

Delft University of Technology

Evolutionary testing for crash reproduction

Soltani, Mozhan; Panichella, Annibale; Van Deursen, Arie

DOI
10.1145/2897010.2897015
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - 9th International Workshop on Search-Based Software Testing, SBST 2016

Citation (APA)
Soltani, M., Panichella, A., & Van Deursen, A. (2016). Evolutionary testing for crash reproduction. In
Proceedings - 9th International Workshop on Search-Based Software Testing, SBST 2016 (pp. 1-4).
Association for Computing Machinery (ACM). https://doi.org/10.1145/2897010.2897015

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2897010.2897015
https://doi.org/10.1145/2897010.2897015

Delft University of Technology
Software Engineering Research Group

Technical Report Series

Evolutionary Testing for Crash
Reproduction

Mozhan Soltani, Annibale Panichella and Arie van Deursen

Report TUD-SERG-2016-013

SERG

TUD-SERG-2016-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Evolutionary Testing for Crash Reproduction

Mozhan Soltani
Delft University of Technology

The Netherlands
mozhan.soltani@gmail.com

Annibale Panichella
Delft University of Technology

The Netherlands
a.panichella@tudelft.nl

Arie van Deursen
Delft University of Technology

The Netherlands
Arie.vanDeursen@tudelft.nl

ABSTRACT
Manual crash reproduction is a labor-intensive and time-
consuming task. Therefore, several solutions have been pro-
posed in literature for automatic crash reproduction, includ-
ing generating unit tests via symbolic execution and muta-
tion analysis. However, various limitations adversely affect
the capabilities of the existing solutions in covering a wider
range of crashes because generating helpful tests that trigger
specific execution paths is particularly challenging.

In this paper, we propose a new solution for automatic
crash reproduction based on evolutionary unit test genera-
tion techniques. The proposed solution exploits crash data
from collected stack traces to guide search-based algorithms
toward the generation of unit test cases that can reproduce
the original crashes. Results from our preliminary study on
real crashes from Apache Commons libraries show that our
solution can successfully reproduce crashes which are not
reproducible by two other state-of-art techniques.

Keywords
Crash Reproduction, Genetic Algorithm, Search-Based Soft-
ware Testing, Test Case Generation

1. INTRODUCTION
Debugging is the process of locating and fixing defects

in software source code, which requires deep understanding
about that code. Typically, the first step in debugging is
to reproduce the software crash, which can be a non-trivial,
labor-intensive and time-consuming task. Therefore, sev-
eral automated techniques for crash reproduction have been
proposed, including the use of core dumps to generate crash
reproducible test cases [6, 9], record-replay approaches [1, 8,
10], post-failure approaches [2, 5], and approaches based on
crash stack traces [3, 11].

However, the techniques mentioned above present some
limitations which may adversely impact their capabilities in
generating crash reproducible test cases. For example, core
dumps are not always generated by software applications at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBST16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4166-0/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897010.2897015

the crash time, which may reduce the applicability of ap-
proaches which are merely based on using core dumps [6,
9]. Record-replay approaches apply dynamic mechanisms
to monitor software executions, thus, leading to higher per-
formance overhead [1, 8]. STAR [3] and MuCrash [11] are
two novel approaches designed to deliver test cases that can
reproduce target software crashes by relying on crash stack
traces. STAR relies on backward symbolic execution to com-
pute the crash triggering precondition [3]. However, infer-
ring the initial condition of certain types of exceptions may
be a complex task to accomplish by STAR. On the other
hand, MuCrash applies mutation to update existing test
cases to reproduce crashes [11]. While MuCrash can also
reproduce certain crashes that STAR can reproduce, it fails
to reproduce certain other crashes which are reproducible
by STAR. As reported by Xuan et al. [11], the major reason
for this failure is that reproducing those crashes requires fre-
quent method calls which can not be recreated by directly
applying mutation operators.

In this paper, we propose a novel approach for automatic
crash reproduction through the usage of evolutionary search-
based techniques, and crash stack traces. We implemented
our solution as an extension of EvoSuite [4], and evaluated it
on well-known crashes from the Apache Commons libraries.
The main contributions of our paper can be summarized as
follows:

• We provide a first formulation of stack-trace-based crash
replication problem as a search-based problem;

• We define a novel fitness function to evaluate how close
the generated test cases are to replicate the target
crashes relying on stack traces only;

• We report the results of a preliminary study which
shows the effectiveness of our solution compared to
STAR and MuCrash.

