
MIT Open Access Articles

Collaborative Filtering with Low Regret

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bresler, Guy, Shah, Devavrat and Voloch, Luis Filipe. 2016. "Collaborative Filtering with
Low Regret."

As Published: 10.1145/2896377.2901469

Publisher: Association for Computing Machinery (ACM)

Persistent URL: https://hdl.handle.net/1721.1/137394

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/137394
http://creativecommons.org/licenses/by-nc-sa/4.0/

Collaborative Filtering with Low Regret ∗

Guy Bresler
IDSS/LIDS/EECS, MIT

32 Vassar Street
Cambridge, Massachusetts

guy@mit.edu

Devavrat Shah
IDSS/LIDS/EECS, MIT

32 Vassar Street
Cambridge, Massachusetts

devavrat@mit.edu

Luis F Voloch
LIDS/EECS, MIT
32 Vassar Street

Cambridge, Massachusetts
voloch@mit.edu

ABSTRACT
There is much empirical evidence that item-item collabora-
tive filtering works well in practice. Motivated to understand
this, we provide a framework to design and analyze various
recommendation algorithms. The setup amounts to online
binary matrix completion, where at each time a random user
requests a recommendation and the algorithm chooses an
entry to reveal in the user’s row. The goal is to minimize
regret, or equivalently to maximize the number of +1 entries
revealed at any time. We analyze an item-item collabora-
tive filtering algorithm that can achieve fundamentally bet-
ter performance compared to user-user collaborative filter-
ing. The algorithm achieves good “cold-start” performance
(appropriately defined) by quickly making good recommen-
dations to new users about whom there is little information.

1. INTRODUCTION

1.1 Background
Whenever a business contains a large collection of items

for sale, it is of interest to help customers find the items
that are of most interest to them. Before the creation and
widespread adoption of the Internet, this was done by trained
store salesmen, who can recommend items based on experi-
ence and the customers’ revealed preferences.

After the creation of the Internet, this “recommendation
system”has been largely taken off the hands of trained sales-
men and is now largely handled by automated, statistically
driven policies. For many companies, the efficacy of their
recommendation systems stands at the core of their busi-
ness. Amazon and Netflix are prominent examples.

A natural and clever first idea in designing an automated
recommendation system is to use content specific data. In
this spirit, one may use words in the title and book’s cover,
or a user’s age and geographic location as inputs to recom-

∗This work was supported in parts by NSF CMMI-1462158,
CNS-1523546 and ARO MURI Award W911NF-11-1-0036.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS ’16, June 14-18, 2016, Antibes Juan-Les-Pins, France
c© 2016 ACM. ISBN 978-1-4503-4266-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2896377.2901469

mendation heuristics. This type of recommendation system,
based on content-specific data, is called content filtering.

In contrast to content filtering, a technique called collabo-
rative filtering (CF) provides recommendation in a content-
agnostic way. CF works by exploiting patterns in general
purchase or usage data. For instance, if 90% of users agree
on two items (that is, 90% of users either like both items
or dislike both items), a CF algorithm may recommend the
second item after a user has expressed positive feedback for
the first item.

The term collaborative filtering was coined in [16], and
this technique is used in virtually all recommendation sys-
tems. There are two main paradigms in neighborhood-based
collaborative filtering: the user-user paradigm and the item-
item paradigm. To recommend to a user in the user-user
paradigm, one first looks for similar users, and then rec-
ommends items liked by those similar users. In the item-
item paradigm, in contrast, items similar to those liked by
the user are found and subsequently recommended. Much
empirical evidence exists that the item-item paradigm per-
forms well in many cases [26, 23], and in this paper, moti-
vated to understand the reasons behind this, we introduce a
mathematical model and formally analyze the performance
of a simple, intuitive algorithm that follows the item-item
paradigm. The algorithm, called item-item-cf, is described
in Section 3.

1.2 Organization
The rest of this paper is organized as follows. For the

remainder of Section 1 we formally introduce the model,
give an informal overview of the main results, and discuss
related works. In Section 2 we describe the assumptions we
make, motivated by theoretical lower bounds and empirical
observations. In Section 3 we describe our algorithm and in
Section 4 we prove the correctness of its main set of routines.
In Section 5 we put all the pieces together and give our main
results pertaining to the performance of item-item-cf. In
Section 6 we further discuss our results and future work.

1.3 Model
We consider a system with N users and collection of items
I. For each item i ∈ I, user u has binary preference Lu,i
equal to +1 (like) or −1 (dislike). Recommendation sys-
tems typically operate in an online1 setting, meaning that
when a user logs into a virtual store (such as Amazon), a
recommendation must be made immediately. At each dis-

1Online refers to decisions being made sequentially and with
limited information.

crete time step t = 1, 2, 3, . . . a uniformly random user
Ut ∈ {1, .., N} requests a recommendation. The recom-
mendation algorithm selects an item It to recommend from
the set of available items I, after which Ut gives feedback
LUt,It . The recommendation must depend only on previ-
ous feedback: It is required to be measurable with respect
to the sigma-field generated by the history (U1, I1, LU1,I1),
...,(Ut−1, It−1, LUt−1,It−1).

We impose the constraint that the recommendation algo-
rithm may only recommend each item to a given user at
most once. This captures the situation where users do not
want to watch a movie or read a book more than once and
focuses attention on the ability to recommend new items.

For each recommendation, the algorithm may therefore
either recommend an item that has been previously recom-
mended to other users (in which case it has some information
about the item) or recommend a new item from I.

We are interested in the situation where there are many
items, and will assume that I is infinite. For a given item i,
the corresponding ith column L·,i ∈ {−1,+1}N containing
each user’s preference is called the type of item i. It is con-
venient to represent the population of items by a probability
measure µ over {−1,+1}N . When the algorithm selects an
item that has not yet been recommended, the item’s type
is drawn from this distribution in an i.i.d. manner. Rec-
ommending a new item corresponds to adding a column to
the rating matrix, with binary preferences jointly distributed
according to µ.

1.4 Performance measure and main results
As is standard in the online decision-making literature,

algorithm performance is measured by regret relative to an
all-knowing algorithm that makes no bad recommendations.
The regret at time T is therefore

R(T) ,
1

N

T ·N∑
t=1

1

2
(1− LUt,It) .

Recall that at time t user Ut ∈ {1, . . . , N} desires a recom-
mendation, It is the recommended item, and Lu,i is equal
to +1 (resp. −1) if u likes (resp. dislikes) item i. The regret
R(T) is the number of bad recommendations per user af-
ter having made an average of T recommendations per user.
Dependence on the algorithm is implicit through It.

We now describe two high-level objectives in designing a
recommendation system and the corresponding guarantees
obtained for our proposed algorithm item-item-cf, which
is described in Sections 3 and 3.1. The results are stated in
more detail in Section 5.

1.4.1 Cold-start time
With no prior information, the algorithm should give reli-

able recommendations as quickly as possible. The cold-start
time Tcold−start of a recommendation algorithm is defined as

min

{
T+Γ : T,Γ ≥ 0,E [R(T + ∆)−R(T)] ≤ 0.1∆, ∀∆ > Γ

}
.

(1)
This is the first time after which the slope of the expected re-
gret is bounded by 0.1: after Tcold−start the algorithm makes
a bad recommendation to a randomly chosen user with prob-
ability at most 0.1.2

2The choice 0.1 is arbitrary. We will assume that users like

Our results: As described in Section 2, we assume that
each user likes at least ν > 0 fraction of the items. In
Theorem 5.1 we show that algorithm item-item-cf achieves

Tcold−start = Õ(1
ν

) for N ≥ N0.3 Note that one must typi-

cally randomly sample Ω(1
ν

) items to find a single liked item,
and our results show that this amount of time-investment
suffices in order to give consistently good recommendations.
Further, in Section 6.2 we show that user-user collaborative
filtering cannot achieve such cold-start performance, and
give intuition for why that is the case.

1.4.2 Improving accuracy
The algorithm should give increasingly more reliable rec-

ommendations as it gains information about the users and
items. This is captured by having sublinear expected regret
E [R (T)] = o (T).

Our results: Proposition 2.1 shows that without as-
sumptions on the item space, it is impossible for any online
algorithm to achieve sublinear regret for any positive length
of time. In this paper we assume that the item space has
doubling dimension (a measure of complexity of the space,
defined and motivated later) bounded by d. In Theorem 5.2
we show that after time Tcold−start (until which we incur
linear regret), algorithm item-item-cf achieves sublinear

expected regret Õ(T
d+1
d+2) up until a certain time Tmax. Af-

ter Tmax the expected regret again grows linearly (but with
much smaller slope), and this behavior is shown in Theo-
rem 5.3 to be unavoidable. As will be made explicit, perfor-
mance improves with increasing number of users: Tmax (and
hence the length of the sublinear time-period) increases with
N and the eventual linear slope decreases with N , both of
which illustrate the so-called collaborative gain.

We would like to note that the mathematical formulation
of cold-start time is new, to the best of our knowledge. The
strong guarantee we obtain on cold-start time (independent
of doubling dimension d) is distinct from and does not follow
as an implication of the sub-linear regret result (which does
depend on d).

1.5 Related Works
In this section we discuss connections to related work. We

begin by describing some relevant literature in multi-armed
bandits, which deals with explore-exploit trade-offs similar
to the ones faced by a recommendation algorithm. We then,
for completeness, describe matrix factorization methods of
recommendation systems, which is another popular model of
recommendation system. We conclude by discussing other
relevant works.

1.5.1 Multi-armed Bandits
In the multi-armed bandit problem, at each time t the

player must choose an arm i ∈ X (hence multi-armed) to
pull in a slot machine (bandit). Upon pulling arm i, the
player receives a random reward distributed according to an
i.i.d. random variable with mean ri.

The goal of the player is to minimize the expected regret,

only a small fraction of the items, so the cold-start time is
the minimum time after which the algorithm can recommend
significantly better than random.
3Here and throughout, r = Õ(x) means r ≤ Cx logc x for
some numerical constants c and C.

which in this context is defined as

R̄(T) = E

[
T∑
t=1

r∗ − rIt

]
. (2)

Here It is the random variable denoting the arm pulled at
time t and r∗ , supi∈X ri is the supremum of expected re-
ward of all arms. The means {ri} are unknown to the player,
so the decision about which arm to pull depends on estimates
of the means. Hence, the expected regret is the difference
in expected reward compared with an oracle algorithm that
always pulls the arm with the highest expected reward.

The survey by [6] thoroughly covers many other variants
of multi-armed bandits, and points to [33] as the earliest
work in bandits. The multi-armed bandit work that is most
relevant to us, however, is when X is a very large set. In
this case we can interpret arms as items, and pulling an arm
as recommending an item to a user. When X is very large
(possibly uncountably infinite), however, some structure on
X must be assumed in order for any algorithm to achieve
nontrivial regret.

The papers [22, 7] use notions of dimensionality similar
to the one in this paper in order to control the structure
of the space of arms X : [22] assumes that the arm space is
endowed with a metric, and [7] assumes that the arms have
a dissimilarity function (which is not necessarily a metric).
The expected rewards are then related to this geometry of
the arms. In the former work, the difference in expected
rewards is Lipschitz4 in the distance, and in the latter work
the dissimilarity function constrains the slope of the reward
around its maxima. In contrast, what is Lipschitz about our
setting? For us, the difference in reward is Lipschitz when
averaged over all users. That is

Eu
[
|Lu,i − Lu,j |

]
≤ 2 · γi,j , (3)

where γij is a distance between items that will be defined in
Section 2.

The expected regret upper bound of the algorithms in [22,

7] is Õ
(
T
d′+1
d′+2

)
, where d′ is a weaker notion (than the one we

use) of the covering number of X , and is closely related to the
doubling dimension (which we define later) in the case of a
metric. The regret bound in Theorem 5.2 for the sublinear
regime is of the same form, but two important aspects of
our model require a different algorithm and more intricate
arguments: (i) in our case, no repeat recommendations (i.e.
pulling the same arm) can be made to the same user, and
(ii) we do not have an oracle for distances between users and
items, and instead we must estimate distances by making
carefully chosen exploratory recommendations.

Aside from these differences, the nature of the collabora-
tive filtering problem leads to additional novelty relative to
existing work on multi-armed bandits. First, we formalize
the cold-start problem and prove strong guarantees in this
regard. Second, all of our bounds are in terms of system
parameters. This allows, for example, to see the role of the
number of users N as an important resource allowing for
collaboration.

4That is, |E[ri]−E[rj]| ≤ C · d(i, j), where d is the distance
between arms, and C is a constant.

1.5.2 Matrix Factorization
Besides neighborhood-based methods of collaborative fil-

tering, matrix factorization is another branch of collabora-
tive filtering that is widely used in practice. The winning
team in the Netflix Challenge, for instance, used an algo-
rithm based on matrix factorization, and due to its impor-
tance we will briefly cover some aspects of it here5.

Using the language of recommendations, the set-up for
matrix factorization is that we have a (possibly incomplete)
n×m matrix L of ratings (where rows represent users and
columns represent rows) that we would like to factor as
L = AW , where A is n × r and W is r × m, and r is as
small as possible. When L is complete, the singular value
decomposition is known to provide the factorization.When
L is incomplete, however, a popular approach in practice (cf.
[24]) is to find the decomposition by solving the regularized
optimization problem

arg min
A,W

∑
(u,i) observed

(
Lu,i −ATuWi

)
+ λ

(
||Au||2 + ||Wi||2

)
(4)

via, for instance, stochastic gradient descent (cf. [37]). This,
in effect, is looking for a sparse low-rank factorization of L.

In many contexts, including that of recommendations, it
also makes sense to want a nonnegative factorization. In-
tuitively, this enforces that we interpret each item as being
composed of different attributes to various extents (rather
than as a difference of attributes). [25] provided theoreti-
cal guarantees for fixed r, and [34] then showed that this
problem is NP-hard with r as a variable. The first provable
guarantee under nontrivial conditions came only later in [2].
They give an algorithm that runs in time that is polynomial
in the m, n, and the inner rank, granted that L satisfies the
so-called separability condition introduced by [14]6.

In Section 2.4 we compare low-rank structure with low
doubling dimension. Specifically, we argue that there are
simple scenarios where the rank of a matrix is high, but its
doubling dimension is small.

1.5.3 Other Related Works
The papers [19] and [10] on online learning and matrix

completion are also relevant. In their case, however, the
matrix entries to be predicted are not chosen by the algo-
rithm and hence there is no explore-exploit trade-off. The
paper [21] considers collaborative filtering under a mixture
model in the offline setting, and they make separation as-
sumptions between the item types (called genres in their pa-
per). The work [11] considers a setting similar to ours (but
with finite number of user and item types) and proves cer-
tain guarantees on a moving horizon approximation rather
than the cumulative anytime regret. The paper [4] proves
asymptotic consistency guarantees on estimating the ratings
of unrecommended items. The recent paper [27] considers
a different model in which repeat recommendations are also
not allowed, but they make recommendations by exploiting
existing information about users’ interests.

It is possible that using the similarities between users,
and not just between items as we do, is also useful. This

5As noted in [24], matrix factorization techniques have some
advantages over neighborhood-based methods, such as the
ease of combining it with content-specific data and of in-
cluding implicit feedback.
6[30] surveys of all these and more results.

has been studied theoretically in the user-user collaborative
filtering framework in [5], via bandits in a wide variety of
settings (for instance [1, 32, 9]), with focus on benefits to
the cold-start problem [15, 8], and in practice (cf. [12, 3]).
In this paper, in order to capture the power of purely item-
item collaborative filtering, we intentionally avoid using any
user-user similarities.

A latent source model of user types is used by [5] to give
performance guarantees for user-user collaborative filtering.
The assumptions on users and items are closely related since
K items types induce at most 2K user types and vice versa
(the K item types liked by a user fully identify the user’s
preferences, and there are at most 2K such choices). Since
we study algorithms that cluster similar items together, in
this paper we assume a latent structure of items. We note
that unlike the standard mixture model with minimum sep-
aration between mixture components (as assumed in [5]),
our setup does not have any such gap condition. In con-
trast, we allow an effectively arbitrary model, and we prove
performance guarantees based on a notion of dimensionality
of the item space.

2. STRUCTURE IN DATA
The main intuition behind all variants of collaborative fil-

tering is that users and items can typically be clustered in a
meaningful way even ignoring context specific data. Items,
for example, can often be grouped into a few different types
that tend to be liked by the same users (see fig. 1). It is
with this intuition and empirical observation in mind that
the two main paradigms in neighborhood-based collabora-
tive filtering, user-user and item-item, operate.

Figure 1: Observed clustering of users and items (from
[5]). This is the densest subset of users (rows) and items
(columns), where the darker spots indicate likes and the
lighter spots indicate dislikes. One can see that the items
and users can be grouped in relatively few types, where items
of the same type tend to be liked by users of the same type.

In this section we will develop the appropriate notions to
capture structure in data. First, in Section 2.1 we show that
without structural assumptions, the expected regret of any
online algorithm grows linearly with time. In Section 2.2, we
then develop our intuition for the structure present in data
and define a distance between item types. In Section 2.3 we
then define the precise structural assumption that we will
make: that the item space has finite doubling dimension.
Finally, in Section 2.4 we give an example of how to relate
the concepts of doubling dimension and low rank.

2.1 Need for Structure
As discussed, a good recommendation algorithm suggests

items to users that are liked, but have not been recom-
mended to them before. In order to motivate the need for
assumptions on the item space, we begin by stating the intu-
itive result that in the worst case when µ has little structure,
no online algorithm can do better than recommending ran-
dom items.

Proposition 2.1 (Lower Bound). Under the uniform
distribution µ over {−1,+1}N , for all T ≥ 1, the expected
regret satisfies

R(T) ≥ T/2

for any online recommendation algorithm. Conversely, the
algorithm that recommends a random item at each time step
achieves R(T) = T/2.

Proposition 2.1 states that no online algorithm can have
sublinear regret for any period of time unless some structural
assumptions are made. Hence, to have any collaborative gain
we need to capture the fact that items tend to come in clus-
ters of similar items. We make two assumptions.

(A1) The distribution µ over the item space has doubling
dimension at most d for a given d ≥ 0.

(A2) Each user likes a random item drawn from µ with prob-
ability between ν and 2ν, and each item is liked by a
fraction between ν and 2ν of the users, for a given
ν ∈ (0, 1/4).

Assumption A1 captures structure in the item space through
the notion of doubling dimension, defined and motivated in
Section 2.3. Assumption A2 is made to avoid the extreme
situations where almost no items are liked (in which case
recommendation is impossible) or most items are liked (in
which case the regret benchmark becomes meaningless).

