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Abstract

An (n, k)-Poisson Multinomial Distribution (PMD) is the distribution of the sum of n inde-
pendent random vectors supported on the set Bk = {e1, . . . , ek} of standard basis vectors in Rk.
We show that any (n, k)-PMD is poly( k

σ
)-close in total variation distance to the (appropriately

discretized) multi-dimensional Gaussian with the same first two moments, removing the depen-
dence on n from the Central Limit Theorem of Valiant and Valiant [VV11]. Interestingly, our
CLT is obtained by bootstrapping the Valiant-Valiant CLT itself through the structural charac-
terization of PMDs shown in recent work [DKT15]. In turn, our stronger CLT can be leveraged
to obtain an efficient PTAS for approximate Nash equilibria in anonymous games, significantly
improving the state of the art [DP08], and matching qualitatively the running time dependence
on n and 1/ε of the best known algorithm for two-strategy anonymous games [DP09]. Our new
CLT also enables the construction of covers for the set of (n, k)-PMDs, which are proper and
whose size is shown to be essentially optimal. Our cover construction combines our CLT with the
Shapley-Folkman theorem and recent sparsification results for Laplacian matrices [BSS12]. Our
cover size lower bound is based on an algebraic geometric construction. Finally, leveraging the
structural properties of the Fourier spectrum of PMDs we show that these distributions can be
learned from Ok(1/ε

2) samples in polyk(1/ε)-time, removing the quasi-polynomial dependence
of the running time on 1/ε from [DKT15].
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1 Introduction

The Poisson Multinomial Distribution (PMD) is the multi-dimensional generalization of the more
familiar Poisson Binomial Distribution (PBD). To illustrate its meaning, consider a city of n people
and k newspapers. Suppose that person i has his own proclivity to buy each newspaper, so that
his purchase each day can be modeled as a random vector Xi – also called a Categorical Random
Variable (CRV) – taking values in the set Bk = {e1, . . . , ek} of standard basis vectors in Rk.1 If
people buy their newspapers independently, the total circulation of newspapers is the sum X =∑

iXi. The distribution of X is a (n, k)-PMD, and we need n · (k − 1) parameters to describe it.
When k = 2, the distribution is called an n-PBD. When people have identical proclivities to buy the
different newspapers, the distribution degenerates to the more familiar Multinomial (general k) or
Binomial (k = 2) distribution.2 In other words, n-PBDs are distributions of sums of n independent,
not necessarily identically distributed Bernoullis, while (n, k)-PMDs are their multi-dimensional
generalization, where we are summing independent categorical random variables. As such, these
distributions are one of the most widely studied multi-dimensional families of distributions.

In Probability theory, a large body of literature aims at approximating PMDs via simpler
distributions. The Central Limit Theorem (CLT) informs us that the limiting behavior of an
appropriately normalized PMD, as n → ∞, is a multi-dimensional Gaussian, under conditions on
the eigenvalues of the summands’ covariance matrices; see e.g. [VdV00]. The rate of convergence in
the CLT is quantified by multi-dimensional Berry-Esseen theorems. As PMDs are discrete, while
Gaussians are continuous distributions, such theorems typically bound the maximum difference
in probabilities assigned by the two distributions to convex subsets of Rk. Again, these bounds
degrade as the PMD’s covariance matrix tends to singularity; see e.g. [Ben05, CST14]. Similarly,
approximations of PMDs via multivariate Poisson [Bar88, DP88], multinomial [Loh92], and other
discrete distributions has been intensely studied, often using Stein’s method.

