we show later, this iterative structure
combines well with the Gibbs sampling algorithm. A pseudocode summarizing the TE
approximation scheme is given in Algorithm 2. To the best of our knowledge, TE is the

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:8

Algorithm 2 Taylor expansion method
Require: ∆θ, θ, Z, K

compute logG(0) by (10)
θ∗ = 0
for i = 1 : M do

for j = 1 : R do
for k = 1 : θij/∆θ do

compute logG(θ∗ + ∆θij) by (9)
θ∗ = θ∗ + ∆θij

end for
end for

end for
return logG(θ)

only existing method that can work directly with logarithms of normalizing constants
and thus avoiding the floating-point range exceptions.

The above approach introduces linear execution time with the step size ∆θij , which
may pose unacceptable overhead if G(θ) needs to be frequently evaluated. Noticing
that (7) represents a standard ordinary differential equation (ODE), the execution time
of evaluating G(θ) can be dramatically reduced by using existing ODE solvers such as
MATLAB’s ode23, which automatically determines the step size on behalf of the user.
Other ODE solvers may also be used. Further, log(G(θ)) can also be evaluated by the
ODE solver, where the corresponding equation is obtained by taking the logarithm on
both sides of (7), which generates

d log(G(θ))

dθij
=
Qij(θ)

θij
. (11)

Solving for log(G(θ)) in the ODE solver improves the numerical properties of the TE
method by avoiding floating-point range exceptions. Therefore, from now on we will
report results for TE using this ODE-based implementation based on logarithm.

3.4. Validation
To illustrate and compare the accuracy of IMCI, MCI and TE in approximating the
normalizing constant, we consider both the computation of a single normalizing con-
stant G(θ) and of a sequence of normalizing constants that differ for small changes in
a demand value. The latter scenario is more representative of the use of the method
in techniques like Gibbs sampling. For comparison, we consider a large number of
randomly generated queueing networks.

Computation of a single normalizing constant.. We first consider the evaluation of
a single normalizing constant. The randomly generated models have parameters as
in Table I. The step size ∆θij used for TE is set to ∆θij = ρθij . For each model gen-
erated with the above parameters, 10 sub-models are defined by randomly generat-
ing the number of jobs and the demands from the uniform distribution. Without loss
of generality, demands are normalized for each class j so that

∑R
j=1 θij = 1. Using

this approach, we generate a total of 5400 models. The exact value of the normalizing
constant is computed in each step by the convolution algorithm. During the experi-
ment, we have tested TE with both the Bard-Schweitzer and AQL approximations for
the queue length computations. We have found that AQL is significantly slower than
Bard-Schweitzer and the overall accuracy of TE with the two methods is rather similar.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:9

Table I: Parameters of generated queueing models

Parameter Description Value
K =

∑
j Kj total number of jobs {4, 20, 40}

M number of servers {2, 4, 8, 16, 32}
R number of job class {2, 3, 4}
Zj think time {1, 10, 100, 1000}
ρ tolerance {0.1, 0.01, 0.001}

Therefore from now on we assume that TE is instantiated using the Bard-Schweitzer
AMVA approximation (BS).

Figure 1 presents the average and median absolute errors of the normalizing con-
stant estimates and the computational times for the IMCI, MCI and TE methods;
memory occupation is negligible for all algorithms. It can be seen that our implemen-
tation of IMCI has generally the best accuracy and it is the fastest among the three
algorithms. The accuracy of TE and MCI is similar, however for TE the accuracy grad-
ually increases as the tolerance ρ becomes finer, while MCI shows fluctuations, which
highlights its sensitivity to the initial warmup. With ρ = 10−3, the TE method achieves
a good accuracy of 10% mean error for all cases. If we restrict our attention to cases
where Z 6= 1, in which the system has high CPU utilization, the error further decreases
to 0.14%. On the other hand, the tolerance ρ has a smaller impact on IMCI, which en-
joys similar accuracy and computation times for different ρ values. Another point to be
noticed is that IMCI converges even for large values of ρ. Therefore, changing ρ does
not significantly affect the accuracy of the algorithm. In terms of execution time, the
decrease of the tolerance ρ leads to the rise of execution time for all the methods. We
also show in Figure 1 the IMCI method with the same execution time as TE. Clearly
given more time, IMCI is able to obtain a more accurate result than TE. Summariz-
ing, the TE and MCI method show overall good accuracy, but they are dominated by
IMCI for the approximation of a single normalizing constant. Considering that IMCI
outperforms MCI, we shall consider only this implementation in the rest of paper.

Computation of a sequence of normalizing constants.. We now compare IMCI and
TE in the scenario where one needs to compute a sequence of normalizing constants,
a problem that arises in the application of Gibbs sampling to the demand estimation
problem. This is because Gibbs sampling needs to calculate at each iteration a certain
cumulative distribution function by solving an integral involving the normalizing con-
stant, as we discuss in Section 4. To compare the performance of IMCI and TE in this
scenario, we consider the similar problem of computing the integral of logG(θ) across
dimension θij , discretizing the integration range with step size ∆θij . Except for θij , all
the other demands are kept constant throughout the integration, such that∫ θ+ij

θ−ij

logG(θij)dθij ≈
d(θ+ij−θ

−
ij)/∆θije∑
k=1

logG(θ−ij + k∆θij)∆θij , (12)

where we explicit the dependence of the normalizing constants only on θij . The smaller
∆θij is, the more the integral will be accurate and we set it to be ∆θij = ρθij . This in-
tegral is used to illustrate the computation of a sequence of normalizing constants on
models that are different for small changes of the θij parameter. Figure 2 shows the
average and median error and the computational time for both methods. The experi-
ments are similar to the ones for computing single normalizing constants. However we

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:10

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(a) TE - Average error

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(b) TE - Median error

0 1 2 3
10

−1

10
0

10
1

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(c) TE - Execution time

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(d) IMCI - Average error

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(e) IMCI - Median error

0 1 2 3
10

−3

10
−2

10
−1

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(f) IMCI - Execution time

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(g) MCI - Average error

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(h) MCI - Median error

0 1 2 3
10

−3

10
−2

10
−1

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(i) MCI - Execution time

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(j) IMCI (same time as TE) - Av-
erage error

0 1 2 3
−20

−10

0

10

20

log
10

(Z)

lo
g
(E

rr
o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(k) IMCI (same time as TE) - Me-
dian error

0 1 2 3
10

−1

10
0

10
1

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(l) IMCI (same time as TE) - Exe-
cution time

Fig. 1: Computation of G(θ) - ρ is a convergence tolerance

do not consider R = 4 since it requires excessively large computational requirements
to keep. The results in the figure is similar as Figure 1 for the accuracy. However, it
can be noticed that the difference of the execution time between IMCI and TE is sig-
nificantly reduced compared to Figure 1 and the execution time for TE is linear in ρ.
This is due to the fact that IMCI needs to compute the normalizing constant for each
iteration, since the samples generated at the previous step of the iteration cannot be

