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Abstract 

Gifford and others proposed an effect typing discipline to de- 
limit the scope of computational effects within a program, 
while Moggi and others proposed monads for much the same 
purpose. Here we marry effects to monads, uniting two pre- 
viously separate lines of research. In particular, we show 
that the type, region, and effect system of Talpin and Jou- 
velot carries over directly to an analogous system for mon- 
ads, including a type and effect reconstruction algorithm. 
The same technique should allow one to transpose any ef- 
fect systems into a corresponding monad system. 

1 Introduction 

Computational effects, such as state or continuations, are 
powerful medicine. If taken as directed they may cure a 
nasty bug, but one must be wary of the side effects. 

For this reason, many researchers in computing seek to 
exploit the benefits of computational effects while delimiting 
their scope. Two such lines of research are the effect typing 
discipline, proposed by Gifford and Lucassen (GL86, Luc87], 
and pursued by Talpin and Jouvelot [TJ92, TJ94] among 
others, and the use of monads, proposed by Moggi [Mog89, 
MogSl], and pursued by myself [WadSO, Wad92, Wad93, 
Wad951 among others. Effect systems are typically found in 
strict languages, such as FX [GJLS87] (a variant of Lisp), 
while monads are typically found in lazy languages, such as 
Haskell (PH97]. 

In my pursuit of monads, I wrote the following: 

. . the use of monads is similar to the use of effect 
systems . . . An intriguing question is whether a 
similar form of type inference could apply to a 
language based on monads. [Wad921 

Half a decade later, I can answer that question in the affir- 
mative. Goodness knows why it took so long, because the 
correspondence between effects and monads turns out to be 
surprisingly close. 

The marriage of effects and monads Recall that a 
monad language introduces a type T T to represent a com- 
putation that yields a value of type r and may have side 
effects. If the call-b 

P 
-value translation of r is rt, then we 

have that (r -+ r’) , where + represents a function that 

may have side effects, is equal to rt + T r’+, where -+ rep- 
resents a pure function with no side effects. 

Recall also that an effect system labels each function with 
its possible effects, so a function type is now written r 4 r’, 
indicating a function that may have effects delimited by 0. 

The innovation of this paper is to marry effects to mon- 
ads, writing Tar for a computation that yields a value in 
r and may have effects delimited by (T. Now we have that 
(T 4 T’)+ is rt -+ TV r’+. 

The monad translation offers insight into the structure of 
the original effect system. In the original system, variables 
and lambda abstractions are labelled with the empty effect, 
and applications are labeled with the union of three effects 
(the effects of evaluating the function, the argument, and 
the function body). In the monad system, effects appear in 
just two places: the ‘unit’ of the monad, which is labeled 
with the empty effect; and the ‘bind’ of the monad, which 
is labeled with the union of two effects. The translation of 
variables and lambda abstractions introduces ‘unit’, hence 
they are labeled with an empty effect; and the translation 
of application introduces two occurrences of ‘bind’, hence it 
is labeled with a union of three effects (each U symbol in 
D U cr’ U c” coming from one ‘bind’). 

Transposing effects to monads Several effect systems 
have been proposed, carrying more or less type informa- 
tion, and dealing with differing computational effects such 
as state or continuations [GL86, Luc87, JG89, TJ92, TJ94]. 
Java contains a simple effect system, without effect vari- 
ables, where each method is labeled with the exceptions it 
might raise [GJSQG]. 

For concreteness, this paper works with the type, region, 
and effect system proposed by Talpin and Jouvelot [TJ92], 
where effects indicate which regions of store are initialised, 
read, or written. All of Talpin and Jouvelot’s results trans- 
pose in a straightforward way to a monad formulation. It 
seems clear that other effect systems can be transposed to 
monads in a similar way. For instance, Talpin and Jou- 
velot later proposed a variant system [TJ94], and Tofte and 
Bikedal [TB98] propose a system for analysing memory al- 
location, and it appear either of these might work equally 
well as a basis for a monad formulation. 

The system used in [TJSP] allows many effect variables 
to appear in a union and maintains sets of constraints on 
effects, while the systems used in [TJ94] and (TB98] re- 
quires exactly one effect variable to appear in each union 
and requires no constraints other than those imposed by 
unification. Either form of bookkeeping appears to trans- 
pose readily to the monad setting. 
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Applications In Glasgow Haskell, the monad ST is used 
to represent computational effects on state [PWSS, LP94]. 
All effects on state are lumped into a single monad. There 
is no way to distinguish an operation that reads the store 
from one that writes the store, or to distinguish operations 
that write two distinct regions of the store (and hence can- 
not interfere with each other). The type, region, and effect 
system of Talpin and Jouvelot addresses precisely this prob- 
lem, and the system described here could be applied directly 
to augment the ST monad with effects. 

Similarly, in Haskell the monad IO is used to represent 
all computational effects that perform input/output [PW93, 
PH97]. In the Glasgow and Chalmers dialects of Haskell, 
this includes calls of procedures written in other languages 
[PW93]. Again, all effects are lumped into a single monad, 
and again a variant of the system described here could be 
used to augment the IO monad with effects. 

