
Using Filtering Agents to Improve Prediction Quality in GroupLens Research Collaborative Filtering System

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 98-013

Using Filtering Agents to Improve Prediction Quality in GroupLens

Research Collaborative Filtering System

Badrul Sarwar, Joseph Konstan, Al Borchers, Jon Herlocker, Brad

Miller, and John Riedl

March 01, 1998

1

Using Filtering Agents to Improve Prediction Quality in the
GroupLens Research Collaborative Filtering System

Badrul M. Sarwar *, Joseph A. Konstan*†, Al Borchers*, Jon Herlocker*, Brad Mill er†, and John Riedl*†

*GroupLens Research Project
Dept. of Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455

†Net Perceptions, Inc
11200 West 78th Street

Suite 300
Minneapolis, MN 55344-3814

{ sarwar,konstan,borchers,herlocker,riedl} @cs.umn.edu; bmill er@netperceptions.com

ABSTRACT
Collaborative filtering systems help address information
overload by using the opinions of users in a community to
make personal recommendations for documents to each
user. Many collaborative filtering systems have few user
opinions relative to the large number of documents
available. This sparsity problem can reduce the utilit y of
the filtering system by reducing the number of documents
for which the system can make recommendations and
adversely affecting the quality of recommendations.

This paper defines and implements a model for integrating
content-based ratings into a collaborative filtering system.
The filterbot model allows collaborative filtering systems to
address sparsity by tapping the strength of content filtering
techniques. We identify and evaluate metrics for assessing
the effectiveness of filterbots specifically, and filtering
system enhancements in general. Finally, we
experimentally validate the filterbot approach by showing
that even simple filterbots such as spell checking can
increase the utilit y for users of sparsely populated
collaborative filtering systems.

Keywords
Collaborative filtering, information filtering, content
analysis, recommendation systems, social filtering,
GroupLens Research, information filtering agents.

INTRODUCTION
Each day, more books, research papers, television
programs, Internet discussion postings, and web pages are
published than any individual human can hope to review, let
alone read and understand. To cope with information
overload, we try different approaches to separate the
interesting and valuable information from the rest.
Historically, this process was placed in the hands of editors
and publishers—people given the responsibilit y for
reviewing many documents and selecting the ones worthy
of publication. Even today, we rely heavily on newspaper
editors, moderators of discussion lists, journal editors and
review boards. We also often read the opinions of movie,
restaurant, and television critics to decide how to spend our
finite time and money.

Professional human reviewers do not solve all problems,
however. Often, individuals’ information needs and tastes
differ enough to make a small number of editors ineffective.
Also, the number of documents in the web, in research
libraries, and in archives of discussions has grown so large
as to defy systematic editing by individual editors.
Accordingly, researchers have developed a wide range of
systems that bring the power of computation to the problem
of selecting, for each individual, the information he or she
considers valuable from the enormous amount of available
information.

Information retrieval (IR) systems allow users to express
queries to select documents that match a topic of interest.
IR systems may index a database of documents using the
full text of the document or only document abstracts.
Sophisticated systems rank query results using a variety of
heuristics including the relative frequency with which the
query terms occur in each document, the adjacency of query
terms, and the position of query terms. IR systems also may
employ techniques such as term stemming to match words
such as “retrieve,” “ retrieval,” and “retrieving.” [18] IR
systems are generally optimized for ephemeral interest
queries, such as looking up a topic in the library. [3] In the
Internet domain, popular IR systems include AltaVista
(www.altavista.digital.com) for web pages and DejaNews
(www.dejanews.com) for discussion list postings.

Information filtering (IF) systems use many of the same
techniques as IR systems, but are optimized for long-term
information needs from a stream of incoming documents.
Accordingly, IF systems build user profiles to describe the
documents that should (or should not) be presented to users.
Simple examples of IF systems include “kill files” that are
used to filter out advertising or flames (i.e., attack
messages) and e-mail filtering software that sorts e-mail
into priority categories based on the sender, the subject, and
whether the message is personal or sent to a list. More
complex IF systems provide periodic personalized digests
of material from sources such as news wires, discussion
lists, and web pages [4, 21]

2

One embodiment of IF techniques is software agents.
These programs exhibit a degree of autonomous behavior,
and attempt to act intelli gently on behalf of the user for
whom they are working. Agents maintain user interest
profiles by updating them based on feedback on whether the
user likes the items selected by the current profile.
Research has been conducted in various feedback
generation techniques, including probabili stic models,
genetic algorithms and neural network based learning
algorithms [2, 14]. NewT is a filtering agent for Usenet
news based on genetic algorithm learning techniques [10].
It performs full text analysis of articles using vector-space
technique. Amalthaea is a multi -agent system for
personalized filtering, discovery and monitoring of
information sources in the World Wide Web domain [13].

IR and IF systems can be extremely effective at identifying
documents that match a topic of interest, and at finding
documents that match particular patterns (e.g., discarding e-
mail with the phrase “Make Money Fast” in the title).
Unlike human editors, however, these systems cannot
distinguish between high-quality and low-quality documents
on the same topic. As the number of documents on each
topic continues to grow, even the set of relevant documents
will become too large to review (e.g., who has time to read
every technical report with CSCW in the keyword list?).
For some domains, therefore, the most effective filters must
incorporate human judgements of quality.