In theoretical computer science, PMDs are commonly used in the analysis of randomized algo-
rithms, often through large deviation inequalities. They have also found applications in algorithmic
problems where one is looking for a collection of random vectors optimizing a certain probabilis-
tic objective, or satisfying probabilistic constraints. For example, understanding the behavior
of PMDs has led to polynomial-time approximation schemes for anonymous games [Mil96, Blo99,
Blo05, Kal05, DP07, DP08, DP09], despite the PPAD-completeness of their exact equilibria [CDO15].
Anonymous games are games where a large number n of players share the same k strategies, and
each player’s utility only depends on his own choice of strategy and the number of other players
that chose each of the k strategies. In particular, the expected payoff of each player depends on the
PMD resulting from the mixed strategies of the other players. It turns out that understanding the
behavior of PMDs provides a handle on the computation of approximate Nash equilibria. One of
our main contributions is to advance the state of the art for computing approximate Nash equilibria
in anonymous games. We will come to this contribution shortly.

A New CLT. Recently Valiant and Valiant have used PMDs to obtain sample complexity
lower bounds for testing symmetric properties of distributions [VV11]. The workhorse in their
lower bounds is a new CLT bounding the total variation distance between a (n, k)-GMD and a
multidimensional Gaussian with the same mean vector and covariance matrix. Since they are

1Of course, we can always add a dummy newspaper to account for the possibility that somebody may decide not
to buy a newspaper.

2It is customary to project Binomial and Poisson Binomial distributions to one of their coordinates. In multiple
dimensions, it will be convenient to call a distribution resulting from the projection of a PMD to all but one coordinates
a Generalized Multinomial distribution (GMD).
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comparing a discrete to a continuous distribution under the total variation distance, they need to
discretize the Gaussian by rounding its coordinates to their closest point in the integer lattice. If
X is distributed according to some (n, k)-GMD with mean vector µ and covariance matrix Σ, and
Y is distributed according to the multi-dimensional Gaussian N (µ,Σ), [VV11] shows that:

dTV(X, ⌊Y ⌉) ≤ k4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3, (1)

where σ2 is the minimum eigenvalue of Σ and ⌊Y ⌉ denotes the rounding of Y to the closest point in
the integer lattice. The dependence of the bound on the dimension k and the minimum eigenvalue σ2

is necessary, and quite typical of Berry-Esseen type bounds. Answering a question raised in [VV11],
we prove a qualitatively stronger CLT by showing that the explicit dependence of the bound on n
can be removed (hence, the CLT is “size-free”).

Theorem 1 (Size-free CLT). Suppose that X is distributed according to some (n, k)-GMD with
mean µ and covariance matrix Σ, and Y ∼ N (µ,Σ). There exists some constant C > 0 such that

dTV (X, ⌊Y ⌉) ≤ C
k7/2

σ1/10
, (2)

where σ2 is the minimum eigenvalue of Σ.

Interestingly, Theorem 1 is proven by bootstrapping the Valiant-Valiant CLT itself. Indeed, this
CLT was used as one of the key ingredients in a recent structural characterization of PMDs [DKT15],
where it was shown that any (n, k)-Poisson multinomial random vector is ε-close in total variation
distance to the sum of an (appropriately discretized) Gaussian and a (poly(k/ε), k)-Poisson multi-
nomial random vector; see Theorem 6. In turn, we prove Theorem 1 by using Theorem 6 as a black
box.

We start with an invocation of the structural characterization for some ε = poly(k/σ). With a
judicious such choice of ε, the structural result approximates an arbitrary (n, k)-Poisson multinomial
random vector X (to within poly(k/σ) in total variation distance) by the sum G+P of a discretized
Gaussian G and a (o(σ), k)-Poisson multinomial random vector P . As P has too few components,
namely o(σ), we show that G must account for the variance of X, which is at least σ2 in all
directions. Next, since G has variance Ω(σ2) in all directions and P has variance o(σ2), we can
show that G swamps P , in that dTV(G,G + P ) is small, using Proposition 6. So dTV(X,G) is
also small by triangle inequality. The remaining step is to argue that G can be replaced by a
discretized multidimensional Gaussian with the same first two moments as X. This is done in two
parts. First, since X and G are close in total variation distance, we can argue that their first two
moments are close using Proposition 8. Then, we relate G to a discretized Gaussian with the same
mean and covariance as X using Lemma 2, which bounds the total variation distance between two
Gaussians with similar moments. Finally, we need to argue that the resulting Gaussian can be
trivially discretized to the integer lattice, obviating the need for a more sophisticated structure
preserving rounding.