The rest of the paper is structured as follows: Section 2 pro-
vides and overview on existing approaches on crash replica-
tion and provides background notions on search-based soft-
ware testing. Section 3 presents our approach, while Section
4 describes our preliminary study. Finally, conclusions and
future work are discussed in Section 5.

2. BACKGROUND AND RELATED WORK
In this section, we describe the two main related tech-

niques for automatic crash reproduction, namely STAR [3]
and MuCrash [11]. In addition, we provide an overview on
search-based software testing and Genetic Algorithms.

SERG Soltani, Panichella & Deursen – Evolutionary Testing for Crash Reproduction

TUD-SERG-2016-013 1

Stack Trace based Crash Reproduction. STAR is an
approach proposed by Chen and Kim [3] to identify crash
triggering preconditions. It combines backward symbolic ex-
ecution with a novel method sequence technique to create
test cases that can produce test inputs to satisfy the identi-
fied crash triggering preconditions. The goal in STAR is to
produce test cases that can crash at the same position and
can generate stack traces as similar to target stack traces
as possible. Chen and Kim also describe an empirical eval-
uation involving real crashes from three well-known open
source projects. The results showed that STAR can suc-
cessfully exploit 31 out of 52 crashes (59.6%) reported for
the open source projects. Out of those exploitable crashes,
42.3% were successful reproduction of the reported crashes
that revealed the crash triggering defect [3].

MuCrash is a more recent approach to automatic crash
reproduction proposed by Xuan et al. [11]. It applies test
case mutation to update existing test cases that can repro-
duce crashes, rather than generating new test cases which is
the general strategy used in STAR [11]. Given a stack trace,
MuCrash executes all the existing test cases on the program
and selects test cases that cover the classes in the stack trace.
Each selected test case produces a set of test case mutants,
using a set of predefined mutation operators. The resulting
test cases are executed on the program and the ones that
can reproduce crashes are delivered to developers for debug-
ging. MuCrash has been evaluated on 12 crashes reported
for Apache Commons Collections library [11]. The result
of the evaluation showed that MuCrash could successfully
replicate 7 crashes out of 12.

We notice that none of the two approaches above provided
an explicit formulation of the crash reproduction problem as
a search-based problem, thus, they do not use any search-
based algorithm to deal with crash reproduction. In this
paper we conjecture that the usage of evolutionary test case
generation technique can be effective in reproducing soft-
ware crashes upon the definition of a specific fitness function,
which is the key contribution of our paper.

Search-Based Software Testing (SBST) applies search-
based optimization algorithms to seek solutions for various
kinds of software testing problems. In the 1990s, there was
a dramatic increase in work on metaheuristic search tech-
niques, and since then, SBST has been applied in various
testing problems [7], such as integration testing, functional
testing, mutation testing, etc.

So far, the main metaheuristic search algorithms that have
been applied in SBST include Hill Climbing, Simulated An-
nealing, and Genetic Algorithms [7].

Genetic Algorithms are closely related to the concept
of survival of the fittest [7]. Solutions in the search space
are referred to as “individuals” or “Chromosomes”, which
collectively form a “population”. Since Genetic Algorithms
maintain a population of solutions, multiple starting points
are provided to the search with a corresponding larger sam-
ple of the search space (compared to local searches) [7]. The
first population is randomly generated, and then iteratively
recombined and mutated to evolve throughout subsequent
iterations, called “generations”. After a population is gener-
ated, best individuals are selected as parents for reproduc-
tion via crossover [7]. The selection is guided through using
a fitness function, which is problem-specific. While fitter in-
dividuals are favored, a too strong bias towards them may
result in their dominance in future generations [7]. Consec-

utively, the chance of premature convergence on a particular
area of the search space may increase. This cyclic process of
generating and selecting individuals goes on until either the
Genetic Algorithm finds a solution or the allocated resources
are consumed.

3. SEARCH-BASED CRASH REPLICATION
The key ingredient for a successful application of search-

based techniques is the formulation of a proper fitness func-
tion to guide the search toward reaching the test goal. Then,
such a function is optimized by search techniques, such as
Genetic Algorithms, which use specific search operators to
promote tests closer to cover the target goal and penalize
tests with weak fitness values.

