skip to main content
research-article

Reversible Synthesis of Symmetric Functions with a Simple Regular Structure and Easy Testability

Authors Info & Claims
Published:27 June 2016Publication History
Skip Abstract Section

Abstract

In this article, we introduce a novel method of synthesizing symmetric Boolean functions with reversible logic gates. In contrast to earlier approaches, the proposed technique deploys a simple, regular, and cascaded structure consisting of an array of Peres and CNOT gates, which results in significant reduction with respect to the quantum cost. However, the number of circuit inputs may increase slightly when such cascades are used. In order to reduce their number, we next propose a postsynthesis optimization phase that allows judicious reuse of circuit lines. In addition to offering a cost-effective synthesis methodology, the proposed reversible logic structure supports elegant testability properties. With respect to all single or partial missing gate faults (SMGFs and PMGFs), or repeated gate faults (RGFs) in such an n-input circuit module, we show that it admits a universal test set of constant cardinality (=3) for any value of n. Thus, considering both the cost and testability issues, this approach provides a superior option for synthesizing symmetric functions compared to existing designs.

References

  1. A. Barenco, C. Bennett, R. Cleve, D. DiVinchenzo, M. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter. 1995. Elementary gates for quantum computation. Physical Review A 52, 5, 3457--3467.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. Cuykendall and D. R. Andersen. 1987. Reversible optical computing circuits. Optical Letters 12, 7, 542--544.Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Datta, G. Rathi, I. Sengupta, and H. Rahaman. 2014. An improved reversible circuit synthesis approach using clustering of ESOP cubes. Journal on Emerging Technologies in Computing Systems 11, 2, 15:1--15:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Deb, D. K. Das, H. Rahaman, and B. B. Bhattacharya. 2013a. Reversible synthesis of symmetric Boolean functions based on unate decomposition. In Proceedings of ACM International Conference on Great Lake Symposium. 351--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Deb, D. K. Das, H. Rahaman, B. B. Bhattacharya, R. Wille, and R. Drechsler. 2013b. Reversible circuit synthesis of symmetric functions using a simple regular structure. In Reversible Computation. Lecture Notes in Computer Science, Vol. 7948. 182--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Desoete and A. De Vos. 2002. A reversible carry-look-ahead adder using control gates. Integration, the VLSI Journal 33, 1--2, 89--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Ghosh, B. B. Bhattacharya, and S. Sensarma. 2009. Reversible synthesis of symmetric functions: A hierarchical approach. In Proceedings of the Reed Muller Workshop. 53--62.Google ScholarGoogle Scholar
  8. J. P. Hayes, I. Polian, and B. Becker. 2004. Testing for missing-gate faults in reversible circuits. In Asian Test Symposium 100--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. O. Keren, I. Levin, and S. R. Stankovic. 2007. Use of gray decoding for implementation of symmetric functions. In International Conference on VLSI. 25--30.Google ScholarGoogle Scholar
  10. E. Knill, R. Laflamme, and G. J. Milburn. 2001. A scheme for efficient quantum computation with linear optics. Nature 46--52.Google ScholarGoogle Scholar
  11. C. Lauradoux and M. Videau. 2008. Matriochka symmetric Boolean functions. In IEEE ISIT. 1631--1635.Google ScholarGoogle Scholar
  12. D. Maslov. 2006. Efficient reversible and quantum implementations of symmetric Boolean functions. IEEE Proceedings of Circuits, Devices and Systems 153, 5, 467--472.Google ScholarGoogle ScholarCross RefCross Ref
  13. R. C. Merkle. 1993. Reversible electronic logic using switches. Nanotechnology 4, 21--40.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Moraga and F. Z. Hadjam. 2012. On double gates for reversible computing circuits. In Proceedings of the International Workshop on Boolean Problems.Google ScholarGoogle Scholar