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:11

0 1 2 3
−8

−6

−4

−2

0

2

4

log
10

(Z)

lo
g

(E
rr

o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(a) TE - Average error

0 1 2 3
−8

−6

−4

−2

0

2

4

log
10

(Z)

lo
g

(E
rr

o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(b) TE - Median error

0 1 2 3
10

−4

10
−2

10
0

10
2

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(c) TE - Execution time

0 1 2 3
−8

−6

−4

−2

0

2

4

log
10

(Z)

lo
g

(E
rr

o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(d) IMCI - Average error

0 1 2 3
−8

−6

−4

−2

0

2

4

log
10

(Z)

lo
g

(E
rr

o
r)

 (
%

)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(e) IMCI - Median error

0 1 2 3
10

−4

10
−2

10
0

10
2

log
10

(Z)

lo
g
(E

x
e
c
u
ti
o
n
 t
im

e
)

(s
)

ρ=10

−1

ρ=10
−2

ρ=10
−3

(f) IMCI - Execution time

Fig. 2: Computation of integrals - ρ is a convergence tolerance

Table II: Summary of main notation concerning Gibbs sampling

S number of samples to be generated
D number of observations provided to the algorithm
N input data set
∆θ step size
I discretization range

reused, while TE uses ODE solvers to efficiently update the value of the normalizing
constant by (8) with a single execution of AMVA.

4. DEMAND ESTIMATION WITH GIBBS SAMPLING
Leveraging the TE and IMCI methods, we are now ready to introduce a demand esti-
mation method based on Gibbs sampling [Geman and Geman 1984]. That is, we inves-
tigate the applicability of Gibbs sampling for inference of the service demand matrix θ
from observation of a sequence N = {n(1),n(2), . . . ,n(D)} of independent states for the
queueing network. We denote with n(i) the i-th observed state, 1 ≤ i ≤ D. A summary
of the main notation used throughout this section is given in Table II.

4.1. General algorithm
The application of Gibbs sampling to the problem at hand is as follows. Let S be the
number of samples to be drawn by Gibbs sampling and call θsij the sth sample gen-
erated upon estimating the demand θij . In Gibbs sampling, each sample θsij is dis-
tributed as P (θij |θs(ij),N), where θs(ij) = (θs11, . . . , θ

s
i,j−1, θ

s−1
i,j+1, . . . , θ

s−1
MR) depends on the

past generated samples. The samples generated by the Gibbs method will have an em-
pirical distribution that will converge to the posterior density function for the demands
θij , given the priors and the observations [Asmussen et al. 2007]. The main difficulty
of applying Gibbs sampling to demand estimation is to efficiently compute the condi-

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:12

tional distributions P (θij |θs(ij),N). We show below that this can be efficiently done by
the TE method. To obtain P (θij |θs(ij),N) for each demand θij , we condition as follows

P (θij |θs(ij),N) =
P (θij ,θ

s
(ij)|N)∫

P (θ̃ij ,θ
s
(ij)|N)dθ̃ij

(13)

where the integral is on the range of the allowed values of θij , which may be application
dependent. Then using Bayes theorem

P (θij |θs(ij),N) =
P (θij ,θ

s
(ij)|N)∫

P (θ̃ij ,θ
s
(ij)|N)dθ̃ij

=

P (N |θij ,θs
(ij))P (θij ,θ

s
(ij))

P (N)∫ P (N |θ̃ij ,θs
(ij)

)P (θ̃ij ,θs
(ij)

)

P (N) dθ̃ij

=
P (N |θij ,θs(ij))P (θij ,θ

s
(ij))∫

P (N |θ̃ij ,θs(ij))P (θ̃ij ,θ
s
(ij))dθ̃ij

.

(14)

Notice that the integral may be written as a constant independent of θij , thus we have
P (θij |θs(ij),N) ∝ P (N |θij ,θs(ij))P (θij ,θ

s
(ij)). (15)

Let us now observe that, due to the assumed independence of the observations

P (N |θij ,θs(ij)) =
∏
n∈N

P (n|θij ,θs(ij)), (16)

where P (n|θij ,θs(ij)) is the likelihood of observing state n for a given assignment of θij
and given the last samples drawn for the other demands. Thus, we have

P (θij |θs(ij),N) ∝
∏
n∈N

P (n|θij ,θs(ij))P (θij ,θ
s
(ij)) (17)

where the likelihood function P (n|θij ,θs(ij)) appearing in (17) can be readily computed
from the equilibrium distribution of the network given in (1).

The final step is to draw a sample from P (θij |θs(ij),N). Since θij is a finite quantity,
being dimensionally a time, our methodology assumes it to lie in a finite interval I =
[θ−ij , θ

+
ij]. If no information is available on this range upon performing the estimation,

one can chose a large enough interval to express a high uncertainty. Conditioning on
θij ∈ I, we can define the cumulative distribution of the demands in this interval as

F (θij |θs(ij),N) =

∫ θij

θ−ij

P (θ̃ij |θs(ij),N)dθ̃ij . (18)

We combine this expression with (17), instantiated with the expression of the likeli-
hood (1). This brings

F (θij |θs(ij),N) =
1

H(θs(ij))

∫ θij

θ−ij

∏
n∈N

(
G−1(θ̃ij ,θ

s
(ij))θ̃

nij

ij

)
P (θ̃ij ,θ

s
(ij))dθ̃ij (19)

where

H(θs(ij)) =

∫ θ+ij

θ−ij

∏
n∈N

(
G−1(θ̃ij ,θ

s
(ij))θ̃

nij

ij

)
P (θ̃ij ,θ

s
(ij))dθ̃ij

is a normalizing constant ensuring that F (θ+
ij) = 1. In the last expression, we make

explicit in the argument of the normalizing constant the dependence on the random
variable θ̃ij and on the past samples θs(ij). Further, it is important to note that the
last two expressions do not include the contribution of the factorials in (1) and of the

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:13

demands different from θ̃ij . This is because these terms can be simplified by grouping
them in front of both the integral in (19) and the integral that defines H(θs(ij)). There-
fore, by breaking the product of all the observations in N we see that the cumulative
distribution expression may be rewritten as

F (θij |θs(ij),N) =
1

H(θs(ij))

∫ θij

θ−ij

(G−1(θ̃ij ,θ
s
(ij)))

D
∏
n∈N

θ̃
nij

ij P (θ̃ij ,θ
s
(ij))dθ̃ij (20)

=
1

H(θs(ij))

∫ θij

θ−ij

(G−1(θ̃ij ,θ
s
(ij))θ̃

nij

ij)DP (θ̃ij ,θ
s
(ij))dθ̃ij , (21)

which depends only on the observed mean queue-lengths nij =
∑
n∈N nij/D and the

number of observations D. Since the dataset appears in the above expression only
via the mean queue-lengths nij , this implies that the application of Gibbs sampling
to demand estimation only requires measurement of mean queue-lengths, not of the
individual states n for the system under consideration. This is an important conclusion
of our analysis, which makes the technique very simple to apply to real systems, since
one needs to measure mean queue-lengths, rather than detailed system states.