Monads labeled with effects can also be applied to op- 
timizing strict languages such as Standard ML. Whereas 
Haskell requires the user to explicitly introduce monads, 
Standard ML can be regarded as implicitly introducing a 
monad everywhere, via Moggi’s translation from call-by- 
value lambda calculus into a monadic metalanguage. The 
implicit monad of Standard ML incorporates all side effects, 
including operations on references and input-output, much 
like a combination of Haskell’s ST and IO monads. As be- 
fore, labeling the monad with effects can be used to delimit 
the scope of effects. In particular, where the monad is la- 
beled with the empty effect, the corresponding term is pure 
and additional optimizations may be applied. Or when the 
monad reads but does not write the store, certain operations 
may be commuted. This technique has been applied to inter- 
mediate languages for Standard ML compilers by Tolmach 
[To1981 and by Benton, Kennedy, and Russel [BKR98]. Our 
work can be regarded as complementary to theirs: we pro- 
vide the theory and they provide the practice. 

Summary of results Talpin and Jouvelot present (i) a 
type system with effects, (ii) a semantics, with a proof that 
types and effects are consistent with the semantics (iii) a 
type and effect reconstruction algorithm, with a proof that it 
is sound and complete. We review each of these results, fol- 
lowing it by the corresponding result for the monad system. 
We also recall the call-by-value translation from lambda cal- 
culus into a monad language, and show that this translation 
preserves (i) types, (ii) semantics, and (iii) the principal 
types derived by the reconstruction algorithms. 

Outline The remainder of this paper is organised as fol- 
lows. Section 2 introduces the effect type system and the 
corresponding type system for monads, and introduces the 
monad translation and shows that it preserves types. Sec- 
tion 3 presents an operational semantics for effects and a 
corresponding semantics for monads, shows each semantics 
sound with respect to types, and shows that the monad 
translation preserves semantics. Section 4 presents a type, 
region, and effect reconstruction algorithm for effects and a 
corresponding algorithm for monad, shows each algorithm is 
sound and complete, and shows that the monad translation 
relates the two algorithms. Section 5 concludes. 

By and large, we stick to the notation and formulation 
of Talpin and Jouvelot [TJ92]. (Along the way, we correct 
a few infelicities in their paper.) One difference from Talpin 
and Jouvelot is that they follow the classic work of Tofte 
[Tof87] and use an operational semantics based on normal- 
istation (‘big step’), while we follow the updated approach of 
Wright and Felleisen [WF94] and use an operational seman- 
tics based on reduction (‘small step’). As noted by Wright 
and Felleisen, this leads to a simpler proof: instead of a com- 
plex relation between values and types (specified as a great- 
est fixpoint), we can use the existing type relation (specified 
by structural induction). 

2 Types 

This section introduces two languages and their type sys- 
tems, and the translation between them. The first language, 
Efect, is a call-by-value lambda calculus together with op- 
erations on a store, with a type system that includes re- 
gions and effects. The second language, Monad, is based on 
Moggi’s monad metalanguage together with the same store 
operations, and with a type system augmented by the same 
regions and effects. We extend the usual monad translation 
to include effects, and show that it preserves typings. 

The monad translation we use is standard. It was in- 
troduced by Moggi [Mog89, MogQl], and has been further 
studied by Hatcliff and Danvy [HD94] and Sabry and Wadler 
[SW97]. Our reduction semantics for the monad is new. It 
most closely resembles the work of Hatcliff and Danvy, but 
they did not deal with state and therefore failed to distin- 
guish between pure reductions and those with computational 
effects, as we do here. 

2.1 Types for Effect 
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The language Effect and its type system is shown in Figure 1. 
There are two syntactic classes, values and expressions. A 
value is eit,her an identifier, a lambda abstraction, or a re- 
cursive function binding. An expression is either a value, an 
application, a let binding, or one of three primitives oper- 
ations on the store, which allocate a new reference, get the 
value of a reference, and set a reference to a new value. 

The results are all obtained by straightforward applica- 
tion of well-known techniques, and so we don’t bother to 
give the proofs in detail. The lack of interest in the proofs 
is part of our point: results for effect systems transpose to 
monads without much effort. 

Value polymorphism Some care is required when mix- 
ing computational effects with polymorphic types, lest 
soundness be forfeit. One approach, due Tofte [Tot871 and 
used in the original SML [MTHSO], introduces ‘impera- 
tive’ type variables in the presence of computational effects. 
Numerous other approaches have been broached, including 
some based on effects [wri92, TJ94]. However, by far the 
simplest is value polymorphism. This approach, noted by 
Tofte [Tof87], promoted by Wright [Wri95], and used in the 
revised SML [MTHM97], restricts polymorphism to values, 
a subclass of expressions that can have no computational ef- 
fects. Talpin and Jouvelot [TJSP] used value polymorphism, 
and we do so here. 

There is potentially a problem here. Moggi’s original 
monad translation was monomorphic, and it was not en- 
tirely obvious how to extend it to polymorphism. I recall a 
conversation several years ago between Moggi, John Hughes, 
and myself where we attempted to add polymorphism to the 
translation and failed. However, we did not consider value 
polymorphism, which was less popular back then. 

