
The Role of Semiotic Engineering in

Software Engineering
Vahdat Abdelzad

School of Electrical Engineering and
Computer Science, University of
Ottawa, Ottawa, Ontario, Canada

v.abdelzad@uottawa.ca

Timothy C. Lethbridge
School of Electrical Engineering and

Computer Science, University of
Ottawa, Ottawa, Ontario, Canada

tcl@eecs.uottawa.ca

Mahmood Hosseini
Faculty of Science and Technology,

Bournemouth University, Poole,
United Kingdom

mhosseini@bournemouth.ac.uk

ABSTRACT

Semiotic engineering is based upon the semiotic theory of

Human-Computer Interaction (HCI), which focuses on

communication between designers and users. Semiotic

engineering tries to improve users’ interpretation through meta-

communication and emphasizes that designers should play the

role of legitimate interlocutors in interactive systems. On the other

hand, there is a gap in software engineering on how to obtain

systems specifications efficiently, how to create easy-to-

understand and communicative models, and how to produce

comprehensive modeling languages and development processes.

In this paper, we explore several contributions of semiotic

engineering to software engineering and discuss how the theory

can facilitate the creation of comprehensive artifacts. We also

discuss semiotic engineering for assessing and improving

software modeling languages, in our case UML. We anticipate

that our work would lead to the semiotic theory becoming

recognized as a central theory driving software engineering

research and practice.

CCS Concepts

• Software and its engineering~Software creation and

management • Software and its engineering~Software system

models • Human-centered computing~HCI theory, concepts

and models.

Keywords

Semiotic engineering; communication; software engineering;

modeling; artifact; UML.

1. INTRODUCTION
In software engineering, scientists concentrate on such issues as

development approaches, modeling tools, and testing methods so

as to produce high quality software systems [19]. In order to

achieve this goal, researchers and industrial companies have been

using various approaches, such as Model-Driven Software

Development (MDSD) [5]. Unfortunately, the nature of

communication among the multiple stakeholders involved in

software engineering has received little attention. An example of

this is restrictions on expressiveness imposed by notations in

requirements engineering [2].

In current software engineering approaches, it is possible to find

patterns and guidelines that aim at facilitating communication, but

it is rare to find a concrete theory supporting them.

Communication in software engineering is primarily undertaken

through artifacts, where each artifact might be produced by one or

several stakeholders and can be used by many other stakeholders.

Improper or immature communication may result in severe

consequences, such as extra cognitive work for developers,

misunderstanding of requirements, and failed software systems.

In the domain of human computer interaction (HCI), various

theories, e.g., distributed cognition [11] and activity theory [12],

have been developed to address communication. However, one

theory, named semiotic engineering [23], has a distinctive

perspective. This theory concentrates on communication as its

base concept. Indeed, semiotic engineering is a theory of HCI

which focuses on how well producers of software artifacts

communicate their intent to their consumers through user interface

signs and patterns of interaction [23]. In other words, semiotic

engineering consists of a powerful infrastructure for the purpose

of studying communication and it provides concepts to assess and

improve communication between producers and consumers.

Therefore, this theory focuses on communication as an issue often

forgotten by scientists in both HCI and software engineering.

Semiotic engineering is, consequently, an eligible candidate

theory to be applied to software engineering in order to manage

the communication challenge.

The goal of this paper is to bring the attention to the concept of

communication in software engineering in a scientific way

through the theory of semiotic engineering. Bringing either a

theory or a solution based on a theory into a field like software

engineering is not an easy task. Hence, we believe there needs to

be considerable thought and research before such a theory can

become influential and successful. However, there is a need to

start somewhere, and explore which theories have the potential to

be used in the field. This paper hence provides some preliminary

thoughts about the role of semiotic engineering in software

engineering and why it has the potential. It also discusses the

application of semiotic engineering in software modeling

languages, such as UML, as an example to express how the theory

can provide challenging questions and trigger research to seek

proper answers.