Collaborative filtering (CF) systems recommend documents
to a user based on the opinions of other users. In their
purest form, CF systems do not consider the content of the
documents at all , relying exclusively on the judgement of
humans as to whether the document is valuable. In this
way, collaborative filtering attempts to recapture the cross-
topic recommendations that are common in communities of
people.

Tapestry [6], one of the first computer-based collaborative
filtering systems, was designed to support a small , close-
knit community of users. Users could filter all incoming
information streams, including e-mail and Usenet news
articles. When users evaluated a document, they could
annotate it with text, with numeric ratings, and with boolean
ratings. Other users could form queries such as “show me
the documents that Mary annotated with ‘excellent’ and
Jack annotated with ‘Sam should read.’ ” A similar
approach is used in Maltz and Ehrlich’s active
collaborative filtering [11], which provides an easy way for
users to direct recommendations to their friends and
colleagues through a Lotus Notes database.

Collaborative filtering for large communities cannot depend
on each person knowing the others. Several systems use
statistical techniques to provide personal recommendations
of documents by finding a group of other users, known as
neighbors, that have a history of agreeing with the target
user. Once a neighborhood of users is found, particular
documents can be evaluated by forming a weighted

composite of the neighbors’ opinions of that document.
Similarly, a user can request recommendations for a set of
documents to read and the system can return a set of
documents that is popular within the neighborhood. These
statistical approaches, known as automated collaborative
filtering, typically rely upon ratings as numerical
expressions of user preference.

Several ratings-based automated collaborative filtering
systems have been developed. The GroupLens Research1

system [8,16] provides an pseudonymous collaborative
filtering solution for Usenet news and movies. Ringo [19]
and Video Recommender [7] are email and web systems
that generate recommendations on music and movies
respectively, suggesting collaborative filtering to be
applicable to many different types of media. Indeed,
commercial applications of ratings-based collaborative
filtering now exist in a variety of domains including books,
music, grocery products, dry goods, and information.

While collaborative filtering has been a substantial success,
there are several problems that researchers and commercial
applications have identified:

The ear ly-rater problem. A collaborative filtering system
provides littl e or no value when a user is the first one in his
neighborhood to enter a rating for an item. Current
collaborative filtering systems depend on the altruism of a
set of users who are willi ng to rate many items without
receiving many recommendations. Economists have
speculated that even if rating required no effort at all , many
users would choose to delay considering items to wait for
their neighbors to provide them with recommendations [1].
Without altruists, it might be necessary to institute payment
mechanisms to encourage early ratings.

The sparsity problem. The goal of collaborative filtering
systems is to help people focus on reading documents (or
consuming items) of interest. In high-quantity, low-quality
environments, such as Usenet news, users may cover only a
tiny percentage of documents available (Usenet studies
have shown a rating rate of about 1% in some areas; we can
estimate that few people will have read and formed an
opinion on even 1/10 of 1% of the over two milli on books
available through the largest bookstores). On the one hand,
this sparsity is the motivation behind filtering: most people
do not want to read most available information. On the
other hand sparsity poses a computational challenge as it
becomes harder to find neighbors and harder to recommend
documents since few people have rated most of them.

Efforts have been made to overcome these problems in
collaborative filtering system:

1 GroupLens™ is a trademark of Net Perceptions, Inc., which

holds exclusive rights to commercialize the results of the
GroupLens Research project. Net Perceptions allows the
University of Minnesota to use the name GroupLens Research
to avoid name discontinuity in the project.

3

• par titioning. The GroupLens Research project
showed that partitioning the ratings database by
Usenet newsgroup resulted in somewhat higher
accuracy and density, since not all users
subscribed to all newsgroups. Even with
partitioning, however, sparsity was still a problem.

• dimensionali ty reduction. Several researchers
have been examining statistical techniques for
compressing the dimensionality of the database.
These techniques, which include general
clustering, singular value decomposition, factor
analysis, and others appear promising, but none
has yet been demonstrated to solve the sparsity
problem.

• implicit ratings. Several systems attempt to
increase the number of ratings entered by
observing user behavior. The GroupLens
Research system determined that time spent
reading a Usenet news article was an effective
rating measure [12]. PHOAKS found that URLs
mentioned in Usenet postings could be filtered to
detect recommendations [20]. Other systems have
examined user history or watch user
behavior[17,15]. At the extreme, the MovieLens
system was able to reduce start-up sparsity
somewhat by incorporating several milli on pre-
existing ratings [5].

We should point out that content-based approaches used in
IF and agent systems are less directly affected by these
problems because they use content analysis techniques that
apply across all documents. For example, a filter that gives
high scores to articles with the word “baseball ” in them, can
give a score to a new article before anyone has rated it. To
exploit the advantages of content analysis, Fab implements
a hybrid content-based collaborative system for
recommending Web pages [2]. In Fab user profiles are
maintained by using content analysis. The profiles are
directly compared to determine similarity between users to
support collaborative recommendation.

In this paper, we investigate another hybrid approach to
addressing the rating sparsity and early rater problems.
This approach incorporates semi-intelli gent filtering agents
called filterbots into a ratings-based collaborative filtering
system.

RESEARCH APPROACH: THE FILTERBOT CONCEPT
Our approach to addressing the ratings sparsity and early
rater problems is to incorporate non-collaborative
information filtering techniques into a collaborative
filtering system. We introduce these techniques through the
creation of filterbots—automated rating robots that evaluate
new documents as soon as they are published and enter
ratings for those documents. We chose this model because
we found that it is appealingly simple from both the

collaborating filtering system’s and the filterbot author’s
point of view.

