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1. A B S T R A C T  

This paper is a call to SIGAda members to 
make a determined thrust to broaden Ada 
usage in the commercial world. More 
specifically, we wish to exploit an opportunity 
in the Electronic Design Automation industry 
(EDA) to use (a kernel of) Ada as a hardware 
description language (HDL) for the design 
and programming of today's System On a 
Chip (SOC). The Ada subset referred to in 
this paper is intended for the EDA domain to 
solve practical problems as an HDL, and, in 
addition, as the interfacing programming 
language used for testing and simulations (a 
market currently dominated by C/C++). 

Simplicity can be a significant aid in 
penetrating the market of users and makers 
of EDA tools. This community consists 
mostly of electrical engineers and tool 
manufacturers who would have both a 
cultural orientation and a commercial 
interest in a simple kernel of Ada. 

We use examples to illustrate the 
appropriateness of Kernel Ada for the 
development and testing of reusable hardware 
components. 

1.1 Keywords 
Ada, HDL, EDA, VHDL, Hardware Description Language 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted wi thout  fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 
To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGAda '98 11/98 Washington, D.C., USA 
© 1999 ACM 1-58113-033-3 /98 /0011 ... $5.00 

28A 

2. I N T R O D U C T I O N  T O  HDL 
"Varied-level computer languages to represent analog, 
microwave, and digital hardware are becoming increasingly 
important, which is partially due to a need to predict 
correct operation of complex ICs and their integration into 
multi-chip module parts. The problem is especially acute 
in circuits and systems with mixed-signal functionality. A 
significant problem area exists in the capturing of 
information, where the carrier of such information is called a 
hardware description language (HDL). We need to develop 
HDL theory and techniques, which support the entire 
product development cycle. This cycle includes 
specification, synthesis, test, formal verification, and 
manufacturing data support, as well as the traditional 
modeling and simulation arenas. We should also consider 
coupling HDL developments to computer-aided engineering 
and computer-aided design tools and backplanes." [5] 

HDLs are presently used to capture the architectural design 
of hardware units, and then to refine it repeatedly through 
the stages of first modeling the system architecture, then 
capturing the concepts of the functional elements, then to 
the detailed logic, and finally to the lowest levels, the 
circuit elements and their interconnections to high level 
systems[9]. An HDL's capability of supporting top-down 
design and of interfacing to simulation and testing 
programs during various stages of development is essential 
for the design of very large integrated circuits, and assists in 
the modification and reuse of design elements. 

There are many HDLs used by the Electronic Design 
Automation (EDA) industry. Most prominent are VHDL 
and Verilog, both IEEE standards. VHDL was developed 
by the DoD Very High Speed Integrated Circuits (VHSIC) 
program office which actually included most of the draft 
Ada that existed in the early 1980's [3]. Unfortunately, 
VHDL does not use the Ada constructs that support 
development of components. Entirely different and 
apparently disconnected constructs were added that have 
resulted in a very large and complex language. This might 
be responsible for the major VHDL shortcomings that are 
mentioned in Skahill [7, p.7]: 

"Design engineers express three common concerns about 
VHDL: (1) You give up control of def'ming the gate-level 
implementation of circuits that are described with high- 
level, abstract constructs, (2) the logic implementations 
created by synthesis tools are inefficient, and (3) the 
quality of synthesis varies from tool to tool." 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301687.289529&domain=pdf&date_stamp=1998-11-01


VHDL relies on using Boolean expressions as abstractions 
and leaves detailed gate level implementations, called 
synthesis, to tools or intellectual property(IP) vendors. 
Using Kemel Ada, the designer can exercise control at all 
levels when desired. 

Veritog was originally developed by an EDA tools vendor, 
and became an IEEE standard in 1987. Most integrated 
circuit development tools support Verilog. The tools are 
relatively expensive compared to VHDL tools. 

VHDL or Verilog coding is very dif~brent from coding in a 
computer programming language. Most development 
organizations use an HDL to design a component, and a 
programming language, usually C or C++, for simulation 
and testing. With Kernel Ada, design can be integrated 
with testing, and an iterative design process can be greatly 
simplified. For Systems on a Chip (SOC), processor(s) and 
memories are all contained within a chip, together with 
other peripheral functions. Design tmde-offs between 
hardware and software implementations often must be 
made. A simple Kemel Ada unifying both HDL and 
programming will make trade-offs easier. 