Algorithm 3 presents the pseudo code for the Gibbs sampling algorithm. At the end
of the algorithm, a set of samples θsij is returned. These can be used to numerically
estimate the posterior density of the demands, for example to apply the maximum a
posteriori method, or they can be simply averaged to determine the demand estimate
directly. To account for the initial burn-in period due to the transient of the underlying
Markov chain, in our experiments we discard the first half of all the generated samples.
Thus, for an experiment that generates S = 50 samples for each demand, only the last
25 will be used to estimate the service demands.

Note that a prior distribution P (θ) is required for the application of the Gibbs sam-
pling approach described in this section. Priors can be important especially when the
empirical dataset N is small, since known information about the distribution of pa-
rameters can help in better discriminating among the feasible estimates. In this paper,
we primarily focus on the case where the user chooses a uniform distribution for the
prior, thus each parameter θij is equilikely in a range I = [θ−ij , θ

+
ij]. This corresponds to

a maximum likelihood estimator in I. However, a strength of our methodology is that
it can accept arbitrary prior distributions. We illustrate the benefits of this feature for
Dirichlet priors in Section 5.3.5.

4.1.1. Implementation with TE. Each integral appearing in (20) can be evaluated by com-
puting the integrand at a number of equispaced points, chosen with step ∆θij , in the
integral range I. To minimize the risk of floating-point range exceptions, we first com-
pute the logarithm of the integrand and then exponentiate the resulting value, sum-
ming its contribution to the integral. Since the normalizing constant H(θs(ij)) is re-
quired to evaluate the cumulative distribution at any point, we evaluate H(θs(ij)) first
and record during the calculation the partial sums of the integral. These partial sums
allow us to evaluate the integral in the definition of F (θij |θs(ij),N) with a small effort.

Considering the two approaches for approximating G(θ) introduced in Section 3,
TE is able to compute more efficiently than IMCI the integrals in H(θs(ij)) and
F (θij |θs(ij),N) with small tolerance, since it can iteratively update the value of
logG(θ̃ij ,θ

s
(ij)). Conversely, IMCI needs to draw a new set of samples for each θ̃ij . The

method assumes that all the integration ranges are discretized, thus samples θsi,j are
approximated to the closest point in the discretized range. In each iteration of the in-
ner loop of Algorithm 3, we run TE twice starting from the demand vector (θs−1

ij ,θs(ij))

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:14

Algorithm 3 Gibbs Sampling
Require: N , I,M,R,K, S,Z,∆θij
θ0 = (θ−11, . . . , θ

−
MR)

compute logG(θ0)
for s = 1 : S do

for i = 1 : M do
for j = 1 : R do
θs(ij) = (θs11, . . . , θ

s
i,j−1, θ

s−1
i,j+1, . . . , θ

s−1
MR)

compute logG(θ̃ij ,θ
s
(ij)) for all θ̃ij ∈ [θ−ij , θ

+
ij] with step ∆θij

generate a pseudo-random number u ∈ [0, 1]
find θsij : F (θsij |θs(ij),N) ≤ u < F (θsij + ∆θij |θs(ij),N)

end for
end for

end for
return θsij , ∀, s, i, j

and computing with step ∆θij all the normalizing constants up to the demand vectors
(θ−ij ,θ

s
(ij)) in the first run and up to (θ+

ij ,θ
s
(ij)) in the second run. Using these two runs,

we can utilize the value of logG(θ̃s−1
ij ,θs(ij)) computed at the last iteration in order to

initialize TE at the following run. The normalizing constants computed with these two
runs of TE are exactly the ones needed to determine F (θij |θs(ij),N) for any θij . We can
then proceed to sample θsij and move to the next iteration, discarding all the normal-
izing constants computed in the two runs except logG(θsij ,θ

s
(ij)) that will be used to

initialize TE at the next iteration.
Finally, we remark that in our experiments often the cumulative distribution

F (θij |θs(ij),N) converges to 1 for θij � θ+
ij . This leads to the situation where a sig-

nificant amount of effort is spent to compute an integral over a range of demand
values that have a very small tail probability. To address this problem, we assume
that the user provides a tolerance parameter τ and we compute F (θij |θs(ij),N) up to
min(2θτ,s−1

ij , θ+
ij), where θτ,s−1

ij is the quantile for the probability mass 1− τ obtained at
the last iteration of the algorithm. For instance, τ = 10−10 means that the upper bound
will be between the minimum of the specified θ+

ij and 2 times the 1− 10−10 quantile of
F (θij |θs(ij),N) for the next iteration.

5. EXPERIMENTAL EVALUATION
5.1. Methodology
We have evaluated the performance of Gibbs sampling for service demand estimation
using random experiments, described in this section, and a case study, discussed in
Section 6. Our experiments have been run on a desktop machine with an Intel Core i7-
2600 CPU, running at 3.4 GHz and with 16 GB of memory. We have tested single and
multiple classes cases using simulated data. To establish performance across typical
scenarios, we have considered topologies where all nodes are in series or all nodes are
in parallel, which are both quite common in models of real applications.

5.1.1. Evaluation criteria. We use the mean absolute percentage error as the evaluation
metric for the accuracy of the estimators, which is

ε =
1

MR

M∑
i=1

R∑
j=1

|θij − θ∗ij |
θij

(22)

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:15

where θij is the exact service demand value and θ∗ij is the value estimated by the
algorithm. We always discard the first half of the demand samples to avoid the bias of
the initial burn-in and calculate the mean demand on the second half of the samples.

5.2. Terms of comparison
For comparison, we have also implemented other MCMC algorithms [Asmussen et al.
2007; Brooks et al. 2011] and applied them to demand estimation, namely Metropolis-
Hastings sampling [Hastings. 2012; Metropolis et al. 1953] and Slice sampling [Neal
2003; Damlen et al. 1999]. The computation of the normalizing constant is also re-
quired by these two approaches and will be approximated with TE and IMCI.

5.2.1. Metropolis Hastings (MH). The MH algorithm constructs a Markov chain with con-
tinuous state space in order to sample from a target distribution f(θ). In the case of
demand estimation, this target distribution is P (θ|N), which from Bayes theorem

P (θ|N) =
P (N |θ)P (θ)

P (N)
=

∏
n∈N P (n|θ)P (θ)

P (N)
(23)

where P (N) is a normalizing constant to ensure
∑
θ P (θ|N) = 1. A random walk is re-

alized as follows. At iteration t+1, the algorithm randomly generates a new parameter
θ from a distribution q(θ|θ(t)) proposed by the user, where θ(t) is the demand vector
sampled at the previous iteration. The algorithm next computes an acceptance rate

α = min

(
1,

P (θ|N)q(θ(t)|θ)

P (θ(t)|N)q(θ|θ(t))

)
(24)

The algorithm accepts the candidate θ with probability α and sets θ(t+1) = θ if the
sample is accepted, or otherwise rejects it by setting θ(t+1) = θ(t). After S iterations the
algorithm has produced an output sample of size S of vectors θ(1), . . . ,θ(S) distributed
according to the target distribution f(θ).