An optimal test case for crash reproduction has to crash
at the same location as the original crash and produce stack
traces as close to the original one as possible. Therefore,
our fitness function has to exploit the information available
in stack traces to measure the closeness of a test case to
replicate the target crash. Usually a stack trace contains (i)
the type of the exception thrown, and (ii) the list of meth-
ods being called at the time of the crash. For each called
method, the stack trace also provides names and line num-
bers where the exception was generated. The first method
in the trace is the root cause of the exception while the last
one is the location where the exception was actually thrown.
Therefore, the class containing the last method in the trace
is the class to target for generating unit test, i.e., the class
under test.

There are three main conditions that must hold to repli-
cate a crash: (i) the line (statement) where the exception
is thrown has to be covered, (ii) the target exception has
to be thrown, and (iii) the generated stack trace must be
as similar to the original one as possible. Therefore, our
fitness function has to consider the three conditions above.
Formally, let t be a given test to evaluate, we define the
following fitness function:

f(t) = 3× ds(t) + 2× dexcept(t) + dtrace(t) (1)

where ds(t) denotes how far t is to execute the target state-
ment, i.e., the location of the crash; dexcept(t) ∈ {0, 1} is
a binary value indicating whether the target exception is
thrown or not; and dtrace(t) measures the distance between
the generated stack trace (if any) and the expected trace.

For the line distance ds(t), we use the approach level and
the branch distance, which are two well-known heuristics
to guide the search for branch and statement coverage [7].
The approach level measures the distance (i.e., minimum
number of control dependencies) between the path of the
code executed by t and the target statement. The branch
distance uses a set of well-established rules [7] to score how
close t is to satisfy the branch condition for the branch on
which the target statement is directly control dependent.
For the trace distance dtrace(t), we define a new distance
function as reported below. Let S∗ = {e∗1, . . . , e∗n} be the
target stack trace to replicate, where e∗i = (C∗1 ,m

∗
1, l
∗
1) is

the i-th element in the trace composed by class name C∗i ,
method name m∗i , and line number l∗i . Let S = {e1, . . . , ek}
be the stack trace (if any) generated when executing the test
t. We define the distance between the expected trace S∗ and

Soltani, Panichella & Deursen – Evolutionary Testing for Crash Reproduction SERG

2 TUD-SERG-2016-013

Table 1: Real-world bugs used in our study
Bug ID Version Exception Priority
ACC-4 2.0 NullPointerException Major
ACC-28 2.0 NullPointerException Major
ACC-35 2.1 UnsupportedOperationException Major
ACC-48 3.1 IllegalArgumentException Major
ACC-53 3.1 ArrayIndexOutOfBoundExceptions Major
ACC-70 3.1 NullPointerException Major
ACC-77 3.1 IllegalStateException Major
ACC-104 3.1 ArrayIndexOutOfBoundsException Major
ACC-331 3.2 NullPointerException Minor
ACC-377 3.2 NullPointerException Minor

the actual trace S as follows:

D(S∗, S) =

min{k,n}∑

i=1

ϕ (diff(e∗i , ei)) + | n− k | (2)

where diff(e∗i , ei) measures the distance between the two
trace elements e∗i and ei in the traces S∗ and S respectively;
finally, ϕ(x) ∈ [0, 1] is the widely used normalizing function
ϕ(x) = x/(x + 1) [7]. We say that two trace elements are
equal if and only if they share the same trace components.
Therefore, we define diff(e∗i , ei) as follows:

diff(e∗i , ei) =

3 C∗i 6= Ci

2 C∗i = Ci and m∗i 6= mi

ϕ (| l∗i − li |) Otherwise

(3)
Therefore, diff(e∗i , ei) is equal to zero if and only if the two
trace elements e∗i and ei share the same class name, method
name and line number. Similarly, D(S∗, S) in Equation 2
is zero if and only if the two traces S∗ and S are equal,
i.e., they share the same trace elements. Starting from the
function in Equation 2, we define the trace distance dtrace(t)
as the normalized D(S∗, S) function:

dtrace(t) = ϕ(D(S∗, S)) = D(S∗, S)/(D(S∗, S) + 1) (4)

Consequently, our fitness function f(t) assumes values
within the interval [0, 5], reaching a zero value if and only if
the evaluated test t replicates the target crash.

4. PILOT STUDY
To evaluate the effectiveness of our solution for crash re-

production, we selected 10 bugs from the Apache Commons

Collections library, a popular real world Java project with
25,000 lines of code. The selection of these bugs was not at
random. These bugs have been used in the previous study
on automatic crash reproduction when evaluating symbolic
execution [3] and mutation analysis [11], which allows us
to compare the results. The characteristics of the bugs, in-
cluding type of exception and priority, are summarized in
Table 1.