  15. N. M. Nayeem and J. E Rice. 2011. A shared-cube approach to ESOP-based synthesis of reversible logic. Facta Universitatis-Series: Electronics and Energetics 24, 3, 385--402.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Nielsen and I. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and B. Massey. 2001b. Regular realization of symmetric functions using reversible logic. In EUROMICRO Symposium on Digital Systems Design. 245--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Perkowski, P. Kerntopf, A. Buller, M. Chrzanowska-Jeske, A. Mishchenko, X. Song, A. Al-Rabadi, L. Jozwiak, A. Coppola, and B. Massey. 2001a. Regularity and symmetry as a base for efficient realization of reversible logic circuits. In IWLS. 245--252.Google ScholarGoogle Scholar
  19. P. Picton. 1994. Modified Fredkin gates in logic design. Microelectronics Journal 25, 437--441.Google ScholarGoogle ScholarCross RefCross Ref
  20. I. Polian, T. Fiehn, B. Becker, and J. P. Hayes. 2005. A family of logical fault models for reversible circuits. In Asian Test Symposium. 422--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Rahaman, D. K. Das, and B. B. Bhattacharya. 2006. Implementing symmetric functions with hierarchical modules for stuck-at and path-delay fault testability. Journal of Electronic Testing: Theory and Applications 22, 2, 125--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Rovetta and M. Mouffron. 2011. De Bruijan sequences and complexity of symmetric functions. Cryptography and Communications Journal 3, 4, 207--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Saeedi and I. L. Markov. 2013. Synthesis and optimization of reversible circuits--a survey. ACM Computing Surveys 45, 2, 21:1--21:34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian. 2010. Reversible circuit synthesis using a cycle-based approach. Journal on Emerging Technologies in Computing Systems 6, 4, 13:1--13:26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler. 2014. Ancilla-free synthesis of large reversible functions using binary decision diagrams. CoRR abs/1408.3955.Google ScholarGoogle Scholar
  26. H. Thapliyal and M. B. Srinivas. 2005. The need of DNA computing: Reversible designs of adders and multipliers using Fredkin gate. In Proceedings of SPIE, Optomechatronic Micro/Nano Devices and Components.Google ScholarGoogle Scholar
  27. T. Toffoli. 1980. Reversible computing. Tech Memo MIT/LCS/TM-151, MIT Lab for Computer Science, Cambridge, MA.Google ScholarGoogle Scholar
  28. R. Wille and R. Drechsler. 2009. BDD-based synthesis of reversible logic for large functions. In Design Automation Conference. 270--275. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Wille, R. Drechsler, C. Oswald, and A. Garcia-Ortiz. 2012. Automatic design of low-power encoders using reversible circuit synthesis. In DATE. 1036--1041. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. Wille, H. Zhang, and R. Drechsler. 2011. ATPG for reversible circuits using simulation, Boolean satisfiability, and pseudo Boolean optimization. In IEEE Annual Symposium on VLSI. 120--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. Wille, H. Zhang, and R. Drechsler. 2013. Fault ordering for automatic test pattern generation of reversible circuits. In International Symposium on Multiple-Valued Logic. 29--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. N. Yanushekvich, J. T. Butler, G. W. Dueck, and V. P. Shmerko. 2000. Experiments on FPRM expressions for partially symmetric logic functions. In IEEE International Symposium on Multiple Valued Logic. 141--146. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reversible Synthesis of Symmetric Functions with a Simple Regular Structure and Easy Testability

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Journal on Emerging Technologies in Computing Systems
          ACM Journal on Emerging Technologies in Computing Systems  Volume 12, Issue 4
          Regular Papers
          July 2016
          394 pages
          ISSN:1550-4832
          EISSN:1550-4840
          DOI:10.1145/2856147
          • Editor:
          • Yuan Xie
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 June 2016
          • Accepted: 1 February 2016
          • Revised: 1 December 2015
          • Received: 1 November 2014
          Published in jetc Volume 12, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader