
Verbose Typing 

Robert Ennals 
rje33Qcam.ac.uk 

Cambridge University 
(Undergraduate) 

1 Motivation 

In type systems that require one to manually specify types, 
one is constrained by practicality into having relatively short 
types that can be read and written easily. This constrains 
the amount of information that can be encoded in a type, 
and forces one to restrict the expressiveness of the type sys- 
tem. Type inference systems such as that of Haskell [l] 
improve things greatly by allowing the type system to infer 
types, but still require types to be stated when declaring 
type classes. 

By removing such requirements to state types, we can 
grant ourselves the freedom to make types as large as we like, 
including much more information than would otherwise be 
practical. One way to do this is by separating the concepts 
of a type identifier and a type constraint. 

2 A Simple Type System 

In the proposed system, every object has its own indepen- 
dent type, and has members. These are similar to functions 
in Haskell type classes [l] and to dynamically typed object 
members. A member is identified by a unique name. The 
set of members of an object can be any subset of the global 
set of possible members, and the object may implement any 
member with any type. The type is independent of the 
member identifier. 

Making the type of the member independent allows in- 
creased flexibility, especially useful in large complex systems. 
For example, one might have objects that wish to export 
windows with different abilities. This should be allowed, as 
long as all these windows satisfy the constraints required by 
the function that is using them. Fixing the constraints of the 
implementation of a member prevents one from being able 
to make further requirements or provide less guarantees. 

Types are divided into type requirements and type guar- 
antees. “If” is implemented as a special case. Instead of 
requiring its arguments to have the same type, it allows its 
arguments to have any type, and the guarantee of its result 
is the intersection of the guarantees of its arguments. Like- 
wise, applying a function to its own result does not constrain 
the return type to be the same as the argument type. 

Example constraints are that an object must have a spec- 
ified member (which may also have constraints), be of a 
specified base type, satisfy one of a list of constraints (for 
pattern matches), satisfy all of a list of constraints, or satisfy 
the constraints imposed by another function. 

Disjoint types are handled by giving one of the mem- 
bers an identifier type. This is a special type, that has no 
purpose other than to be used as an identifier in pattern 
matching. All disjoint types are part of a global namespace, 
allowing anything to take on any set of disjoint types. Pat- 
tern matches can match several possible disjoint types and 
place different requirements on other things, depending on 
which disjoint type is found. Matching is checked entirely 
statically with no runtime match errors. 

If one has a concept of a reactive function 121, then one 
can also allow disjoint types to be introduced on the fly with 
a non referentially transparent “new” function. This allows 
one to do things like typing the contents of arrays. A new 
disjoint type is created for the array contents when a new 
array is created, and is preserved when the array is mapped 
or joined. This allows type safe use of keys between arrays. 

No attempt is made to reduce the constraints into a sim- 
plified general form or remove recursion from the constaints. 
Type checking proceeds by expanding function evaluations 
until either the type constraints repeat or an error are found. 
In most cases, one or the other will be found fairly quickly, 
however in some special cases it may run for a very long 
time or even not terminate. One such case is a function 
involving a divergent computation on Church numerals. AS 
every Church numeral has a different type in this system, 
there will be no fixed point or error, and so the type check 
will not terminate. Such cases are, however, very rare and 
generally not very useful. In practice problems could be 
avoided by giving a type error if a recursion did not reach a 
fixed point within a certain (large) number of expansions. 

This type system attempts to get close to the freedom of 
Smalltalk, while maintaining the safety of strong typing. 

References 

[l] Paul Hudak, Phillip Wadler et al, The Haskell report 
1.4. 1997. 

[2] Robert Ennals, Controlled Temporal Non-Determinism 
for Reasoning With A Machine Of Finite Speed, ICFP98 
(Poster). 

340 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F289423.289468&domain=pdf&date_stamp=1998-09-29