One contribution of this paper is to extend the monad 
translation to include value polymorphism. This extension 
is presented for the monad system with effects, but applies 
equally well when effects are absent. In retrospect, the ex- 
tension seems obvious, since the monad translation handles 
values specially. One might say that value polymorphism 
fits monads to a ‘T’. 
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Figure 1: The effect calculus, Eflect 

A region is either a region variable or a region constant. 
An effect is either the empty effect, the union of two effects, 
or one of three effects corresponding to the three operations 
on the store, each of which is labelled with the region of 
store affected. Equality on effects is modulo the assumption 
that U is associative, commutative, idempotent, and has 8 
as a unit. We write u > u’ when u = u U u’. 

A type is either a type variable, a base type, a function 
type (labelled with the effect that occurs when the func- 
tion is applied), a reference type (labelled with the region in 
which the reference is located). 

A type environment maps identifiers to types. We write 
&, for the environment with x removed from its domain, 
{x I+ T} for the environment that maps z to r, and E U E’ 

for the union of two maps with disjoint domains. (Similar 
notation will be used later for stores and substitutions.) 

A typing & keff e : r ! u indicates that expression e yields 
a value of type 7 and has effect delimited by u, where the 
type environment & maps the free identifiers of e to types. 

in the rule for abstraction, (abs), the effect is empty be- 
cause evaluation immediately returns the function, with no 
side effects; while the effect on the function arrow is the 
same as the effect for the function body, because applying 
the function will have the same side effects as evaluating 
the body. In the rule for application, (app), the effect is the 
union of the effects for evaluating the function, evaluating 
the argument, and applying the function. 

There are two rules for let binding, a polymorphic rule 
for binding values (let), and a non-polymorphic rule other- 
wise (ilet). Following Talpin and Jouvelot, we use substi- 
tion rather than type schemes to indicate polymorphism. 
The equivalence of the two forms of specification is well 
known (e.g., see Mitchell’s text [Mit96]). The notation 
e[v/x] stands for the substitution of value v for identifier 
x in expression e, with renaming to avoid capture of bound 
identifiers. Of course, actually performing the substitution 
is far too expensive when it comes to type reconstruction, 
and Talpin and Jouvelot’s algorithm uses a form of type 
scheme, as one would expect. Note that if & t- v : T ! u then 
u must be 0. 

Rule (does) permits a form of subeffecting. Effects indi- 
cate an upper bound on the side effects a term may have, 
and so may always be made larger. The rules for the three 
primitive operations, (new), (get), and (set), add the cor- 
responding effect to the effects for their arguments. The 
region in the effect matches the region in the reference type. 
The (new) rule may allocate a new reference in any region. 

2.2 Types for Monad 

Whereas Eflect is a call-by-value language, with side effects 
occuring when any expression is evaluated, Monad is a call- 
by-name (or call-by-need) language, with side effects occur- 
ing only at top-level. All computations with side effects are 
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Figure 2: The monad language, Monad 

represented by the new monad type. 
We use call-by-name for monads to stress the rela- 

tion to Haskell. Like Plotkin’s CPS translation, Moggi’s 
monad translation is indifferent: it remains valid whether 
the monad language uses call-by-value or call-by-name 
[Plo75, HD94, SW9’7]. 

The language Monad and its type system is shown in 
Figure 2. The distinction between values and expressions is 
no longer relevant, since evaluation has no side effects. Ex- 
pressions are extended with two new forms for manipulating 
monads (we will describe these shortly). Regions and effects 
are as before. The function type r 4 7’ of before is here 
broken into the pure function type r --t r’, and the monad 
type TO r, representing a computation that yields a value of 
type r and has effects delimited by u. 

The monad unit <e> denotes the computation that im- 
mediately returns the value of e, with no effects. Hence in 
(unit) the effect is empty. The monad bind let z + e in e’ 
denotes the computation that first performs computation 
e, binds x to the result, and then performs computation e’. 
Hence in (bind) the effect is the union of the effects of its two 
subcomputations. (The forms <e> and let z (r e in e’ are 
written in Haskell as retrune and e >>= Xx. e’, respectively.) 

Ordinary binding let x = e in e’ is distinct from monad 
bind. As shown in rule (let), it corresponds to polymor- 
phism. Since expressions have no side effects, there is no 
need to restrict polymorphism to values. The remaining 
rules are straightforward adjustments of the previous forms. 
The three primitive operations, since they involve computa- 
tional effects, have monad types. 

2.3 The translation 

The translation from Effect to Monad is shown in Figure 3. 
This is just the usual typed call-by-value monad translation. 
We write rt for the translation on types, vt for the transla- 

tion on values, e* for the translation on expressions, and Et 
for the translation on type environments. 

As is well known, the monad translation preserves typ- 
ing, a property that continues hold for our systems with 
effects. 

Proposition 2.1 (nanslation preserves types) 

The proof is by induction on the structure of type deriva- 
tions. For example, the translation of variables and lambda 
abstractions introduces ‘unit’, hence they are labeled with 
an empty effect; and the translation of application intro- 
duces two occurrences of ‘bind’, hence it is labeled with a 
union of three effects (each U symbol in o U u’ U u” coming 
from one ‘bind’). 

