
The marriage of effects and monads

Philip Wadler
Bell Laboratories, Lucent Technologies

wadler@research.bell-labs.com

Abstract

Gifford and others proposed an effect typing discipline to de-
limit the scope of computational effects within a program,
while Moggi and others proposed monads for much the same
purpose. Here we marry effects to monads, uniting two pre-
viously separate lines of research. In particular, we show
that the type, region, and effect system of Talpin and Jou-
velot carries over directly to an analogous system for mon-
ads, including a type and effect reconstruction algorithm.
The same technique should allow one to transpose any ef-
fect systems into a corresponding monad system.

1 Introduction

Computational effects, such as state or continuations, are
powerful medicine. If taken as directed they may cure a
nasty bug, but one must be wary of the side effects.

For this reason, many researchers in computing seek to
exploit the benefits of computational effects while delimiting
their scope. Two such lines of research are the effect typing
discipline, proposed by Gifford and Lucassen (GL86, Luc87],
and pursued by Talpin and Jouvelot [TJ92, TJ94] among
others, and the use of monads, proposed by Moggi [Mog89,
MogSl], and pursued by myself [WadSO, Wad92, Wad93,
Wad951 among others. Effect systems are typically found in
strict languages, such as FX [GJLS87] (a variant of Lisp),
while monads are typically found in lazy languages, such as
Haskell (PH97].

In my pursuit of monads, I wrote the following:

. . the use of monads is similar to the use of effect
systems . . . An intriguing question is whether a
similar form of type inference could apply to a
language based on monads. [Wad921

Half a decade later, I can answer that question in the affir-
mative. Goodness knows why it took so long, because the
correspondence between effects and monads turns out to be
surprisingly close.

The marriage of effects and monads Recall that a
monad language introduces a type T T to represent a com-
putation that yields a value of type r and may have side
effects. If the call-b

P
-value translation of r is rt, then we

have that (r -+ r’) , where + represents a function that

may have side effects, is equal to rt + T r’+, where -+ rep-
resents a pure function with no side effects.

Recall also that an effect system labels each function with
its possible effects, so a function type is now written r 4 r’,
indicating a function that may have effects delimited by 0.

The innovation of this paper is to marry effects to mon-
ads, writing Tar for a computation that yields a value in
r and may have effects delimited by (T. Now we have that
(T 4 T’)+ is rt -+ TV r’+.

The monad translation offers insight into the structure of
the original effect system. In the original system, variables
and lambda abstractions are labelled with the empty effect,
and applications are labeled with the union of three effects
(the effects of evaluating the function, the argument, and
the function body). In the monad system, effects appear in
just two places: the ‘unit’ of the monad, which is labeled
with the empty effect; and the ‘bind’ of the monad, which
is labeled with the union of two effects. The translation of
variables and lambda abstractions introduces ‘unit’, hence
they are labeled with an empty effect; and the translation
of application introduces two occurrences of ‘bind’, hence it
is labeled with a union of three effects (each U symbol in
D U cr’ U c” coming from one ‘bind’).

Transposing effects to monads Several effect systems
have been proposed, carrying more or less type informa-
tion, and dealing with differing computational effects such
as state or continuations [GL86, Luc87, JG89, TJ92, TJ94].
Java contains a simple effect system, without effect vari-
ables, where each method is labeled with the exceptions it
might raise [GJSQG].

For concreteness, this paper works with the type, region,
and effect system proposed by Talpin and Jouvelot [TJ92],
where effects indicate which regions of store are initialised,
read, or written. All of Talpin and Jouvelot’s results trans-
pose in a straightforward way to a monad formulation. It
seems clear that other effect systems can be transposed to
monads in a similar way. For instance, Talpin and Jou-
velot later proposed a variant system [TJ94], and Tofte and
Bikedal [TB98] propose a system for analysing memory al-
location, and it appear either of these might work equally
well as a basis for a monad formulation.

The system used in [TJSP] allows many effect variables
to appear in a union and maintains sets of constraints on
effects, while the systems used in [TJ94] and (TB98] re-
quires exactly one effect variable to appear in each union
and requires no constraints other than those imposed by
unification. Either form of bookkeeping appears to trans-
pose readily to the monad setting.

63

http://crossmark.crossref.org/dialog/?doi=10.1145%2F291251.289429&domain=pdf&date_stamp=1998-09-29

Applications In Glasgow Haskell, the monad ST is used
to represent computational effects on state [PWSS, LP94].
All effects on state are lumped into a single monad. There
is no way to distinguish an operation that reads the store
from one that writes the store, or to distinguish operations
that write two distinct regions of the store (and hence can-
not interfere with each other). The type, region, and effect
system of Talpin and Jouvelot addresses precisely this prob-
lem, and the system described here could be applied directly
to augment the ST monad with effects.

Similarly, in Haskell the monad IO is used to represent
all computational effects that perform input/output [PW93,
PH97]. In the Glasgow and Chalmers dialects of Haskell,
this includes calls of procedures written in other languages
[PW93]. Again, all effects are lumped into a single monad,
and again a variant of the system described here could be
used to augment the IO monad with effects.

Monads labeled with effects can also be applied to op-
timizing strict languages such as Standard ML. Whereas
Haskell requires the user to explicitly introduce monads,
Standard ML can be regarded as implicitly introducing a
monad everywhere, via Moggi’s translation from call-by-
value lambda calculus into a monadic metalanguage. The
implicit monad of Standard ML incorporates all side effects,
including operations on references and input-output, much
like a combination of Haskell’s ST and IO monads. As be-
fore, labeling the monad with effects can be used to delimit
the scope of effects. In particular, where the monad is la-
beled with the empty effect, the corresponding term is pure
and additional optimizations may be applied. Or when the
monad reads but does not write the store, certain operations
may be commuted. This technique has been applied to inter-
mediate languages for Standard ML compilers by Tolmach
[To1981 and by Benton, Kennedy, and Russel [BKR98]. Our
work can be regarded as complementary to theirs: we pro-
vide the theory and they provide the practice.

Summary of results Talpin and Jouvelot present (i) a
type system with effects, (ii) a semantics, with a proof that
types and effects are consistent with the semantics (iii) a
type and effect reconstruction algorithm, with a proof that it
is sound and complete. We review each of these results, fol-
lowing it by the corresponding result for the monad system.
We also recall the call-by-value translation from lambda cal-
culus into a monad language, and show that this translation
preserves (i) types, (ii) semantics, and (iii) the principal
types derived by the reconstruction algorithms.