Compared to Gibbs sampling, the MH algorithm changes several demand values at
each iteration. This does not allow us to update the value of the normalizing constant
with TE in an efficient manner. In fact, we show later that this method performs best
when implemented with IMCI. In the implementation for demand estimation in our
experiment, the proposed distribution for the MH sampling is set to be a multivari-
ate Gaussian distribution with a covariance matrix βI, where where I is the identity
matrix. In default, we set β = 10−3 to match the magnitude of the demands.

5.2.2. Slice sampling. Slice sampling is one of the MCMC methods where a distribu-
tion is sampled uniformly from the region under the plot of its density function. The
advantage of Slice sampling is that it does not need to discretize the integration in-
terval. With uniform sampling from the area under the distribution Slice sampling is
able to automatically match the characteristics of the distribution.

For the target distribution P (θ|N) as shown in (23), the procedure of slice sampling
is depicted in Figure 3 and can be summarized as follows:

(1) Choose a random start point θ0

(2) Choose h uniformly between 0 and P (θ0|N)
(3) Draw a horizontal line across h
(4) Sample a point from the line segments

In practice, it is difficult to sample directly from a slice since the line segments are
difficult to be located. Therefore we use the stepping-out and shrinking-in strategy
proposed by Neal in [Neal 2003]. This requires an additional parameter to define the

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:16

−40 −20 0 20 40 60 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

θ0

h

(θ, h)

P(θ| N)

Fig. 3: Slice sampling procedure

width of the slice. Considering that a coarse width makes the sampling process inac-
curate while a small one leads to slow convergence, we choose the width to be of the
same magnitude as the demands. Therefore in our validation presented later, we set
the width to be 0.1.

We compare Slice sampling with Gibbs sampling because with TE the normalizing
constant integration could be approximated very efficiently. However, Slice sampling
has the advantage that this integration is not required, which theoretically should
make Slice sampling more efficient, although we did not find it to be, as we show later.

5.3. Numerical Validation
We now present the evaluation of the three sampling algorithms on the simulated
queue length data for demand estimation. The data is generated from the underlying
Markov Chain of a closed network with R classes and M queueing stations along with
one delay node. The simulation method is standard [Bolch et al. 2006]. In total, we
simulate 500, 000 service completions. The parameters considered here are described
in Table III. The think time is assumed to be Zj = 1 for each class of jobs. For each
model generated from the above parameters, 10 sub-models are defined by randomly
generating the number of jobs and the demands from the uniform distribution. With-
out loss of generality, demands are normalized for each class j so that

∑R
j=1 θij = 1.

To obtain queue-length samples, we have first computed the steady state probability
from the simulation events. Then we have sampled from it by generating random num-
bers between 0 and 1 and determining which sample fits in the cumulative probability.
This is also known as the inverse transform sampling. We generate 5000 queue length
samples in the following experiments.

For fair comparison, a time limit of 15 minutes is set. The tolerance of TE and IMCI
is set to ρ = 10−3. For the Gibbs method, the discretization range I always has a lower
bound θ−ij = 0 and the initial upper bound is θ+

ij = 1 for all the dimensions ij. We set
τ = 1− 10−10 for the probability tolerance. The initial point for the three algorithms is
set to 0.1 for all the classes.

We show the convergence plots of the three algorithms forM = 4, R = 4,K = 40, Ci =
4 case in Figure 4. Since the total demand has 16 dimensions, we only plot the demand
of the first queue and the first class. From the figure we can see that Gibbs sampling
is able to converge quickly and experiences a small oscillation around the exact value.
The MH algorithm cannot reach the exact value and gets stuck at a local optimum.
Slice sampling is able to achieve a better performance than MH sampling and gradu-
ally converges to the exact value, but with a slower rate than Gibbs.

5.3.1. Multicore approximation. So far we have described the Gibbs method for estimat-
ing demands of queueing stations with a single server, which are reasonable abstrac-
tions of single core machines. However, servers are now prevalently multi-core, which
raises the need to incorporate information about the number of cores in the model.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:17

Table III: Parameters of queueing models for Gibbs sampling validation

Parameter Description Value
K =

∑
j Kj total number of jobs {4, 20, 40}

M number of servers {2, 4, 8}
R number of job class {2, 3, 4}
Ci number of cores {1, 2, 4}

0 20 40 60 80 100
0

0.5

1

1.5

2

Number of samples generated

D
e
m

a
n
d

Gibbs sampling

estimated
exact

0 100 200 300 400
0

0.5

1

1.5

2

Number of samples generated

D
e
m

a
n
d

MH sampling

estimated

exact

0 50 100 150 200
0

0.5

1

1.5

2

Number of samples generated

D
e
m

a
n
d

Slice sampling

estimated
exact

Fig. 4: Convergence plots

Since the scheduling of queueing stations is processor sharing, the error incurred by
scaling the demand by the number of cores tends to be small. However, in the context
of demand estimation, the problem is that a limited jobs in execution at a station would
be classified with a demand that is much smaller than the true value. To address this
problem, we scale the demands by the average number of cores used by the application
based on the collected dataset, rather than by the total number of cores. This approach
takes better into account the actual load of the system provided by the observations.

Let us assume first that we have measured a dataset N = {n(1),n(2), . . . ,n(D)} of
queue-length states and assume that each state n(i) is associated to a timestamp ti for
the instant of collection. Then we can readily estimate from this data the probability
πi(ni) that ni jobs are in node i. The value ni is a total number of jobs, irrespectively of
their class. Then, given the total number of servers (i.e., cores) ci at station i, we can
estimate c̄i, the number of cores used on average by the application, as

c̄i = (1− πi(0))−1
K∑
s=1

πi(s) min(ci, s) (25)

where (1 − πi(0))−1 is the probability that the server is not idle and the summation
computes the average number of cores used given that the server is busy. Using c̄i,
the demand for the multicore instances may be estimated as θij = c̄iθ

(1)
ij , where θ(1)

ij

is estimated by Gibbs sampling on a model that assumes all stations to have a single
server. In case only measurements of mean queue-lengths n̄ij are available, as opposed
to the whole dataset N , one could approximate the above estimate as c̄i = min(ci, n̄i),
where n̄i =

∑R
j=1 n̄ij is the total mean queue-length at station i. If also the average

utilization Ui is measured, then this estimate can be refined as c̄i = min(ci, U
−1
i n̄i).