2.2 Item Types
To more formally describe item types and the conditions

on µ, let us first define a distance between the item types.
We endow the N -dimensional Hamming cube {−1,+1}N
with the normalized Hamming metric: for any two item
types x, y ∈ {−1,+1}N , define their distance

γx,y ≡ γ(x, y)
4
=

1

N

N∑
k=1

1

2
|xk − yk|.

We see that γx,y is the fraction of users that disagree on
item types x and y. Since each item has a unique type, we
write γij for items i and j to denote the distance between
their types.

One can plausibly go about capturing the empirical obser-
vation that items tend to belong to clusters that are liked by
similar set of users by assuming that there are K different
item types, i.e., the measure µ assigns positive mass to only
K vectors in {−1,+1}N . [5] assumes similar structure, but
over users rather than items. In addition, they assume that
the types are well-separated (that is, γx,y is lower bounded
for each two different types x and y with positive mass).
This allows for clustering perfectly with high probability,
which in turn leads to a small regret.

However, enforcing that the types are well-separated is
counter-intuitive and not necessary for the following reason.
If two types x and y are extremely close to each other, that
should only make the problem easier: In our setting, two

similar item types have (by definition) the same ‘like’ or
‘dislike’ from most users, so for the purpose of recommenda-
tion the distinction between type of x and y is insignificant.

It turns out that we can exploit this intuition when the
item space has sufficient structure, as captured by a certain
notion of dimensionality.

2.3 Doubling Dimension
In order to capture this intuition that our mixture as-

sumption should (i) give significant mass around item types
and (ii) not have separation assumptions, we define a no-
tion of doubling dimension of µ, and then further discuss its
advantages. Let B(x, r) = {y ∈ {−1,+1}N : γx,y ≤ r} be
the ball of radius r around x with respect to metric γ7.

Definition 2.1. (Doubling Dimension) A distribution µ
on {−1,+1}N is said to have dimension d if d is the least
number such that for each x ∈ {−1,+1}N with µ(x) > 0 we
have

sup
r>0

µ(B(x, 2r))

µ(B(x, r))
≤ 2d. (5)

Further, a measure that has finite doubling dimension is
called a doubling measure.

The above definition is a natural adaptation to proba-
bility measures on metric spaces of the well-known notion
of doubling dimension for metric spaces (cf. [20, 18, 13]).
As noted in, for instance [13], this is equivalent to enforc-
ing that µ(Bγ(x, αr)) ≤ αd · µ(Bγ(x, r)) for any r > 0 and
any x ∈ {−1,+1}N with µ(x) > 0. For Euclidean spaces,
the doubling dimension coincides with the ambient dimen-
sion, which reinforces the intuition that metric spaces of low
doubling dimension have properties of low dimensional Eu-
clidean spaces.

Despite its simplicity, measures of low doubling dimension
capture the observed clustering phenomena. Proposition 2.2
below, which follows directly from the definition, shows that
a small doubling dimension ensures that the balls around
any item type must have a significant mass.

Proposition 2.2. Let µ be an item space for N users
with doubling dimension d. Then for any item type x ∈
{−1, 1}N with µ(x) > 0 we have

µ
(
B (x, r)

)
≥ rd.

Doubling measures also induce many other nice properties
on the item space. To that end, let us first define an ε-net
for an item space.

Definition 2.1 (ε-net). For any ε > 0, a collection of
items C is called an ε-net of the item space represented by
distribution µ on {−1,+1}N if (a) for any pair i, j ∈ C, we
have γij > ε/2, and (b) for any item ` with µ(`) > 0, there
exists i ∈ C so that γi` ≤ ε.

Proposition 2.3 below shows that an ε-net of items can
only have few items close to any given item.

Proposition 2.3. Let µ be an item space for N users
with doubling dimension d and let C be an ε-net for µ. For
j an arbitrary item, let cj ∈ C be such that γj,cj < ε, and let

mcj , µ
(
B(cj , ε)

)
. Then, for each r ∈ [ε/2, 1/2], there are

at most mcj

(
4
ε

)d (4r+5ε
4ε

)d
items in C within radius r of j.

7We omit the dependence of the ball on γ throughout.

To further illustrate and gain intuition for doubling di-
mension, let us consider a simple item space with K clusters.

Example 2.1. Consider an item space µ over N users
that assigns probability at least w > 0 to K distinct item
types with separation at least σ > 0. Then, since µ(B(x, α)) ≤
1, and µ(B(x, α/2)) ≥ w, we have that

d = log2

(
max

x:µ(x)>0
sup
r

µ(B(x, r))

µ(B(x, r/2))

)
≤ log2

(
1

w

)
.

Similarly, if we only know that there are at most K equally
likely item types we can bound the doubling dimension as

d = log2

(
max

x:µ(x)>0
sup
r

µ(B(x, r))

µ(B(x, r/2))

)
≤ log2 K. (6)

With the example above in mind, we would like to empha-
size that doubling dimension assumptions are strictly more
general than the style of assumptions made in [5] (finite K
with separation assumptions) because (a) doubling measures
require no separation assumptions (that is, two item types
x and y that are arbitrarily close to each other can have
positive mass) and (b) the number of types of positive mass
is not bounded by a finite K anymore, but instead can grow
with the number of users.

Finally, note that doubling dimension is not only a proof
technique: it can be estimated from data and tends to be
small in practice. To illustrate this point, we calculated the
doubling dimension on the Jester Jokes Dataset8 and for
the MovieLens 1M Dataset9. For the MovieLens dataset we
considered only movies that have been rated by at least 750
users (to ensure some density).

In both datasets we calculated the empirical doubling di-
mension di (that is, the smallest di such that µ(B(i, 2r)) ≤
2diµ(B(i, r)) for each r) around each item i. Under a simple
noise assumption, figs. 2 and 3 show that all the di tend to
be small. The appendix B describes the precise experiments.

Figure 2: Jester Dou-
bling Dimensions

Figure 3: MovieLens
Doubling Dimensions

2.4 Low Rank and Doubling Dimension
As mentioned in Section 1.5, a common assumption be-

hind matrix factorization methods is that the matrix has
low rank. In this section we would like to draw a connec-
tion between rank properties of the rating matrix L and the
doubling dimension of the item space induced by L. In par-
ticular, we will show that low doubling dimension can be a
weaker requirement than low rank of L. To that end, we

8[17], and data available on http://goldberg.berkeley.edu/
jester-data/
9[31], and data available on http://grouplens.org/datasets/
movielens/

will first define what we mean by the item space induced by
a rating matrix.

Definition 2.2. (Item Space Induced by Rating Matrix)
Let L be an N ×M binary rating matrix. Then the item
space µ induced by L is

µ(x) =
1

M

M∑
j=1

1Lj=x, for each x ∈ {−1,+1}N ,

where Lj is the jth column of L.

That is, the item space induced by a rating matrix assigns
mass to item types according to the empirical frequency of
the item type in L.

The example below shows that there are rating matrices
of high binary rank, but whose corresponding doubling di-
mension is constant (at most 2). Consider the N×N matrix
LN whose jth column’s first j entries are +1 and the remain-
ing −1. That is, each of its columns differ from its adjacent
columns in exactly one entry. For instance, for N = 4 we
have

L4 =


+1 +1 +1 +1
−1 +1 +1 +1
−1 −1 +1 +1
−1 −1 −1 +1

 .

The matrix LN clearly has rank N . However, the doubling
dimension of its induced item space is at most 2. We can
see this because for each x and r ∈ {0, ..., N − 1}

1 + r

N
≤ µ

(
B
(
x,

r

N

))
≤ 1 + 2r

N
,

which we can use in turn to conclude that

d ≤ max
x

max
r

log2

(
µ
(
B
(
x, 2r

N

))
µ
(
B
(
x, r

N

))) ≤ log2

(1+4r
N

1+r
N

)
≤ 2.

Hence, the doubling dimension of the induced item space
can be substantially smaller than the rank of the rating ma-
trix. Since the rank is a way of counting the number of item
types, this reinforces the fact that the number of types is not
particularly important, but the geometric structure between
them is.

3. ITEM-ITEM COLLABORATIVE FILTER-
ING ALGORITHM

In this section we describe our algorithm, item-item-cf.
The algorithm carries out a certain procedure over increas-
ingly longer epochs (blocks of time), where the epoch index
is denoted by τ ≥ 1. In each epoch the algorithm carefully
balances Explore and Exploit steps.

In the Explore steps of epoch τ , a partition {P (τ+1)
k } of a

set of items is created for use in the subsequent epoch. Each
epoch has a target precision ετ (specified below) such that if

two items i and j are in the same block P
(τ+1)
k , then usually

γij ≤ ετ+1.

In the Exploit steps of epoch τ , the partition
{
P

(τ)
k

}
cre-

ated in the previous epoch is used for recommendation. Ex-
ploit recommendations to a user u are made as follows: u

samples a random item i from a random block P
(τ)
k , and if u

likes i (Lu,i = +1) then the rest of P
(τ)
k is recommended to

u in subsequent Exploit steps. After all items in P
(τ)
k have

been recommended to u, the user repeats the process by
sampling random items in random blocks until liking some

item j in P
(τ)

k′ , upon which the rest of P
(τ)

k′ is recommended.
In the first epoch there is no possibility of exploiting a par-

tition created in a previous epoch, so the algorithm begins
with a purely exploratory “cold-start” period. The pseudo-
code of the algorithm is as follows.

