
Kernel Ada to Onify
Sy Wong

Adaware
5200 Topeka Drive

Tarzana, Ca 91356-3923
1/818/345-6247

sywong @ markv.com

Hardware and Software Design
Gertrude Levine

Fairleigh Dickinson University
1000 River Road

Teaneck, NJ 07666
1/201/692 -2020

levine @ alpha, fclu ,ed u

1. A B S T R A C T

This paper is a call to SIGAda members to
make a determined thrust to broaden Ada
usage in the commercial world. More
specifically, we wish to exploit an opportunity
in the Electronic Design Automation industry
(EDA) to use (a kernel of) Ada as a hardware
description language (HDL) for the design
and programming of today's System On a
Chip (SOC). The Ada subset referred to in
this paper is intended for the EDA domain to
solve practical problems as an HDL, and, in
addition, as the interfacing programming
language used for testing and simulations (a
market currently dominated by C/C++).

Simplicity can be a significant aid in
penetrating the market of users and makers
of EDA tools. This community consists
mostly of electrical engineers and tool
manufacturers who would have both a
cultural orientation and a commercial
interest in a simple kernel of Ada.

We use examples to illustrate the
appropriateness of Kernel Ada for the
development and testing of reusable hardware
components.

1.1 Keywords
Ada, HDL, EDA, VHDL, Hardware Description Language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted wi thout fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGAda '98 11/98 Washington, D.C., USA
© 1999 ACM 1-58113-033-3 /98 /0011 ... $5.00

28A

2. I N T R O D U C T I O N T O HDL
"Varied-level computer languages to represent analog,
microwave, and digital hardware are becoming increasingly
important, which is partially due to a need to predict
correct operation of complex ICs and their integration into
multi-chip module parts. The problem is especially acute
in circuits and systems with mixed-signal functionality. A
significant problem area exists in the capturing of
information, where the carrier of such information is called a
hardware description language (HDL). We need to develop
HDL theory and techniques, which support the entire
product development cycle. This cycle includes
specification, synthesis, test, formal verification, and
manufacturing data support, as well as the traditional
modeling and simulation arenas. We should also consider
coupling HDL developments to computer-aided engineering
and computer-aided design tools and backplanes." [5]

HDLs are presently used to capture the architectural design
of hardware units, and then to refine it repeatedly through
the stages of first modeling the system architecture, then
capturing the concepts of the functional elements, then to
the detailed logic, and finally to the lowest levels, the
circuit elements and their interconnections to high level
systems[9]. An HDL's capability of supporting top-down
design and of interfacing to simulation and testing
programs during various stages of development is essential
for the design of very large integrated circuits, and assists in
the modification and reuse of design elements.

There are many HDLs used by the Electronic Design
Automation (EDA) industry. Most prominent are VHDL
and Verilog, both IEEE standards. VHDL was developed
by the DoD Very High Speed Integrated Circuits (VHSIC)
program office which actually included most of the draft
Ada that existed in the early 1980's [3]. Unfortunately,
VHDL does not use the Ada constructs that support
development of components. Entirely different and
apparently disconnected constructs were added that have
resulted in a very large and complex language. This might
be responsible for the major VHDL shortcomings that are
mentioned in Skahill [7, p.7]:

"Design engineers express three common concerns about
VHDL: (1) You give up control of def'ming the gate-level
implementation of circuits that are described with high-
level, abstract constructs, (2) the logic implementations
created by synthesis tools are inefficient, and (3) the
quality of synthesis varies from tool to tool."

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301687.289529&domain=pdf&date_stamp=1998-11-01

VHDL relies on using Boolean expressions as abstractions
and leaves detailed gate level implementations, called
synthesis, to tools or intellectual property(IP) vendors.
Using Kemel Ada, the designer can exercise control at all
levels when desired.

Veritog was originally developed by an EDA tools vendor,
and became an IEEE standard in 1987. Most integrated
circuit development tools support Verilog. The tools are
relatively expensive compared to VHDL tools.

VHDL or Verilog coding is very dif~brent from coding in a
computer programming language. Most development
organizations use an HDL to design a component, and a
programming language, usually C or C++, for simulation
and testing. With Kernel Ada, design can be integrated
with testing, and an iterative design process can be greatly
simplified. For Systems on a Chip (SOC), processor(s) and
memories are all contained within a chip, together with
other peripheral functions. Design tmde-offs between
hardware and software implementations often must be
made. A simple Kemel Ada unifying both HDL and
programming will make trade-offs easier.