For more details on our proof’s approach, see Section 3.

In the remainder of this section we discuss the algorithmic applications of our CLT, concluding
with our improved algorithms for learning PMDs using Fourier analysis.

Anonymous Games. We have already discussed anonymous games earlier in this section,
where we have also explained their relation to PMDs. In particular, the expected utility ui of some

2



player i in a n-player k-strategy anonymous game only depends on his own choice of mixed strategy
Xi and the (n−1, k)-Poisson multinomial random vector

∑
j 6=iXj aggregating the mixed strategies

of his opponents. It is therefore natural to expect that a better understanding of the structure of
PMDs could lead to improved algorithms for computing Nash equilibria in these games. Indeed,
earlier work [DP08, DP15] has exploited this connection to obtain algorithms for approximate Nash
equilibria, whose running time is

n
O

(

2k
2 ·
(

f(k)
ε

)6·k
)

, where f(k) ≤ 23k−1kk
2+1k!

While clearly of theoretical interest, this bound shows that anonymous games are one of the few
classes of games where approximate equilibria can be efficiently computed, while exact equilibria
are PPAD-hard [CDO15], even for n-player 7-strategy anonymous games. Exploiting our CLT we
obtain a significant improvement over [DP08].

Theorem 2 (Equilibria in Anonymous Games). An ε-approximately well supported Nash equilib-
rium of an n-player k-strategy anonymous games whose utilities are in [0, 1] can be computed in
time:3

nO(k2) · 2O(k5k·logk+2(1/ε)). (3)

The salient feature of Theorem 2 is the polynomial dependence of the running time on n and its
quasi-polynomial dependence on ε−1. In terms of these dependencies our algorithm matches the
best known algorithm for 2-strategy anonymous games [DP09], where much more is known given
the single-dimensional nature of (n, 2)-PMDs.

Moreover, the recent hardness results for anonymous games [CDO15] establish that not only
finding an exact but also a 2n

a
-approximate Nash equilibrium is PPAD-hard. An interesting corollary

of Theorem 2 is that this cannot be pushed to poly(1/n)-approximations, unless PPAD can be solved
in quasi-polynomial time.

Corollary 1 (Non-PPAD Hardness of FPTAS). Unless PPAD ⊆ Quasi-PTIME, it is not PPAD-hard
to find a poly(1/n)-approximately well supported Nash equilibrium in anonymous games, for any
poly(·).

It is interesting to contrast this corollary with normal-form games where it is known that computing
inverse polynomial approximations is PPAD-hard [DGP09, CDT09].

From a technical standpoint, our algorithm for anonymous games uses the structural under-
standing of PMDs as follows. Since every player views the aggregate strategies of the other players
as a PMD, one approach would be to guess each player’s view using a cover as developed in [DKT15].
However, this approach gives a runtime which is exponential in n, since it requires us to enumerate
the cover for each player. An alternative approach is to guess the overall PMD which occurs at a
Nash equilibrium, and guess appropriate “corrections” that allow us to infer each player’s view. To
do this, we must find an alternative PMD which approximately matches the PMD at Nash in the
following sense:

• The PMD that results by removing the CRV corresponding to a player should be close to the
view that the player observes;

3As it is customary in Nash equilibrium algorithms, approximate Nash equilibria are defined with respect to
additive approximations and the player utilities are normalized to [0, 1] to make these approximations meaningful.
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• A player’s CRV must only assign probability to strategies which are approximate best re-
sponses to his view.