Figure 4: Partition result-
ing from exploration in the
previous epoch

Figure 5: During exploita-
tion, items in Pk are rec-
ommended only when from
a block when a user likes an
item in the block

item-item-cf(N)

1 Algorithm parameters:

εN =
(

25d+18

ν
· 630(2d+ 11)(d+ 2)4 1

N

) 1
d+5

, C = ν
148

1
20

ετ = max
(

1
2τ
, εN

)
· C, for τ ≥ 1 (target accuracy for epoch)

Mτ = 2max(3.5d,8)

ν
(3d+1)

εd+2
τ

ln(2
ετ

), for τ ≥ 1 (items per epoch)

Dτ = ν
2
Mτ , for τ ≥ 1 (duration of epoch)

2 Cold-Start:{
P

(1)
k

}
= Make-Partition(M1, ε1, ε1)

3 Subsequent epochs:
for τ ≥ 1

do for t = 1 to N ·Dτ
do Ut = random user

w.p. 1− ετ : exploit
{
P

(τ)
k

}
to

recommend an item to Ut
w.p. ετ : Ut explores to help

construct partition
{
P

(τ+1)
k

}
(see Section 3.1)

3.1 Explore: making a partition
Recall that during epoch τ the goal of the explore rec-

ommendations is to create a partition {P (τ+1)
k } of items

such that whenever i, j ∈ P
(τ+1)
k then γij ≤ ετ+1. We

later prove that this can be done by executing the routine
make-partition(Mτ+1, ετ+1, ετ+1) described below, which
at any point makes recommendations to a randomly chosen
user. Hence, given the random user making the recommen-
dation, item-item-cf provides explore recommendations in
whatever order Make-Partition would have recommended
(had it been run sequentially)10.

10For instance, suppose that time t is the first in some epoch
τ . We might have that times t+5 and t+30 are the first two
explore recommendations of the epoch, then for those two
recommendations the algorithm makes whatever the first

Make-Partition first finds a net C for the item space
(using the subroutine get-net described later). To each
item in the net there is associated a block in a partition. M
randomly sampled items are assigned to the blocks as fol-
lows: for each sampled item j, an item i ∈ C is found that
is similar to j, and j is assigned to the partition block Pi
(if there is more than one item i similar to j, the algorithm
chooses among the relevant blocks at random). Finally, the
algorithm breaks up large blocks into blocks of size on the
order of 1/ε. This guarantees that there will be many blocks
in the partition, which turns out to be important in Theo-
rem 5.1 showing brief cold-start time 11.

Make-Partition(M, ε, δ)

1 C = get-net(ε/2, δ/2)
2 M = M randomly drawn items from item space
3 for each i ∈ C, let Pi = ∅
4 for each j ∈M, let Sj = {i ∈ C | similar(i, j, 0.6ε, δ

4M|C|)}
5 if |Sj | > 0 then Pi = Pi ∪ {j}, for i chosen u.a.r. from Sj
6 for each i, if |Pi| > 1/ε, then partition Pi into

blocks of size ≥ 1
2ε

and ≤ 1/ε
7 return {Pi}

The subroutine similar is used in make-partition; it de-
termines whether most users have the same preference (like
or dislike) for two given items i and j.This is accomplished
by sampling many random users and counting the number
of disagreements on the two items.

similar(i, j, ε, δ)

1 qε,δ = d630 d+1
ε

ln
(

1
δ

)
e

2 for n = 1 to qε,δ
3 do sample a uniformly random user u
4 let Xu = 1Lu,i 6=Lu,j
5 if 1

qε,δ

∑
sampled uXu ≥ 0.9ε then

6 return False
7 return True

The subroutine Get-net below is a natural greedy pro-
cedure for constructing an ε-net. Given parameters ε and δ,
it finds a set of items C that is an ε-net for µ with proba-
bility at least 1− δ (proven in the appendix). It does so by
keeping a set of items C and whenever it samples an item i
that currently has no similar item in C, it adds i to C.

Get-net(ε, δ)

1 C = ∅, count = 0, max-size = (4/ε)d

2 max-wait = (5
ε
)d ln

(
2·max-size

δ

)
, δ′ = δ

4·max-wait·max-size2
3 while count ≤ max-wait and |C| < max-size
4 do draw item i from µ
5 if similar(i, j, ε, δ′) for any j ∈ C then
6 count = count + 1
7 else C = C ∪ i, count = 0
8 return C

two recommendations would have been in make-partition.
If the execution of make-partition has finished, the algo-
rithm resorts to an exploit recommendation instead.

11It is crucial that blocks in the partition are not too small
because we would like the reward for exploration to be large
when a user finds a likable item. Although the algorithm
does not explicitly ensure that blocks are not too small (as
it did in ensuring the blocks are not too large) it comes as
a byproduct of a property proven in Proposition 2.3: there
are not many items in the net close to any given item.

4. CORRECTNESS OF EXPLORE
This section establishes correctness of the explore pro-

cedure as well as some of its properties that will be uti-
lized for establishing the main result of the paper. Con-
cretely, we will prove that with high probability the proce-
dure make-partition produces a partition of similar items
during each epoch. To that end, in Section 4.1, we prove
that similar succeeds in deciding whether two items are
close to each other. In Section 4.2 we prove that the proce-
dure get-net succeeds in finding a set of items that is an
ε-net for µ. We then put all the pieces together and prove
that make-partition, the routine at which the explore rec-
ommendations are aimed at completing, succeeds in creating
a partition of similar items. Finally, in Section 4.3 we prove
that with high probability during any given epoch there will
be enough explore recommendations.

4.1 Guarantees for similar

The procedure similar is used throughout get-net and
make-partition, and it is aimed at testing whether two
items are approximately ε-close to each other. Lemma 4.1
below shows that given two items i and j, similar indeed
succeeds in determining that the items are similar when
γi,j ≤ 0.8ε, and that the items are not similar when γi,j ≥ ε.

Lemma 4.1. Let i and j be arbitrary items, δ, ε ∈ (0, 1),
and Si,j be the event that similar(i, j, ε, δ) returns true.
Then we have that

(i) if γi,j ≤ 0.8ε, then P (Sij) ≥ 1− δ, and

(ii) if γij ∈ [kε, (k + 1)ε) where k ∈ {1, ..., b 1
ε
c}, then

P (Sij) ≤ δ
4

(
1
4k

)d 1
k2

.

The lemma above bounds the probability of false positive
and missed detection for deciding whether or not two items
are similar. Further, the lemma states that the probability
of a false-positive decreases quickly as the items get further
apart. Lemma 4.2 below shows that, when one of the items is
drawn from µ, similar still works and that the false positive
rate is small, despite the possibility that it may be much
more likely to draw an item that is far from i. Lemma 4.2
uses the doubling dimension of µ for the first time, and in
this context the doubling dimension guarantees that similar
(which is a random projection) preserves relative distances.

Lemma 4.2. Let i be an arbitrary item, let J be a ran-
domly drawn item from an item space µ of doubling dimen-
sion d, and let SiJ be the event that similar(i, J, ε, δ) returns
True. Then we have P (γiJ ≥ ε | SiJ) ≤ δ.

Proof. By Bayes’ rule we get

P (γi,J ≥ ε | SiJ) =
P (γi,J ≥ ε, SiJ)

P (γi,J ≥ ε, SiJ) + P (γi,J < ε, SiJ)
,

(7)
where the probability is with the respect to the random
choice of J and the random users in similar. Now if

δP (SiJ , γiJ < ε) ≥ (1− δ)P (SiJ , γiJ ≥ ε) (?)

holds, we get

P (γi,J ≥ ε | SiJ) =
1

1 +
P(γi,J<ε,SiJ)
P(γi,J≥ε,SiJ)

≤ 1

1 + 1−δ
δ

= δ. (8)

Hence, it suffices to show (?). Recall that B (i, r) is the ball
of radius r centered at i. Note that

P (γiJ < ε, SiJ) ≥ P (SiJ | γiJ ≤ ε/2)µ (B (i, ε/2)) ,

and

P (γiJ ≥ ε, SiJ)

=

dlog2(1
ε)e∑

k=0

P
(
SiJ | γiJ ∈ [2kε, 2k+1ε)

)
× µ

(
B
(
i, 2k+1ε

)
\ B
(
i, 2kε

))
≤
dlog2(1

ε)e∑
k=0

P
(
SiJ | γiJ ∈ [2kε, 2k+1ε)

)
µ
(
B
(
i, 2k+1ε

))
.

Let us first lower bound P (SiJ | γij ≤ ε/2)µ (B (i, ε/2)).

Letting p , µ (B (i, ε/2)), Lemma 4.1 gives

P (SiJ | γiJ ≤ ε/2)µ (B (i, ε/2)) ≥ (1− δ) p. (9)

We will now upper bound P (SiJ , γiJ ≥ ε). Using the
doubling dimension of the item space, which implies that

µ
(
Bγ
(
i, 2k+1ε

))
≤
(
2k+2

)d
p, we have that

P (γiJ ≥ ε, SiJ)

≤
dlog2(1

ε)e∑
k=0

P
(
SiJ | γiJ ∈ [2kε, 2k+1ε)

)
µ
(
Bγ
(
i, 2k+1ε

))

≤
dlog2(1

ε)e∑
k=0

P
(
SiJ | γiJ ∈ [2kε, 2k+1ε)

)(
2k+2

)d
p.

We now use the second half of Lemma 4.1, and arrive at

P (γiJ ≥ ε, SiJ) ≤
dlog2(1

ε)e∑
k=0

(
δ

4

(
1

4 · 2k

)d
1

22k

)(
2k+2

)d
p ,

(10)
which in turn is at most p δ

4

∑∞
k=0

1
22k ≤ p δ

2
. We can now

check that the sufficient condition from eq. (?) is satisfied:

δP (SiJ , γiJ < ε) ≥ δp (1− δ) ≥ δ

2
p (1− δ)

≥ (1− δ)P (SiJ , γiJ ≥ ε) ,

which completes the proof.

4.2 Making the Partition
In the previous section we proved that the procedure similar

works well in deciding whether two items are similar to each
other at some desired precision. In this section, we will prove
that with similar as a building block we can partition items
into blocks of similar items.

We will begin with a lemma showing that the subroutine
get-net, used in the beginning of make-partition, suc-
ceeds at producing an ε-net of items with high probability.
The proof is omitted due to space constraints.

Lemma 4.3. With probability at least 1 − δ the routine
Get-net(M, ε, δ) returns an ε-net for µ that contains at

most
(

4
ε

)d
items.

It is now only left to prove that the main tool used during
exploration, Make-Partition, indeed produces a partition

of similar items. This is done in Lemma 4.4 below. The
additional properties stated in the Lemma regarding size of
the blocks will be crucial later in ensuring good cold-start
performance.

Lemma 4.4. Let ε, δ ∈ (0, 1), and let M be at least 12 ·(
12
ε

)d+1
ln
(

2
δ

(
8
ε

)d)
. Then with probability at least 1 − δ

the subroutine make-partition(M, ε, δ) returns a partition
{Pk} of a subset of M randomly drawn items such that

(i) For each block Pk and i, j ∈ Pk we have γi,j ≤ 1.2 · ε,

(ii) Each block Pk contains at least 1
2ε

items,

(iii) Each block Pk contains at most 1/ε items,

(iv) There are at most 2Mε blocks.

Proof. We will show that properties (i) and (ii) hold
with probability at least 1 − δ, and note that (iii) follows
directly from the algorithm and that (iv) follows from (ii).

Let C be the event that the set C returned by get-net is
not an ε

2
-net for µ, and letM be the set of M items sampled.

Let Ei,j be the event {Si,j , γij > 0.6ε} ∪ {Sci,j , γij < 0.5ε},
where Sij is the event that similar(i, j, 0.6ε, δ/(4M |C|)) re-
turns true. Intuitively, event Ei,j occurs when similar is
incorrect. Furthermore, let E =

⋃
c∈C

⋃
j∈M Ec,j .

Let F be the event that for some block Pk there exists
i, j ∈ Pk such that γij > 1.2ε, and let B be the event that
all blocks in the partition have size at least 1

2ε
. Hence, Bc =⋃

k B
c
k, where Bck is the even that Pk has size less than 1

2ε
.

Since event F guarantees condition (i) and event B guar-
antees condition (ii) it suffices to show that

P (F c ∪Bc) ≤ δ.

We will do so by conditioning on Cc and Ec where after
a couple of union bounds we arrive at

P (F c ∪Bc) ≤ P (F c | Cc, Ec)+P (Bc | Cc, Ec)+P (C)+P (E) .

Now showing (i) P (Bc | Cc, Ec) ≤ δ/2, (ii) P (F c | Cc, Ec) =
0, (iii) P (E) ≤ δ/4, and (iv) P (C) ≤ δ/4 (of which we omit
the proof) completes the argument.

4.3 Sufficient Exploration
Any given recommendation in epoch τ is used for explo-

ration with probability ετ . In the lemma below, we show
that during each epoch there are enough Explore recommen-
dations for the procedure make-partition to terminate.

Lemma 4.5. With probability at least 1−ετ+1, during the
τ th epoch the algorithm has enough explore recommenda-
tions for make-partition (Mτ+1, ετ+1, ετ+1) to terminate.

5. REGRET ANALYSIS
In this section we prove the main results of the paper. In

Section 5.1 we prove the Quick Recommendations Lemma,
which is the main lemma that will that will be used in The-
orems 5.1 and 5.2, which are proved in Section 5.2.

5.1 Quick Recommendations Lemma
In Section 3 we described the algorithm, which starts rec-

ommending items to a user as soon as it knows one item
that the user likes. Below we show that indeed shortly after
the beginning of the epoch the slope of the regret is small.

Lemma 5.1 (Quick Recommendations Lemma). For

τ ≥ 1 let R(τ)(T) = 1
N

∑Tτ+TN
t=Tτ

1
2
(1 − LUt,It) denote the

number of bad recommendations made to users during the
first TN recommendations of epoch τ . Then we have

E
[
R(τ)(T)

]
≤ 148ετ

ν
T (11)

whenever T ∈ [Tmin,τ , Dτ] and where Tmin,τ , 12
ετ

ln(1
ετ

).

For T < Tmin,τ , we trivially have E
[
R(τ)(T)

]
≤ T .

Proof. Let R′(τ)(T) denote the number of bad recom-
mendations made to users during the first TN exploit rec-
ommendations of epoch τ . Then, since the expected number
of explore recommendations by time TN of epoch τ is ετTN ,
we get that

E
[
R(τ)(T)

]
≤ ετT + E

[
R′(τ)(T)

]
.

Furthermore, as described in the algorithm, during epoch
τ − 1 the algorithm spends a small fraction of the recom-
mendations (in the explore part) to create a partition {Pk}
(which we call {P (τ)

k } in the pseudocode) of Mτ random
items to be exploited during epoch τ . Let Eτ be the event

that the partition {P (τ)
k } to be used during epoch τ satis-

fies the conditions specified in Lemma 4.4 (with M = Mτ

ε = ετ , δ = ετ). Then we get

E
[
R(τ)(T)

]
≤ ετT+E

[
R′(τ)(T)

]
≤ 2ετT+E

[
R′(τ)(T) | Eτ

]
,

where the last inequality is due to Lemma 4.4, which guar-
antees that P(Eτ) ≤ ετ .

For the rest of the proof, we will show that E
[
R′(τ)(T)

]
is

at most 45
ν
ετT . We will do so by first rewriting this in terms

of the number of bad exploit recommendations to each user

E
[
R′(τ) | Eτ

]
≤ 1

N
E

[∑
u

R′(τ)
u (T) | Eτ

]
,

whereR′(τ)
u (T) is the number of bad recommendations made

to user u during the first TN exploit recommendations of
epoch τ . We will now bound the latter term by conditioning
on a nice property of users (denoted by gu,T), and showing
that this property holds for most users. Let gu,T be the
event that user u has tried at most 16 T

Dτ
P (τ) blocks during

the first TN recommendations of epoch τ (we omit τ in the
notation of gu,T since it is clear from the context here). Here

we use notation P (τ) = |{P (τ)
k }| to denote the total number

of blocks in the partition for epoch τ . Then we get that
1
N
E
[∑

uR
′(τ)
u (T) | Eτ

]
is at most

1

N

∑
u

E
[
R′(τ)
u (T) | Eτ , gu,T

]
+ T

1

N

∑
u

P
(
gcu,T | Eτ

)
.

We dedicate Lemma 5.3 to showing that 1
N

∑
u P
(
gcu,T | Eτ

)
≤

42
ν
ετ . Hence, it suffices to show that for each T > Tmin,τ we

have

1

N

∑
u

E
[
R′(τ)
u (T) | Eτ , gu,T

]
≤ 104

ν
ετT, (F)

which we prove now. We will first rewrite the regret by
summing over the number of bad recommendations due to

each of the blocks as∑
u

E
[
R′(τ)
u (T) | Eτ , gu,T

]
=
∑
u

E

[∑
k

Wu,k,T | Eτ , gu,T

]
,

where Wu,k,T is the random variable denoting the number of
bad exploit recommendations to user u from block Pk among
the first TN exploit recommendations of epoch τ . We can
further rewrite to get that

1

N

∑
u

E

[∑
k

Wu,k,T | Eτ , gu,T

]
(12)

≤ 1

N

∑
u

∑
k

E [Wu,k,T | Eτ , gu,T , su,k,T]P (su,k,T | Eτ , gu,T) ,

where su,k,T denotes the event that by time T user u has
sampled an item from block Pk. Here we used the fact that
Wu,k,T is identically equal to zero on scu,k,T because the user
hasn’t sampled an item from the block, so the expectation
E
[
Wu,k,T | Eτ , gu,T , scu,k,T

]
is also zero.

Now note that by conditioning on gu,T , we know that user
u has sampled at most 16 T

Dτ
P (τ) blocks. Now given gu,T as

well as Eτ , the indices of the sampled blocks are not revealed.
Let K be a random variable that selects one of the indices of
the blocks uniformly at random. Then, it follows that with
respect to randomness in K,

P (su,K,T | Eτ , gu,T) ≤
16 T

Dτ
P (τ)

P (τ)
= 16 · T

Dτ
.

We can re-write (12) in this notation and apply the above
discussed bound to obtain

1

N

∑
u

E

[∑
k

Wu,k,T | Eτ , gu,T

]

≤ P (τ)

N

∑
u

E [Wu,K,T | Eτ , gu,T , su,K,T]P (su,K,T | Eτ , gu,T)

≤ P (τ)

N

∑
u

E [Wu,K,T | Eτ , gu,T , su,K,T]
16T

Dτ

=
16T

NDτ

∑
u

∑
k

E [Wu,k,T | Eτ , gu,T , su,k,T] .

The last quantity above can be bounded as

≤︸︷︷︸
Lemma 5.2

16T

NDτ

(∑
k

(1 + 1.2ετ |P (τ)
k |)N

)

≤︸︷︷︸
Lemma 4.4

52ετT
Mτ

Dτ

Dτ= ν
2
Mτ︷︸︸︷

=
104

ν
ετT.