The news that a major Japanese electronic manufacturer has
extended C for design purposes [2] reinforces our position
on the usefulness of a programming language for design
purposes. Kernel Ada should be more acceptable to the
VHDL community, since much of it is already contained in
VHDL, assuming that SIGAda quickly takes action.

3. EXAMPLES OF KERNEL ADA AS AN
HDL
We assume no prior knowledge of computer architecture or
detailed logic design by our readers for what follows.

The Ada Package is a direct analogy of circuit component
packages. Ada Boolean expressions with operators AND,
OR, and NOT are completely adequate as abstractions to
define the functionalities of circuit components. These two,
when augmented by generics and private types, suffice to
encapsulate components in package form for reuse.

The examples, oversimplified to illustrate the form of a
development environment, are sufficient to support the
concepts. The programs use ANSI 1815 Ada-83 and were
compiled with gnat, with and without a gnat83 switch, and
also with Ada83 compilers [6]. The examples, plus
additional code and information, can be found at the site
http://alpha, fdu.edu/-levine/wong and also at
http://www.cdl.wong.com (the latter oriented towards the
EDA community). We begin with a package that contains
type definitions for our device designs:

-- package HDL provides definitions used by all devices.

package HDL is

subtype input is boolean;

subtype output is boolean;

type bus is array (natural range ~) of boolean;

end HDL;

Note that strong typing is not enforced. Input and output
are declared subtypes so that the terms input/output appear
in type declarations for readability by the designer but do
not prevent the assignment of input values to outputs.

3.1 Nand Gate Design
The basic circuit elements are not AND or OR, but NAND
and NOR, which are NOT AND and NOT OR
respectively. One important circuit design principle is to
minimize signal inversions in a chain of logic elements. To
generate AND or OR, an inverting circuit (NOT) must be
added with a total of two inversions and a tiny amount of
extra component. To paraphrase Ben Franklin, '%
transistor saved is a few pico-seconds shaved." We try to
think NAND and NOR. Limiting ourselves to two-input
devices for simplicity purposes, we adopt a standardized
format:

with HDL;

package NAND is

type device is record

inputl, input2: HDL.input: = TRUE;

data_out : HDL.output: = FALSE;

end record;

procedure update (d: in out device);

end NAND;

package body NAND is

procedure update (d: in out device) is

begin

d.data_out: = not (d.inputl and d.input2);

end update;

end NAND;

The package specification only specifies the externally
visible interface including the update procedure that
generates new output from new inputs. The functionality of
the NAND device appears in the package body. Package
NAND is comparable to VHDLIs Entity and Architecture,
but there are major differences. VHDL Entity is like the
pin-out naming in TTL IC catalogs, popular at the time

VHDL was first def'medl Package NAND exports an update
function so that any number of nand devices (objects) can
be updated with new inputs to get new outputs. The actual
implementation of NAND.update is encapsulated in the
body, distinct from VHDL Architecture. The
implementation can be changed and only requires relinking
the simulation programs referencing the nand device
implementation(s).

Packages NOR and INVERT have similar device and
update declarations and can be found at our web sites.
Two-input nand or nor devices each require four transistors,
and invert requires two. Most tools have standardized
layout for such low-level devices and further decomposition

29A

down to single transistors is neither necessary nor
desirable.

3.2 Dual Ranked Flip_Flop Design and Test
The dual ranked flip-flop (or latch), commonly called D-
Flipflop or DFF, is widely used, particularly the "edge
triggered" type. A DFF without preset or preclear can be
made with three 2-input nand gates connected as three flip-
flops.

-- Specification for a dual ranked flip-flop

with HDL;

package DFF is

type device_state is limited private;

type device is

record

data_in, clock: HDL.input: = FALSE;

data_out : HDL.output:= FALSE;

state : device_state;

end record;

procedure update (d: in out device);

private

type device_state is

record

clock: boolean: = FALSE;

end record;

end DFF;

The flip-flops in DFF are memory devices and their current
states combined with new inputs determine the next state.
A DFF is designed to make output equal to input only
when the clock goes fi'om false to true. After the change or
clock edge, the input data in may change without affecting
the output. Data_in must be stable during the clock change
from false to true, which is always finite in time.

Detailed analysis of what happens during the clock change
is not a subject for this paper. The important point is to
illustrate the representation of the device_state in package
DFF. In order to cope with change, the update procedure
must know the previous clock state. The use of a limited
private type provides encapsulation for the device.

-- First DFF implementation

package body DFF is

procedure update (d: in out device) is

begin

if not d.state.clock and then d.clock then

d.data_out := d.data in;

end if;

d.state.clock: = d.clock;

end update;

end DFF;

With Kernel Ada, every component cell can be tested prior
to inclusion in other circuits. First we provide a utility
package:

with HDL;

package UTILITY is

procedure put (s: boolean);

procedure putms 1 st (b: HDL.bus);

-- left bit is most significant in a string of l's and O's.

end UTILITY;

with TEXT_IO;

package body UTILITY is

procedure put (s: boolean) is

begin

if s then

TEXT_IO.put ('1');

else

TEXT_IO.put ('0');

end if;

TEXT IO.put(. . . .);

end put;

procedure putms 1 st (b: HDL.bus) is

begin

for i in reverse b'range

loop

if b(i) then

TEXT_IO.put ('1');

else

TEXT_IO.put ('0');

end if;

end loop;

TEXT_IO.put(. . . .);

end putmslst;

end UTILITY;

Test results that should be obtained by running the
following testing procedure are included as comments.
These are shown after each corresponding display procedure
call and are not repeated separately.

with HDL, UTILITY, TEXT_IO, DFF;

procedure test dffis

d " DFF.device;

c lockwas: HDL.input := FALSE;

30A

procedure display is

begin

UTILITY.put (d.data_in);

UTILITY.put (d.data_out);

UTILITY.put (clock_was);

UTILITY.put (d.clock);

DFF.update (d);

UTILITY.put (d.datain);

UTILITY.put (d.data_out);

clock_was: = d.clock; -- state

TEXT_IO.new_line;

end display;

begin

TEXT_IO.put_line ("before update " &

"after update");

TEXT_IO.put_line ("data_in data_out clock_was" &

display; -- 0

d.data_in: = TRUE;

d.clock: = TRUE;

display; -- 1

d.data_in: = FALSE;

display; -- 0

d.clock: = FALSE;

display; -- 0

d.clock: = TRUE;

display; -- 0

display; -- 0

end test_dff;

" clock data in data_out");

0 0 0 0

0 0 1 1 1

1 1 1 0 1

1 1 0 0 1

1 0 1 0 0

0 1 1 0 0

Now that we have implemented DFF with Boolean
expression abstractions, we can write an altemate body for
DFF using nand components:

-- Second DFF implementation

with NAND;

package body DFF is

procedure update (d: in out device) is

unitl, unit2, unit3, unit4, unit5, unit6:
NAND.device;

begin

if not d.state.clock and then d.clock then

-- setup input state before clock turns true

unit5.input2: = d.state.clock;

unit4.input2: = d.state.clock;

NAND.update (unit5);

NAND.update (unit4);

unit6.input2: = d.data_in;

unit6.input 1 := unit5.data_out;

NAND.update (unit6);

unit3.input2: = unit6.data_out;

unit3.inputl := unit4.data_out;

NAND.update (unit3);

-- complete feedbacks

unit4.inputl := unit3.data_out;

unit5.input 1 := unit6.data_out;

-- now let clock turn true

unit4.input2: = d.clock;

NAND.update (unit4);

unit5.input2: = d.clock;

NAND.update (unit5);

if not unit4.data out then

unitl.input2:= unit4.data_out;

NAND.update (unit 1);

elsif not unit5.data out then

unit2.input2: = unit5.data_out;

NAND.update (unit2);

unitl.input 1 := unit2.data_out;

unitl.input2: = unit4.data_out;

NAND.update (unitl);

end if;

d.data_out: = unit 1.data_out;

end if;

d.state.clock: = d.clock;

end update;

end DFF;

Linking the test program test dff to the new
implementation of DFF, we obtain the same results (else
we would know that this unit was incorrect). While
designing this second implementation, we made numerous
errors because the feedback circuits complicate
visualization. Ada's constructs in support of the design of
reusable software components allowed us to substitute an
alternate design and check the output, thus assisting in the
design of reusable hardware components. This two stage
design step avoids a major shortcoming of VHDL.
Designers, using Kernel Ada, have a choice between relying
on tool vendors, or specifying tests and implementation
details themselves where appropriate.

With Kemel Ada, assignment statements are used to
represent signal flow and perforce circuit connections.
Tools could then extract this information to obtain mask

31A

clock

state

end record;

layouts. They could also count the number of signal
inversions to estimate worst case delays.

3.3 Register Design
With DFF, it is possible to define a register:

with HDL;

generic

N: positive; -- the number of bits in the register

package REGISTER is

type device_state is limited private;

type device is record

data_in, data_out: HDL.bus (0..N-I): =

(0..N-1 => FALSE);

: HDL.input: = FALSE;

: devicestate;

procedure update (d: in out device);

private

type device_state is

record

clock: HDL.input: = FALSE;

end record;

end REGISTER;

The package specification illustrates the usefulness of
generics for an HDL. The package body for REGISTER can
be found at our web sites.

3.4 Adder Design
We next design an adder:

with HDL;

package FULL_ADD is

type device is

record

carry_in, inputl, input2: HDL.input;

sum, car ryout : HDL.output;

end record;

procedure update(d: in out device);

end FULL_ADD;

package body FULL_ADD is

-- An alternate implementation of FULL_ADD using

-- NAND, NOR, INVERT and X_OR devices (code for

-- which can be found at our web sites).

procedure update (d: in out device) is

begin

d.sum := d.inputl xor d.input2 xor d.carry_in;

d.carry_out: = ((d.inputl or d.input2) and d.carry_in)

or (d.inputl and d.input2);

end update;

end FULL_ADD;

3.5 Accumulator Design
Now we declare a parallel accumulator, with its
implementation (found at our web sites) referencing an
adder and register, basic components for most processors.

with HDL;

generic

N: positive; --number of bits in
accumulator

package ACCUM is

type devicestate is limited private;

type device is

record

carry_in : HDL.input: = FALSE;

data_in,

accumulator: HDL.bus(0..n- 1): = (0..N-1 =>
FALSE);

-- bit 0 is least significant

carry_out : HDL.output: = FALSE;

add : HDL.input:: FALSE;

: device_state; state

end record;

procedure update (d: in out device);

private

type device_state is

record

add: boolean:= FALSE;

end record;

end ACCUM;

With package ACCUM, we have tested a 200,000-bit
accumulator implemented down to gate levels for proper
carry propagation. Using GNAT compiling on an Alpha
machine, a 262144 byte executable image was created that
took .9 seconds to execute. A small 10,000-bit accumulator
was also tested on an old 25 mhz 386 PC under DOS
using an old Ada-83 compiler [6]. The executable size was
slightly over 20,000 bytes and took less than a second to
execute. This illustrates that Kernel Ada is effective on
very simple platforms.

This concludes our demonstration that Kernel Ada is
adequate for use as an HDL.

4. WHAT IS INCLUDED IN KERNEL ADA?
A kernel of Ada constructs, as we have indicated, is
sufficient for use as an HDL. A suggested list of reserved

32A

words is available at our web sites. But are there reasons to
limit ourselves to these constructs? Obviously, there are
advantages, including simplicity and learning ease, in
defining a small language for an HDL. Electrical engineers
who program real-time systems for small real-time target
platforms, in particular, have need for efficient languages
that generate small executable code images and that execute
quickly. Synthesis tools may not support the syntax of
some of the constructs of a large HDL [8]. There are cost
and time savings for developers of tools that interface to the
language. Most important, the need for reliable constructs
is crucial for the design of integrated circuits.

What is retained in Kernel Ada is based solely on
necessity. For our needs, we have excluded all use of heap
storage. Concurrency is excluded because it is not necessary
for code implementation; all devices have to wait for their
inputs. We have also excluded fixed and floating-point
types as not applicable for this application area.

Precise definitions of the Kernel Ada subset can best be
arrived at by a joint effort of a working group composed of
SIGAda members who are interested in a wider use of Ada
and of EDA tools and user communities who are interested
in a simple language that is effective for all phases of their
product development.

5. KERNEL ADA FOR OTHER
APPLICATION AREAS
The Ada-95 Language Reference Manual includes an Annex
H for Safety and Security Software [4] that recommends
limiting certain constructs when system safety is
paramount. In addition, the Ada community that creates
high integrity systems [1, 10] has restricted similar
constructs. These efforts define informal subsets (although
the term is rarely used); standard Ada compilers are used
with either pragmas or tools to restrict features that are
considered potentially dangerous. Interestingly enough,
these subsets are similar to Kernel Ada.