It turns out that these conditions can be satisfied by using a careful dynamic program together
with the structural understanding provided by [DKT15] and the CLT of Theorem 1. According
to this structural result, we can partition the players into a “sparse” and a “Gaussian” compo-
nent. Moreover, our CLT implies that matching the first two moments of the Gaussian suffices
to approximate this component. This allows us to perform guesses at a different granularity for
the sparse and Gaussian components. Roughly speaking, our dynamic program guesses a succinct
representation of the two components and tries to compute CRVs which obey this representation
and satisfy the conditions outlined above.

For more details on our PTAS, refer to Section 4.

Proper Covers. The second application of our CLT is to obtain proper covers for the set Sn,k of
(n, k)-PMDs. A proper ε-cover of Sn,k, in total variation distance, is a subset Sn,k,ε ⊆ Sn,k such that
for all (X1, . . . ,Xn) ∈ Sn,k there exists some (Y1, . . . , Yn) ∈ Sn,k,ε such that dTV (

∑
i Xi,

∑
i Yi) ≤ ε.

We show the following:

Theorem 3 (Proper Cover). For all n, k ∈ N, and ε > 0, there exists a proper ε-cover, in total
variation distance, of the set of all (n, k)-PMDs whose size is

nO(k) ·min
{
2poly(k/ε), 2O(k5k logk+2(1/ε))

}
. (4)

Moreover, we can efficiently enumerate this cover in time polynomial in its size.

It is important to contrast Theorem 3 with Theorem 2 in [DKT15], which provides a non-proper
cover whose size is similar, albeit with a leading factor of nO(k2). Instead, our cover is proper, which
is important for approximation algorithms that require searching over PMDs. Its dependence on
n is also optimal, as the number of (n, k)-PMDs whose summands are deterministic is already
nΩ(k). Moreover, we provide a lower bound for the dependence on 1/ε, establishing that the quasi-
polynomial dependence is also essentially optimal.

Theorem 4 (Cover Size Lower Bound). For any n, k ∈ Z, ε > 0 such that n > 2 logk(1/ε), there
exist (n, k)-PMDs Z1, . . . , Zs such that for 1 ≤ i < j ≤ s, dTV (Zi, Zj) ≥ ε and s = Ωk(n

k−1 ·
2Ω̃(logk−1(1/ε))). The Ω̃ in the exponent hides factors of poly(log log(1/ε)) and dependence on k.

We describe our proper cover construction in two parts. First, we give details on how to
construct a non-proper cover of size nO(k). The main tool we use is the existence of spectral
sparsifiers for Laplacian matrices. Our non-proper cover sparsifies the non-proper cover of [DKT15],
showing how its leading factor of nO(k2) can be reduced to nO(k). Roughly speaking, the factor of
nO(k2) was due to spectrally approximating all possible covariance matrices Σ, whose O(k2) entries
are bounded by n. These covariance matrices corresponded to covariance matrices of (n, k)-PMDs,
and the cover maintained for each such Σ some Σ′ such that |vT (Σ−Σ′)v| ≤ poly(ε/k) · vTΣv,∀v.
(We call this guarantee a “poly(ε/k)-spectral approximation.”) The realization leading to our
sparsification result is that covariance matrices of PMDs are in fact graph Laplacians. Indeed, a
(n, k)-PMD, X =

∑
iXi, has covariance matrix, cov(X) =

∑
i cov(Xi), corresponding to the sum

of the covariance matrices of its summands. Now the covariance matrix of a k-CRV, Xi, is actually
the Laplacian of a graph that has one node j per dimension, along with an edge from node j to
node j′ of weight E[Xij ] · E[Xij′ ]; and the covariance matrix of a (n, k)-PMD is the Laplacian of
the graph with the sum of the weights from each constituent k-CRV– see Observation 1. We show
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that Laplacians corresponding to (n, k)-PMDs can be poly(ε/k)-spectrally covered with a set of

covariance matrices of size nO(k) ·
(
k
ε

)O(k3)
.