Prototype Tool We have implemented our fitness func-
tion in Evosuite [4], a popular unit test generation frame-
work, widely used in research to generate unit tests tar-
geting code coverage (e.g., statement coverage) or mutation
score as testing criteria to maximize. Specifically, we de-
fined a new coverage criterion (in addition to traditional
coverage criteria already existing in Evosuite) consisting in
maximizing the number of bugs (stack traces) to replicate.
As search strategy, we used the traditional one target at
a time approach, which consist of targeting one single bug
(and the corresponding stack trace) at a time and running

Table 2: Detailed crash reproduction results

Bug ID
% Successful

STAR [3] MuCrash [11]
Replication

ACC-4 30/30 Yes Yes
ACC-28 30/30 Yes Yes
ACC-35 30/30 Yes Yes
ACC-48 30/30 Yes Yes
ACC-53 28/30 Yes No
ACC-70 30/30 No No
ACC-77 30/30 Yes No
ACC-104 0/30 Yes Yes
ACC-331 10/30 No Yes
ACC-377 0/30 No No

meta-heuristics, and genetic algorithms in particular, to op-
timize the fitness function. A value of zero for the fitness
function means that the generated test case is able to repli-
cate the targeted crash and, thus, it can be directly pre-
sented to developers for debugging purposes. The encoding
schema is the same as used in Evosuite at the test case level.
Thus, a chromosome is a randomly generated test case con-
sisting of a variable sequence of method calls with random
input. Random tests are then evolved as usual in genetic
algorithms throughout selection, crossover and mutation op-
erators. Pairs of existing tests (parents) are selected using
the tournament selection according to their fitness function
scores. New tests (offsprings) are then generated from their
parents using a single-point crossover, which randomly ex-
change statements between the two parents. Finally, test
cases are mutated by the uniform mutation that randomly
adds, deletes, or changes statements with a given small prob-
ability. For all parameter values, we use the default setting
in Evosuite since they provide good performance in tradi-
tional test case generation applications [4].
Experimental Procedure We applied our prototype

tool to the selected crashes in order to generate test cases
for reproducing them. In our pilot study, we set a maximum
search budget of 2 minutes. Therefore, the search ended
when either zero fitness was achieved or when the timeout
was reached. Given the randomized nature of genetic algo-
rithms, the search for each target bug/crash was repeated 30
times in order to verify whether crashes are constantly repli-
cated or not. To assess whether the generated test cases are
really helpful to fix the bugs -other than triggering the same
stack trace- we performed a manual validation following the
guidelines in [3, 11].

4.1 Results
Table 2 reports the number of times our prototype is able

to replicate the target crashes (column 2). It also compares
our crash results with two state-of-the-art methods, namely
(i) STAR [3], and (ii) MuCrash [11]. The former uses sym-
bolic execution while the latter is based on mutation anal-
ysis. As shown in Table 2, genetic algorithms allow us to
reproduce 8 out of 10 crashes. Based on our manual check,
all reproduced crashes are useful to fix the bug. For ex-
ample, for bug ACC-70 our prototype generated within 10
seconds of search (on average) the test case depicted in List-
ing 1. According to our test, the crash is caused by a call to
previous() when a TreeListIterator is instantiated with
the first parameter (parent of the tree) set to null. Since
inside the method previous() there is no check condition
on such a parameter, a null pointer exception is generated.
A simple fixing would consist of adding a check condition to

SERG Soltani, Panichella & Deursen – Evolutionary Testing for Crash Reproduction

TUD-SERG-2016-013 3

verify that the parent of the tree is not null.

public void test12 () throws Throwable {
TreeList treeList0 = new TreeList ();
treeList0.add((Object) null);
TreeList.TreeListIterator l =
new TreeList.TreeListIterator(treeList0 , 732);

// Undeclared exception !
treeList_TreeListIterator0.previous ();

}

Listing 1: Generated test for ACC-70.

For six bugs, our prototype constantly replicates the crash
in all 30 independent runs. For ACC-53, there are only two
out of 30 runs where a replication is not achieved. Finally,
we find that the replication for ACC-331 is achieved only
for some of the runs (33%). However, for such a class we
notice that it requires specific method call sequence to be re-
generated. Since our prototype does not invoke only meth-
ods and classes involved in the crash, it has minimal chance
to call the right methods or to instantiate the correct ob-
jects. While this choice is useful to maintain diversity, it
can have certain drawbacks. One natural extension would
be to change the mutation operator in Evosuite in order to
focus the search by using methods and objects of interest
more frequently than others.