The translation of let works out neatly thanks to the 
value polymorphism restriction. Whereas the translation of 
an expression is a monad, and so must be bound with the 
non-polymorphic monad bind, the translation of a value is 
not a monad, and can safely be bound with the polymorphic 
let. 

The figure also shows the grammar of expressions and 
types in Monad that are in the image of the translation 
from values, expressions, and types in Effect. In the im- 
age, application always has values for function and the ar- 
gument, ordinary let always binds to a value, and monad 
unit always contains a value. This explains the indifference 
property alluded to earlier: since functions are applied only 
to values, call-by-value and call-by-name agree in the image 
of the translation. 
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Figure 3: Translation from Effect to Monad 

3 Semantics 

This section presents operational semantics of the two lan- 
guages. The reduction system for Eflect is standard, save 
for instrumentation to trace operations on the store, which 
is used to demonstrate consistency between semantics and 
effects. The reduction system for Monad appear to be new, 
even without the instrumentation. It resembles that of Hat- 
cliff and Danvy [HD94], but differs in distinguishing two 
sorts of reductions, those that may have side effects and 
those that do not. For both effects and monads, we show 
that the type and effect system is sound, modifying the re- 
sults of Wright and Felleisen [WF94] to take take effects 
and monads into account. We also show that the transla- 
tion preserves semantics, in that it preserves instrumented 
reductions. 

3.1 Semantics for Effect 

The operational semantics for Effect are shown in Figure 4. 
Locations E are a designated subset of the variables. By 
convention, a location is never used as the bound variable 
in a lambda or let expression. A store s maps locations 
to values. A trace f is the semantic equivalent of an effect, 
where regions are replaced by locations. The notation sl U 

(1 e V} stands for the store that maps location 1 to value v 
and otherwise behaves like store s (by convention, s does not 
have 1 in its domain). An expression e is closed with respect 
to a store s if the only free variables in e are locations in 
s, that is, if fv(e) E dam(s). We restrict our attention to 
reduction states s,e where e is closed with respect to s. A 
single reduction step is written s, e -&,=.R s’, e’, where s, e 

is the state before the step, f is a trace of the effects of the 
step, and s’, e’ is the state after the step. 

Rule (beta) specifies function application; the language 
Eflect is call-by-value as the argument must be a value for 
the rule to apply. The rule leaves the store unchanged and 
is labeled with an empty effect. Rules (rep) and (let) are 
similar. Rules (new), (get), and (set) perform actions on 
the store and have corresponding effects. Rule (app0) allows 
reduction of the first part of an application; and once it 
is reduced to a value, rule (app1) allows reduction of the 
second part; eventually either rule (beta) or (ret) will apply. 
The other numbered rules are similar. Finally, rules (step), 
~;~~J~ean~~) specify ---ft as the reflexive and transitive 

(Wright and Felleisen, among others, use evaluation con- 
texts as a concise notation that achieves the same effect as 
the numbered rules here. We’ll see why we don’t use con- 
texts here in the next subsection.) 

We need to relate stores to type environments, and traces 
to effects. Write & keff s if dam(s) = dom(&) and & keff 
s(Z) : E(1) for each 1 E dam(s). Write & l-,~ f ! u if 

l when init & f then E(E) = ref, T and init C u, 

l when read(l) C f then &(I) = ref, 7 and read(p) c O, 

l when write(l) G f then E(l) = refp 7 and write(p) C 
u. 

Reductions preserve types and are consistent with effects. 

Proposition 3.1 (Subject reduction) If & l-eff s and & Feff 

e : T ! o and s, e Lee s’, e’ then there exists a E’ > & such 
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Figure 4: Semantics for Effect 

The proof is by case analysis on the reduction step. 
As noted by Wright and Felleisen [WF94], for type 

soundness one also wants to prove a syntactic equivalent 
of Milner’s slogan ‘well typed expressions cannot go wrong’. 
An expression e is faulty if it contains a subexpression in 
one of the following forms: 

v e, where 21 is a location, 
get v, where v is not a location, 

set u of, where u is not a location. 

An evaluation state s, e is stuck if there is no f, s’, e’ such 

that s, e Ae~ s’,e’, and if e is not a value. Evaluation 
becomes stuck only for faulty expressions, while well-typed 
expressions are never faulty. 

Proposition 3.2 (Uniform evaluation) If e is closed over 

s and s, e is stuck, then e is faulty. 

Proposition 3.3 [Well-typed expressions are not faulty) If 
& Eeff e : 7 ! 6, then e is not faulty. 

The first proof is by induction over the structure of e, and 
the second by case analysis of the definition of faulty. 

It follows that evaluation of well-typed terms never gets 
stuck. Write s, e +& . If there is an infinite reduction 

Jo fl f2 
s, e ----+df sl, el --beff 92, e2 -+eff . . . 

with f = IJ f;. We have the following corollary. 
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Proposition 3.4 (Type soundness) If & l-e~ s and & l-e~ 
e : r ! u then either 

l s,e& and&l-,tf f !a, or 

l s,~~~ffs’,vand&t,tfs’and&t,t~v:T!0and 
&t-&f !u. 