Any computer programming educator that teaches
beginning programming in Ada chooses an Ada subset, of
necessity. The language is too large to teach in one
semester, particularly when we consider that the primary
subject matter should be design and development, not
syntax. The large number of computer science departments
that introduced, and in many cases, still use Pascal lix
introductory programming (even though C/ C++/Java are
the favorites of the commercial world) indicates the
usefulness of a small, well-designed language for
educational purposes. Kernel Ada is comparable to Pascal
in its simplicity, but improves on some constructs and is
superior for the development of reusable components.

Reliability should also be a goal for beginning students;
indeed, the constructs that are excluded from Kernel Ada are
exactly those that are the most unreliable for teaching
purposes. (Java, for example, has eliminated user defined
access types.) Electrical engineers, who frequently program
for small target machines, should not learn bad habits on
the seemingly unlimited heap storage that may be provided
by a personal computer's development environment. Even if

a cross-compiler recognizes the target limitations, errors
that are not caught by the test suite or a StorageError
exception can cause catastrophic failures. Thus a (perhaps
informal, but surely reliable) Ada subset can be useful in
unifying both the computer science and electrical
engineering programming disciplines.

The problems with accepting various, perhaps de facto,
subsets are numerous. For example,

1) Users must master the larger language, and also each
specific subsetting document as needed. It seems unlikely
that we can win new Ada users with such an approach.

2) Developers of tools are not likely to commit resources
for different subsets, yet developing for full Ada seems
unlikely in some communities, particularly EDA tools
manufacturers.

3) Critics of Ada can select from any of these subsets to
criticize the whole.

4) The Ada community is increasingly fragmentized.

We urge SIGAda members to help def'me a single subset for
the EDA domain, which will be of value to computer
science and electrical engineering educational departments
as well. One of the authors of this paper has used similar
subsets to translate missile assembly codes; it is thus
likely that the same subset will be useful for hard real-time
embedded systems which also demand high-integrity
software. Certainly; tools that are developed for the EDA
domain will be beneficial to other areas.

6. C O N C L U S I O N
Ada, being designed with reusable components in mind~
anticipated the era of semi-conductor intellectual property
(IP), a fancy name for design components. Currently IP
vendors must describe their products in an HDL, with their
design documents interfacing to simulation and testing
programs in a programming language.

The examples we have provided indicate that Kernel Ada as
an HDL is sufficient for the entire system development
project, including design and testing.

Kernel Ada has a window of opportunity that may not last
[2]. SIGAda members must make a concerted effort to agree
upon a single (perhaps de facto) subset in order for the EDA
industry to adopt it as a stable standard for use as an HDL.
We request that SIGAda form a subgroup for the
standardization of Kernel Ada.

7. REFERENCES
[1] Barnes, J., High Integrity Ada, the SPARK Approach

Addison-Wesley, England, 1997.

[2] Cataldo, A., NEC extends C language in bid to speed
Design. Electronics Engineering Times, (July 13,
1998), p.1.

[3] IEEE Standard VHDL Language Reference Manual,
IEEE Std 1076-1993, VHDL. (revised from 1076-
1987) June 6, 1994

[4] ISO/IEC 8652, Annex H.4 Safety and Security
Restrictions, 1995

33A

[5] Perlman, B. S. Hardware Description Language
Theory. NRC Research Assoc. Prog, Fort Monmouth,
N J, http://rap.nas.edu/lab/ARL/76231507.html

[6] R.R. Software, www.rrsoffware.com, Janus compiler
version 2.2.2c. Version 2.2.1b (used to compile the
examples and has again been placed on sale).

[7] Skahill, K. VHDL for Programmable Logic Addison-
Wesley, 1996

[8] Smith, M. J. S. More logic synthesis for ASICs. IEEE
Spectrum, 29, 11 (Nov. 92), 44-48.

[9] Waxman, R., Saunders, L., and Carter, H. VHDL
links design, tests and maintenance. IEEE Spectrum,
26,5, (May 1989), 40-44.

[10]Wichmann, B. A. et al. Guidance for the use of the
Ada Programming Language in High Integrity
Systems, Ada Letters, 18, 4 (July, Aug. 1998).

Dr. SY Wong began design work at the Institute for
Advanced Study Computer Project directed by Professor
John Von Neumann, and designed the first transistorized
computer in the United States at Philco, Radar DSP and
single chip processor designs at Hughes Aircraft. Currently
he is using Ada to describe core processors for SOC
applications.

Dr. Gertrude Levine is a professor of computer science at
Fairleigh Dickinson University, She has published several
articles on Ada and has been writing a column for Ada
Letters since 1990.

34A