The collaborative fil tering system treats a filterbot as
another ordinary user, albeit a proli fic and generous one
that enters many ratings but doesn’ t request predictions.2

The collaborative filtering engine need not even know
whether users are filterbots or humans.

The fil terbot author writes a filterbot just like an
information filtering agent. This agent is called whenever
new documents arrive, and it returns a numeric rating (1
through 5 in our system). The filterbot author need not be
concerned with the use of the filterbot in a collaborative
filtering system.

There are other approaches to merging content filtering
with collaborative filtering, including the “communicating
agents” model proposed by Maes [10] and the correlating
profiles model in Fab [2]. We found the filterbot model
more appealing than alternative models of integrating
information filtering techniques with collaborative filtering
ones because the collaborative filtering engine already
includes a filter to personalize the weight assigned to each
filterbot. If a user agrees consistently with a filterbot, that
filterbot is accorded a high weight for the user. If a user’s
ratings do not correlate well with a filterbot’s, that filterbot
is not used in generating recommendations and predictions
for that specific user.

An implication of this design is that we can employ a wide
range of algorithms in filterbots without concern that an
algorithm would have a detrimental effect on individual
users. By comparison, a system that employs a filter across
all users (e.g., system-level advertisement detection and kill
files) indiscriminately filters out content for both those who
are annoyed by advertising and those interested in learning
about new products.

In this work, we report on a set of filterbots using very
simple algorithms such as spelli ng correctness and article
length. By demonstrating the value of the filterbot concept
on simple algorithms, we hope to encourage people who
have insight into factors related to user preferences in
collaborative filtering systems to build their own filterbots.
Authors don’ t need know anything about collaborative
filtering; they just need an idea for a strategy to
automatically rate items. Write it; throw it in; and watch
people benefit!

We also recognize, but have not yet implemented, the
potential for incorporating learning agents as filterbots in a
collaborative filtering system. The collaborative filtering
system might receive ratings from one or several filterbots
per user, and the users would benefit from having access to

2 Indeed, a sophisticated filterbot may request predictions or

recommendations as part of a feedback process. We have not
yet, however, designed or implemented filterbots with that
property.

4

the learned preferences of each agent, again relying upon
only those filterbots with whom they have agreed
individually over time. Agents researchers can further this
process by creating a community of agents under natural
selection rules, so agents that are ineffective are eliminated
to create resources for variants of effective ones.

The rest of this paper presents our research design for
assessing the value of filterbots in a collaborative filtering
system, presents the results of the experiment, and discusses
the limitations of our work and the implications for other
researchers in collaborative filtering and information
filtering.

RESEARCH DESIGN
Architecture
The basic idea of collaborative filtering system is to help
people collaborate to find items of interest from a large
collection of items. In this section, we describe the
architectural framework of a collaborative filtering system
that can support the incorporation of filterbots. This
architecture is based on using the GroupLens Research
Recommendation Engine, but a similar architecture would
work with any collaborative filtering engine that works
using ratings. An overview of this architecture is shown in
figure 1.

In general, collaborative filtering systems employ a client-
server architecture. CF clients are programs that present
the user with an interface for browsing documents.
Example clients include news readers and web browsers.
These client applications communicate with document
servers to retrieve documents for the user (e.g., news
servers, web servers, databases). The clients use a well -
known document server API to request these items (e.g.,
NNTP, HTTP). Clients also communicate with a
recommendation engine server through its API. Calls are
provided to enter ratings for particular documents, to
request recommendations for documents to request, or to
evaluate a set of useful documents.

In the original GroupLens Research trial, the clients were
Usenet news readers that had been specially modified to
connect to the GroupLens Research server. The readers,
which included gnus, xrn, and tin, were adapted to request
predicted values from the GroupLens Research server
before displaying article subjects to each user. As the user
read a newsgroup, she could enter ratings. Those ratings
were stored by the reader and sent to the server at the end of
the newsgroup.

The GroupLens Research engine stored two sets of data:
user ratings of news articles and user-user correlation
information. From the correlation table, the
recommendation engine can quickly identify the
neighborhood of similar users for prediction purposes. A
prediction is calculated by returning a weighted average of
normalized ratings, as reported in [16].

Filterbots are incorporated into this framework as follows:

• They request (or subscribe to) new items from the
document source.

• They apply the rating algorithm to each document
that arrives.

• When the algorithm returns a rating, they submit
that rating to the recommendation engine.

As we implemented them, the filterbots poll the Usenet
news server to request new items. News clients already
have mechanisms for detecting which articles are new (a
file that stores the range of read items for each newsgroup).
The ratings algorithms, which are described below, perform
simple content analysis and produce ratings for all articles.

Hypothesis
Because of the ratings sparsity and early rater problems,
collaborative filtering systems are often only able to offer
users predictions and recommendations for a small subset
of the documents available. The filterbot framework
provides an augmentation that should improve the value of
collaborative filtering systems. By integrating content
filtering into collaborative filtering, filterbots should
increase the utilit y of the system for users who agree with

rating
algorithm

new
docs

document
source

correlations

filterbot

docs &
headers

recom-
mendation
engine

ratings

recom
m

endatio
ns

ratin
gs, req

uests

ratings

useruser

docuser

Figure 1. System architecture for a collaborative
filtering system with li ve users and filterbots.