The rest of the paper is structured as follows. Section 2 covers key

background necessary to understand semiotic engineering. In

Section 3, we focus on several relevant research projects in order

to investigate communication using semiotic engineering theory

in software engineering, and we discuss their explicit and implicit

contributions and drawbacks. In Section 4, we explore

applications of semiotic engineering as a method to evaluate

communication. We discuss how one application of semiotic

engineering can be used to find usability challenges related to the

Unified Modeling Language (UML) [25]. This, in turn, exposes

why UML may have some communication issues in terms of

education, acceptability among developers, and lack of

communication between UML designers and UML developers

(software designers) as their users. Finally, we present our

conclusion and future work in Section 5.

2. SEMIOTIC ENGINEERING
Semiotics is about studying signs and sign processes as part of

communication [26]. It covers semantic, syntactic, and pragmatic

dimensions of signs. In the semantic and syntactic dimensions,

semiotics explores the meaning and formal structure of signs

respectively. Finally, it studies the relation between signs and

sign-using agents in the pragmatic dimension.

Semiotic engineering was initially proposed as a semiotic

approach to design user interface languages [23]. However, it has

been evolved over years into a semiotic theory of HCI. The theory

concentrates on two fundamental concepts named

metacommunication and meaning. Metacommunication is all

about “communication about the communication”. In other words,

it is the main process held in the designer-to-user communication

and system-user communication. This point of view considers

designers and users as “legitimate interlocutors” at interaction

time. In the theory, top level communication is considered as a

one-shot comprehensive message paraphrased as [22]:

“Here is my understanding of who you are, what I've learned you

want or need to do, in which preferred ways, and why. This is the

system that I have therefore designed for you, and this is the way

you can or should use it in order to fulfill a range of purposes that

fall within this vision”

The subject “I” in the above paragraph specifies the designer of

system (or artifact) and the subject “you” is the user of the

artifact. The type and content of the message as sent by the

designer is completely related to the context of design. For

example, there can be a guide regarding how to perform the

interaction with the artifact in an HCI context or description of

elements inside the artifact in a software development context.

Meaning is considered to be a culturally-determined, constantly

evolving process. As a result, there is no fixed target to be met,

captured, and encoded. This arises from the fact that human

meanings change in both predictable and unpredictable ways, just

as human life evolves. It emphasizes that it is impossible to fully

understand the users’ meaning, but it is possible to capture the

relevant parts and encode them in systems so as to enable

communication with users. Indeed, because of this nature there is

a need for metacommunication.

Semiotic engineering is supported by two qualitative evaluation

methods named the semiotic inspection method (SIM) and the

communicability evaluation method (CEM) in order to evaluate

the quality of metacommunication [24]. These two methods have

the capability to be used in the direction of how to detect

problems, how to improve the metacommunication, and how to

generate new knowledge. The methods emphasize communication

and signification processes rather than cognitive processes, which

are mostly used in HCI evaluation methods.

3. RELATED RESEARCH
In this section, we present a summary of related research and

discuss the contributions and drawbacks of these approaches. Our

objective is to explain how semiotic engineering could have a

positive contribution to software engineering in different

dimensions. This section is not an exhaustive study about the

application and effects of semiotic engineering on software

engineering. We have focused on research that covers a wide

spectrum of phases and activities in software engineering and also

can effectively express the combination between the two fields.

3.1 Communication in Computer-Supported

Modeling
Computer-supported modeling (CSMod) tools help us to define

system behavior and desired system properties. There is a need for

different kinds of communication with these tools in order to

achieve software development goals. In this subsection, we

explore how semiotic engineering could help researchers to

evaluate a CSMod tool and offer some ideas about how to

improve the communication.

Ferreira et al. [9] have combined and applied Semiotic Inspection

Modeling (SIM) [24], Cognitive Dimensions of Notations (CDN)

Framework [6], and Discourse Analysis (DA) [10] to ARIS

Express (AE) [3], in modeling tasks with Business Process

Modeling Notation (BPMN) [7], in order to analyze the tool from

an HCI perspective and understand how communication is

performed in software modeling. Indeed, they have focused on

two dimensions:

1. how modeling notations respond to the expressive needs

of model builders, and

2. how the context of communication is made available to

the model builders.