The first inequality follows from Lemma 5.2 by realizing that

each block, P
(τ)
k corresponds to a collection of items such

that for any i, j ∈ P (τ)
k , we have γij < 1.2ετ . The second

inequality can be justified as: from Lemma 4.4, 1/2ετ ≤
|P (τ)
k | ≤ 1/ετ and hence∑
k

(1 + 1.2ετ |P (τ)
k |) ≤

∑
k

(3.2ετ |P (τ)
k |) ≤ 3.2ετ

∑
k

|P (τ)
k |,

which is 3.2ετMτ . This, along with some arithmetic, com-
pletes the proof of eq. (F) and hence the lemma.

The lemma below was used in the proof of Lemma 5.1.
Informally, it says that our recommendation policy, which
recommends the whole block to a user after the user likes
an item in the block, succeeds in finding most likable items
to recommend and in not recommending many bad items.

Lemma 5.2 (Partition Lemma). Let Pk be a set of
items such that for each i, j ∈ Pk we have γij < ε, and con-
sider the usual recommendation policy that item-item-cf
uses during its “exploit” steps (where when user u samples a
random item i ∈R Pk, only if u likes i will u be recommended
the remaining items). Let su,k be the event that user u has
sampled an item from Pk, let Wu,k (W for wrong) denote
the number of wrong recommendations made to u from Pk,
and let Au,k (A for absent) denote the number of items in
Pk that u likes that are not recommended to u. Then we
have ∑

u

E [Au,k +Wu,k | su,k] ≤
(
1 + ε|Pk|

)
N.

Proof. For each block Pk and user u, let `u,k = |{i ∈
Pk | Lu,i = +1}| denote the number of items in Pk that

u likes. Note that E [Au,k | su,k] = `u,k · (|Pk|−`u,k)
|Pk|

and

E [Wu,k | su,k] = (|Pk| − `u,k) · `u,k|Pk| + 1 · (|Pk|−`u,k)
|Pk|

. This

is because with probability `u,k/|Pk| user u will sample an
item from Pk that u likes and will then be recommended
(|Pk| − `u,k) bad items, and with probability (|Pk|−`u,k)/|Pk|
the first (and thus only) item from Pk recommended to u is
bad. Likewise, with probability (|Pk| − `u,k) /|Pk| the user
will sample an item that the user dislikes, and then fail to
be recommended `u,k items that the user likes. Hence we
have that E

[∑
uAu,k +Wu,k | su,k

]
is equal to∑

u

(|Pk| − `u,k)

|Pk|︸ ︷︷ ︸
≤N

+2
∑
u

`u,k (|Pk| − `u,k)

|Pk|
.

Now,

2
∑
u

`u,k (|Pk| − `u,k)

|Pk|

by definition︷︸︸︷
=

2

|Pk|
∑
u

∑
i,j∈Pk

1Lu,i 6=Lu,j

=
2

|Pk|
∑
i,j∈Pk

∑
u

1Lu,i 6=Lu,j︸ ︷︷ ︸
=γij ·N

≤︸︷︷︸
γij<ε

2

|Pk|
∑
i,j∈Pk

εN

≤ 2

|Pk|

(
|Pk|

2

)
εN ≤ ε|Pk|N. (13)

Putting it all together we get E
[∑

uAu,k +Wu,k | su,k
]

is
equal to∑
u

(|Pk| − `u,k)

|Pk|︸ ︷︷ ︸
≤N

+ 2
∑
u

`u,k (|Pk| − `u,k)

|Pk|︸ ︷︷ ︸
ε|Pk|N

≤
(
ε|Pk|+1

)
N.

The lemma below was also needed in the proof of Lemma 5.1.

Lemma 5.3 (Auxiliary Claim). Consider an arbitrary
epoch τ , and let gu,T be the event that by the (TN)th ex-
ploit recommendation of epoch τ user u has tried at most

16 T
Dτ
|{P (τ)

k }| blocks from the partition {P (τ)
k } constructed

during the make-partition(Mτ , ετ , ετ) of the previous epoch,

and let Eτ be the event that {P (τ)
k } satisfies the conditions

specified in Lemma 4.4. Then

1

N

∑
u

P
(
gcu,T | Eτ

)
≤ 42

ν
ετ

holds for any T ∈
(

12
ετ

ln(1/ετ), Dτ
]
.

Proof. Let us make a few definitions. Let Nu,T be the
event that by the TN th exploit recommendation user u has
been recommended at most 1.1T items, and that u likes at

least 0.9νMτ among the items in {P (τ)
k }. Also, let Hu,T be

the event that by the TN th exploit recommendation there
are still at least ν

5
Mτ items liked by u in blocks that haven’t

been sampled by u. Then we get P
(
gcu,T | Eτ

)
is at most

P
(
gcu,T | Hu,T , Nu,T , Eτ

)
+P
(
Hc
u,T | Nu,T , Eτ

)
+P
(
Nc
u,T | Eτ

)
.

By showing that for T ∈
(

12
ετ

ln(1/ετ), Dτ
]

the following

points (of which we omit the proofs) hold the lemma follows:
(A) P

(
gcu,T | Hu,T , Nu,T , Eτ

)
≤ ετ ,

(B) 1
N

∑
u P
(
Hc
u,T | Nu,T , Eτ

)
≤ 40

ν
ετ ,

(C) P
(
Nc
u,T | Eτ

)
≤ ετ .

5.2 Main Results
In Section 3 we described how item-item-CF starts rec-

ommending items to a user as soon as it finds one item that
the user likes. This leads to a short cold-start time. We are
now ready to bound the cold-start time of item-item-cf
(the proof is presented in the Appendix).

Theorem 5.1 (Cold-Start Performance). Suppose
assumptions A1 and A2 are satisfied. Then the algorithm

item-item-cf has cold-start time Tcold−start = f(ν,d)
N

+Õ(1/ν).

It follows that the algorithm item-item-cf has cold-start

time Õ(1/ν) for N sufficiently large. This differs from the
results of [5] for the user-user paradigm, where the cold-start
time increases with user space complexity and the effect is
not counteracted with more users present. (Section 6.2 con-
tains a more in-depth discussion.)

The next result shows that after the cold-start period and
until a time Tmax, the expected regret is sublinear.

Theorem 5.2 (Upper Bound on Regret). Suppose
assumptions A1 and A2 are satisfied. Then the algorithm
item-item-cf achieves expected regret for Tmin < T ≤ Tmax

given by

E [R(T)] ≤ Tmin + α(ν, d) · (T − Tmin)
d+1
d+2 log2(T − Tmin),

and for T ≥ Tmax

E [R(T)] ≤ β + εN (T − Tmax) .

Here Tmin = Õ
(

1
ν

)
+ f(d,ν)

N
, Tmax = g(ν, d)N

d+2
d+5 , εN,d,ν =

h(d, ν)
(

1
N

) 1
d+5 , and

β = Tmin + α(ν, d) · (Tmax − Tmin)
d+1
d+2 log2(Tmax − Tmin).

The reader is directed to the proof (presented in the Ap-
pendix) for the exact constants. Also note that Tmax in-
creases with N and the asymptotic slope εN decreases as a
function with N , both of which illustrate the so-called col-
laboration gain. Note that the regret bound in Theorem 5.2

has an asymptotic linear regime. The next result (whose
proof is in the Appendix) shows that with a finite number
of users such linear regret is unavoidable.

Theorem 5.3 (Linear regret is unavoidable). Let
µ be an item space satisfying assumptions A1 and A2. Then
any online algorithm must have expected asymptotic regret
E [R(T)] ≥ C(ν,N) · T , where C(ν,N) = (1− 2ν)/N .

6. CONCLUSION
In this section we further discuss our results and give sug-

gestions for future work in the subject.

6.1 Discussion
In this paper we provided a formal expected regret anal-

ysis of item-item-cf, a simple recommendation algorithm
following the item-item paradigm in collaborative filtering.
We first proved that unless some structural assumption is
made, no online recommendation algorithm can have sub-
linear expected for any period of time.

We then motivated using the doubling dimension d of the
item space as a measure of structure in the data, and showed

that the algorithm achieves expected regret Õ
(
T
d+1
d+2

)
for

a period of time that increases with the number of users.
Furthermore, we proved that the asymptotic linear regime
following the sublinear regime is unavoidable.

6.2 Comparison with user-user CF
In this section we will contrast the cold-start performance

of user-user collaborative filtering to that of our item-item
algorithm. In particular, we give a heuristic argument show-
ing that the cold-start time for user-user algorithms grows
with the complexity of the user space. This is in contrast
to our Theorem 5.1, where for any doubling dimension of
the item space, if there are sufficiently many users then the
cold-start time is independent of system complexity.

We consider a simple scenario with K user clusters. First,
let γ̃uv denote the probability that users u and v agree on
an item randomly drawn from the item space. We have K
equally sized clusters of users, such that γ̃uv = 0 for users
u, v in the same cluster, and γ̃uv ∈ (0.1ν, 0.2ν) for users u, v
in different clusters.

Consider now a given user u. A user-user algorithm seeks
to find another user v who is similar to u, so that the items
liked by v can be recommended to u. In order to recommend
with at most (say) 0.1 probability of error, the similar user
v should have distance γ̃uv at most 0.1ν. The extra factor
ν is present because inference can only effectively be made
from the ν fraction of liked items.

Concretely, we sample a random user v, and attempt to
decide if it is from the same cluster as u. Suppose u and v
have rated q items in common. The problem then reduces
to a classical hypothesis test: after observing q items in
common from two users, determine whether or not they are
from the same cluster. The goal is to understand what is
the minimal value of q needed so that the above procedure
works with at least probability 1/2.

We consider the maximum a posteriori rule for deciding
that v is from u’s cluster. If u and v disagree on any sin-
gle item, then they cannot be from the same cluster. Con-
versely, if u and v agree on all q sampled items, the MAP

rule declares v to be from u’s cluster only if

K − 1

K
(1− 0.2ν)q ≤ 1

K
.

This means that if q is too small, we will never declare v
to be from u’s cluster and therefore will be unable to make
recommendations.

Rearranging gives q ≥ Ω (log(K)/ν). Hence, an algorithm
based on user similarity needs at least T = Ω (log(K)/ν)
steps simply to determine if two users are similar to each
other, a prerequisite to making good recommendations. In
contrast, we have shown that item-item-cf achieves cold

start time Õ(1/ν), which in particular does not increase with
the complexity of the item space.

This contrast between cold-start times highlights the asym-
metry between item-item and user-user collaborative filter-
ing. The intuition is that it is much faster to compare two
items than two users: it takes a long time to make many rec-
ommendations to two particular users, but comparing two
items can be done in parallel by sampling different users.

6.3 Two roles of Doubling Dimension
In Section 2.1 we make the assumption that µ has small

doubling dimension. This is crucial in the proofs for two
distinct reasons. First, it guarantees that the ε-net grows
slowly as ε-decreases (polynomially in 1/ε). This is impor-
tant in Lemma 4.4 for ensuring that the blocks of ε similar
items are large enough and the reward for exploration pays
off (as when the algorithm finds an item liked by the user,
it can now recommend the many other items in the block).
It is in this “slowly-growing ε-net” sense that doubling di-
mension/covering numbers are used, for instance, as [22,
7]. Second, the doubling dimension ensures that similar,
which is a random projection, works with high probability
(as proved in Lemma 4.2) in preserving relative distances.
It is in this random projection preserves relative distances
sense that it is used, for instance, in [13].

6.4 Future Works
This paper analyzes a collaborative filtering algorithm

based on item similarity, and proves guarantees on its regret.
Our algorithm exploits structure only in the item space. It
would be desirable to have a matching lower bound, in the
spirit of the lower bound for multi-armed bandits in metric
spaces shown in [22] and [7]. Furthermore, many practition-
ers use a hybrid of user-user and item-item paradigms [36]
and [35], and formally analyzing such algorithms is an open
problem.

Finally, the main challenge of the cold-start problem is
that initially we do not have any information about item-
item similarities. In practice, however, some similarity can
be inferred via content specific information. For instance,
two books with similar words in the title can have a prior for
having a higher similarity than books with no similar words
in the title. In practice such hybrid content/collaborative
filtering algorithms have had good performance [29]. For-
mally analyzing such hybrid algorithms has not been done
and can shed light onto how to best combine content infor-
mation with the collaborative filtering information.

7. REFERENCES
[1] N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor,

Y. Mansour, and O. Shamir. Nonstochastic
multi-armed bandits with graph-structured feedback.
arXiv Technical Report arXiv:1409.8428, 2014.

[2] S. Arora, R. Ge, R. Kannan, and A. Moitra.
Computing a nonnegative matrix
factorization–provably. In STOC, 2012.

[3] A. Bellogin and J. Parapar. Using graph partitioning
techniques for neighbour selection in user-based
collaborative filtering. In RecSys, 2012.

[4] G. Biau, B. Cadre, and L. Rouviere. Statistical
analysis of k-nearest neighbor collaborative
recommendation. The Annals of Statistics,
38(3):1568–1592, 2010.

[5] G. Bresler, G. Chen, and D. Shah. A latent source
model for online collaborative filtering. In NIPS, 2014.

[6] S. Bubeck and N. Cesa-Bianchi. Regret analysis of
stochastic and nonstochastic multi-armed bandit
problems. arXiv preprint arXiv:1204.5721, 2012.

[7] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari.
X-armed bandits. JMLR, 2011.

[8] S. Caron and S. Bhagat. Mixing bandits: A recipe for
improved cold-start recommendations in a social
network. In Workshop on Social Network Mining and
Analysis, 2013.

[9] N. Cesa-Bianchi, C. Gentile, and G. Zappella. A gang
of bandits. In NIPS, 2013.

[10] N. Cesa-Bianchi and O. Shamir. Efficient transductive
online learning via randomized rounding. In Empirical
Inference, pages 177–194. Springer, 2013.

[11] O. Dabeer. Adaptive collaborating filtering: The low
noise regime. In ISIT, 2013.

[12] A. S. Das, M. Datar, A. Garg, and S. Rajaram.
Google news personalization: scalable online
collaborative filtering. In WWW, 2007.

[13] S. Dasgupta and K. Sinha. Randomized partition trees
for nearest neighbor search. Algorithmica, 2014.

[14] D. Donoho and V. Stodden. When does non-negative
matrix factorization give a correct decomposition into
parts? In NIPS, 2003.

[15] C. Gentile, S. Li, and G. Zappella. Online clustering of
bandits. ICML, 2014.

[16] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Commun. ACM, 1992.

[17] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 2001.

[18] S. Har-Peled and M. Mendel. Fast construction of nets
in low-dimensional metrics and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[19] E. Hazan, S. Kale, and S. Shalev-Shwartz.
Near-optimal algorithms for online matrix prediction.
COLT, 2012.

[20] J. Heinonen. Lectures on analysis on metric spaces.
Springer, 2001.

[21] J. Kleinberg and M. Sandler. Using mixture models
for collaborative filtering. In STOC, 2004.

[22] R. Kleinberg, A. Slivkins, and E. Upfal. Bandits and
experts in metric spaces. arXiv preprint

arXiv:1312.1277, 2013.

[23] Y. Koren and R. Bell. Advances in collaborative
filtering. In Recommender Systems Handbook, pages
145–186. Springer US, 2011.

[24] Y. Koren, R. Bell, and C. Volinsky. Matrix
factorization techniques for recommender systems.
IEEE, 2009.

[25] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. In NIPS, 2001.

[26] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[27] L. Massoulie, M. Ohannessian, and A. Proutiere.
Greedy-bayes approach for targeted news
dissemination. Sigmetrics, 2015.

[28] C. McDiarmid. Concentration. In Probabilistic methods
for algorithmic discrete mathematics. Springer, 1998.

[29] P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved
recommendations. In AAAI/IAAI, 2002.

[30] A. Moitra. Algorithmic aspects of machine learning.
Online Manuscript, 2014.

[31] J. Riedl and J. Konstan. Movielens dataset, 1998.

[32] A. Slivkins. Contextual bandits with similarity
information. The Journal of Machine Learning
Research, 2014.

[33] W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, pages 285–294, 1933.

[34] S. A. Vavasis. On the complexity of nonnegative
matrix factorization. SIAM Journal on Optimization,
2009.

[35] K. Verstrepen and B. Goethals. Unifying nearest
neighbors collaborative filtering. In Recsys, 2014.

[36] J. Wang, A. De Vries, and M. Reinders. Unifying
user-based and item-based collaborative filtering
approaches by similarity fusion. In ACM SIGIR, 2006.

[37] T. Zhang. Solving large scale linear prediction
problems using stochastic gradient descent algorithms.
In ICML, 2004.

APPENDIX
A. PROOFS

A.1 Proof of Theorem 5.1
First recall the usual definitions: Dτ = ν

2
Mτ , Tτ = TMP +∑

τ ′<τ Dτ ′ , and TMP = f(ν, d)/N , where f(ν, d) is the num-
ber of recommendations required for the initial make-partition

call (as stated in Lemma 4.4), and Tmin,τ = 12
ετ

ln
(

1
ετ

)
(as

stated in Lemma 5.1). We will show the bound in the def-
inition of cold-start time with T = TMP and Γ = Tmin,1 =

Õ(1/ν), which implies Tcold−start = TMP + Tmin,1.
We shall establish the following two properties:

(i) For any ∆ > 0, E [R(TMP + Tmin,1 + ∆)−R(TMP)] ≤
0.1(Tmin,1 + ∆), for TMP + Tmin,1 + ∆ ≤ T2. This
condition says that the desired property holds for times
involving the first epoch.

(ii) E [R(Tτ + ∆)−R(Tτ)] ≤ 0.05(∆ +Dτ−1), for ∆ ≤ Dτ
and any τ ≥ 2.

Before we show how the above two properties imply the de-
sired result, we note that (i) follows directly from Lemma 5.1,
and (ii) will be proved at the end.

Now let us complete the proof using (i) and (ii). Consider
a time of the form Tcold−start+∆ = TMP+Tmin,1+∆, for any
∆ > 0. Let τ∗ ≥ 1 be the epoch to which TMP +Tmin,1 + ∆
belongs, i.e.

Tτ∗ < TMP + Tmin,1 + ∆ ≤ Tτ∗+1.

Define t = TMP +Tmin,1 + ∆−Tτ∗ > 0. We separately deal
with τ∗ = 1 and τ∗ > 1. If τ∗ = 1, (i) implies the desired
result. For τ∗ > 1, we use (ii) as follows:

E [R (TMP + Tmin,1 + ∆)−R (TMP)] ≤︸︷︷︸
t=Tcs+∆−Tτ∗

E [R (T2)−R (TMP)]︸ ︷︷ ︸
≤0.1·D1 by (i)

+ 1τ∗≥3

(τ∗−1∑
τ=2

E [R (Tτ)−R (Tτ−1)]︸ ︷︷ ︸
≤0.05(Dτ+Dτ−1) by (ii)

)

+

≤0.05(t+Dτ−1) by (ii)︷ ︸︸ ︷
E [R (Tτ∗ + t)−R (Tτ∗)]

≤ 0.05

(
t+ 2

τ∗−1∑
τ=1

Dτ

)
≤ 0.1 · (∆ + Tmin,1).

This establishes the desired result that Tcold−start = TMP +

Tmin,1 = f(ν, d)/N + Õ(1/ν).
Proof of (ii): Now we show the remaining property (ii).

Lemma 5.1 tells us that for ∆ ∈ (Tmin,τ , Dτ) we have that
E [R (Tτ + ∆)−R (Tτ)] ≤ 148

ν
ετ∆, i.e.

E [R (Tτ + Tmin,τ)−R (Tτ)] ≤ 148

ν
ετTmin,τ .

Thus, for ∆ < Dτ , we have that

E [R (Tτ + ∆)−R (Tτ)] ≤ 148

ν
ετTmin,τ +

148

ν
ετ∆︸ ︷︷ ︸

≤0.05 for τ≥2

.

(14)

In above we used the fact that for ∆ < Tmin,1, R (Tτ + ∆) ≤
R (Tτ + Tmin,1). Using the fact that Tmin,τ , 12

ετ
ln
(

1
ετ

)
≤

0.05
(

300
ετ

ln(1
ετ

)
)

= 0.05Dτ−1, we conclude

E [R (Tτ + ∆)−R (Tτ)] ≤ 0.05 (∆ +Dτ−1) .

A.2 Proof of Theorem 5.2
Recall that item-item-cf starts by running the routine

make-partition(M1, ε1, ε1). This consumes at most

MP (1) ,

(
8

ε1

)d+1

4 · 630 (d+ 1)3 M1 ln2

(
8

ε1

)
ln (M1)

(15)
recommendations (by Lemma 4.4), and hence finishes in at

most TMP , MP (1)/N time steps. For this initial ex-
ploratory period T ≤ TMP we will bound the regret with
the trivial bound R(T) ≤ T .

Let us now deal with the regime between Tmin and Tmax.
Recall that the target ετ used in the τ th epoch is decreasing
as C

2τ
, until it plateaus at εN when C

2τ
≤ εN , where C =

ν
148·20

. Hence τ∗ , dlog2
C
εN
eis the first epoch in which εN

is used. For a function g defined later, we will show that

TMP (1) +

τ∗−1∑
τ ′=1

Dτ ≥ g(ν, d)N
d
d+5 , Tmax. (16)

Now since εN =
(

25d+18

ν
· 630(2d+ 11)(d+ 2)4 1

N

) 1
d+5

, we

get that

τ∗ ≥ 1

d+ 5
log2

((ν

148 · 20

)d+5 ν

630(2d+ 11)(d+ 2)4

1

25d+18
·N
)
.

(17)
Also,

TMP (1) +

τ∗−1∑
τ=1

Dτ ≥
τ∗−1∑
τ=1

Dτ =

τ∗−1∑
τ=1

ν

2
Mτ , (18)

where we used the fact that Dτ = ν
2
Mτ . Recall Mτ ,

CM
1

εd+2
τ

ln(2
ετ

), where CM = 2max(3.5d,8)

ν
(3d + 1), and for

τ ≤ τ∗ we have ετ = C/2τ , where C = ν/(148 · 20). Then
we get

TMP (1) +

τ∗−1∑
τ=1

Dτ ≥
νCM

2Cd+2

τ∗−1∑
τ=1

2τ(d+2) ≥ νCM
4Cd+2

2τ
∗(d+2)

≥ νCM
4Cd+2

(
ν

630(2d+ 11)(d+ 2)4

1

25d+18

) d+2
d+5

︸ ︷︷ ︸
g(ν,d)

·N
d+2
d+5 , Tmax,

(19)

as wished. Hence, between Tmin and Tmax the target ετ
for the epochs is indeed halving for each subsequent epoch.
Let τ(T) be the epoch of time T . Then, by Lemma 5.1, for
T ∈ [Tmin, Tmax], where Tmin = TMP +Tmin,1, the expected

regret satisfies R(T)−TMP ≤ 148
ν

∑τ(T)
τ=1 ετDτ ,which we can

further bound as

R(T)− TMP ≤
CM
2

log2

(
2τ(T)

2C

) τ(T)∑
τ=1

2τ(d+1)

≤ CM
2

log2

(
2τ(T)

2C

)
2(τ(T)+1)(d+1). (20)

Now, since for T > Tmin epoch

τ(T) ≤ 1 +
1

d+ 2
log2

(
T − TMP

CM

1

log(2/C)

)
,

we get that

R(T) ≤ TMP+ (21)

CM
2

log2

(
T − TMP

CMC(d+ 2)

1

log(2/C)

)
22(d+1)2(τ(T)+1)(d+1)

(22)

≤ TMP +
CM
2

log2

(
1

CCM (d+ 2)

1

log(2/C)

)
24(d+1)︸ ︷︷ ︸

,C′

(23)

· log2 (T − TMP) 2
d+1
d+2

log2

(
T−TMP
CM

1
log(2/C)

)
(24)

≤ TMP+C′
(

1

CM

1

log(2/C)

) d+1
d+2

︸ ︷︷ ︸
,α(ν,d)

(
T−TMP

) d+1
d+2 log2 (T − TMP) ,

as we wished, which completes the proof of the sublinear
regret regime.

The case T > Tmax now follows. Recall that by Lemma 5.1

we get R(T) ≤ TMP + 148
ν

∑τ(T)
τ=1 ετDτ ,which we can in turn

split between before Tmax and after Tmax as

R(T) ≤ TMP +
148

ν

τ∗−1∑
τ=1

ετDτ +
148

ν

τ(T)∑
τ=τ∗

ετDτ (25)

≤ TMP + α(ν, d)T
d+1
d+2
max log2 (Tmax)︸ ︷︷ ︸

,β

+εN (T − Tmax), (26)

as claimed, and where the last inequality is due to the sub-
linear regime proved above.

A.3 Proof of Theorem 5.3
Let {i1, ..., ikT } be the set of distinct items that have been

recommended up to time TN . Then we have

E [R(T)] =
1

N
E

[
TN∑
t=1

1

2
(1− LUt,It)

]

=
1

N
E

[
kT∑
k=1

TN∑
t=1

1

2
1It=ik (1− LUt,ik)

]

≥ 1

N
E

[
kT∑
k=1

1

2
(1− LUTk ,ik)

]
,

where Tk is the first time in which the item ik is recom-
mended to any user. Now note that for each k by (A2) we

have that E
[

1
2
(1− LUTk ,ik)

]
≥ 1− 2ν, since when we have

no prior information about ik the best we can do is to rec-
ommend it to the user that likes the largest fraction of items.
Hence we get

E [R(T)] ≥ 1− 2ν

N
kt. (27)

Since each item can be recommended to each user at most
once, we see that by the TN th recommendation at least

T different items must have been recommended (that is,
kt ≥ T). We can then conclude that

E [R(T)] ≥ 1− 2ν

N︸ ︷︷ ︸
C(ν,d)

, (28)

as we wished.

A.4 Chernoff Bound
We state a standard version of the Chernoff Bound [28]:

Theorem A.1 (Chernoff Bound). Let X1, · · · , Xn be
independent random variables that take value in [0, 1]. Let
X =

∑n
i=1 Xi, and let X̄ =

∑n
i=1 EXi. Then, for any ε ≥ 0,

P
(
X ≥ (1 + ε) X̄

)
≤ exp

(
− ε2

2 + ε
X̄

)
, and

P
(
X ≤ (1− ε) X̄

)
≤ exp

(
−ε

2

2
X̄

)
.

B. EMPIRICAL DOUBLING DIMENSION
EXPERIMENTS

The jester dataset contains ratings of one hundred jokes
by over seventy thousand users. The dataset is fairly dense
(as the average number of ratings per user is over fifty),
which makes it a great dataset for calculating the doubling
dimension. For the MovieLens 1M Dataset we consider the
only movies that have been rated by at least 750 users (to
ensure some density).

The Jester ratings are in [−10, 10], with an average of 2,
so we make ratings greater than 2 a Ru,i = +1, and ratings
at most 2 a Ru,i = −1. For the MovieLens 1M Dataset
we make ratings 1, 2, 3 into −1, and 4, 5 into +1. We then
estimate the doubling dimension as follows:

• For each pair of items (i, j), we calculate d̂i,j,∆ as frac-
tion of users that agree on them, where the ∆ subscript
is put to denote our assumption that each entry has a
noise probability of ∆ (that is, P(Ru,i 6= Lu,i) = ∆),
where R is the empirical ratings matrix and L is the
true, noiseless, ratings matrix.

• Assuming that each entry has a noise probability of
∆ = 0.20, we estimate the true distance di,j as the

solution to d̂i,j,∆ = (1 − dij)(2∆(1 − ∆)) + di,j(∆
2 +

(1−∆)2).

• For each item i and r in {0, 1
N
, ..., N−1

N
, 1}, let Ni,r be

the number of items such that di,j ≤ r.
• For each item i let di be the least such thatNi,2r/Ni,r ≤

2di for each r in {0, 1
N
, ..., 1

2
}.

• Figs 2 and 3 show the histogram of the {di}.

View publication statsView publication stats

https://www.researchgate.net/publication/303901627