Outline The remainder of this paper is organised as fol-
lows. Section 2 introduces the effect type system and the
corresponding type system for monads, and introduces the
monad translation and shows that it preserves types. Sec-
tion 3 presents an operational semantics for effects and a
corresponding semantics for monads, shows each semantics
sound with respect to types, and shows that the monad
translation preserves semantics. Section 4 presents a type,
region, and effect reconstruction algorithm for effects and a
corresponding algorithm for monad, shows each algorithm is
sound and complete, and shows that the monad translation
relates the two algorithms. Section 5 concludes.

By and large, we stick to the notation and formulation
of Talpin and Jouvelot [TJ92]. (Along the way, we correct
a few infelicities in their paper.) One difference from Talpin
and Jouvelot is that they follow the classic work of Tofte
[Tof87] and use an operational semantics based on normal-
istation (‘big step’), while we follow the updated approach of
Wright and Felleisen [WF94] and use an operational seman-
tics based on reduction (‘small step’). As noted by Wright
and Felleisen, this leads to a simpler proof: instead of a com-
plex relation between values and types (specified as a great-
est fixpoint), we can use the existing type relation (specified
by structural induction).

2 Types

This section introduces two languages and their type sys-
tems, and the translation between them. The first language,
Efect, is a call-by-value lambda calculus together with op-
erations on a store, with a type system that includes re-
gions and effects. The second language, Monad, is based on
Moggi’s monad metalanguage together with the same store
operations, and with a type system augmented by the same
regions and effects. We extend the usual monad translation
to include effects, and show that it preserves typings.

The monad translation we use is standard. It was in-
troduced by Moggi [Mog89, MogQl], and has been further
studied by Hatcliff and Danvy [HD94] and Sabry and Wadler
[SW97]. Our reduction semantics for the monad is new. It
most closely resembles the work of Hatcliff and Danvy, but
they did not deal with state and therefore failed to distin-
guish between pure reductions and those with computational
effects, as we do here.

2.1 Types for Effect

64

The language Effect and its type system is shown in Figure 1.
There are two syntactic classes, values and expressions. A
value is eit,her an identifier, a lambda abstraction, or a re-
cursive function binding. An expression is either a value, an
application, a let binding, or one of three primitives oper-
ations on the store, which allocate a new reference, get the
value of a reference, and set a reference to a new value.

The results are all obtained by straightforward applica-
tion of well-known techniques, and so we don’t bother to
give the proofs in detail. The lack of interest in the proofs
is part of our point: results for effect systems transpose to
monads without much effort.

Value polymorphism Some care is required when mix-
ing computational effects with polymorphic types, lest
soundness be forfeit. One approach, due Tofte [Tot871 and
used in the original SML [MTHSO], introduces ‘impera-
tive’ type variables in the presence of computational effects.
Numerous other approaches have been broached, including
some based on effects [wri92, TJ94]. However, by far the
simplest is value polymorphism. This approach, noted by
Tofte [Tof87], promoted by Wright [Wri95], and used in the
revised SML [MTHM97], restricts polymorphism to values,
a subclass of expressions that can have no computational ef-
fects. Talpin and Jouvelot [TJSP] used value polymorphism,
and we do so here.

There is potentially a problem here. Moggi’s original
monad translation was monomorphic, and it was not en-
tirely obvious how to extend it to polymorphism. I recall a
conversation several years ago between Moggi, John Hughes,
and myself where we attempted to add polymorphism to the
translation and failed. However, we did not consider value
polymorphism, which was less popular back then.

One contribution of this paper is to extend the monad
translation to include value polymorphism. This extension
is presented for the monad system with effects, but applies
equally well when effects are absent. In retrospect, the ex-
tension seems obvious, since the monad translation handles
values specially. One might say that value polymorphism
fits monads to a ‘T’.

v::=xlXx.e/recx.Xx’.e
e::=vIee’Iletx=eiine’IneueIgeteIsetee’

x E Id
v E Vul
e E Exp

r E RegConst
y E Reg Var
p E Region p::=yIr
c E EffVar
u E Effect u ::= q (8 I u U o’ 1 init I read(p) 1 vrite(P)

a E !FyVar
L E Basenpe

TE ‘ISpe 7 ::= cx 1 L 1 7 4 T’ 1 ref, 7
&E FyEnv =Zd-t Type

(uar) & 2: u {x t-) T} l-&-f 2 : 7 ! 0

Cabs)
E, U z I-+ 7- Feff e : 7’!6

Et Xx.e:7%#!0 eff

(ret) Ez*z
~U{~++T~~‘,Z’I--+--~ keffe:7!0

E t
eff ret x. Xx’. e : 7 4 7’ ! 0

capp) & t,tf e : 7 “-;’ 7’ ! u & teff e’ : 7 ! u’
E teff e e’ : r’ ! u U u’ U 0”

(does)
&k,ffe::!!a u’ 7 u El-,fie:T!u

& t,fl e : T ! u’ (new) Et Ed new e : ref P 7 ! u U init

(94 E t
El-,ffe:ref,T!u

(set)
E teff e : ref, T ! u E l-,=.ff e’ : 7 ! 6’

Ed get e : T ! u U read(p) El-,flsetee’:-r!uUu’Uwrite(p)

Figure 1: The effect calculus, Eflect

A region is either a region variable or a region constant.
An effect is either the empty effect, the union of two effects,
or one of three effects corresponding to the three operations
on the store, each of which is labelled with the region of
store affected. Equality on effects is modulo the assumption
that U is associative, commutative, idempotent, and has 8
as a unit. We write u > u’ when u = u U u’.

A type is either a type variable, a base type, a function
type (labelled with the effect that occurs when the func-
tion is applied), a reference type (labelled with the region in
which the reference is located).

A type environment maps identifiers to types. We write
&, for the environment with x removed from its domain,
{x I+ T} for the environment that maps z to r, and E U E’

for the union of two maps with disjoint domains. (Similar
notation will be used later for stores and substitutions.)