Finally, we remark that we also considered the case where each core is modelled as a
single-server queue. However, the demand matrix will contain

∑M
i=1 ciR dimensions in

this case, which increased the computation time significantly in our initial experiments
and limited the ability of the Gibbs method to find good estimates for the demands in
a timescale of minutes. We have therefore not investigated this approach any further.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:18

5.3.2. Evaluation Results. We here run the Gibbs, MH and Slice sampling algorithms on
random models and present the results, classified according to the utilization Umax of
the bottleneck station in the model. We chose the maximum utilization as the criteria
for model classification since we have found empirically that the algorithms are rather
sensitive to this parameter. The three levels of load we considered are low (Umax ≤
50%), medium (50% < Umax ≤ 75%), and high (Umax > 75%). In all experiments, the
prior distribution is assumed to be a uniform prior inside the discretization range I.

Figure 5 reports the average error for different bottleneck utilizations with ρ = 10−3.
The experiments reveal that Gibbs sampling implemented with the TE approximation
is able to achieve approximately a 11% error for different Umaxlevels. This is the most
accurate method among all the ones we tested. It is better than Gibbs with IMCI,
which has around 20% error, despite that IMCI shows higher accuracy in Section 3. To
understand this result, we examine the coefficient of variation (CV) of the generated
samples for the Gibbs method with TE and IMCI in Figure 6(a). As the figure sug-
gests that the samples generated from IMCI have a large variance, we interpret this
to be caused by the randomness of the normalizing constant generated by IMCI. To
validate this claim, we consider a case with M = 4, R = 4, C = 1,K = 40. For each it-
eration of Gibbs sampling, we recompute 10 times P (θij |θs(ij),N) in (17) by rerunning
IMCI every time. At each time, we compute the expectation of this distribution, i.e.
E(θij) = θijP (θij |θs(ij),N), which leads to 10 expectations. We then compute the span
of these values by max(E(θij))−min(E(θij)). Finally we divide the span by the sampling
interval (θ+

ij − θ
−
ij) to show the intrinsic variability of the estimate. Figure 6(b) and 6(c)

report the relative span of θ11 and θ22 as the Gibbs sampling process evolves. It can be
seen that the relative span of TE is zero due to its deterministic nature. However, the
random sampling process of IMCI contributes large variations of P (θij |θs(ij),N), which
produces samples in a wide range, a fact that misguides the search and eventually
leads to worse demand estimates in IMCI than in TE. Moreover, the variation does not
reduce as the sampling process converges.

For MH and Slice sampling, the IMCI approximation gives a much lower error than
TE since it is more accurate and efficient in computing the single normalizing constant
needed by these methods. Further, for MH and Slice sampling TE degrades the perfor-
mance under high loads. This cannot be attributed to TE itself, since this degradation
is not visible for Gibbs with TE, therefore we conclude that this due to the fact that
these methods generally perform worse than Gibbs sampling in heavy load, as also
visible when implemented with IMCI. The fact that TE is slower than IMCI for MH
and Slice sampling can explain the accuracy degradation.

To further substantiate the claim that TE is superior to IMCI for use within Gibbs
sampling, Figure 5(c) presents the cumulative distribution across all the models of
the error of our Gibbs sampling implementations based on TE and IMCI. It can be
readily seen that the implementation of Gibbs sampling with TE is superior also in
error distribution to the implementation based on IMCI. We have also done the same
experiments with ρ = 10−2 and the result is qualitatively similar as above.

Summarizing, the experiments reveal that the Gibbs sampler is superior to MH and
Slice sampling in demand estimation tasks. Furthermore, the proposed TE approxi-
mation delivers a visible decrease of error compared to an approximation based on an
existing method, IMCI. Our experiments suggest that the inherent variability of the
IMCI method significantly affects the accuracy of the demand estimates.

5.3.3. Sensitivity analysis on large models. To understand the performance of the pro-
posed methods on large models, we expand the evaluation by considering models with
M ∈ {16, 32},K ∈ {80, 160},R = 4 with 10 sub models. Figure 7 presents the evalu-

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:19

Low Medium High
10

0

10
1

10
2

10
3

Maximum Load

E
rr

or
 (

%
)

Gibbs
MH
Slice

(a) TE

Low Medium High
10

0

10
1

10
2

10
3

Maximum Load

E
rr

or
 (

%
)

Gibbs
MH
Slice

(b) IMCI

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Error (%)

F
(x

)

TE
IMCI

(c) CDF of Gibbs Sampling

Fig. 5: Evaluation of the algorithms on different models

Low Medium High
10

−2

10
−1

10
0

10
1

10
2

Maximum Load

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n
(%

)

TE
IMCI

(a) CV

0 20 40 60 80 100
0

20

40

60

80

100

120

Iteration

R
el

at
iv

e
sp

an
 o

f θ
11

 (
%

)

TE
IMCI

(b) P (θij |θs(11),N)

0 20 40 60 80 100
0

20

40

60

80

100

120

Iteration

R
el

at
iv

e
sp

an
 o

f θ
11

 (
%

)

TE
IMCI

(c) P (θij |θs(22),N)

Fig. 6: Evaluation of TE and IMCI with Gibbs sampling

4 6 8 13 20 28 89 127 186
0

20

40

60

80

100

Log of state space size

E
rr

or
 (

%
)

TE
IMCI

Fig. 7: Sensitivity analysis on large models

ation results, where we quantify the model size with the size of state space, which is
computed as

∏R
r=1

(
Nr+M
M

)
, in which we count the presence of the infinite server that

models Z. We keep the execution time fixed with 15 minutes. It can be seen that as
the model size increases the error gradually arises as well. Still, on models of practical
relevance it is clear that TE is much better than IMCI. The practical limit is around
the model with M = 16 queues, R = 4 classes and K = 160 jobs where TE exceeds 30%.
However, for the same threshold IMCI exceeds the error in a much smaller model.
One thing to notice is that, since we keep the number of simulated events fixed in the
experiment (500, 000 service completions), as the models size increases the generated
queue length is less accurate for representing the exponentially increases state space.

5.3.4. Random initial points. Since all the estimation algorithms require an initial point
as input, we explore the influence on the results of choosing a different initial point. In
particular, we have randomized the initial point around θij with a uniform distribution
which has θij/10 as lower bound and 10θij as higher bound on each class j, where θij

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:20

is the exact demand. The experiment assumes M = 4, R = 3,K = 20, Ci = {1, 2, 4}, ρ =
10−3. For each model generated from the above parameters, 10 sub-models are defined.
For each sub-model, we initialize it with 10 different random initial points. Table IV re-
ports the average error and the standard deviation for seven random initial points for
each experiment. From the table it is possible to observe that the standard deviation
for Gibbs sampling are relatively small compared to the mean error, which means that
the initial points do not appear to have a major impact on the results. The high stan-
dard deviation of the MH and Slice sampling with TE method indicates that they are
still strongly influenced by the initial value of the chain and are not mixing properly.