5

the filterbots while not affecting other users. Accordingly,
we propose the following hypothesis:

H1: Adding content-based filterbots into a collaborative
filtering system improves utilit y for human users.

We should clearly state that we are not evaluating the value
of filterbots without human ratings, for the simple reason
that human ratings are necessary for computing the
agreement among the users and between users and
filterbots.

Experiment Design
We implemented three different filterbots: Spell -
CheckerBot, IncludedMsgBot and LengthBot. We
conducted our experiments by incorporating these filterbots
individually into the GroupLens Research collaborative
filtering system. The filterbots fetch and analyze articles
from the Usenet news server and send the ratings directly to
the GroupLens recommendation engine using the
GroupLens client library API. Our filterbots were applied
to five different newsgroups. These are, rec.humor,
rec.food.recipes ,mn.general, comp.lang.perl.misc and
comp.os.linux.announce. We describe the design of each
filterbot:

SpellCheckerBot rates articles based on the proportion of
spelli ng errors present in the article text. It uses the spell
utilit y of the unix system as its spell -checking engine. Spell
uses its own dictionary to check the words in a document
and dumps the words not found the dictionary as
misspelled words. As a result, any correctly spelled word
that is not present in spell ’s dictionary will be taken as a
misspelled word. Such words include widely used
colloquial expressions, word abbreviations, acronyms,
technical terms, proper nouns and so on. Using spell ’s
internal dictionary will incorrectly count these words as
spelli ng errors. The addition of an auxili ary dictionary
solves this problem. This auxili ary dictionary contains a
list of known correct words and is used by spell in addition
to its own dictionary. Since Usenet newsgroups carry
discussions on different topics, an auxili ary dictionary
intended for a particular newsgroup will not, in general, be
applicable to another newsgroup. For example, the word
gzipped is added to the auxili ary dictionary for
comp.lang.perl.misc newsgroup but is not a suitable entry
into the auxili ary dictionary for the rec.food.recipes
newsgroup, where the word canola would be suitable.

We created the auxili ary dictionary for each newsgroup by
running the spell program on the message bodies of each
article, collecting the set of words that spell did not
recognize. We then hand-reviewed all of the terms that
were frequently misspelled to determine whether they
should be added to the dictionary, or were instead simply
common misspelli ngs (the word “receive” was commonly
misspelled, for example). For real-world use, this start-up
phase would be performed once, with an incremental

process that could add new words to the dictionary as they
come into use in a newsgroup.

Once the dictionary was created, the filterbot processed
each message by:

1. stripping off headers, signatures, and included text
from prior messages ,

2. running the spell program to count the number of
misspelled words,

3. counting the number of words in the message body,

4. converting the percentage of misspelled words into a
rating on a scale of 1 through 5, and

5. submitting the rating to the recommendation engine.

To avoid confounding variables in the experiment, we
chose to establish a mapping between misspelli ng
percentage and rating that would result in a ratings
distribution that closely approximated the human ratings
distribution for that newsgroup. Prior experience suggests
that correlation-based collaborative filtering algorithms are
not very sensitive to individual differences in rating
distribution, but keeping the distribution the same allowed
us to avoid depending on those experiences. The same
mapping strategy is used in the other filterbots.

IncludedMsgBot rates each article based on the percentage
of text quoted from other articles. Replies to discussion
threads often include some or all of the message being
replied to. In some cases, as a thread continues the amount
of included text grows substantially. Our experience and
discussion with users suggested that many users dislike long
messages with littl e new content.

IncludedMsgBot searches for this type of message, giving
low ratings to articles with large amounts of included text
and high ratings to articles with littl e included text. The
filterbot:

1. separates out lines with a prefix of “>” -- most news
posting software uses this convention to mark included
text, and a hand inspection of the text confirmed that it
was a useful heuristic for these newsgroups;

2. counts lines of new text and lines of included text;

3. computes the ratio of included text lines to total lines,
and coverts that ratio to a rating on the scale of 1
through 5; and

4. submits the rating to the recommendation engine.

LengthBot rates articles based on the hypothesis that
Usenet readers value brevity. After stripping off headers,
signatures, and included text, LengthBot counts the number
of words in the article body and converts the length into a
rating on the scale of 1 to 5. Shorter articles receive higher
ratings and longer ones receive lower ratings.

Analysis of Metrics
In our hypothesis, we use the concept of “ improved utilit y.”
Given the goal of collaborative filtering systems—helping

6

users more effectively identify the content they want—we
define utilit y to include two dimensions: coverage and
accuracy.

Coverage is a measure of the percentage of items for which
a recommendation system can provide recommendations.
A low coverage value indicates that the user must either
forego a large number of items, or evaluate them based on
criteria other than recommendations. A high coverage
value indicates that the recommendation system provides
assistance in selecting among most of the items.

A basic coverage metric is the percentage of items for
which predictions are available. This metric is not well -
defined, however, since it may vary per user, depending on
the user’s ratings and neighborhoods. Also, it does not
specify when a recommendation should be available. To
address these problems, we use a usage-centric coverage
measure that asks the question: “Of the items evaluated by
the user, what percentage of the time did the
recommendation system contribute to the evaluation
process?” More formally, for every rating entered by each
user, was the system able to make a recommendation for
that item immediately prior to it being rated? We compute
the percentage of recommendation-informed ratings over
total ratings as our coverage metric.