3.2 Semantics for Monad 

Our reduction system is specialised to the case where the 
top-level expression has a monad type. Evaluation is call- 
by-name, and proceeds only to the point where the top-level 
expression has reduced to a monad unit, forcing all opera- 
tions on the store to occur. This corresponds to Haskell, 
where the top-level expression is a monad over the trivial 
type, IO 0, and is executed for its side effects rather than 
the value retured. 

The operational semantics for Monad are shown in Fig- 
ure 5. Locations and traces are as before, but a store now 
maps locations to expressions. Reductions divide into two 
sorts. Pure reductions do not access the store and have no 
effect, and are written e +mOn e’. Monadic reductions 
are executed at top-level, may access the store and have an 

effect, and are written s, e f’tnon s, e’. 
Rule (beta) specifies function application; the language 

Monad is call-by-name as the argument need not be a 



1 E Ref & Var 
s E Store = Ref --t MonExp 

(beta) 

(red 

(W 
(bind) 

(new) 

(Xx. e’)e 

recx.e 

let x = e in e’ 

s, let z * <e> in e’ 

s, new e 

--+1n011 e[x/e’j 

-+ man ret x. e[x/e] 

---hlOII 4x/e’] 

?::, 
s, ek/e’l init 1) 
s~{11+e},<Z> freshl@‘s 

r.ad 1) 
2 IllOU sl U {I I-) e}, <e> 

writ*(l) 
-+ *non sl U (1 ++ e’}, <e’> 

e --+ e’ 
(w4 11 I I, ee ---+ee 

slU{1*e},get1 

sl U (1 +i e}, set 1 e’ 

(pure-step) 
e -+ e’ 
e---Se , (pure-ban) e - t - $- e” 

e --+ e’ f I 
(Pure) 

s, e ---hrlolI s’, e 
0 

s, e ---+II~oll s, e’ 
(bindO) 

s, let 2 + e in e” f’nloIl s’, let 2 X= e’ in e” 

f 
s, e -+IWII s’, e’ e --+ e’ e + e’ 

(newU) f s, new e ---+olon s’, new e’ 
WO) 0 

s, get e +nI~n s, get e’ 
(set@ 0 , ,I s, set e e” ---+tnoIl s, set e e 

f 
s, e ---+1~0t~ s’, e’ 

(step) f 
s, e --+Itloll s’, e’ 

f f’ 
( refi) (tran) 

s, e --+hIlon s’, e’ s’, e’ --+~IIo,I s”, e” 
0 

s, e -hloIl s, e fUf’ 
S, e +mon S”, d’ 

Figure 5: Semantics for Monad 

value for the rule to apply. The rule is pure and makes 
no reference to the store. Rules (ret) and (let) are simi- 
lar. Rule (bind) simplifies a monadic bind to a monadic 
unit; it leaves the store unchanged and is labeled with an 
empty effect. (But it is not a pure operation: this prevents 
reduction of ill-typed and nonsensical expressions such as 
(let 2 -G= <(Xy. y)> in z)z, where the monadic expression is 
not at top-level.) Rules (new), (get), and (set) perform ac- 
tions on the store and have corresponding effects. 

Rule (app0) allows reduction of the function part of an 
application; eventually it will reduce to a lambda and rule 
(beta) will apply. Since Monad is call-by-name, the argu- 
ment of an application is not reduced. Rule (pure) allows 
pure reductions at top-level. (This permits reduction of sen- 
sible expressions such as (Xy. let z e <y> in x)z where an 
application yields a monadic expression at top-level.) Rule 
(bindO) allows reduction of the first part of a monad bind; 
eventually it will simplify to monad unit and rule (bind) will 
apply. Rules (getO) and (put0) reduce the location argument 
to an operation on the store. Locations are not monads, SO 
their reductions are pure. Since expressions, not values, are 
placed in the store there is no need to reduce the argument 
of new or the second argument of put. Finally, rules specify 
--tt as the reflexive and transitive closure of red, for both 
pure and monadic versions. 

(One may formulate the above in terms of evaluation 
contexts, but it gets messy. It seems to require three sorts 
of contexts: pure context with pure hole for (appU), monad 
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context with monad hole for (bindO), monad context with 
pure hole for (pure), (getO), and (seto). Hence our eschewal 
of evaluation contexts.) 

The relations E t--tnon s and & t-111o1, f ! B are defined, mu- 
tatus mutandem, as for the effect system. Again, reductions 
preserve types and are consistent with effects. 

Proposition 3.5 (Subject reduction) If & bon s and 

Et- man e : T” T and s, e f\Il,on s’, e’ then there mists a 
E: +I & such that E’ kInoI, s’ and E’ !-man e’ : TV T and 

mon f ! 0. 

Now an expression e is faulty if it contains a subexpres- 
sion in one of the following forms: 

e e’, where e is a location, 
let x e e in e’, where e is a lambda or location, 

get e, where e is a lambda or monad unit, 
set e e’, where e is a lambda or monad unit. 

The other definitions and results carry through mutatus mu- 
tandem. 