A typing & keff e : r ! u indicates that expression e yields
a value of type 7 and has effect delimited by u, where the
type environment & maps the free identifiers of e to types.

in the rule for abstraction, (abs), the effect is empty be-
cause evaluation immediately returns the function, with no
side effects; while the effect on the function arrow is the
same as the effect for the function body, because applying
the function will have the same side effects as evaluating
the body. In the rule for application, (app), the effect is the
union of the effects for evaluating the function, evaluating
the argument, and applying the function.

There are two rules for let binding, a polymorphic rule
for binding values (let), and a non-polymorphic rule other-
wise (ilet). Following Talpin and Jouvelot, we use substi-
tion rather than type schemes to indicate polymorphism.
The equivalence of the two forms of specification is well
known (e.g., see Mitchell’s text [Mit96]). The notation
e[v/x] stands for the substitution of value v for identifier
x in expression e, with renaming to avoid capture of bound
identifiers. Of course, actually performing the substitution
is far too expensive when it comes to type reconstruction,
and Talpin and Jouvelot’s algorithm uses a form of type
scheme, as one would expect. Note that if & t- v : T ! u then
u must be 0.

Rule (does) permits a form of subeffecting. Effects indi-
cate an upper bound on the side effects a term may have,
and so may always be made larger. The rules for the three
primitive operations, (new), (get), and (set), add the cor-
responding effect to the effects for their arguments. The
region in the effect matches the region in the reference type.
The (new) rule may allocate a new reference in any region.

2.2 Types for Monad

Whereas Eflect is a call-by-value language, with side effects
occuring when any expression is evaluated, Monad is a call-
by-name (or call-by-need) language, with side effects occur-
ing only at top-level. All computations with side effects are

65

e E MonExp e::=x)Ax.e)recx.e)ee’Iletx=eine’
I<e>Iletx*eine’IneweIgeteIsetee’

r E Monnpe r ::= a (L 1 T + r’ 1 TO r 1 ref, T
& E MonTyEnv = Id 4 MonType

(var) E, u {x t-$ r} t-n,,,, x : T
(abs) E, U {x I--t 7) hoI e : 7’

Et Xx. e : 7 -+ r’ (ret)
65, U {x ti T} Fmon e : 7

lllotl & t-mon ret x. e : r

(am)
E tIIlol, e : 7 + 7’ E ~~~~~~~ e

1
. 7

(W
E FltlO1l e : 7 Et- man e’ e x : r’

, I
E h11o11 e e : 7

I I
& ttlloI1 let x = e in e : 7

(does)
& t-lt10l1 e : Ta T

E b*,,on e : y’ ;’ 2 u (new)
E h~0tl e : r

& l-111o11 new e : T initb) ref p 7

(94
E tlllOll e : refp r

(set)
& t-1,1o11 e : refp 7 tt ‘:7 l~l~fl e

& l-.111ol1 get e : Tr*ad(pl ref p Q- & l--111o11 set e e’ : T writ*(p) -I-

Figure 2: The monad language, Monad

represented by the new monad type.
We use call-by-name for monads to stress the rela-

tion to Haskell. Like Plotkin’s CPS translation, Moggi’s
monad translation is indifferent: it remains valid whether
the monad language uses call-by-value or call-by-name
[Plo75, HD94, SW9’7].

The language Monad and its type system is shown in
Figure 2. The distinction between values and expressions is
no longer relevant, since evaluation has no side effects. Ex-
pressions are extended with two new forms for manipulating
monads (we will describe these shortly). Regions and effects
are as before. The function type r 4 7’ of before is here
broken into the pure function type r --t r’, and the monad
type TO r, representing a computation that yields a value of
type r and has effects delimited by u.

The monad unit <e> denotes the computation that im-
mediately returns the value of e, with no effects. Hence in
(unit) the effect is empty. The monad bind let z + e in e’
denotes the computation that first performs computation
e, binds x to the result, and then performs computation e’.
Hence in (bind) the effect is the union of the effects of its two
subcomputations. (The forms <e> and let z (r e in e’ are
written in Haskell as retrune and e >>= Xx. e’, respectively.)

Ordinary binding let x = e in e’ is distinct from monad
bind. As shown in rule (let), it corresponds to polymor-
phism. Since expressions have no side effects, there is no
need to restrict polymorphism to values. The remaining
rules are straightforward adjustments of the previous forms.
The three primitive operations, since they involve computa-
tional effects, have monad types.

2.3 The translation

The translation from Effect to Monad is shown in Figure 3.
This is just the usual typed call-by-value monad translation.
We write rt for the translation on types, vt for the transla-

tion on values, e* for the translation on expressions, and Et
for the translation on type environments.

As is well known, the monad translation preserves typ-
ing, a property that continues hold for our systems with
effects.

Proposition 2.1 (nanslation preserves types)

The proof is by induction on the structure of type deriva-
tions. For example, the translation of variables and lambda
abstractions introduces ‘unit’, hence they are labeled with
an empty effect; and the translation of application intro-
duces two occurrences of ‘bind’, hence it is labeled with a
union of three effects (each U symbol in o U u’ U u” coming
from one ‘bind’).

The translation of let works out neatly thanks to the
value polymorphism restriction. Whereas the translation of
an expression is a monad, and so must be bound with the
non-polymorphic monad bind, the translation of a value is
not a monad, and can safely be bound with the polymorphic
let.

The figure also shows the grammar of expressions and
types in Monad that are in the image of the translation
from values, expressions, and types in Effect. In the im-
age, application always has values for function and the ar-
gument, ordinary let always binds to a value, and monad
unit always contains a value. This explains the indifference
property alluded to earlier: since functions are applied only
to values, call-by-value and call-by-name agree in the image
of the translation.