Table IV: Randomized initial point
1 core 2 cores 4 cores

Gibbs MH Slice Gibbs MH Slice Gibbs MH Slice
TE-BS
ρ = 10−3

Average(%) 4.0 375 250 11.5 641 448 19.7 887 713
STD(%) 0.5 81.0 80.6 2.3 135 151 3.6 241 207

IMCI
ρ = 10−3

Average(%) 31.3 56.4 74.3 18.3 24.8 45.0 20.6 23.4 23.7
STD(%) 4.7 8.9 53.0 2.0 1.9 77.6 4.3 4.7 6.8

According to [Gelman et al. 2014], MH sampling should be tuned so that the accep-
tance rate is in the range of 25%-50%. To study the impact of the acceptance rate on
the accuracy, we varied the β parameter that defines the covariance matrix βI of the
proposed multivariate normal distribution. The smaller β is, the higher the acceptance
rate will be. Table V reports the result for different models with increased acceptance
rate compared to the default β = 10−3 case. We only show the case of IMCI, since TE
takes a long time to compute a single normalizing constant. The difference of β in Ta-
ble V is to make sure that the acceptance rate fall in the range suggested by [Gelman
et al. 2014]. From the result it can be noticed that with the suggested acceptance rate,
the MH sampling is still not as good as Gibbs.

Table V: Impact of acceptance rate of MH sampling on accuracy
1 core 2 cores 4 cores

IMCI
ρ = 10−2

Average(%) 78.2 29.2 43.1
STD(%) 8.7 3.5 4.1

Acceptance rate(%) 29.7 35.6 31.7
β 10−3 10−3 10−3

IMCI
ρ = 10−3

Average(%) 53.3 23.6 25.7
STD(%) 10.3 2.5 5.3

Acceptance rate(%) 37.3 28.0 33.4
β 10−4 10−4 10−5

5.3.5. Sensitivity analysis of prior distribution. Using a prior distribution P (θ) is particu-
larly useful when the number of dataset N is small. To show the actual effectiveness
of the prior distribution and analyse how sensitive the inference of the posterior mean
is to changes in the prior distribution, we use a Dirichlet distribution as prior. The
Dirichlet distribution is the conjugate prior of the multinomial distribution and there-
fore appears to be a natural choice given that the BCMP product form is a scaled prod-
uct of multinomial terms. The probability density function of the Dirichlet distribution
of order n for variables x = (x1, . . . , xn) with parameters q = (q1, . . . , qn) is defined as

f(x; q) =
1

B(q)

n∏
i=1

xqi−1
i (26)

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:21

where B(q) is a normalizing constant

B(q) =

∏n
i=1 Γ(qi)

Γ(
∑n
i=1 qi)

(27)

and Γ(x) denotes the Gamma function with constraint that
∑n
i=1 xn = 1. The mean

value and the variance for each variable xi of the Dirichlet distribution is E[xi] = qi/q0,
where q0 =

∑n
i qi. To estimate the parameters of the Dirichlet distribution, we use the

method proposed in [Minka 2000] to estimate q. In real applications, the demands
data used to fit q could come from historical values of the estimates. For the sake of
illustration, we here simulate the demand data from a run of Gibbs sampling with a
uniform prior. This data is then normalised so that

∑M
i=1

∑R
j=1 θij = 1 and we fit this

dataset to a Dirichlet distribution. By scaling the think times Zj by the same constant,
the estimation can be restricted on the interval [0, 1] for each demand.

We consider the following experiments. Let θij be the true demand and θ̄ij be the
mean value of the prior distribution for the same demand. We define the deviation

η =

∑M
i=1

∑R
j=1

∣∣θ̄ij − θij∣∣
MR

,

as a measure of the distance of the prior to the true value of the demand. Using the
dataset generated by Gibbs sampling, which has typically low variance in the distri-
bution of the samples, we fit the Dirichlet parameter vector and denote it by qlow. Note
that low variance represents low uncertainty on the location of the demands. We also
consider a modified vector qhigh = 100qlow that increases the variance, while keeping
the same mean value for all the demands. This modified vector allows us to evaluate
the accuracy of the Gibbs method in presence of high uncertainty in the prior.

We then run experiments for the Gibbs method instantiated with the TE method
and run for 15 minutes. The algorithm is tested on closed queueing networks specified
by the following combination of parameters: R ∈ {2, 3},M ∈ {2, 4}, Ci ∈ {1, 2},K ∈
{4, 20}. We assume all the stations have the same number of cores Ci. The think
time is assumed to be Zj = 1 for each class. The queue-length data is generated
from the Markov Chain simulation. The number of queue-length samples is set to
be D ∈ {25, 50, 100, 200}. The deviation η is chosen in {10%, 50%, 100%}.

Experimental results are illustrated in Figure 8, which also includes the uniform
prior case. From both figures, it is clear that a prior distribution with small deviation
η improves significantly the accuracy of the estimate compared to the uniform prior
case, but as expected only if the dataset is small (D ≤ 50). This is because the depen-
dence of the prior is progressively lost as new samples are generated. The experiments
also reveal that a large η, if coupled with small variance in the prior (qlow case), will
bias the conditional probability P (θij |θs(ij),N). This will obviously result in a poor es-
timate. However, a large variance (qhigh case) will help to reduce this bias and when
the number of observed data increases, the sampling process will tend to converge to
the true values. Overall, the experiments in this section prove that just a few tens of
samples are sufficient to obtain reasonably accurate demand estimates. This may be
relevant in particular for real-time decision-making, where only a few measurement
samples may be obtained before taking a tuning decision for a computer system.

6. CASE STUDY
In this section, we evaluate the Gibbs method against data collected from a real ap-
plication, Apache Open for Business (OFBiz) [Apache OFBiz 2014], which is an open
source enterprise resource planning system. We generated a set of user requests for
this application using the OFBench tool [Moschetta and Casale 2012] with an instal-

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:22

25 50 100 200
0

20

40

60

80

100

120

E
rr

o
r

(%
)

Queue−length Samples

η=0

η=10%

η=50%

η=100%

Uniform prior

(a) qhigh = qlow

25 50 100 200
0

20

40

60

80

100

120

E
rr

o
r

(%
)

Queue−length Samples

η=0

η=10%

η=50%

η=100%

Uniform prior

(b) qhigh = 100qlow

Fig. 8: Dirichlet Prior distribution evaluation - all estimates converge unless the exact
demand has very low probability prior

Table VI: Case study experiment results
2 cores (c1.medium) 8 cores (c1.xlarge)

A. Gibbs MH Slice A. Gibbs MH Slice

TE
ρ = 10−3

Time(m) 5 5 5 5 5 5
Error(%) 14.0 18.5 21.5 14.9 38.0 248
Time(m) 15 15 15 15 15 15
Error(%) 14.1 17.0 14.5 14.8 34.6 162

IMCI
ρ = 10−3

Time(m) 5 5 5 5 5 5
Error(%) 15.0 15.9 17.3 15.1 18.5 16.9
Time(m) 15 15 15 15 15 15
Error(%) 14.9 15.6 17.1 15.0 17.2 16.5

lation where the web server is co-located with the default Apache Derby database.
The experiment was run on Amazon EC2, with OFBiz running simultaneously on two
load-balanced virtual machines, a c1.medium instance and a c1.xlarge instance.