The news that a major Japanese electronic manufacturer has 
extended C for design purposes [2] reinforces our position 
on the usefulness of a programming language for design 
purposes. Kernel Ada should be more acceptable to the 
VHDL community, since much of it is already contained in 
VHDL, assuming that SIGAda quickly takes action. 

3. EXAMPLES OF KERNEL ADA AS AN 
HDL 
We assume no prior knowledge of computer architecture or 
detailed logic design by our readers for what follows. 

The Ada Package is a direct analogy of circuit component 
packages. Ada Boolean expressions with operators AND, 
OR, and NOT are completely adequate as abstractions to 
define the functionalities of circuit components. These two, 
when augmented by generics and private types, suffice to 
encapsulate components in package form for reuse. 

The examples, oversimplified to illustrate the form of a 
development environment, are sufficient to support the 
concepts. The programs use ANSI 1815 Ada-83 and were 
compiled with gnat, with and without a gnat83 switch, and 
also with Ada83 compilers [6]. The examples, plus 
additional code and information, can be found at the site 
http://alpha, fdu.edu/-levine/wong and also at 
http://www.cdl.wong.com (the latter oriented towards the 
EDA community). We begin with a package that contains 
type definitions for our device designs: 

-- package HDL provides definitions used by all devices. 

package HDL is 

subtype input is boolean; 

subtype output is boolean; 

type bus is array (natural range ~ )  of boolean; 

end HDL; 

Note that strong typing is not enforced. Input and output 
are declared subtypes so that the terms input/output appear 
in type declarations for readability by the designer but do 
not prevent the assignment of input values to outputs. 

3.1 Nand Gate Design 
The basic circuit elements are not AND or OR, but NAND 
and NOR, which are NOT AND and NOT OR 
respectively. One important circuit design principle is to 
minimize signal inversions in a chain of logic elements. To 
generate AND or OR, an inverting circuit (NOT) must be 
added with a total of two inversions and a tiny amount of 
extra component. To paraphrase Ben Franklin, '% 
transistor saved is a few pico-seconds shaved." We try to 
think NAND and NOR. Limiting ourselves to two-input 
devices for simplicity purposes, we adopt a standardized 
format: 

with HDL; 

package NAND is 

type device is record 

inputl, input2: HDL.input: = TRUE; 

data_out : HDL.output: = FALSE; 

end record; 

procedure update (d: in out device); 

end NAND; 

package body NAND is 

procedure update (d: in out device) is 

begin 

d.data_out: = not (d.inputl and d.input2); 

end update; 

end NAND; 

The package specification only specifies the externally 
visible interface including the update procedure that 
generates new output from new inputs. The functionality of 
the NAND device appears in the package body. Package 
NAND is comparable to VHDLIs Entity and Architecture, 
but there are major differences. VHDL Entity is like the 
pin-out naming in TTL IC catalogs, popular at the time 

VHDL was first def'medl Package NAND exports an update 
function so that any number of nand devices (objects) can 
be updated with new inputs to get new outputs. The actual 
implementation of NAND.update is encapsulated in the 
body, distinct from VHDL Architecture. The 
implementation can be changed and only requires relinking 
the simulation programs referencing the nand device 
implementation(s). 

Packages NOR and INVERT have similar device and 
update declarations and can be found at our web sites. 
Two-input nand or nor devices each require four transistors, 
and invert requires two. Most tools have standardized 
layout for such low-level devices and further decomposition 
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down to single transistors is neither necessary nor 
desirable. 

3.2 Dual Ranked Flip_Flop Design and Test 
The dual ranked flip-flop (or latch), commonly called D- 
Flipflop or DFF, is widely used, particularly the "edge 
triggered" type. A DFF without preset or preclear can be 
made with three 2-input nand gates connected as three flip- 
flops. 

-- Specification for a dual ranked flip-flop 

with HDL; 

package DFF is 

type device_state is limited private; 

type device is 

record 

data_in, clock: HDL.input: = FALSE; 

data_out : HDL.output:= FALSE; 

state : device_state; 

end record; 

procedure update (d: in out device); 

private 

type device_state is 

record 

clock: boolean: = FALSE; 

end record; 

end DFF; 

The flip-flops in DFF are memory devices and their current 
states combined with new inputs determine the next state. 
A DFF is designed to make output equal to input only 
when the clock goes fi'om false to true. After the change or 
clock edge, the input data in may change without affecting 
the output. Data_in must be stable during the clock change 
from false to true, which is always finite in time. 