66

ct+ = a
(L)+ = 1

(7. 4 r’)+ = r+ -+ T”#+
(refP?-)+ = ref,7+

x+ = x
(Xx.e)+ = Xx.e*

(ret x. Xx’. e)+ = ret 2. Xx’. e*

*

(ee;*
= <?I+>
= let 2 t= e’ in let x’ * e’* ’ In xx’

(letx=vine)* = letx=v+ine*
(let x = e in e’)’ = let x (r e’ in f:‘*

(newe)* = letx*e* innewx
(get e)* = letxee* ingetx

(setee’)’ = let x G= e’ in let x’ X= e’* in set xx’

(Xl :rl,...,xn:rn) + = x1:&.. .,xn : 7;

21 E ‘13unVal w::=xIXx.e
e E !PranExp e::=vIrecx.eI’UV’Iletx=vine’

I<v>Iletx*eine’InewwIgetvIsetvv’

r E TranType r ::= Q 1 L I t -+ T” r’ 1 ref P T

Figure 3: Translation from Effect to Monad

3 Semantics

This section presents operational semantics of the two lan-
guages. The reduction system for Eflect is standard, save
for instrumentation to trace operations on the store, which
is used to demonstrate consistency between semantics and
effects. The reduction system for Monad appear to be new,
even without the instrumentation. It resembles that of Hat-
cliff and Danvy [HD94], but differs in distinguishing two
sorts of reductions, those that may have side effects and
those that do not. For both effects and monads, we show
that the type and effect system is sound, modifying the re-
sults of Wright and Felleisen [WF94] to take take effects
and monads into account. We also show that the transla-
tion preserves semantics, in that it preserves instrumented
reductions.

3.1 Semantics for Effect

The operational semantics for Effect are shown in Figure 4.
Locations E are a designated subset of the variables. By
convention, a location is never used as the bound variable
in a lambda or let expression. A store s maps locations
to values. A trace f is the semantic equivalent of an effect,
where regions are replaced by locations. The notation sl U

(1 e V} stands for the store that maps location 1 to value v
and otherwise behaves like store s (by convention, s does not
have 1 in its domain). An expression e is closed with respect
to a store s if the only free variables in e are locations in
s, that is, if fv(e) E dam(s). We restrict our attention to
reduction states s,e where e is closed with respect to s. A
single reduction step is written s, e -&,=.R s’, e’, where s, e

is the state before the step, f is a trace of the effects of the
step, and s’, e’ is the state after the step.

Rule (beta) specifies function application; the language
Eflect is call-by-value as the argument must be a value for
the rule to apply. The rule leaves the store unchanged and
is labeled with an empty effect. Rules (rep) and (let) are
similar. Rules (new), (get), and (set) perform actions on
the store and have corresponding effects. Rule (app0) allows
reduction of the first part of an application; and once it
is reduced to a value, rule (app1) allows reduction of the
second part; eventually either rule (beta) or (ret) will apply.
The other numbered rules are similar. Finally, rules (step),
~;~~J~ean~~) specify ---ft as the reflexive and transitive

(Wright and Felleisen, among others, use evaluation con-
texts as a concise notation that achieves the same effect as
the numbered rules here. We’ll see why we don’t use con-
texts here in the next subsection.)

We need to relate stores to type environments, and traces
to effects. Write & keff s if dam(s) = dom(&) and & keff
s(Z) : E(1) for each 1 E dam(s). Write & l-,~ f ! u if

l when init & f then E(E) = ref, T and init C u,

l when read(l) C f then &(I) = ref, 7 and read(p) c O,

l when write(l) G f then E(l) = refp 7 and write(p) C
u.

Reductions preserve types and are consistent with effects.

Proposition 3.1 (Subject reduction) If & l-eff s and & Feff

e : T ! o and s, e Lee s’, e’ then there exists a E’ > & such

67
that E’ keff s’ and E’ keff e’ : 7 ! D and E’ keff f ! u.

1 E Ref 2 Var
s E Store = Ref + Value
f E fiace f ::= 0 I f u f’ 1 init 1 read(l) (write(l)

(beta) s, (Xx. e)v Aefl s,+lel

tree) s, (ret 2. Xx’. e)v -Qeff s, (Xx’. ret 2. Xx’. e[x/e])u

t 14 s, let x = 2) in e jeff s, 4x/e]

(new) s, new v inG)efl su{l~~},x freshles

(get) 91 U (1 I-+ o}, getl Iand ‘),ff 2 .sl U {I i-3 v},w

(set) sl U {I H w},setlv'
"rite(I)

4 & Sl u (1 c) v'},v'

(an4
s,e Lefi s’,e’

s, e e” Lefi s’, e’ e”
(am4

9, e J-kefi s’, e’

s, v e L,ff s, v e’
(let0)

s,e f’,ff s’,e’

s, let x = e in e” &,ff s’, let x = e’ in e”

(new0)
s, e Leff s’, e’

(WA
s, e -Gaff s’, e’

5, new e L,ff s’, new e’ s, get e --G,ff s’, get e’

(set0)
s, e -hefi s’, e’

(setl) s, e fteff s’, e’

s, set e e” -5,~ s’, set e’ e” s,setve -5,~ s’,setve’

(step)
s, e -f-tefl s’, e’

(r@) (tran)
s, e Aeff s’, e’ f’ s’, e’ --++,=,ff s”, e”

s, e ISfeff s’, e’ s,e Aefl s,e s, e Seff s”, e”

Figure 4: Semantics for Effect

The proof is by case analysis on the reduction step.
As noted by Wright and Felleisen [WF94], for type

soundness one also wants to prove a syntactic equivalent
of Milner’s slogan ‘well typed expressions cannot go wrong’.
An expression e is faulty if it contains a subexpression in
one of the following forms:

v e, where 21 is a location,
get v, where v is not a location,

set u of, where u is not a location.

An evaluation state s, e is stuck if there is no f, s’, e’ such

that s, e Ae~ s’,e’, and if e is not a value. Evaluation
becomes stuck only for faulty expressions, while well-typed
expressions are never faulty.

Proposition 3.2 (Uniform evaluation) If e is closed over

s and s, e is stuck, then e is faulty.

Proposition 3.3 [Well-typed expressions are not faulty) If
& Eeff e : 7 ! 6, then e is not faulty.

The first proof is by induction over the structure of e, and
the second by case analysis of the definition of faulty.

It follows that evaluation of well-typed terms never gets
stuck. Write s, e +& . If there is an infinite reduction

Jo fl f2
s, e ----+df sl, el --beff 92, e2 -+eff . . .

with f = IJ f;. We have the following corollary.
68

Proposition 3.4 (Type soundness) If & l-e~ s and & l-e~
e : r ! u then either

l s,e& and&l-,tf f !a, or

l s,~~~ffs’,vand&t,tfs’and&t,t~v:T!0and
&t-&f !u.

3.2 Semantics for Monad

Our reduction system is specialised to the case where the
top-level expression has a monad type. Evaluation is call-
by-name, and proceeds only to the point where the top-level
expression has reduced to a monad unit, forcing all opera-
tions on the store to occur. This corresponds to Haskell,
where the top-level expression is a monad over the trivial
type, IO 0, and is executed for its side effects rather than
the value retured.

The operational semantics for Monad are shown in Fig-
ure 5. Locations and traces are as before, but a store now
maps locations to expressions. Reductions divide into two
sorts. Pure reductions do not access the store and have no
effect, and are written e +mOn e’. Monadic reductions
are executed at top-level, may access the store and have an

effect, and are written s, e f’tnon s, e’.
Rule (beta) specifies function application; the language

Monad is call-by-name as the argument need not be a

1 E Ref & Var
s E Store = Ref --t MonExp

(beta)

(red

(W
(bind)

(new)

(Xx. e’)e

recx.e

let x = e in e’

s, let z * <e> in e’

s, new e

--+1n011 e[x/e’j

-+ man ret x. e[x/e]

---hlOII 4x/e’]

?::,
s, ek/e’l init 1)
s~{11+e},<Z> freshl@‘s

r.ad 1)
2 IllOU sl U {I I-) e}, <e>

writ*(l)
-+ *non sl U (1 ++ e’}, <e’>

e --+ e’
(w4 11 I I, ee ---+ee

slU{1*e},get1

sl U (1 +i e}, set 1 e’

(pure-step)
e -+ e’
e---Se , (pure-ban) e - t - $- e”

e --+ e’ f I
(Pure)

s, e ---hrlolI s’, e
0

s, e ---+II~oll s, e’
(bindO)

s, let 2 + e in e” f’nloIl s’, let 2 X= e’ in e”

f
s, e -+IWII s’, e’ e --+ e’ e + e’

(newU) f s, new e ---+olon s’, new e’
WO) 0

s, get e +nI~n s, get e’
(set@ 0 , ,I s, set e e” ---+tnoIl s, set e e

f
s, e ---+1~0t~ s’, e’

(step) f
s, e --+Itloll s’, e’

f f’
(refi) (tran)

s, e --+hIlon s’, e’ s’, e’ --+~IIo,I s”, e”
0

s, e -hloIl s, e fUf’
S, e +mon S”, d’

Figure 5: Semantics for Monad

value for the rule to apply. The rule is pure and makes
no reference to the store. Rules (ret) and (let) are simi-
lar. Rule (bind) simplifies a monadic bind to a monadic
unit; it leaves the store unchanged and is labeled with an
empty effect. (But it is not a pure operation: this prevents
reduction of ill-typed and nonsensical expressions such as
(let 2 -G= <(Xy. y)> in z)z, where the monadic expression is
not at top-level.) Rules (new), (get), and (set) perform ac-
tions on the store and have corresponding effects.

Rule (app0) allows reduction of the function part of an
application; eventually it will reduce to a lambda and rule
(beta) will apply. Since Monad is call-by-name, the argu-
ment of an application is not reduced. Rule (pure) allows
pure reductions at top-level. (This permits reduction of sen-
sible expressions such as (Xy. let z e <y> in x)z where an
application yields a monadic expression at top-level.) Rule
(bindO) allows reduction of the first part of a monad bind;
eventually it will simplify to monad unit and rule (bind) will
apply. Rules (getO) and (put0) reduce the location argument
to an operation on the store. Locations are not monads, SO
their reductions are pure. Since expressions, not values, are
placed in the store there is no need to reduce the argument
of new or the second argument of put. Finally, rules specify
--tt as the reflexive and transitive closure of red, for both
pure and monadic versions.

(One may formulate the above in terms of evaluation
contexts, but it gets messy. It seems to require three sorts
of contexts: pure context with pure hole for (appU), monad

69

context with monad hole for (bindO), monad context with
pure hole for (pure), (getO), and (seto). Hence our eschewal
of evaluation contexts.)

The relations E t--tnon s and & t-111o1, f ! B are defined, mu-
tatus mutandem, as for the effect system. Again, reductions
preserve types and are consistent with effects.

Proposition 3.5 (Subject reduction) If & bon s and

Et- man e : T” T and s, e f\Il,on s’, e’ then there mists a
E: +I & such that E’ kInoI, s’ and E’ !-man e’ : TV T and

mon f ! 0.

Now an expression e is faulty if it contains a subexpres-
sion in one of the following forms:

e e’, where e is a location,
let x e e in e’, where e is a lambda or location,

get e, where e is a lambda or monad unit,
set e e’, where e is a lambda or monad unit.

The other definitions and results carry through mutatus mu-
tandem.

Proposition 3.6 (Uniform evaluation) If e is closed over
s and s,e is stuck, then e is faulty.

Proposition 3.7 (Well-typed expressions are not faulty) If
El- man e : 7, then e is not fadty.

Proposition 3.8 (l$pe soundness) If & l-n,on s and
t kmon e : T” r then either

0 E Subst = (Ty Var -+ Type) x (Reg Var + Region) x (EffVar -+ Effect)

U(a,a’) = {ck e a’}

U(L,L) = id

U(cy,~) = if (Y E fv(~) then fail else {a ++ T}

U(T,Q) = U(cr,r)

U(T0 4 71) T:, d T;) = let 0 = {G ~-f s’}; e’ = u(e70,e~& e” = u(e’BT1, ele7-:) in e”e’e

U(ref y 7, ref ++ T’) = let e = (7 ++ 7’); 8’ = u(eT, 0~‘) in e/e

U(-,-) = fail

Figure 6: Unification

K E Constraint = p(EflVar x Efiect)
p E EfiModel = EffVar-t Effect

K(0) = id

K({r E u} U fc) = let p = K(K) in {s H /Lo \ s}c1

Figure 7: Constraints

l s, e I’& and E t-1~1~~~ f ! 6, or

l s, e --%e~ s’, <e’> and & kllloll s’ and & t-111o11 e : r and
El- mon f ! u.

reconstruction algorithm from Effect to Monad. Both algo-
rithms are sound and complete, and typings yielded by the
two algorithms are related by the translation between the
two languages.

3.3 The translation 4.1 Unification

As is well known, the monad translation preserves seman-
tics, a property that continues to hold for our instrumented
semantics. A key to the correspondence is that if a term in
Eflect is translated to Monad then the resulting term has
subterms of the form e’ e, let x = e in e’ or <e> only where
e is a value.

Ifs is a store in Efect, we write st for the corresponding
store in Monad, with s+(Z) = (s(l))+ for each 1 E dam(s).

Proposition 3.9 (The translation preserves semantics) If
s,e ftte~ s’, e’ then st,e’ _f,,lnon s’+,e’*.

The proof is by induction over reduction sequences.

Substitutions and the unification algorithm are shown in
Figure 6. A substitution maps type variables to types, re-
gion variables to regions, and effect variables to effects. We
write id for the identity substitution.

A central trick in the reconstruction algorithm is to en-
sure that all effects and regions are represented by variables,
to simplify unification. We call a type or substitution nor-
malised if the only regions and effects it contains are vari-
ables. (One infelicity of Talpin and Jouvelot is that they
neglect to mention which types and substitutions are nor-
malised in the statement of their theorems.)

The unification algorithm U(T, 7’) takes two normalised
types and returns a normalised substitution 0.

Proposition 4.1 (Unification)
4 Type reconstruction

This section presents type, region, and effect reconstruction
algorithms for the two languages. The reconstruction algo-
rithm for Effect, due to Talpin and Jouvelot, closely resem-
bles Milner’s original type reconstruction algorithm (Mi178].
Effects are handled by accumulating a set of constraints,
similar to the handling of subtypes in Mitchell’s inference
algorithm [MitSl]. It is straightforward to transpose the

l (Sound) If 8 = U(r, r’) then 8r = Or’ (with 8, r, r’
normal&d).

l (Complete) If 9r = 13r1 then there exist 8’ and .Q” such
that 0’ = U(T,T’) and 0 = 0”tJ’ (with T, r’, 8’ nor-
malised).

The proof is standard, as normalisation eliminates any po-
tentially tricky cases.

70

w E Var = QVar + Reg Var + EffVar
F E T&heme P ::= VWl,. . . ,Wn. (T,K)
& E QEnv = Id + TyScheme

I&(&, ret 5. Xx’. e)

Gff (E, e 4

Z,ff(&, let 2 = 2, in e)

Z,fl(&, let x = e in e’)

Gff (E, =ew e)

Aff 6% get e)

I,&&, set e e’)

= let VWI , . . . ,Wk. (7, K) = &(x)

neww:,...,wj,
e={wl l+wW;,...,Wn~w;}

in (id, &,8, On)

= let new (Y, s
(e,~, 0,~) = Zeff (8, U {x * 4, e)

in (e, ea 4 ~,0, KU {c 2 c})

= let new Q, Q’, c

64 7, U, 4 = zeff (E3c,21 U {x t-f a 3 a’, 2’ +b a}, e)
8’ = u(ed, T)

in (e/e, e’ela 4 CK’), 0, e+ u {eq 7 ~7)))

= let (0,7,0, n) = Z&(&,e)
(et, T’, d, K’) = &(BE, e’)
new (Y,C
e/f = u(e’7,7’ -3 0)

in (e”e’e, e/j@, e”(e’u u U’ u c), eyeh u K'))
= let (e, 7,0, K) = Z,ff(E, W)

w1,. . . , Wn = fvtT) u TV \ fv(eq

(et, T’,u, 14) = zeff (e&, u {X e VW],. . , wn. (7, IE)}, e)

in (e’e, #, u, K’)

= let (e,T,u,K) = Z&((E,e)
(et, Tf, d, d) = Gff (eEz u {Z +t 7}, e)

in (e'e,T',6ud,~uti)
= let (e,T,u,K) = Z&(E,e)

new 7
in (0, ref 7 7, u U init.(y), K)

= let (e,T,u,K) = &(E,e)
new Q, y
8’ = L/(7, ref y 0)

in (e/e, eb, u u read(O’y), ek)

= let (e, r, u, K) = Z,ff(&, e)
(et, +, 61, d) = Z&M, e)
new y
ef’ = u(er, ref 7 T’)

in (e"e'e, e'J+, e"(e'u u 0' u write(r)), eqeh U K’))

Figure 8: Type reconstruction for Effect

4.2 Constraints

Constraints and the constraint solution algorithm are shown
in Figure 7. A set of constraints K is a set of inequations of
the form c > u, asserting that effect variable c is bounded
below by effect u.

Constraints always have solutions. A substitution ~1 tak-
ing effect variables to effects models a constraint set K, writ-
ten p + K, if pc > pa for each inequation c > u in IE. (An-
other infelicity of Talpin and Jouvelot is that they assert
the solutions are minimal. The solutions are not minimal in
general, though they may be minimal over the domain of K.
However, minimality is irrelevant to the remainder of their

results, or to ours.)
The constraint solution algorithm K(K) takes a con-

straint set and returns a model /I. It assumes that effect
variables on the left hand of constraints in n are distinct,
which can be achieved by merging the two constraints c 2 o
and s 1 u’ into the equivalent constraint c > u U CT’. The
notation u \ s stands for the effect u’ such that u = u’ U c
and c does not appear in u’. The result of the algorithm is
independent of the order in which the constraints are visited.

71

Ztnoll(E,x) = let VWI,. . . ,wk. (T, K) = E(z)

in

Z,,,,, (E, Xx. e) = let

in

2,,,,,, (E, ret x. e) = let

in

Lo,, (E, let x = e in e’) = let

in

21r10r1(E, <e>) = let

in

ZInon(&,let x -+ e in e’) = let

in

L?,,,,,, (E, new e) = let

in

in

Ztlloll(&, set e e’) = let

in

new w;,. . .,w;
e={wl+-+ww;,...,wnt-+~;}

(id, er, eK)

new (Y
(e, T, K) = 2I11011(&z u {x ct N}, e)
(e, ecu + 7, K)

new Q!
(e, 7, K) = ZI11011(&2 u {X ++ a}, e)
8' = u(ea, 7-J
(e's, ejT, efK)

(e, 7, K) = &,,,,(E, e)
(e', 4, K') = 7Zn,oll(6E, e’)
new cr
8” = U(B’T, 7’ -+ a)
(effe’e, e/b, e”(ek u d))

(e, 7, K) = Z1lO1l(E, e)
WI,. . . ,Wn = fv(T) u fv(K) \ fv(6E)