Modelling the inter-submission time of requests as a think time, the whole system
may be seen as a queueing network model, with a fixed population K given by the
number of clients of the OFBench tool. Each class represents a request type and per-
class populations are obtained by multiplying K with the probability that a certain
type of request is issued. Therefore, Kj represents the average number of requests of
a given type in the system as a whole.

We use OFBench to send 8 classes of requests to OFBiz and we parse the OFBiz logs
to get the N dataset. The true value θij of the service demand is estimated using the
Complete Information (CI) algorithm proposed in [Perez et al. 2013], which is able to
return the near exact demand from the dataset given the full sample path of the system
from the application logs. In order to avoid assuming knowledge on the population
of the model, which may be unrealistic in some applications, the model population
K is estimated from the empirical dataset as the maximum number of concurrently
executing requests in the system across all the recordings. To get the think time, the
throughput T is also obtained from the logfiles, so that by Little’s Law Zj = n0j/Tj
where n0j , 1 ≤ j ≤ R represents the average number of users in thinking state.

We then evaluate the Gibbs, MH and Slice sampling algorithms against the true
values estimated by CI. The parameters for the algorithms are the same as the ex-
periment for simulated data. Results are shown in Table VI. From the table we see
that the Gibbs sampling implementation based on TE produces the best results. This
is consistent with the numerical validation results. It can also be noticed that MH and
Slice sampling enjoy an increase of accuracy compared to the numerical results. We
interpret this improvement due to the the fact that here in case study only one queue-

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:23

ing station is considered, i.e. M = 1. With such a simple model, MH and Slice is able
to have a fast convergence to the demand estimate.

7. RELATED WORK
Existing approaches for demand estimation may be categorized in the following
groups, according to the estimation approach used.

Regression-based estimation. In [Rolia and Vetland 1995], linear regression is in-
troduced for resource demand estimation and papers such as [Rolia and Vetland 1998]
and [Pacifici et al. 2008] propose to use multivariate linear regression to estimate mean
service demands. In [Zhang et al. 2007], a regression based methodology is presented to
estimate the CPU demand in multi-tier software systems. Experiments with the TPC-
W benchmark demonstrate the robustness of such approximation under diverse work-
loads with changing transaction mixes. Moreover, the work in [Casale et al. 2008] uses
Least Trimmed Squares regression based on CPU utilization and system throughput
to estimate service times. The study in [Pacifici et al. 2008] considers dynamically esti-
mating CPU demands by formulating the problem as a multivariate linear regression
of CPU utilization against throughput. However, these methods are known to suffer
from the multicollinearity problem leading to biased estimates [Kalbasi et al. 2011].
Compared to regression methods, our technique requires only queue-length informa-
tion and can be more efficient with few samples thanks to the ability of incorporating
prior distributions in the analysis.

Machine learning. The work in [Sharma et al. 2008] proposes to use independent
component analysis to infer workload characteristics based on CPU utilization and the
number of customers. The study in [Cremonesi et al. 2010] proposes a method using
density-based clustering and clusterwise regression to estimate demands. In [Sutton
and Jordan 2011], the authors propose a method to use Bayesian inference for esti-
mation of the demand in the system. By utilizing MCMC to sample from the posterior
distribution, this method proves to be robust to missing data. [Cremonesi and San-
sottera 2012] proposes an algorithm to estimate the service demands in presence of
system updates and changes. A time-based linear clustering algorithm is employed to
identify different linear clusters for each service demands. In [Ross et al. 2007], an
estimation of arrival and service rate approach based on queue length is presented
by defining a Ornstein-Uhlenbeck diffusion to achieve the approximation. Unlike our
method, [Ross et al. 2007] is only for open queueing networks. Other literature with
Bayesian inference on open models include the works of [Armero et al. 1994] and [In-
sua et al. 1998]. Compared to the above methods, our approach is the first one to apply
MCMC to closed models with multi-class workloads.

Optimization methods. The work in [Liu et al. 2006] proposes an approach to use
quadratic programming to estimate the service demands. End-to-end response time as
well as utilization of the nodes and system throughput are required inputs. Both [Wu
and Woodside 2008] and [Zheng et al. 2008] use an Extended Kalman Filter for param-
eter tracking. In [Wu and Woodside 2008], a calibration framework based on fixed test
configurations is proposed. [Zheng et al. 2008] applies tracking filters on time-varying
systems. [Zheng et al. 2008] extends [Zheng et al. 2005] and adapts the Kalman filter
to estimate the performance model parameters based on CPU utilization and response
time. In [Kalbasi et al. 2012], a novel iterative approach based on linear programming
is proposed for multi-tier systems. An extensive evaluation demonstrates the effective-
ness of the method. Compared to these works, the Gibbs algorithm allows us to include
prior information on the parameters and with only queue-length data.

Finally, the work in [Spinner et al. 2015] presents a detailed exploration of the state-
of-the-art in resource demand estimation technologies. The accuracy of the algorithms

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:24

is compared by analyzing them in the same environment and varying the parameters
of the test environment to see the sensitivity of the methods estimates.

8. CONCLUSION
In this paper, we have presented a service demand estimation methodology for closed
multi-class queueing networks based on Gibbs sampling. Differently from existing ap-
proaches, our method requires only queue length data, which is easy to collect in real
systems. The challenge is to evaluate a likelihood function of the queue length data
due to the difficulty of computing the normalizing constant in closed models. To tackle
this problem, we have proposed a new normalizing constant approximation method
based on Taylor expansion for use in conjunction with Gibbs sampling. Through nu-
merical validation and a case study, we have shown the effectiveness of the proposed
algorithm compared with other Markov Chain Monte Carlo methods.

Acknowledgement
The research leading to these results has received funding from the European Commission as
part of the DICE action (H2020-644869).