Accuracy has been measured in many different ways in
prior research. The two general approaches used are
statistical recommendation accuracy and decision-support
accuracy. [19]

Statistical recommendation accuracy measures the
closeness between the numerical recommendations
provided by the system and the numerical ratings entered by
the user for the same items. Three common metrics used
are Correlation, Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE). Each of these metrics starts
with two vectors: a vector U of user-entered ratings and a
vector R of recommendation scores produced by the
system. Only items that have both recommendations and
user ratings are included in the vectors.

Corre lation is a statistical measure of agreement between
two vectors of data. We use the standard Pearson
correlation coeff icient as a measure of linear agreement
between the two vectors. A higher correlation value
indicates more accurate recommendations.

MAE is a measure of the deviation of recommendations
from their true user-specified values. If we denote the error
vector E = R – U, then we can compute the metric as:

The lower the MAE, the more accurately the
recommendation engine predicts user ratings.
RMSE is a measure of error that is biased to weigh large
errors disproportionately more heavily than small errors.
The intuition behind RMSE is that many recommendations

that are off by .25 on a scale of 5 are better than a few ones
off by 3 or 4. Using the same error vector E, we compute
the metric as:

Like MAE, lower RMSE also indicates better accuracy.
Decision-support accuracy measures how effectively
recommendations help a user select high-quality items.
They are based on the observation that for many users,
filtering is a binary process. The user either will or will not
read the document or consume the article. In the Usenet
news case, users make rapid decisions about whether to
read an article, and the difference between a
recommendation score of 4.0 and 4.5 is irrelevant if the
user reads everything rated 4 and above. Similarly, the
difference between 1 and 2 is irrelevant if either article will
be skipped. Three measures of decision-support accuracy
are reversal rate, ROC sensitivity, and PRC sensitivity.
Reversal rate is a measure of how often the system makes
big mistakes that might undermine the confidence that a
user has in the recommendation system. Low reversals
refer to cases where the user strongly dislikes an item (i.e.,
gives a rating lower than a threshold L) and the system
strongly recommends it with a high recommendation score
(i.e., above a threshold H). High reversals are cases where
the user strongly likes the item, but the system
recommendation is poor (i.e., user rating > H, system
recommendation < L). The thresholds are generally based
on observed user ratings distributions, and reversal rates
can either be reported as the percentage of all
recommendation-informed ratings that are reversals, or the
percentage of all recommendation-informed high and low
ratings that are reversals (i.e., number of high reversals /
number of cases where user rating > H; similarly for low).
ROC sensitivity is a measure of the diagnostic power of a
filtering system. Operationally, it is the area under the
receiver operating characteristic (ROC) curve—a curve that
plots the sensitivity and specificity of the test [9].
Sensitivity refers to the probabilit y of a randomly selected
good item being accepted by the filter. Specificity is the
probabilit y of a randomly selected bad item being rejected
by the filter. The ROC curve plots sensitivity (from 0 to 1)
and 1 – specificity (from 0 to 1), obtaining a set of points by
varying the recommendation score threshold above which
the article is accepted. The area under the curve increases
as the filter is able to retain more good items while
accepting fewer bad items.
For use as a metric, we must determine which items are
“good” and which are “bad.” For that task, we use the
user’s own ratings. A rating of 4 or 5 is deemed to be a
good item (signal), a rating of 1, 2, or 3 is deemed to be a
bad item (noise). The ROC sensitivity measure therefore is
an indication of how effectively the system can steer people
towards highly-rated items and away from low-rated ones.

n

e
n

i
i

MAE
∑

= =1

n

e
n

i iRMSE ∑= =1
2

7

Particularly important values are 1.0, the perfect filter, and
0.5, a random filter.
PRC sensitivity is a measure of the degree to which the
system presents relevant information. Operationally, it is
the area under the precision-recall curve. Precision
measures the percentage of selected documents that are
relevant; recall measures the percentage of relevant
documents that are selected. Hence, precision indicates
how selective the system is, and recall indicates how
thorough it is in finding valuable information. [18] Again,
we use as the domain of our metric the set of articles on
which the user has recommendation-informed ratings. We
plot a curve of different precision-recall pairs for different
recommendation score thresholds, and take the area under
that curve as a metric of decision-support accuracy. Again,
a higher value is more accurate, and a lower value is less
accurate.
For these experiments, we use ROC sensitivity and PRC
sensitivity as our primary accuracy metrics because they
most closely match the goals of our experiments. We are
more interested in whether adding filterbots to the
GroupLens Research system helps users decide whether to
read articles than in minimizing errors in areas that do not
affect user decisions. Large reversals, the other decision-
support metric, were too infrequent in this data set to use
with confidence. As a sanity check, we did analyze our
results using MAE and RMSE; results were similar, which
is in line with the finding of prior work that accuracy
improvements tend to be reflected across the spectrum of
metrics.
EXPERIMENTS WITH FILTERBOTS
Data
The data we used for these experiments is from the
GroupLens Research trial of Winter 1996. During that
seven-week trial, described in [12], we collected 47,569
ratings from over 250 users across many newsgroups. The
newsgroups used for these experiments are a cross section
of technical and recreational, moderated and unmoderated.

Procedure
To test our hypothesis H1 we need to get predictions from
the GroupLens server both with and without filterbot
ratings. For each newsgroup we created four files of data:
one with user ratings only, and one each with the ratings of
the three filterbots. Each record contained a user ID,
newsgroup, message ID, and rating. To obtain base
statistics for user-only recommendations, we followed this
procedure:

1. Create an empty GroupLens database.

2. For each rating in the ratings file:

a. request a recommendation for that
user/newsgroup/message;

b. record the returned recommendation or lack
thereof; and

c. submit the rating.