Detailed analysis of what happens during the clock change 
is not a subject for this paper. The important point is to 
illustrate the representation of the device_state in package 
DFF. In order to cope with change, the update procedure 
must know the previous clock state. The use of a limited 
private type provides encapsulation for the device. 

-- First DFF implementation 

package body DFF is 

procedure update (d: in out device) is 

begin 

if not d.state.clock and then d.clock then 

d.data_out := d.data in; 

end if; 

d.state.clock: = d.clock; 

end update; 

end DFF; 

With Kernel Ada, every component cell can be tested prior 
to inclusion in other circuits. First we provide a utility 
package: 

with HDL; 

package UTILITY is 

procedure put (s: boolean); 

procedure putms 1 st (b: HDL.bus); 

-- left bit is most significant in a string of l's and O's. 

end UTILITY; 

with TEXT_IO; 

package body UTILITY is 

procedure put (s: boolean) is 

begin 

if s then 

TEXT_IO.put ('1'); 

else 

TEXT_IO.put ('0'); 

end if; 

TEXT IO.put( . . . .  ); 

end put; 

procedure putms 1 st (b: HDL.bus) is 

begin 

for i in reverse b'range 

loop 

if b(i) then 

TEXT_IO.put ('1'); 

else 

TEXT_IO.put ('0'); 

end if; 

end loop; 

TEXT_IO.put( . . . .  ); 

end putmslst; 

end UTILITY; 

Test results that should be obtained by running the 
following testing procedure are included as comments. 
These are shown after each corresponding display procedure 
call and are not repeated separately. 

with HDL, UTILITY, TEXT_IO, DFF; 

procedure test dffis 

d " DFF.device; 

c lockwas:  HDL.input := FALSE; 
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procedure display is 

begin 

UTILITY.put (d.data_in); 

UTILITY.put (d.data_out); 

UTILITY.put (clock_was); 

UTILITY.put (d.clock); 

DFF.update (d); 

UTILITY.put (d.datain); 

UTILITY.put (d.data_out); 

clock_was: = d.clock; -- state 

TEXT_IO.new_line; 

end display; 

begin 

TEXT_IO.put_line ("before update " & 

"after update"); 

TEXT_IO.put_line ("data_in data_out clock_was" & 

display; -- 0 

d.data_in: = TRUE; 

d.clock: = TRUE; 

display; -- 1 

d.data_in: = FALSE; 

display; -- 0 

d.clock: = FALSE; 

display; -- 0 

d.clock: = TRUE; 

display; -- 0 

display; -- 0 

end test_dff; 

" clock data in data_out" ); 

0 0 0 0 

0 0 1 1 1 

1 1 1 0 1 

1 1 0 0 1 

1 0 1 0 0 

0 1 1 0 0 

Now that we have implemented DFF with Boolean 
expression abstractions, we can write an altemate body for 
DFF using nand components: 

-- Second DFF implementation 

with NAND; 

package body DFF is 

procedure update (d: in out device) is 

unitl, unit2, unit3, unit4, unit5, unit6: 
NAND.device; 

begin 

if not d.state.clock and then d.clock then 

-- setup input state before clock turns true 

unit5.input2: = d.state.clock; 

unit4.input2: = d.state.clock; 

NAND.update (unit5); 

NAND.update (unit4); 

unit6.input2: = d.data_in; 

unit6.input 1 := unit5.data_out; 

NAND.update (unit6); 

unit3.input2: = unit6.data_out; 

unit3.inputl := unit4.data_out; 

NAND.update (unit3); 

-- complete feedbacks 

unit4.inputl := unit3.data_out; 

unit5.input 1 := unit6.data_out; 

-- now let clock turn true 

unit4.input2: = d.clock; 

NAND.update (unit4); 

unit5.input2: = d.clock; 

NAND.update (unit5); 

if not unit4.data out then 

unitl.input2:= unit4.data_out; 

NAND.update (unit 1); 

elsif not unit5.data out then 

unit2.input2: = unit5.data_out; 