The results suggest that CSMod design tools can be evolved in

relatively unexplored directions, helping users (i.e., modelers) to

gain greater awareness of the communication-through-models

process. The results also show that although there is a large

amount of documentation available for AE (in the form of

tutorials, videos, manuals, etc.), when it comes to operation, the

documentation is not as helpful as one would expect. AE delivers

constraints of business modeling to users while it could have

provided task-related help for them.

The following are some specific areas the paper highlights where

investigation about communication through models could help to

improve the tool. The evidence for these recommendations was

generated by empirical observation and discourse analysis.

First, the authors [9] determined that defining the purpose of

models (the builder’s intent) and the targeted consumers are two

important challenges. Second, the evidence reveals that there

should be a protocol between modelers and users in order to

define which elements should be used or not, when and why. Lack

of this protocol may raise a cognitive issue called diffuseness,

which is the complexity or verbosity of the notation in expressing

meanings. Diffuseness has a negative impact on the completion of

tasks. Third, there is a lack of closeness in the mapping of the

representation to the domain; this is exemplified by icons that do

not have clear meanings, forcing users to search for extra material

in order to understand them. Finally, there is the issue of

secondary notation, which is the ability to use notations beyond

the formal syntax for expressing information or meaning. Neither

AE nor BPMN provides such a notation. However, the availability

of secondary notation has a positive effect on the completion of

tasks.

Another cognitive dimension in AE which has a positive impact

on the achievement of the task is visibility, which is the ability to

view all components simultaneously, or two or more related

components side by side at the same time. This CDN is achieved

when AE allows users to choose different but related elements

while they try to use one of them. It was also noticed that AE

interface design supports model builders better than model

readers.

In the domain of communication through models, Ferreira et al.

[9] expressed that there are mismatches between the user profile

that AE supposedly targets (occasional users and beginners) and

the one that emerges from an analysis of emission and reception

of its designers’ message. It was also shown that designers

apparently believe that it suffices to support the expression of

communication and the interpretation will take care of itself. This

is one of the important challenges in communication. The research

concludes that if one wishes to discover the power of

communication through models, a combination of semiotic,

cognitive, and discourse analysis methods should be investigated.

Together, not only can they tell us about how the CSMod design

message is composed and how it affects the users as they build,

edit or read models, but also they inform us about the cognitive

challenge associated with the supported notations.

In our point of view, the significant part of the research is to

construct a protocol for communication among models. This

protocol could include social protocols as a good strategy to

overcome representation limitations. This is really important

because novices use the social protocol for learning the meaning

of new notations and intermediate ones use it when they are

challenged by several notations with different meanings.

Consequently, in order to discover more issues about AE and

BPMN, different levels of users (e.g., beginners, intermediates,

and experts) could be considered and then explored separately,

and various issues could be classified for different user levels.

Furthermore, general issues that could happen to all users could

be identified.

In the research, it would be possible to consider the theory of

ecology [20] in order to know whether the level of abstraction for

AE and BPMN is proper or not. By considering the level of

abstraction, it would be clear which parts of the modeling need

social protocols and which ones need technological protocols. In

addition, it would reveal which issues are related to which levels.

A mapping could also be created between user levels and

abstraction levels in order to have more concrete and more

practical findings.

Finally, the result of the research could be concretized by getting

more feedback from users, e.g., by asking questions such as how

they would like to tackle issues in each case. One good question

which ought to be asked of users is whether they would like to

model using a particular tool or modeling language. Answers to

this question would reveal the impact rate of the issues on human

behaviors in accepting a modeling language or tool. This is

important because although human expectation in tools can only

be satisfied, one can still identify problematic features and try to

avoid them altogether.

3.2 Communication in Software Artifacts
In the process of software development, lots of artifacts are

produced and used by stakeholders. These artifacts necessitate

communication between producers and consumers, which needs

to be studied. While it is possible to find guidelines for this

purpose [13], these guidelines cannot ensure the suitability and

helpfulness of communication. In this subsection, we look at a

research project that explores communication between

Application Programming Interface (API) designers and

programmers.