(e’,~‘,~‘)=Z,,,,,l(eE~u{z~V~l ,..., w~.(T,K)},~‘)

(e/e, +, 14)

(8, T, K) = Ztlloll(&, e)
new F
(6,TF~,~U{s J 0))

(B,T, K) = Lx(E, e)
new a, q
8’ = U(T, TC (Y)
(e”,~‘, IF’) = Z,,,,,(E u {X i-+ ek+ e’)
new cy’, c’
6”’ = U(T’, TF’ a’)
new c”
(e”‘e”#e, TC” e”‘d, e”‘(e”e’K. U d U {c” g @“O’S U F’}))

(e, 7, K) = Z,,O,,(E, e)
new 7,F
(6, TF ref, 7, IC U {s 7 init(r

(6, T, K) = L,,,(E, e)
new CX,~
8’ = U(T, ref 7 12)
new c
(e/e, TC B’cY, efK u {S 2 read(e’y)})

(6, T, 6, K) = Zrlon (E, e)
(e’, T’, u’, K’) = Loll (BE, e)
new y
e” = .U(~T, ref I r’)
new G
(effe'e, TC (VT'), tl"(e'~ u K') u {S 7 write(Py)})

Figure 9: Type reconstruction for Monad

4.3 Reconstruction for Effect where each w is a type, region, or effect variable; the scheme

Type schemes and the reconstruction algorithm for Effect
is normalised if 7 is normalised. Such a scheme represents

are shown in Figure 8. Type schemes are introduced to rep-
all types of the form 6% where 8 + K and the domain of

resent all possible types associated with a polymorphically
tI is contained in WI,. . . , wn. Type environments are now

bound variable, thus avoiding the computationally infeasible
taken to map identifiers to type schemes; the environment

use of substitution suggested by a naive reading of the type
is normalised if all types in it are normalised.

rule for let. A type scheme has the form Vwl, . . , , wn. (T, K)
The reconstruction algorithm Z,tf(&, e) takes a nor-

malised type environment & and an expression e, and re-

72

turns a quadruple (6, r, u, IE), with 6 and r normalised. It
fails if some unification within it fails. The substitution 6 is
idempotent, and T, u, and IE are invariant under 8.

As shown by Talpin and Jouvelot, the reconstruction al-
gorithm is sound and complete.

Proposition 4.2 (Qpe reconstruction, Talpin and Jou-
velot)

l (Sound) Zf Z,R(&, e) = (6,T,u, K) and /I ,k K then
@& keff e : ~7 ! w, with E, 6, and r normalised.

l (Complete) If BE l-eff e : r ! u then Z,ff(&,e) =
(B’,r’,u’,k) and there exists a substitution 6” such
that BE = f3”B’E and r = 6”r’ and u > 0”u’ and
e k 4 with E, 8’ and 7’ normalised.

The proof for the first part by induction on the structure of
expressions, and for the second by induction on the structure
of type derivations. (A fmal infelicity of Talpin and Jouvelot
is that they skip the case of polymorphic ‘let’ binding, as-
suming such bindings have been expanded out. Fortunately,
it is easy to give a proof for these cases, along the lines
of the standard proof in Mitchell’s text [MitSG] or a later
proof of Talpin and Jouvelot [TJ94]. Alternatively, it is
easy to prove a lemma showing that Z,tf(&, let 2 = e in e’)
and Z,B(&, e’[e/z]) yield the same results, justifying the ex-
pansion.)

4.4 Reconstruction for Monad

The reconstruction algorithm for Monad is shown in Fig-
ure 8. The unification algorithm, type schemes, and type
environments are as before, with types for Monad replacing
types for Effect, mutatus mutandem. Constraints carry over
without change.

The reconstruction algorithm Znloll(&,e) takes a type
environment & and an expression e, and returns a triple
(6, T, K), or fails if some unification within it fails. The recon-
struction algorithm is easily transposed to the new setting.
It has much the same structure before, the largest difference
being that effects are mentioned only in monad types, and
effects in types are always represented by variables, so a few
extra constraints are required.

It is also easy to transpose the results regarding the al-
gorithm.

Proposition 4.3 (Type reconstruction)

l (Sound) If Znlotl(&,e) = (0, r, K) and p k K. then
pe& hloll e : pr, with E, 6, and r normalised.

l (Complete) If t!9& kmoII e : T then I&,,,(&, e) =
(O’, r’, K’) and there exists a substitution 0” such that
BE = 6”0’& and 7 = 6”r’ and 0 + IE’, with E, B’, and
7’ normalised.

4.5 Translation

The two reconstruction algorithms yield results that are re-
lated by the translation. Write K, N IC’ if for all p we have
p+~ifandonlyifpk~c’.

Proposition 4.4 (Tbanslation preserves type reconstruc-
tion) Zf Z&E, e) = (0, 7, u, K) and ZIllorl(Et, e*) = (6’, #, lo’)
then there exist c and /I such that T’ rt = r’ and 6 = 1-16’
andu=pq andtcz&.

The proof is by induction on the structure of expressions.

5 Conclusions

We have verified the conjecture, first broached half a decade
past, that effect systems can be adapted to monads. We
have demonstrated this for the specific case of the type, re-
gion, and effect system of Talpin and Jouvelot, but it seems
clear that any effect system can be adapted to monads in a
similar way.

Here are points for future work.

Denotational semantics It is straightforward to provide
semantics for effects and monads in a denotational style. In
this semantics, the instrumentation can be factored out as
a separate monad transformer. The factoring uses the well
known result that if TX is a monad, then so is TA X =
TX x A, where A is a monoid. In this case, A is taken to
be the monoid of traces, with identity 0 and operator U.

Coherent semantics An alternative approach to denota-
tional semantics might be to eliminate the instrumentation,
and associate with each effect u a different monad T”. For
state, one traditionally defines TX = S + X x S where
the store S is a mapping from locations to values. Here
one would define T” r = S, -+ X x S” where S, is a store
restricted to contain only locations in regions p such that
read(p) is in u, and 5’” is a store restricted to contain only
locations in regions p such that init or write(p) is in u.
Corresponding to each effect inclusion u c u’ there should
be a monad morphism T” -+ T”‘. In order to ensure CO-

herence in the style of Breazau-Tannen et al. [BCGSSl],
we should expect transitivity of inclusions to correspond to
composition of the corresponding morphisms.