REFERENCES
C. Armero, and MJ. Bayarri. 1994. Bayesian prediction in M/M/1 queues. Queueing Systems 15, 1 (1975),

401–417.
S. Asmussen, and P. W. Glynn. 2007. Stochastic simulation: Algorithms and analysis.
F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. 1975. Open, Closed, and Mixed Networks of

Queues with Different Classes of Customers. JACM 22, 2 (1975), 248–260.
G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. 2006. Queueing Networks and Markov Chains. 2nd ed.,

John Wiley and Sons.
S. Brooks, A. Gelman, G. Jones, X. Meng. 2011. Handbook of Markov Chain Monte Carlo. CRC press.
G. Casale. 2006. An Efficient Algorithm for the Exact Analysis of Multiclass Queueing Networks with Large

Population Sizes. In Proc. of joint ACM SIGMETRICS/IFIP Performance. ACM Press, 169–180.
G. Casale, P. Cremonesi, and R. Turrin. 2008. Robust Workload Estimation in Queueing Network Perfor-

mance Models. In Proc. of Euromicro PDP. 183–187.
P. Cremonesi, K. Dhyani, and A. Sansottera. 2010. Service time estimation with a refinement enhanced

hybrid clustering algorithm. Proc. of ASMTA (2010), 291–305.
P. Cremonesi and A. Sansottera. 2012. Indirect Estimation of Service Demands in the Presence of Structural

Changes. In Proc. of QEST. IEEE, 249–259.
P. Cremonesi, P. J. Schweitzer, and G. Serazzi. 2002. A Unifying Framework for the Approximate Solution

of Closed Multiclass Queuing Networks. IEEE Trans. on Computers 51 (2002), 1423–1434.
P. Damlen, J. C. Wakefield, and S. G. Walker. 1999. Gibbs sampling for Bayesian nonconjugate and hierar-

chical models by using auxiliary variables. Journal of the Royal Statistical Society, B 61 (1999), 331–344.
E. de Sousa e Silva and R. R. Muntz. 1988. Simple Relationships Among Moments of Queue Lengths in

Product Form Queueing Networks. IEEE Trans. on Computers 37, 9 (1988), 1125–1129.
S. Geman and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6 (1984), 721–741.
A. Gelman, J. Carlin, H. Stern, D. Rubin. 2014. Bayesian data analysis. Taylor & Francis.
W. Hastings. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika

57, 1 (1970), 97–109.
D. R. Insua, M. Wiper, and F. Ruggeri. 1998. Bayesian analysis of M/Er/1 and M/H k/1 queues. Queueing

Systems 30, 3 (1998), 289–308.
G. Koole, and A. Mandelbaum. 2012. Queueing models of call centers: An introduction. Annals of Operations

Research 113, 1 (2002), 41–59.
A. Kalbasi, D. Krishnamurthy, J. Rolia, and S. Dawson. 2012. DEC: Service Demand Estimation with Con-

fidence. IEEE Trans. on Software Engineering 38, 3 (2012), 561–578.
A. Kalbasi, D. Krishnamurthy, J. Rolia, and M. Richter. 2011. MODE: mix driven on-line resource demand

estimation. In Proc. of CNSM. International Federation for Information Processing, 1–9.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

00:25

C. Knessl and C. Tier. 1992. Asymptotic Expansions for Large Closed Queueing Networks with Multiple Job
Classes. IEEE Trans. on Computers 41, 4 (1992), 480–488.

S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson. 2009. Estimating service resource consumption
from response time measurements. In Proc. of Valuetools. ACM, 48.

S. Lam. 1982. Dynamic scaling and growth behavior of queuing network normalization constants. JACM 29,
2 (1982), 492–513.

Y. Liu, I. Gorton, and A. Fekete. 2005. Design-level performance prediction of component-based applications.
IEEE Trans. on Software Engineering 31, 11 (2005), 928–941.

Z. Liu, L. Wynter, C. Xia, and F. Zhang. 2006. Parameter inference of queueing models for IT systems using
end-to-end measurements. Performance Evaluation 63, 1 (2006), 36–60.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. The journal of chemical physics 21, 6 (1953), 1087–1092.

T. Minka. 2000. Estimating a Dirichlet distribution. (2000).
J. Moschetta and G. Casale. 2012. OFBench: an Enterprise Application Benchmark for Cloud Resource

Management Studies. In Proc. of SYNASC. IEEE, 393–399.
R. Neal. 2003. Slice sampling. Annals of statistics (2003), 705–741.
G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. 2008. Cpu demand for web serving: Measurement

analysis and dynamic estimation. Performance Evaluation 65, 6 (2008), 531–553.
J. Perez, S. Pacheco-Sanchez, and G. Casale. 2013. An Offline Demand Estimation Method for Multi-

threaded Applications. In Proc. of MASCOTS. IEEE Computer Society, Washington, DC, USA, 21–30.
Apache OFBiz project. 2014. http://ofbiz.apache.org.
J. Rolia and V. Vetland. 1995. Parameter estimation for performance models of distributed application sys-

tems. In Proc. of CASCON. IBM Press, 54.
J. Rolia and V. Vetland. 1998. Correlating resource demand information with ARM data for application

services. In Proc. of WOSP. ACM, 219–230.
J. Rolia and K. Sevcik. 1995. The Method of Layers. IEEE Trans. on Soft. Eng. 21, 8 (Aug. 1995), 689–700.
J. Ross, T. Taimre, and P. Pollett. 2007. Estimation for queues from queue length data. Queueing Systems

55, 2 (2007), 131–138.
K. Ross, D. Tsang, and J. Wang. 1994. Monte Carlo summation and integration applied to multiclass queuing

networks. JACM 41, 6 (1994), 1110–1135.
K. Ross and J. Wang. 1997. Implementation of Monte Carlo integration for the analysis of product-form

queueing networks. Performance Evaluation 29, 4 (1997), 273–292.
A. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan, and G. Voelker. 2008. Automatic request

categorization in internet services. Performance Evaluation Review 36, 2 (2008), 16–25.
S. Spinner, G. Casale, F. Brosig, and S. Kounev. 2015. Evaluating Approaches to Resource Demand Estima-

tion. Performance Evaluation. Performance Evaluation 92, 10(2015), 51–71.
C. Sutton and M. Jordan. 2011. Bayesian inference for queueing networks and modeling of internet services.

The Annals of Applied Statistics 5, 1 (2011), 254–282.
B. Tuffin. 1997. Variance reduction applied to product form multiclass queuing networks. ACM Trans. on

Modeling and Computer Simulation 7, 4 (1997), 478–500.
B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N. Tantawi. 2005. An analytical model for

multi-tier internet services and its applications. In Proc. of ACM SIGMETRICS. ACM Press, 291–302.
W. Wang, and G. Casale. 2013. Bayesian service demand estimation using gibbs sampling. In Proc. of IEEE

MASCOTS. IEEE Press, 567–576.
X. Wu and M. Woodside. 2008. A calibration framework for capturing and calibrating software performance

models. Computer Performance Engineering (2008), 32–47.
Q. Zhang, L. Cherkasova, and E. Smirni. 2007. A Regression-Based Analytic Model for Dynamic Resource

Provisioning of Multi-Tier Applications. In Proc. of ICAC. 27–27.
T. Zheng, C. Woodside, and M. Litoiu. 2008. Performance model estimation and tracking using optimal

filters. IEEE Trans. on Software Engineering 34, 3 (2008), 391–406.
T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai. 2005. Tracking time-varying parameters in software

systems with extended Kalman filters. In Proc. of CASCON. IBM Press, 334–345.

ACM Journal Name, Vol. 0, No. 0, Article 00, Publication date: 0000.