3. Compute coverage and accuracy statistics.

For the filterbot experiments, after step #1, we loaded all
filterbot ratings into the database, and then proceeded with
steps #2 and #3.

The experimental configuration uses Net Perceptions’
commercial GroupLens Recommendation Engine version
2.2.2.5 configured to use a neighborhood size of 50 and no
neighbor correlation threshold.

RESULTS
H1 hypothesizes that that adding filterbots into a
collaborative filtering system will improve utilit y for users.
To test this hypothesis, we look at experiments with several
different Usenet newsgroups and several different filterbots.
Since utilit y is a function of both item coverage and
accuracy, we examine coverage, ROC sensitivity, and PRC
sensitivity metrics in each newsgroup with each filterbot
and without filterbots. If the coverage and accuracy both
increase, then we can accept H1. If coverage increases and
accuracy is unchanged, or accuracy increases with no
change in coverage, we can also accept H1. However, if
either coverage or accuracy decreases, we will be unable to
accept H1. Because the effectiveness of filterbots may vary
by newsgroup, we present the results separately for each
newsgroup. Then we look at the value of each filterbot
overall , and evaluate the hypothesis in general.

Results by Newsgroup
mn.general
The newsgroup mn.general is a local unmoderated
Minnesota newsgroup with discussion and announcements
on all topics from local events to finding reliable or
inexpensive Internet service. We had 17 users who rated an
average of 65 of the 559 articles in the newsgroup (for an
average of 1.98 ratings per article). As table 1 shows,
coverage improved somewhat for the newsgroup with each
filterbot, but accuracy either decreased slightly or was
inconclusive. Accordingly, we were unable to accept H1
for mn.general.

Table 1 : Results for mn.general newsgroup

Filterbots Coverage
(%)

ROC
Sensitivity

PRC
Sensitivity

No filterbot 40.670 0.6937 0.2295

SpellChecker 43.155 0.6779 0.2075

IncludedMsg 46.056 0.7044 0.2180

Length 44.609 0.6719 0.2110

comp.lang.perl.misc
The newsgroup comp.lang.perl.misc is an unmoderated
technical discussion group focused on the scripting
language Perl. The .misc suff ix indicates that this group
receives primarily articles that do not fit into one of the
other Perl newsgroups. We had 10 users who rated an
average of 70 of the 627 articles in the newsgroup (for an

8

average of 1.66 ratings per article). As table 2 shows,
coverage and accuracy improved dramatically for the spell
checking filterbot. Coverage increased by 85% for the
other filterbots, with the included message algorithm having
no significant effect on accuracy and the length algorithm
having a very small positive effect. Given the success of the
spell checking filterbot, we are able to accept H1 for
comp.lang.perl.misc.

Table 2 : Results for comp.lang.perl.misc newsgroup

Filterbots Coverage
(%)

ROC
Sensitivity

PRC
Sensitivity

No filterbot 7.010 0.6523 0.4698

SpellChecker 42.775 0.7448 0.6030

IncludedMsg 13.017 0.6400 0.4694

Length 13.180 0.6770 0.4981

comp.os.linux.announce
The newsgroup comp.os.linux.announce is a moderated
technical discussion group that is used to make
announcements to developers and users of the Linux
operating system. We had 23 users who rated an average of
24 of the 421 articles in the newsgroup (for an average of
1.33 ratings per article). As table 3 shows, the length and
spell checking filterbots both provided dramatic increases
in coverage with moderate increases in accuracy. The
included message filterbot increased coverage somewhat,
but decreased accuracy. Given the success of the spell
checking and length filterbots, we are able to accept H1 for
comp.os.linux.announce.

Table 3 : Results for comp.os.linux.announce group

Filterbots Coverage
(%)

ROC
Sensitivity

PRC
Sensitivity

No filterbot 14.874 0.6619 0.3234

SpellChecker 46.319 0.6822 0.3643

IncludedMsg 20.430 0.6117 0.3146

Length 48.745 0.7046 0.3686

rec.food.recipes
The newsgroup rec.food.recipes is a moderated recreational
group where contributors post recipes and occasional
requests for recipes. We had 7 users who rated an average
of 22 of the 92 articles in the newsgroup (for an average of
1.66 ratings per article). As table 4 shows, the spell
checking filterbot greatly increased coverage and accuracy,
with a particularly strong increase in PRC sensitivity. The
included message filterbot provided a much smaller
increase in coverage, but similarly impressive accuracy
improvements. The length filterbot provided inconclusive
accuracy results (worse ROC, better PRC) with an in-
between increase in coverage. Based on the strength of the

spell checking filterbot, we are able to accept H1 for
rec.food.recipes.

Table 4 : Results for rec.food.recipes newsgroup

Filterbots Coverage
(%)

ROC
Sensitivity

PRC
Sensitivity

No filterbot 22.222 0.6181 0.3902

SpellChecker 71.710 0.6601 0.6254

IncludedMsg 27.451 0.6667 0.5937

Length 42.763 0.5687 0.4570

rec.humor
The newsgroup rec.humor is an unmoderated recreational
group where contributors are expected to post jokes and
other humorous material. It is a well -known high-noise
newsgroup that is commonly cited as an example of a group
where filtering is useful. We had 19 users who rated an
average of 92 of the 1367 articles in the newsgroup (for an
average of 1.27 ratings per article). As table 5 shows, all
three filterbots provided dramatic increases in accuracy,
and two of them also increased coverage by more than
200%. Accordingly, we are able to accept H1 for
rec.humor .