In the research done by Afonso et al. [1], API is considered as an

artifact mediating and easing the communication process between

designers and programmers. Communication between APIs and

programmers is evaluated based upon a combined semiotic and

cognitive method. Furthermore, some tools and techniques are

identified which help designers to accomplish the communication

task.

Programmers need to realize the concepts and the design behind

the interfaces available in order to use them effectively. This

imposes a considerable amount of cognitive load on programmers,

depending on the abstractions involved and the design of the

artifacts provided. From a human-centric perspective, we may

consider that a communication process takes place among

programmers, mediated by the software artifacts involved. If this

communication is not satisfactory, defects related to the incorrect

use of APIs or to the misinterpretation of its design will arise in

final systems. Therefore, designers need to provide necessary

communication information through artifacts to decrease these

kinds of defects.

The most common form of API specification is the combination

of its syntactic (e.g., signatures) and semantic (e.g., behavior)

elements written in a formal and natural language respectively.

This form limits the designers’ options to be “present” at the

interaction time to provide more dynamic information to

programmers. According to this limitation, environments which

provide runtime monitoring and behavioral specification are

considered to be useful because designers will have more

opportunity to communicate with programmers. Contracts [14] are

a good example for this purpose.

Furthermore, from a cognitive perspective, these environments or

tools have an impact on the programmers’ workload, since they

provide a more precise description of the API behavior than the

textual documentation, helping programmers to understand the

causes of possible errors by giving them immediate feedback

related to API misuses. Another point which can be achieved by

behavioral specification languages is a higher expressiveness to

describe a software artifact, allowing the use of tools, such as

model checkers [4], to validate the specification.

It is furthermore determined by Afonso et al. [1] that the greatest

focus of API specification is in syntactic and behavioral

dimensions, and there is no enough attention paid to

synchronization and quality of service. Communication in terms

of synchronization is a valuable resource in expressing the

designer’s intents, as they offer a formal definition of the allowed

sequence of operations. The quality-of-service dimension opens

the possibility of specifying non-functional aspects of a software

artifact that are more related to the execution environment or the

precision of the results of the computation being carried out. This

dimension offers designers an opportunity to specify the

limitations or requirements of an API in terms of its execution

environment.

From a semiotic engineering perspective, the main signs used by

API designers in order to send their message to users are method

signatures, return values for methods and other related operations,

such as insertion and removal from collections (dynamic signs),

and the textual description. However, there can be some

extensions in order to make this communication more effective,

e.g., better code examples, methods to test consistency, and

formal specifications. From a cognitive perspective, it might be

possible to provide interesting insights regarding this particular

design, e.g., a hidden dependency between classes in the API,

viscosity, and premature commitments, as these are not obvious at

first, especially to novices.

Many defects of software development, recognized by semiotic

engineering, are shown by Afonso et al. [1] that are due to poor

communication among developers (designers and programmers).

However, we believe that the most important result of the

research, not clear at first glance, is their categorization of several

communication problems in software development, each of which

can be resolved by different theories of HCI. Furthermore, the

research attempts to show that semiotic engineering can be

considered as a powerful theory in the domain of interaction,

which might be between two humans or between a computer and

a human. It may be understood that all artifacts in software

development can be considered as mediation between their

creators and users. Therefore, there should be comprehensive

metacommunication strategies to be used by designers so as to

provide all stakeholders with needed information in artifacts.

The research conducted by Afonso et al. [1] is a start for future

research and it does not give more detailed information about how

to create these kinds of metacommunication. Another thing worth

mentioning is that semiotic engineering might not have a concrete

solution for problems that it discovers. However, it has the

potential to be extended into the domain of problem solving. For

example, researchers working in the domain of software

documentation and maintenance may use rich conceptual

definitions of metacommunication so that they change the

structure of the current format in the documentation. Moreover,

this potential may also be used for changing the nature of

graphical and textual modeling languages used for communication

among stakeholders.