Comparing our results with those achieved by STAR [3]
and MuCrash [11], we observe that there are bugs that can
be reproduced by our technique and not by the alternative
ones. In particular, for ACC-70 our prototype generates a
test case (see Listing 1) which helps in replicating and fix-
ing the bug. However, for such a bug both STAR and Mu-
Crash are not able to generate useful tests. Crashes due to
bugs ACC-53 and ACC-77 are replicable using our technique
while they are not replicable using MuCrash [11]. Finally,
STAR fails to reproduce ACC-331, which is instead covered
by our prototype.

The results of our pilot study show the strength of evolu-
tionary testing techniques, and evolutionary test case gen-
eration tools in particular, with respect to symbolic execu-
tion based on precondition analysis and mutation analysis.
Theoretically speaking, evolutionary testing should imply a
higher overhead of computing resources since tests have to
be generated and executed. However, we notice that in our
pilot study all crashes have been replicated in few (<10)
seconds on average.

5. CONCLUSION
Manual crash reproduction is a labor-intensive and time-

consuming task. Therefore, in this paper we propose a new
search-based approach for generating unit test cases to repli-
cate software crashes. Our solution uses a novel fitness
function suitably, defined for crash reproduction and im-
plemented as an extension of EvoSuite. By exploiting crash
information from crash stack traces, the novel fitness func-
tion is used to guide test case generation algorithms toward
the generation of tests directly consumable by developers to
find the cause of the crash and fix the bugs.

This paper also reports the results of a preliminary study
based on ten real crashes (and stack traces) related to bugs
affecting the well-known Apache Commons libraries. The
achieved results show that our solution is able to generate
helpful tests for eight out of ten crashes. Moreover, our
search-based solution is able to successfully replicate crashes

not replicable using two state-of-the-art techniques for crash
reproduction, namely STAR and MuCrash.

Considering the promising results achieved in this paper,
the future work may have several possible directions. First,
we plan to evaluate our search-based techniques on a wider
sample of real crashes. We also plan to improve the fitness
function and mutation operators in order to increase the
likelihood of generating helpful test cases. Finally, a combi-
nation of genetic algorithms and symbolic execution is part
of our future agenda.

6. REFERENCES
[1] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making

software failures reproducible by preserving object
states. In ECOOP 2008–Object-Oriented
Programming, pages 542–565. Springer, 2008.

[2] S. Chandra, S. J. Fink, and M. Sridharan.
Snugglebug: a powerful approach to weakest
preconditions. In PLDI, pages 363–374. ACM, 2009.

[3] N. Chen and S. Kim. Star: Stack trace based
automatic crash reproduction via symbolic execution.
IEEE Tr. on Sw. Eng., 41(2):198–220, 2015.

[4] G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Transactions on Software Engineering,
39(2):276–291, Feb. 2013.

[5] W. Jin and A. Orso. Bugredux: reproducing field
failures for in-house debugging. In Proceedings of the
34th International Conference on Software
Engineering, pages 474–484. IEEE Press, 2012.

[6] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and
M. Oriol. On the effectiveness of test extraction
without overhead. In International Conference on
Software Testing Verification and Validation (ICST),
pages 416–425. IEEE, 2009.

[7] P. McMinn. Search-based software test data
generation: a survey. Software testing, Verification
and Reliability, 14(2):105–156, 2004.

[8] S. Narayanasamy, G. Pokam, and B. Calder. Bugnet:
Continuously recording program execution for
deterministic replay debugging. In ACM SIGARCH
Computer Architecture News, volume 33, pages
284–295. IEEE Computer Society, 2005.

[9] J. Rossler, A. Zeller, G. Fraser, C. Zamfir, and
G. Candea. Reconstructing core dumps. In 2013 IEEE
Sixth Int. Conf. on Software Testing, Verification and
Validation, pages 114–123. IEEE, 2013.

[10] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst.
Automatic test factoring for java. In Proceedings of the
20th IEEE/ACM international Conference on
Automated Software Engineering, pages 114–123.
ACM, 2005.

[11] J. Xuan, X. Xie, and M. Monperrus. Crash
reproduction via test case mutation: Let existing test
cases help. In ESEC/FSE, pages 910–913. ACM, 2015.

Soltani, Panichella & Deursen – Evolutionary Testing for Crash Reproduction SERG

4 TUD-SERG-2016-013

TUD-SERG-2016-013
ISSN 1872-5392 SERG