Proposition 3.6 (Uniform evaluation) If e is closed over 
s and s,e is stuck, then e is faulty. 

Proposition 3.7 (Well-typed expressions are not faulty) If 
El- man e : 7, then e is not fadty. 

Proposition 3.8 (l$pe soundness) If & l-n,on s and 
t kmon e : T” r then either 



0 E Subst = (Ty Var -+ Type) x (Reg Var + Region) x (EffVar -+ Effect) 

U(a,a’) = {ck e a’} 

U(L,L) = id 

U(cy,~) = if (Y E fv(~) then fail else {a ++ T} 

U(T,Q) = U(cr,r) 

U(T0 4 71) T:, d T;) = let 0 = {G ~-f s’}; e’ = u(e70,e~& e” = u(e’BT1, ele7-:) in e”e’e 

U(ref y 7, ref ++ T’) = let e = (7 ++ 7’); 8’ = u(eT, 0~‘) in e/e 

U(-,-) = fail 

Figure 6: Unification 

K E Constraint = p(EflVar x Efiect) 
p E EfiModel = EffVar-t Effect 

K(0) = id 

K({r E u} U fc) = let p = K(K) in {s H /Lo \ s}c1 

Figure 7: Constraints 

l s, e I’& and E t-1~1~~~ f ! 6, or 

l s, e --%e~ s’, <e’> and & kllloll s’ and & t-111o11 e : r and 
El- mon f ! u. 

reconstruction algorithm from Effect to Monad. Both algo- 
rithms are sound and complete, and typings yielded by the 
two algorithms are related by the translation between the 
two languages. 

3.3 The translation 4.1 Unification 

As is well known, the monad translation preserves seman- 
tics, a property that continues to hold for our instrumented 
semantics. A key to the correspondence is that if a term in 
Eflect is translated to Monad then the resulting term has 
subterms of the form e’ e, let x = e in e’ or <e> only where 
e is a value. 

Ifs is a store in Efect, we write st for the corresponding 
store in Monad, with s+(Z) = (s(l))+ for each 1 E dam(s). 

Proposition 3.9 (The translation preserves semantics) If 
s,e ftte~ s’, e’ then st,e’ _f,,lnon s’+,e’*. 

The proof is by induction over reduction sequences. 

Substitutions and the unification algorithm are shown in 
Figure 6. A substitution maps type variables to types, re- 
gion variables to regions, and effect variables to effects. We 
write id for the identity substitution. 

A central trick in the reconstruction algorithm is to en- 
sure that all effects and regions are represented by variables, 
to simplify unification. We call a type or substitution nor- 
malised if the only regions and effects it contains are vari- 
ables. (One infelicity of Talpin and Jouvelot is that they 
neglect to mention which types and substitutions are nor- 
malised in the statement of their theorems.) 

The unification algorithm U(T, 7’) takes two normalised 
types and returns a normalised substitution 0. 

Proposition 4.1 (Unification) 
4 Type reconstruction 

This section presents type, region, and effect reconstruction 
algorithms for the two languages. The reconstruction algo- 
rithm for Effect, due to Talpin and Jouvelot, closely resem- 
bles Milner’s original type reconstruction algorithm (Mi178]. 
Effects are handled by accumulating a set of constraints, 
similar to the handling of subtypes in Mitchell’s inference 
algorithm [MitSl]. It is straightforward to transpose the 

l (Sound) If 8 = U(r, r’) then 8r = Or’ (with 8, r, r’ 
normal&d). 

l (Complete) If 9r = 13r1 then there exist 8’ and .Q” such 
that 0’ = U(T,T’) and 0 = 0”tJ’ (with T, r’, 8’ nor- 
malised). 

The proof is standard, as normalisation eliminates any po- 
tentially tricky cases. 
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w E Var = QVar + Reg Var + EffVar 
F E T&heme P ::= VWl,. . . ,Wn. (T,K) 
& E QEnv = Id + TyScheme 

I&(&, ret 5. Xx’. e) 

Gff (E, e 4 

Z,ff(&, let 2 = 2, in e) 

Z,fl(&, let x = e in e’) 

Gff (E, =ew e) 

Aff 6% get e) 

I,&&, set e e’) 

= let VWI , . . . ,Wk. (7, K) = &(x) 

neww:,...,wj, 
e={wl l+wW;,...,Wn~w;} 

in (id, &,8, On) 

= let new (Y, s 
(e,~, 0,~) = Zeff (8, U {x * 4, e) 

in (e, ea 4 ~,0, KU {c 2 c}) 

= let new Q, Q’, c 

64 7, U, 4 = zeff (E3c,21 U {x t-f a 3 a’, 2’ +b a}, e) 
8’ = u(ed, T) 

in (e/e, e’ela 4 CK’), 0, e+ u {eq 7 ~7))) 

= let (0,7,0, n) = Z&(&,e) 
(et, T’, d, K’) = &(BE, e’) 
new (Y,C 
e/f = u(e’7,7’ -3 0) 

in (e”e’e, e/j@, e”(e’u u U’ u c), eyeh u K')) 
= let (e, 7,0, K) = Z,ff(E, W) 

w1,. . . , Wn = fvtT) u TV \ fv(eq 

(et, T’,u, 14) = zeff (e&, u {X e VW],. . , wn. (7, IE)}, e) 

in (e’e, #, u, K’) 

= let (e,T,u,K) = Z&((E,e) 
(et, Tf, d, d) = Gff (eEz u {Z +t 7}, e) 

in (e'e,T',6ud,~uti) 
= let (e,T,u,K) = Z&(E,e) 

new 7 
in (0, ref 7 7, u U init.(y), K) 

= let (e,T,u,K) = &(E,e) 
new Q, y 
8’ = L/(7, ref y 0) 

in (e/e, eb, u u read(O’y), ek) 

= let (e, r, u, K) = Z,ff(&, e) 
(et, +, 61, d) = Z&M, e) 
new y 
ef’ = u(er, ref 7 T’) 

in (e"e'e, e'J+, e"(e'u u 0' u write(r)), eqeh U K’)) 

Figure 8: Type reconstruction for Effect 

4.2 Constraints 

Constraints and the constraint solution algorithm are shown 
in Figure 7. A set of constraints K is a set of inequations of 
the form c > u, asserting that effect variable c is bounded 
below by effect u. 

Constraints always have solutions. A substitution ~1 tak- 
ing effect variables to effects models a constraint set K, writ- 
ten p + K, if pc > pa for each inequation c > u in IE. (An- 
other infelicity of Talpin and Jouvelot is that they assert 
the solutions are minimal. The solutions are not minimal in 
general, though they may be minimal over the domain of K. 
However, minimality is irrelevant to the remainder of their 

results, or to ours.) 
The constraint solution algorithm K(K) takes a con- 

straint set and returns a model /I. It assumes that effect 
variables on the left hand of constraints in n are distinct, 
which can be achieved by merging the two constraints c 2 o 
and s 1 u’ into the equivalent constraint c > u U CT’. The 
notation u \ s stands for the effect u’ such that u = u’ U c 
and c does not appear in u’. The result of the algorithm is 
independent of the order in which the constraints are visited. 

71 



Ztnoll(E,x) = let VWI,. . . ,wk. (T, K) = E(z) 

in 

Z,,,,, (E, Xx. e) = let 

in 

2,,,,,, (E, ret x. e) = let 

in 

Lo,, (E, let x = e in e’) = let 

in 

21r10r1(E, <e>) = let 

in 

ZInon(&,let x -+ e in e’) = let 

in 

L?,,,,,, (E, new e) = let 

in 

in 

Ztlloll(&, set e e’) = let 

in 

new w;,. . .,w; 
e={wl+-+ww;,...,wnt-+~;} 

(id, er, eK) 

new (Y 
(e, T, K) = 2I11011(&z u {x ct N}, e) 
(e, ecu + 7, K) 

new Q! 
(e, 7, K) = ZI11011(&2 u {X ++ a}, e) 
8' = u(ea, 7-J 
(e's, ejT, efK) 

(e, 7, K) = &,,,,(E, e) 
(e', 4, K') = 7Zn,oll(6E, e’) 
new cr 
8” = U(B’T, 7’ -+ a) 
(effe’e, e/b, e”(ek u d)) 

(e, 7, K) = Z1lO1l(E, e) 
WI,. . . ,Wn = fv(T) u fv(K) \ fv(6E) 

(e’,~‘,~‘)=Z,,,,,l(eE~u{z~V~l ,..., w~.(T,K)},~‘) 

(e/e, +, 14) 

(8, T, K) = Ztlloll(&, e) 
new F 
(6,TF~,~U{s J 0)) 

(B,T, K) = Lx(E, e) 
new a, q 
8’ = U(T, TC (Y) 
(e”,~‘, IF’) = Z,,,,,(E u {X i-+ ek+ e’) 
new cy’, c’ 
6”’ = U(T’, TF’ a’) 
new c” 
(e”‘e”#e, TC” e”‘d, e”‘(e”e’K. U d U {c” g @“O’S U F’})) 

(e, 7, K) = Z,,O,,(E, e) 
new 7,F 
(6, TF ref, 7, IC U {s 7 init(r 

(6, T, K) = L,,,(E, e) 
new CX,~ 
8’ = U(T, ref 7 12) 
new c 
(e/e, TC B’cY, efK u {S 2 read(e’y)}) 

(6, T, 6, K) = Zrlon (E, e) 
(e’, T’, u’, K’) = Loll (BE, e) 
new y 
e” = .U(~T, ref I r’) 
new G 
(effe'e, TC (VT'), tl"(e'~ u K') u {S 7 write(Py)}) 

Figure 9: Type reconstruction for Monad 

4.3 Reconstruction for Effect where each w is a type, region, or effect variable; the scheme 

Type schemes and the reconstruction algorithm for Effect 
is normalised if 7 is normalised. Such a scheme represents 

are shown in Figure 8. Type schemes are introduced to rep- 
all types of the form 6% where 8 + K and the domain of 

resent all possible types associated with a polymorphically 
tI is contained in WI,. . . , wn. Type environments are now 

bound variable, thus avoiding the computationally infeasible 
taken to map identifiers to type schemes; the environment 

use of substitution suggested by a naive reading of the type 
is normalised if all types in it are normalised. 

rule for let. A type scheme has the form Vwl, . . , , wn. (T, K) 
The reconstruction algorithm Z,tf(&, e) takes a nor- 

malised type environment & and an expression e, and re- 
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turns a quadruple (6, r, u, IE), with 6 and r normalised. It 
fails if some unification within it fails. The substitution 6 is 
idempotent, and T, u, and IE are invariant under 8. 