3.3 Communication in Better Description
HCI developers are responsible for creating suitable user

interfaces, and software engineers develop software systems to

cover the required functionality and all other necessary

requirements. Both groups start their work from the stated

requirements but with different purposes. This can pose a big

communication challenge between these two groups when

system-user interaction is poorly understood. Below, we discuss a

research project that focuses on how a tool based upon semiotic

engineering can bridge the gap.

Modeling Language for Interaction as Conversation (MoLIC) has

been discussed in [15–17]. MoLIC is a modeling language for

HCI based upon semiotic engineering, and is an extension to

UML diagrams with the purpose of removing some existing

ambiguities in models of software systems developed using UML.

The ambiguities arise because UML does not have an acceptable

coverage of user interaction modeling.

It is pointed out that user interaction diagrams should be

considered as a blueprint of the system. Such a blueprint could be

used as a reference point for global design decisions, and would

be an additional resource for deriving both HCI and software

engineering models. The blueprint can be enhanced by MoLIC

because it adopts the HCI theory and provides us with an ontology

for describing and evaluating relevant HCI phenomena, always

keeping the focus on the quality of use of the proposed solution.

According to the proposal [15], modeling should be done after use

case elicitation and specification. Then, class diagrams can be

created or improved by detailed interactive information obtained

from a MoLIC model. The advantages of using MoLIC in this part

of the process is that no system decomposition needs to be made

or revised before this step, and thus the cost of changes remains

low. Furthermore, designers will be motivated to find and correct

problems in these information sources, such as inconsistencies

and incompleteness.

The paper reveals how theories in HCI can help software

developers to build comprehensive models for software systems.

On the other hand, it shows how it is possible to combine HCI and

software modeling with each other. The research implicitly shows

that the lack of good interaction modeling diagrams can damage

communication among developers of software systems. This is

possible because software developers need to be able to explore

such models to understand the whole system.

In our point of view, enhancements could be made if the authors

had created a mapping from MoLIC to the UML extensions

mechanism, because MoLIC has a good theory background, but

its technical structure is not strong enough to be chosen as a good

combination for UML. The profile extension of UML could be

used to cover MoLIC concepts. In that case, it may increase

usability and also easy acceptance of the concept in software

engineering.

3.4 Communication in Testing
Testing usability is a key task in both HCI and software

engineering. Engineers utilize various techniques and criteria in

this process. Comprehensive testing includes checking all

requirements from HCI and software engineering perspectives.

The research done by Schilling [21] looks at this challenge (how

to test systems from both perspectives) by proposing a software

development method inspired by semiotic engineering.

An Interactive System (IS) development method is proposed by

Schilling [21] for performing usability tests in earlier stages of

software development, based upon the integration of concepts

from models used in usability, semiotics, and software

engineering. Three major engineering phases are considered for

this purpose. The first one, using methods from usability

engineering, supports gathering information and verifying and

validating user interfaces. In this phase, several user interface

alternatives from user interface requirements models should be

derived. These models express the need, preference, and

constraints of both users and clients, and are obtained from

qualitative and quantitative research. Based on the obtained

results, all user interfaces will be then evaluated. The second

phase follows standard software engineering testing approaches,

testing IS after the execution of the implementation and

integration activities. The last phase is semiotic engineering,

which tests IS usability with real users in the real context of use.

This phase allows developers to test the interactivity and

communicability between the user and system to investigate how

the user interface affects users’ activities and how they achieve

their goals through the user interface.

Integration of models belonging to three engineering domains

brings advantages that can be viewed from two perspectives.

From the users’ point of view, it can result in decreased learning

time and increased user satisfaction. From the developers’ point of

view, it can be used to improve communication among developers

to help them perform usability test tasks in an efficient manner by

using the same vocabulary and artifacts.

Schilling’s research [21] shows the usability of semiotic

engineering in the software development process. By considering

semiotic engineering explicitly as a final phase in usability testing,

it is revealed that the theory can provide acceptable feedback on

usability problems. On the other hand, the nature of the proposed

process can yield a good sign of the application of semiotic

engineering in the improvement of software development

processes.