A general theory of effects and monads As hypothe-
sised by Moggi and as born out by practice, most computa-
tional effects can be viewed as a monad. Does this provide
the possibility to formulate a general theory of effects and
monads, avoiding the need to create a new effect system for
each new effect?

Acknowledgements I thank Mads Tofte, Jon Riecke,
Matthias Felleisen, and J.-P. Talpin for comments on earlier
drafts of this paper.

References

[BKR98] N. Benton, A. Kennedy, and G. Russell, Compil-
ing Standard ML to Java Bytecodes, ACM 3’rd Znter-
national Conference on Functional Programming, Bal-
timore, September 1998.

[BCGSSl] V. Breazu-Tannen, T. Coquand, C. A. Gunter,
and A. Scedrov, Inheritance as explicit coercion,
Information and Computation, 93(1):172-221, 1991.
Reprinted in C. A. Gunter and J. C. Mitchell, ed-
itors, Theoretical aspects of object-oriented program-
ming, MIT Press, 1994.

[GL86] D. K. Gifford and J. M. Lucassen, Integrating func-
tional and imperative programming, ACM Confer-
ence on Lisp and Functional Programming, Cambridge,
Massachusetts, August 1986.

[GJLS87] D. K. Gifford, P. Jouvelot, J. M. Lucassen, and M.
A. Sheldon, FX-87 Reference Manual, Technical report
MIT/LCS/TR-407, MIT Laboratory for Computer Sci-
ence, September 1987.

73

[GJSSG] James Gosling, Bill Joy, and Guy Steele, The Java
Language Specification, Java Series, Sun Microsystems,
1996.

[HDSI] J. Hatcliff and 0. Danvy, A generic account of
continuation-passing styles, ACM Symposium on Prin-
ciples of Programming Languages, Portland, Oregon,
January 1994.

[JG89] P. Jouvelot and D. K. Gifford, Reasoning about
continuations with control effects, Technical report
MIT/LCS/TM-378, MIT Laboratory for Computer
Science, January 1989.

[Jon951 M. P. Jones, Functional programming with over-
loading and higher-order polymorphism, in J. Jeuring
and E. Meijer, editors, Advanced finctional Program-
ming, LNCS 925, Springer Verlag, 1995.

[LP94] J. Launchbury and S. L. Peyton Jones, Lazy func-
tional state threads, ACM Conference on Program-
ming Language Design and Implementation, Orlando,
Florida, 1994.

[Luc87] J. M. Lucassen, Types and effects, towards the in-
tegration of functional and imperative programming,
Ph.D. Thesis, Technical report MIT/LCS/TR-408,
MIT Laboratory for Computer Science, August 1987.

[Mi178] R. Milner, A theory for type polymorphism in pro-
gramming, Journal of Computer and Systems Science,
17~348-375, 1978.

[MitSl] J. C. Mitchell, Type inference with simple sub-
types, Journal of Functional Programming, 1(3):245-
286, 1991.

[Mit96] J. C. Mitchell, Foundations for programming lan-
guages, MIT Press, 1996.

[MTHSO] R. Milner, M. Tofte, and R. Harper, The Defini-
tion of Standard ML, MIT Press, 1990.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. Mac-
Queen, The Definition of Standard ML (Revised), MIT
Press, 1997.

[Mog89] E. Moggi, Computational lambda calculus and
monads, IEEE Symposium on Logic in Computer Sci-
ence, Asilomar, California, June 1989.

[MogSl] E. Moggi, Notions of computation and monads, In-
formation and Computation, 93(l), 1991.

[PH97] J. Peterson and K. Hammond, editors, Haskell 1.4,
a non-strict, purely functional language, Technical re-
port, Yale University, April 1997.

[Plo75] G. Plotkin, Call-by-name, call-by-value, and the
X-calculus, Theoretical Computer Science, 1:125-159,
1975.

[PW93] S. L. Peyton Jones and P. Wadler, Imperative func-
tional programming, ACM Symposium on Principles of
Programming Languages, Charleston, South Carolina,
January 1993.

[SW971 A reflection on call-by-value. Amr Sabry and Philip
Wadler. ACM iPransactions on Programming Lan-
guages and Systems, 19(6):916-941, November 1997.
(An earlier version appeared in 1 ‘st ACM International
Conference on Functional Programming, Philadelphia,
May 1996.) 74

[TJ92] J.-P. Talpin and P. Jouvelot, Polymorphic type, re-
gion, and effect inference, Journal of F’unctional Pro-
gramming, 2(3):245-271, July 1992.

[TJ94] J.-P. Talpin and P. Jouvelot, The type and effect
discipline, Information and Computation, 111(2):245-
296, 1994.

[Tot?371 M. Tofte, Operational semantics and polymorphic
type inference, PhD Thesis, University of Edinburgh,
1987.

[TB98] M. Tofte and L. Birkedal, A region inference algo-
rithm, Transactions on Programming Languages and
Systems, November 1998 (to appear).

[To1981 A. Tolmach, Optimizing ML using a hierarchy of
monadic yypes WorF;ghop on Types in Compilation,
Kyoto, March 1998.

[WadSO] P. Wadler, Comprehending monads. ACM Con-
ference on Lisp and Functional Programming, Nice,
France, June 1990.

[Wad921 P. Wadler, The essence of functional programming
(Invited talk), ACM Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mexico, Jan-
uary 1992.

[Wad931 P. Wadler, Monads for functional programming, in
M. Broy, editor, Program Design Calculi, NATO AS1
Series, Springer Verlag, 1993. Also in J. Jeuring and
E. Meijer, editors, Advanced Functional Programming,
LNCS 925, Springer Verlag, 1995.

[Wad951 P. Wadler, How to declare an imperative (Invited
talk), International Logic Programming Symposium,
Portland, Oregon, MIT Press, December 1995.

[WF94] A. Wright and M. Felleisen, A syntactic approach
to type soundness, Information and Computation,
115(1):38-94, November 1994.

(Wri92] A. Wright, Typing references by effect inference,
4th European Symposium on Programming, Rennes,
France, February 1992, Springer-Verlang LNCS 582.

[Wri95] A. Wright, Simple imperative polymorphism, Lisp
and Symbolic Computation, 8:343-355, 1995.