As shown by Talpin and Jouvelot, the reconstruction al- 
gorithm is sound and complete. 

Proposition 4.2 (Qpe reconstruction, Talpin and Jou- 
velot) 

l (Sound) Zf Z,R(&, e) = (6,T,u, K) and /I ,k K then 
@& keff e : ~7 ! w, with E, 6, and r normalised. 

l (Complete) If BE l-eff e : r ! u then Z,ff(&,e) = 
(B’,r’,u’,k) and there exists a substitution 6” such 
that BE = f3”B’E and r = 6”r’ and u > 0”u’ and 
e k 4 with E, 8’ and 7’ normalised. 

The proof for the first part by induction on the structure of 
expressions, and for the second by induction on the structure 
of type derivations. (A fmal infelicity of Talpin and Jouvelot 
is that they skip the case of polymorphic ‘let’ binding, as- 
suming such bindings have been expanded out. Fortunately, 
it is easy to give a proof for these cases, along the lines 
of the standard proof in Mitchell’s text [MitSG] or a later 
proof of Talpin and Jouvelot [TJ94]. Alternatively, it is 
easy to prove a lemma showing that Z,tf(&, let 2 = e in e’) 
and Z,B(&, e’[e/z]) yield the same results, justifying the ex- 
pansion.) 

4.4 Reconstruction for Monad 

The reconstruction algorithm for Monad is shown in Fig- 
ure 8. The unification algorithm, type schemes, and type 
environments are as before, with types for Monad replacing 
types for Effect, mutatus mutandem. Constraints carry over 
without change. 

The reconstruction algorithm Znloll(&,e) takes a type 
environment & and an expression e, and returns a triple 
(6, T, K), or fails if some unification within it fails. The recon- 
struction algorithm is easily transposed to the new setting. 
It has much the same structure before, the largest difference 
being that effects are mentioned only in monad types, and 
effects in types are always represented by variables, so a few 
extra constraints are required. 

It is also easy to transpose the results regarding the al- 
gorithm. 

Proposition 4.3 (Type reconstruction) 

l (Sound) If Znlotl(&,e) = (0, r, K) and p k K. then 
pe& hloll e : pr, with E, 6, and r normalised. 

l (Complete) If t!9& kmoII e : T then I&,,,(&, e) = 
(O’, r’, K’) and there exists a substitution 0” such that 
BE = 6”0’& and 7 = 6”r’ and 0 + IE’, with E, B’, and 
7’ normalised. 

4.5 Translation 

The two reconstruction algorithms yield results that are re- 
lated by the translation. Write K, N IC’ if for all p we have 
p+~ifandonlyifpk~c’. 

Proposition 4.4 (Tbanslation preserves type reconstruc- 
tion) Zf Z&E, e) = (0, 7, u, K) and ZIllorl(Et, e*) = (6’, #, lo’) 
then there exist c and /I such that T’ rt = r’ and 6 = 1-16’ 
andu=pq andtcz&. 

The proof is by induction on the structure of expressions. 

5 Conclusions 

We have verified the conjecture, first broached half a decade 
past, that effect systems can be adapted to monads. We 
have demonstrated this for the specific case of the type, re- 
gion, and effect system of Talpin and Jouvelot, but it seems 
clear that any effect system can be adapted to monads in a 
similar way. 

Here are points for future work. 

Denotational semantics It is straightforward to provide 
semantics for effects and monads in a denotational style. In 
this semantics, the instrumentation can be factored out as 
a separate monad transformer. The factoring uses the well 
known result that if TX is a monad, then so is TA X = 
TX x A, where A is a monoid. In this case, A is taken to 
be the monoid of traces, with identity 0 and operator U. 

Coherent semantics An alternative approach to denota- 
tional semantics might be to eliminate the instrumentation, 
and associate with each effect u a different monad T”. For 
state, one traditionally defines TX = S + X x S where 
the store S is a mapping from locations to values. Here 
one would define T” r = S, -+ X x S” where S, is a store 
restricted to contain only locations in regions p such that 
read(p) is in u, and 5’” is a store restricted to contain only 
locations in regions p such that init or write(p) is in u. 
Corresponding to each effect inclusion u c u’ there should 
be a monad morphism T” -+ T”‘. In order to ensure CO- 

herence in the style of Breazau-Tannen et al. [BCGSSl], 
we should expect transitivity of inclusions to correspond to 
composition of the corresponding morphisms. 

A general theory of effects and monads As hypothe- 
sised by Moggi and as born out by practice, most computa- 
tional effects can be viewed as a monad. Does this provide 
the possibility to formulate a general theory of effects and 
monads, avoiding the need to create a new effect system for 
each new effect? 
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