Furthermore, the lack of good metacommunication among

different models leads to more time spent on developing a

software system. The combination of various models in

Schilling’s research [21] is a kind of communication that provides

automatic test generation. According to this simple proposal, we

should extend the concept of communication in different ways to

get maximum benefits from different models created during the

software development and user interface design.

Schilling et al. [21] claimed good automatic test generation, but it

cannot be observed in the data available in the paper. Moreover,

the description for phases is rather abstract, causing the reader not

to understand the exact advantages and disadvantages of the

proposed process.

4. OUR PERSPECTIVE
In this section, we discuss how semiotic engineering may be used

to evaluate and improve communication between producers and

consumers in software engineering. We focus on some challenge

in UML which might be either discovered or improved by having

a semiotic engineering perspective. Indeed, the goal is to express

how semiotic engineering can approach to challenge existed in

software engineering.

4.1 Role of Semiotic Engineering
The focus of semiotic engineering is on communication,

especially computer-mediated designer-user communication. It

points out that rich communication should be provided by one-

shot messages which designers give to their users through the

media they produce. This concept is powerful because several

things around us have at least a designer (producer) and a user

(consumer), so the theory can be applied to several other cases as

well. Therefore, software artifacts such as models can also be

viewed as one of these cases.

Unfortunately, it is hard to find a theory in software engineering

to aim at communication. This stimulates the question in our

minds regarding how we can expect good communication among

software artifacts while we do not know whether or not there are

enough data, symbols, and structures in artifacts to facilitate such

communication.

Software artifacts are created in the process of software

development and their producers are goal-oriented. This means

that they primarily attempt to satisfy software development

requirements and pay little attention to items such as:

 how artifacts will be used in the future;

 how easy artifacts are to interpret;

 how artifacts will reveal their designers’ hidden

presumptions;

 how much cognitive work artifacts will put on the users.

Therefore, it is necessary to adopt a theory that covers these

questions by providing a method for evaluation and improvement.

We can propose that there should be a method to evaluate

software artifacts. This method will finally be extended to a

concrete framework that allows developers to do tradeoff analysis.

The core of the method should be prepared and covered by

semiotic engineering theory. For example, there is a method in [9]

used to evaluate CSMod tools and it is a combination of semiotic

engineering and CDN. In the method, it is necessary to consider

software engineering criteria to evaluate the effectiveness of

artifacts for having rich communication. Since cognition is a

characteristic of artifacts, the positive and negative effects of

cognitive notations in software artifacts should also be involved.

This should get more attention because measuring those effects

may depend more on the context.

It can be seen how following the concept of communication and

semiotic engineering provides us with questions and partial

answers to get the final answer which can be a framework in this

case.

4.2 UML and Semiotic Engineering
In order to figure out the potential relationship between UML and

semiotic engineering, we focus on some questions that may be

answered by it. Most of the questions are challenging and need to

be explored to a considerable extent, so as to find more concrete

answers. However, the questions show that UML needs to be

rechecked based upon HCI theories, especially semiotic

engineering. This rechecking should be done more in the direction

of usability challenge.

In our discussion, UML is considered in two dimensions. The first

dimension is about UML models as software artifacts whose

producers are software designers, and whose consumers are

software stakeholders. This dimension is supported to some extent

by methodologies, but it is hard to find a concrete theory that

clearly specifies the nature of these artifacts. The second

dimension is about communication between model developers and

UML itself. Indeed, in the second dimension, producers are UML

designers (e.g., researchers who work on extending UML meta-

model) and consumers are software engineers who use UML for

software development. There is a gap in this dimension because

communication between designers of UML and its users has not

been defined very well; at least we do not see such

communication.

UML is designed and developed mainly by the Object

Management Group (OMG). It is used in different areas and most

of its users are developers. Developers need to make

communication with UML tools so that they can model the target

system. If there is communication between developers and tools,

there should be a method or theory to support it in an appropriate

way.