NAND.update (unit2); 

unitl.input 1 := unit2.data_out; 

unitl.input2: = unit4.data_out; 

NAND.update (unitl); 

end if; 

d.data_out: = unit 1.data_out; 

end if; 

d.state.clock: = d.clock; 

end update; 

end DFF; 

Linking the test program test dff to the new 
implementation of DFF, we obtain the same results (else 
we would know that this unit was incorrect). While 
designing this second implementation, we made numerous 
errors because the feedback circuits complicate 
visualization. Ada's constructs in support of the design of 
reusable software components allowed us to substitute an 
alternate design and check the output, thus assisting in the 
design of reusable hardware components. This two stage 
design step avoids a major shortcoming of VHDL. 
Designers, using Kernel Ada, have a choice between relying 
on tool vendors, or specifying tests and implementation 
details themselves where appropriate. 

With Kemel Ada, assignment statements are used to 
represent signal flow and perforce circuit connections. 
Tools could then extract this information to obtain mask 
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clock 

state 

end record; 

layouts. They could also count the number of signal 
inversions to estimate worst case delays. 

3.3 Register Design 
With DFF, it is possible to define a register: 

with HDL; 

generic 

N: positive; -- the number of bits in the register 

package REGISTER is 

type device_state is limited private; 

type device is record 

data_in, data_out: HDL.bus (0..N-I): = 

(0..N-1 => FALSE); 

: HDL.input: = FALSE; 

: devicestate; 

procedure update (d: in out device); 

private 

type device_state is 

record 

clock: HDL.input: = FALSE; 

end record; 

end REGISTER; 

The package specification illustrates the usefulness of 
generics for an HDL. The package body for REGISTER can 
be found at our web sites. 

3.4 Adder Design 
We next design an adder: 

with HDL; 

package FULL_ADD is 

type device is 

record 

carry_in, inputl, input2: HDL.input; 

sum, car ryout  : HDL.output; 

end record; 

procedure update(d: in out device); 

end FULL_ADD; 

package body FULL_ADD is 

-- An alternate implementation of FULL_ADD using 

-- NAND, NOR, INVERT and X_OR devices (code for 

-- which can be found at our web sites). 

procedure update (d: in out device) is 

begin 

d.sum := d.inputl xor d.input2 xor d.carry_in; 

d.carry_out: = ((d.inputl or d.input2) and d.carry_in) 

or (d.inputl and d.input2); 

end update; 

end FULL_ADD; 

3.5 Accumulator Design 
Now we declare a parallel accumulator, with its 
implementation (found at our web sites) referencing an 
adder and register, basic components for most processors. 

with HDL; 

generic 

N: positive; --number of bits in 
accumulator 

package ACCUM is 

type devicestate is limited private; 

type device is 

record 

carry_in : HDL.input: = FALSE; 

data_in, 

accumulator: HDL.bus(0..n- 1): = (0..N-1 => 
FALSE); 

-- bit 0 is least significant 

carry_out : HDL.output: = FALSE; 

add : HDL.input:: FALSE; 

: device_state; state 

end record; 

procedure update (d: in out device); 

private 

type device_state is 

record 

add: boolean:= FALSE; 

end record; 

end ACCUM; 

With package ACCUM, we have tested a 200,000-bit 
accumulator implemented down to gate levels for proper 
carry propagation. Using GNAT compiling on an Alpha 
machine, a 262144 byte executable image was created that 
took .9 seconds to execute. A small 10,000-bit accumulator 
was also tested on an old 25 mhz 386 PC under DOS 
using an old Ada-83 compiler [6]. The executable size was 
slightly over 20,000 bytes and took less than a second to 
execute. This illustrates that Kernel Ada is effective on 
very simple platforms. 

This concludes our demonstration that Kernel Ada is 
adequate for use as an HDL. 

4. WHAT IS INCLUDED IN KERNEL ADA? 
A kernel of Ada constructs, as we have indicated, is 
sufficient for use as an HDL. A suggested list of reserved 
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words is available at our web sites. But are there reasons to 
limit ourselves to these constructs? Obviously, there are 
advantages, including simplicity and learning ease, in 
defining a small language for an HDL. Electrical engineers 
who program real-time systems for small real-time target 
platforms, in particular, have need for efficient languages 
that generate small executable code images and that execute 
quickly. Synthesis tools may not support the syntax of 
some of the constructs of a large HDL [8]. There are cost 
and time savings for developers of tools that interface to the 
language. Most important, the need for reliable constructs 
is crucial for the design of integrated circuits. 