Table 5: Results for rec.humor newsgroup

Filterbots Coverage
(%)

ROC
Sensitivity

PRC
Sensitivity

No filterbot 15.384 0.4604 0.1253

SpellChecker 50.258 0.8081 0.3638

IncludedMsg 50.373 0.7228 0.3915

Length 16.657 0.7188 0.2487

Since rec.humor was the group with the largest combination
of effect size and number of users, we decided to look more
closely at the degree to which individual users agreed with
the filterbots. Figure 2 shows rating correlations between
the three filterbots and the twelve users who had rated
enough articles to have correlations. The extreme
correlations for five users reflect their small number of
ratings, rather than any systematic agreement. Several users

Figure 2: Correlations between users and filterbots

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

3 5 8 9 9 20 52 64 77 84 85 47
4

rec.humor users (numbers indicate rating count)

P
ea

rs
o

n
 r

 c
o

rr
el

at
io

n

CorrSpBot

CorrIncBot

CorrLenBot

9

with large numbers of ratings have fairly high correlations,
particularly with the spell checking filterbot. Of six users
with more than 50 ratings: four have correlations greater
than 0.2 with SpellCheckerBot (two at or above 0.4), two
have correlations above 0.3 with IncludedMsgBot, and
three have negative correlations stronger than –0.2 with
LengthBot. Even the least-correlated user (the one with 52
ratings) had a correlation of 0.19 with one of the filterbots.

Results by Filterbot
SpellCheckerBot shows very promising results. It
provided both improved coverage and improved accuracy
in four of the five newsgroups we tested. It appears that
Usenet readers prefer articles with correct spelli ng. This
does not necessarily imply that they care about spelli ng per
se, but that something that they care about correlates well
with spelli ng. For example, readers may value careful
writing, simple vocabularies, etc.
IncludedMsgBot shows mixed results, providing improved
coverage in all groups but accuracy improvements only in
the recreational groups. One interpretation is that the
nature of a group determines whether included content is
good, bad, or neutral. Technical groups (and mn.general)
often have discussions where readers appear to value the
context provided by included text. In these group, the best
amount of included text is neither “more” nor “ less” but
simply “ the right amount.” Neither the recipe nor the
humor group is supposed to have much included text at all .
Rec.food.recipes is not to be used for discussion of recipes
and rec.humor is not to be used for discussion of jokes.
Accordingly, results in these groups may mostly reflect
identifying and giving low ratings to out-of-place postings
(for rec.food.recipes, the periodic “request for recipes”
collection).
LengthBot showed benefits for rec.humor and
comp.lang.perl.misc, and showed the best results by all
measures in comp.os.linux.announce. Length was not
useful in mn.general or rec.food.recipes. As with included
text, this suggests that readers of different newsgroups
value different attributes. Indeed, much of LengthBot’s
value in rec.humor came from negative correlations—
people who apparently preferred longer articles.
Overall Results
Based on all of the results presented above, we accept the
hypothesis that content-analysis filterbots can improve user
utilit y. In four of the five newsgroups, we found at least
one filterbot that improved both coverage and accuracy,
measured both by ROC and PRC.
DISCUSSION
These experiments demonstrate that simple content-analysis
filterbots can help improve the coverage and accuracy of a
collaborative filtering system. We recognize that there are
several important limitations to this work, but also many
exciting applications of it. In this section, we discuss both,
along with some of our ideas for future work.

Limitations
Our results were based on a collaborative filtering dataset
from the GroupLens Research public trial. While this trial
is still one of the largest trials conducted on streams of
discussion data, the ratings density in the data is very low.
Newsgroups such as rec.humor would require hundreds or
thousands of users to achieve an average of even ten ratings
per article, in part because the newsgroup has so many
unfunny articles that there is substantial incentive to skip
any article that doesn’ t have a strong recommendation.
Possible consequences of low rating density include:
• Less personalization within the recommendation

process, since there are too few ratings for the
algorithm to be “ fussy” about matches.

• Lower accuracy and coverage in the “no filterbot”
case than would be the case otherwise.

At the same time, low rating density is a real-world
condition that presents the problem that filterbots are
intended to solve.
A related limitation is the small number of users studied.
We had 76 users who rated articles that overlapped the
filterbot ratings. Of these users, many rated only a few
articles and therefore contributed littl e to the analysis.
Even though this study should be replicated with a larger
user set, we believe it reflects the largest study of its type,
and therefore can serve as a basis for additional
experimentation.
Finally, we recognize that Usenet News is, in general, a
high-noise information stream. We selected two moderated
newsgroups to ameliorate that effect, but should caution
those trying to generalize the work to low-noise
environments that very simple filterbots may not add
enough value to be useful.
Applications of this Work
There are several interesting applications of our
architecture and results. A number of real-world
collaborative filtering systems recommend objects from
immense sets (e.g., books in print, web pages) where
filterbots could help address ratings sparsity.
A particularly exciting idea is the use of the filterbot
framework as a mechanism for increasing the utilit y of
agent software. Few agents today are suff iciently powerful
and general to merit individual use, so integrating them into
a framework with collaborative filtering and other agents
can help them reach the threshold of utilit y. Also,
individual filtering agents aren’ t inherently god or bad; they
are more useful to some users and less useful to others.
Integrating them into a collaborative filtering framework
helps match users to agents. It also helps address the case
where a particular agent has no information to
communicate—a feature that may have helped our
filterbots.
Future Work
Our results represent only a first step in understanding the
ways in which content filtering can be successfully

10

integrated into collaborative filtering. Among the issues we
would like to study in the future are:

• the interaction of sets of filterbots in the same system.

• the process of selecting proper filterbots for an
application domain; we clearly could not know in
advance which algorithms would work for the
newsgroups, and indeed certain cases resulted in a drop
in overall accuracy.

• the use of more complex filterbot algorithms, including
algorithms that learn.

• a “personal filterbot” system where each user has
“agent filterbots” attempting to learn her tastes.

• the value of filterbots for users with few ratings.
Should the engine only phase in filterbots after users
have a certain number of ratings and established
correlations?

In addition to these questions, we have a large number of
particular filterbots and applications that we’d like to
explore, including filterbots for movies and other non-
textual media.

CONCLUSIONS

This paper makes three contributions to the field of
collaborative filtering.

First, it defines and implements a model for integrating
content-based ratings into a collaborative filtering system.
This filterbot model allows collaborative filtering systems
to address sparsity and early-rater problems by tapping the
strength of content filtering techniques.

Second, it identifies and evaluates metrics for assessing the
effectiveness of filterbots specifically, and filtering system
enhancements in general.

Third, it experimentally validates the filterbot approach by
showing that even simple filterbots such as spell checking
can increase the utilit y for users of sparsely populated
collaborative filtering systems.

REFERENCES
1. Avery, C. and Zeckhauser, R. Recommender Systems

for Evaluating Computer Messages. Communications of
the ACM. 40(3), pp. 88-89, March 1997.

2. Balabanovic, M. and Shoham, Y. Fab: Content-Based,
Collaborative Recommendation. Communications of
the ACM. 40(3), pp. 66-72, March 1997.

3. Belkin, N. J. and Croft, B. W. Information Filtering and
Information Retrieval: Two Sides of the Same Coin?
Communications of the ACM. 35(2), December 1992.

4. Communications of the ACM. 35(2), December 1992.

5. Dahlen, B. J., Konstan, J. A., Herlocker, J, Good, N.,
Borchers, A. and Riedl, J. Jump-Starting MovieLens:
User Benefits of Sharing a Collaborative Filtering
System with “Dead Data”. (Submitted to CSCW ’98).

6. Goldberg, D., Nichols, D., Oki, B. M. and Terry, D.
Using Collaborative Filtering to Weave an Information
Tapestry. Communications of the ACM. Dec. 1992.

7. Hill , W., Stead, L., Rosenstein, M., Furnas, G.
Recommending and Evaluating Choices in a Virtual
Community of Use. Proceedings of CHI ’95.

8. Konstan, J. A., Mill er, B. N., Maltz, D., Herlocker, J. L.,
Gordon, L. R. and Riedl, J. GroupLens: Applying
Collaborative Filtering to Usenet News. Commun. of the
ACM. 40(3), pp. 77-87, March 1997.

9. Le, C. T. and Lindgren, B. R. Construction and
Comparison of Two Receiver Operating Characteristics
Curves Derived from the Same Samples. Biom. J. 37(7),
pp. 869-877, July 1995.

10. Maes, P. Agents that Reduce Work and Information
Overload. Communications of the ACM. July 1994.

11. Maltz, D. and Ehrlich, K. Pointing the Way: Active
Collaborative Filtering. Proceedings of CHI ’95.

12. Mill er, B., Riedl, J. and Konstan, J. Experiences with
GroupLens: Making Usenet Useful Again. Proceedings
of the 1997 Usenix Technical Conference.

13. Moukas, A. and Zacharia, G. Evolving a Multi -agent
Information Filtering Solution in Amalthaea. In
Proceedings of Autonomous Agents 97.

14. Pannu, A. S. and Sycara, K. Learning Text Filtering
Preferences. In Proceedings of AAAI 96 Conference.

15. Resnick, P. and Varian, H. R. Recommender Systems.
Commun. of the ACM. 40(3), pp. 56-58, March 1997.

16. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and
Riedl, J. GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. Proceedings of
CSCW ‘94. Chapel Hill , NC. 1994.

17. Rucker, J. and Polano, M. J. Siteseer: Personalized
Navigation for the Web. Communications of the ACM.
40(3), pp.73-75, March 1997.

18. Salton, G. and McGill M. J. Introduction to Modern
Information Retrieval. McGraw-Hill , Inc. 1983.

19. Shardanand, U. and Maes, P. Social Information
Filtering: Algorithms for Automating "Word of Mouth".
In Proceedings of the CHI ‘95. Denver, CO. pp. 210-
217. May 1995.

20. Terveen, L., Hill , W., Amento, B., McDonald, D. and
Creter, J. PHOAKS: A System for Sharing Recommend-
ations. Communications of the ACM. 40(3), pp. 59-62,
March 1997.

21. Yan, T. W. and Garcia-Molina, H. SIFT – A Tool for
Wide-Area Information Dissemination. In Proceedings
of the 1995 USENIX Technical Conference. pp.177-86.