In the context of model communication, consumers are not typical

information technology (IT) users; they are software developers.

Typically, we talk about UML tools for providing better

communication among developers using UML, but it might be

possible to have some other factors, which play hidden roles (e.g.,

the nature of models or diagrams). Currently, there is a tendency

in software research communities that UML has the necessary

expressiveness for communication, but in practice UML is not

being used in their projects [18] or the levels of regular usage of

UML components are not as it is expected [8]. We think that one

of the reasons for this issue can be due to communication issues.

This can be clarified by the fact that it has been verified based on

experiences, psychology, science, and engineering that modeling

is beneficial, so MDSD is the right approach. Furthermore,

developers believe in modeling but do not use UML. It should be

pointed out that modeling can be textual and graphical, so the

issue may not be just about notations and graphical elements used

for UML.

We believe that UML evaluation should be separated from its

tools and this can be achieved by using semiotic engineering.

There are lots of tools that support UML, so the selection of tools

for the study can affect the final results. The evaluation should be

based upon concrete syntax, structure, and cognitive effects. If

UML is evaluated based on tools, core communication challenge

in the nature of UML cannot be found.

Another interesting subject is that it has been explored in HCI that

reducing cognitive load has a positive effect on usability and

learning. The designers of UML, we believe did not pay much

attention to cognition, focusing instead on having strong structure

and coverage. However, they should consider that UML models

are created by users and are interpreted by computers and humans.

Therefore, the cognitive dimension of UML should be studied and

modified to enable better usability. The following are examples of

topics that could easily be studied by semiotic engineering:

 What is the extent to which specific details should

appear in class diagrams such as ‘empty’ boxes when

there are no attributes or methods to display, or

mandatory type and visibility information?

 To what extent can specific diagrams, like state

machines and class diagrams, be used together?

 What is the cognitive load of various notations?

In general, the theory can help UML designers to play their role as

legitimate interlocutors.

As seen, following the theory challenges UML and somehow

provides guidelines which can be investigated and applied to

UML. This exposes the fact the semiotic theory has the potential

to be applied to software modeling languages, but there is still a

need for more studies to be done in order to make the theory

available for the entire software engineering.

5. CONCLUSION AND FUTURE WORK
In this paper, we explored research contributions of semiotic

engineering to software engineering in general and to modeling in

particular. We pointed out why the combination of semiotic

engineering with different concepts of software engineering

should be considered. We explored some the implicit and explicit

contributions and drawbacks of the approach. Our key point is

that semiotic engineering theory can be beneficial in software

engineering because it focuses on communication, which is also

central to the whole process in software engineering.

Furthermore, this paper proposed initial ideas about the use of

semiotic engineering theory along with other theories as a method

to evaluate and improve software artifacts as computer-mediated

communication between producers and consumers. The paper

discussed certain challenges of UML that can be explained with

and explored by semiotic engineering. Although there is no

concrete framework or theory proposed so far for this purpose, it

shows how the semiotics perspective on the challenge of software

engineering can open new thoughts and solutions.

A good direction for future work would be to obtain a more

concrete interpretation about the use of semiotic engineering

theory in software engineering. This can be done by exhaustive

study of research interaction between semiotic engineering and

software engineering. Another direction would be to create a

concrete method for evaluating and improving software artifacts

based on semiotic engineering, cognitive dimensions, and

software engineering theories.

6. REFERENCES
[1] Afonso, L., Cerqueira, R. and Souza, C. de 2012. Evaluating

application programming interfaces as communication

artefacts. Psychology of Programming Interest Group Annual

Conference (2012), 151–162.

[2] Al-Rawas, A. and Easterbrook, S. 1996. Communication

Problems in Requirements Engineering: A Field Study.

Proceedings of the First Westminster Conference on

Professional Awareness in Software Engineering, Royal

Society, London (1996).

[3] ARIS Express Free Modeling Software: 2016.

http://www.ariscommunity.com/aris-express.

[4] Baier, C. and Katoen, J.-P. 2008. Principles Of Model

Checking. MIT Press.