What is retained in Kernel Ada is based solely on 
necessity. For our needs, we have excluded all use of heap 
storage. Concurrency is excluded because it is not necessary 
for code implementation; all devices have to wait for their 
inputs. We have also excluded fixed and floating-point 
types as not applicable for this application area. 

Precise definitions of the Kernel Ada subset can best be 
arrived at by a joint effort of a working group composed of 
SIGAda members who are interested in a wider use of Ada 
and of EDA tools and user communities who are interested 
in a simple language that is effective for all phases of their 
product development. 

5. KERNEL ADA FOR OTHER 
APPLICATION AREAS 
The Ada-95 Language Reference Manual includes an Annex 
H for Safety and Security Software [4] that recommends 
limiting certain constructs when system safety is 
paramount. In addition, the Ada community that creates 
high integrity systems [1, 10] has restricted similar 
constructs. These efforts define informal subsets (although 
the term is rarely used); standard Ada compilers are used 
with either pragmas or tools to restrict features that are 
considered potentially dangerous. Interestingly enough, 
these subsets are similar to Kernel Ada. 

Any computer programming educator that teaches 
beginning programming in Ada chooses an Ada subset, of 
necessity. The language is too large to teach in one 
semester, particularly when we consider that the primary 
subject matter should be design and development, not 
syntax. The large number of computer science departments 
that introduced, and in many cases, still use Pascal lix 
introductory programming (even though C/ C++/Java are 
the favorites of the commercial world) indicates the 
usefulness of a small, well-designed language for 
educational purposes. Kernel Ada is comparable to Pascal 
in its simplicity, but improves on some constructs and is 
superior for the development of reusable components. 

Reliability should also be a goal for beginning students; 
indeed, the constructs that are excluded from Kernel Ada are 
exactly those that are the most unreliable for teaching 
purposes. (Java, for example, has eliminated user defined 
access types.) Electrical engineers, who frequently program 
for small target machines, should not learn bad habits on 
the seemingly unlimited heap storage that may be provided 
by a personal computer's development environment. Even if 

a cross-compiler recognizes the target limitations, errors 
that are not caught by the test suite or a StorageError 
exception can cause catastrophic failures. Thus a (perhaps 
informal, but surely reliable) Ada subset can be useful in 
unifying both the computer science and electrical 
engineering programming disciplines. 

The problems with accepting various, perhaps de facto, 
subsets are numerous. For example, 

1) Users must master the larger language, and also each 
specific subsetting document as needed. It seems unlikely 
that we can win new Ada users with such an approach. 

2) Developers of tools are not likely to commit resources 
for different subsets, yet developing for full Ada seems 
unlikely in some communities, particularly EDA tools 
manufacturers. 

3) Critics of Ada can select from any of these subsets to 
criticize the whole. 

4) The Ada community is increasingly fragmentized. 

We urge SIGAda members to help def'me a single subset for 
the EDA domain, which will be of value to computer 
science and electrical engineering educational departments 
as well. One of the authors of this paper has used similar 
subsets to translate missile assembly codes; it is thus 
likely that the same subset will be useful for hard real-time 
embedded systems which also demand high-integrity 
software. Certainly; tools that are developed for the EDA 
domain will be beneficial to other areas. 

6. C O N C L U S I O N  
Ada, being designed with reusable components in mind~ 
anticipated the era of semi-conductor intellectual property 
(IP), a fancy name for design components. Currently IP 
vendors must describe their products in an HDL, with their 
design documents interfacing to simulation and testing 
programs in a programming language. 

The examples we have provided indicate that Kernel Ada as 
an HDL is sufficient for the entire system development 
project, including design and testing. 

Kernel Ada has a window of opportunity that may not last 
[2]. SIGAda members must make a concerted effort to agree 
upon a single (perhaps de facto) subset in order for the EDA 
industry to adopt it as a stable standard for use as an HDL. 
We request that SIGAda form a subgroup for the 
standardization of Kernel Ada. 
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