[5] Beydeda, S., Book, M. and Gruhn, V. 2005. Model-Driven

Software Development. Heidelberg: Springer.

[6] Blackwell, A. and Green, T. 2003. Notational systems–the

cognitive dimensions of notations framework. HCI Models,

Theories, and Frameworks: Toward a Multidisciplinary

Science (San Francisco, 2003), 103– 134.

[7] Business Process Model and Notation (BPMN): 2016.

http://www.omg.org/spec/BPMN/.

[8] Dobing, B. and Parsons, J. 2006. How UML is used.

Communications of the ACM. 49, 5 (2006), 109–113.

[9] Ferreira, J.J. and Souza, C.S. De 2013. Communicating ideas

in computer-supported modeling tasks : A case study with

BPMN. HCI International 2013 - Human-Computer

Interaction (2013), 320–329.

[10] Gee, J.P. 2005. An Introduction to Discourse Analysis:

Theory and Method. London: Routledge.

[11] Hutchins, E. 1995. Cognition in the Wild. Cambridge,

MA:MIT Press,.

[12] Kuutti, K. 1995. Activity theory as a potential framework for

human-computer interaction research. Context and

Consciousness: Activity theory and human-computer

interaction, Cambridge: MIT Press. (1995), 14–44.

[13] McChesney, I.R. and Gallagher, S. 2004. Communication

and co-ordination practices in software engineering projects.

Information and Software Technology. 46, 7 (Jun. 2004),

473–489.

[14] Meyer, B. 1992. Applying “design by contract.” Computer.

25, 10 (1992), 40–51.

[15] Paula, M. de and Barbosa, S. 2007. Investigating the role of a

model-based boundary object in facilitating the

communication between interaction designers and software

engineers. 6th international conference on Task models and

diagrams for user interface design (2007), 273–278.

[16] de Paula, M.G., Barbosa, S.D.J. and de Lucena, C.J.P. 2005.

Conveying human-computer interaction concerns to software

engineers through an interaction model. Latin American

conference on Human-computer interaction (New York, New

York, USA, 2005), 109–119.

[17] Paula, M.G. De, Barbosa, S.D.J., Lucena, C.J.P. De,

Informática, D. De and Vicente, R.M.D.S. 2003. Relating

Human-Computer Interaction and Software Engineering

Concerns : Towards Extending UML Through an Interaction

Modeling Language. Closing the Gaps: Software

Engineering and Human-Computer Interaction (2003), 40–

46.

[18] Petre, M. 2013. UML in practice. Proceedings of the 35th

International Conference on Software Engineering (ICSE)

(Piscataway, NJ, USA, May 2013), 722–731.

[19] Pierre Bourque, R.E. (Dick) F. 2014. Guide to the Software

Engineering Body of Knowledge Version 3.0 (SWEBOK

Guide V3.0). IEEE Computer Society.

[20] Samuel M. Scheiner and Michael R. Willig 2011. The

Theory of Ecology. University of Chicago Press.

[21] Schilling, A., Madeira, K., Donegan, P., Sousa, K., Furtado,

E. and Furtado, V. 2005. An integrated method for designing

user interfaces based on tests. the first international

workshop on Advances in model-based testing (New York,

New York, USA, May 2005), 1–5.

[22] de Souza, C. 2006. Semiotic Engineering — A New

Paradigm for Designing Interactive Systems. The Past and

Future of Information Systems: 1976–2006 and Beyond SE -

21. 214, (2006), 231–242.

[23] de Souza, C.S. 2005. The semiotic engineering of human-

computer interaction. The MIT Press, Cambridge,

Massachusetts.

[24] de Souza, C.S. and Leitão, C.F. 2009. Semiotic Engineering

Methods for Scientific Research in HCI. Princeton: NJ.

Morgan & Claypool.

[25] Unified Modeling Language (UML)- Object Management

Group: 2016. http://www.omg.org/spec/UML/.

[26] 2003. The science of communication studied through the

interpretation of signs and symbols as they operate in various

fields, esp. language. Oxford English Dictionary.