We appeal to recent results in spectral sparsification of Laplacian matrices [ST11, SS11, BSS12,
BSST13]. In particular, we use the result of Batson, Spielman, and Srivastava [BSS12] (Theorem 8)
to argue that the underlying graph can be sparsified to linearly many edges in the dimension k.
We do this in the hopes that we would have fewer parameters in the covariance matrix to guess.
Unfortunately, the [BSS12] sparsification theorem has polynomial dependence in the accuracy. So
applying it with a poly(ε/k)-approximation error, which is what we need, gives a meaningless result
(namely no sparsification at all). Instead, we only use this theorem to get a rough O(1)-spectral
cover of (n, k)-PMD covariance matrices. Around every covariance matrix in this rough cover
we grow a local poly(ε/k)-spectral cover. Roughly speaking, as the O(1)-spectral cover provides
multiplicative approximation to the variance in every direction v, every covariance matrix in this
cover gives us a multiplicative handle on the eigenvalues of the matrices approximated by it. This
is sufficient information to cover these matrices to poly(ε/k)-spectral error with a “local” spectral
cover of size (k/ε)O(k2)– see Lemma 6. Putting everything together, we get a poly(ε/k)-spectral

cover of all covariance matrices of (n, k)-PMDs of size nO(k) ·
(
k
ε

)O(k3)
– see Section 5.1.3. As

covering these matrices was the bottleneck in the size of the non-proper cover, this completes the
construction of a non-proper cover whose size is (4).

Further details on our non-proper construction are provided in Section 5.
We then show how to convert each element of this improper cover back to a PMD. We bypass the

difficulty involved with a non-convex optimization problem by exploiting the “almost convexity”
of the Minkowski sum as guaranteed by the Shapley-Folkman lemma. The cover provided by
Theorem 7 is non-proper. It utilizes the structural result of [DKT15] (see Theorem 6) to cover
the set of (n, k)-PMDs by hypotheses which take the form of the convolution of a discretized
multidimensional Gaussian with a (poly(k/ε), k)-PMD. The benefit of this class of hypotheses
is that they have only poly(k/ε) parameters. This allows us to efficiently enumerate over them,
resulting in a cover size of (4). To convert this cover into a proper one, we need an algorithm which,
given a convolution of a discretized Gaussian with some (κ , poly(k/ε), k)-PMD, finds a (n, k)-
PMD that is O(ε)-close to this distribution, if such a PMD exists. As the (κ, k)-PMD is already
a PMD, this boils down to answering whether a given discretized Gaussian with parameters (µ,Σ)
is O(ε)-close to a (n − κ, k)-PMD. To answer this question, we exploit our new CLT (Theorem 1)
and the fact that the discretized Gaussians that arise in the cover have an extra property: all
their non-zero eigenvalues are at least poly(k/ε)-large. Exploiting this we argue that (i) if there
exists an (n − κ, k)-PMD that is close to the discretized Gaussian with parameters (µ,Σ), then
its mean µ′ should be close to µ and its covariance matrix Σ′ should be spectrally close to Σ;
and (ii) if we can find any (n − κ, k)-PMD with with these properties, then it will be close to the
discretized Gaussian. With (i) and (ii), our task becomes a convex geometry question: Let M be
all possible first two moments (E[Y ], cov(Y )), of k-CRVs Y whose parameters have been finely
discretized. As the first two moments of a (n− κ, k)-PMD are sums of the first two moments of its
constituent k-CRVs, we can reduce our problem to finding a point in the Minkowski sum M⊕n−κ

that (spectrally) approximates the target (µ,Σ). We write an LP to find a point in the convex
hull of M⊕n−κ with this property, and the Shapley-Folkman theorem to “round” it into a point
in M⊕n−κ that is only a little worse. The Shapley-Folkman theorem comes in handy because M
lives in RO(k2), i.e. much smaller dimension than n − κ. The whole approximation can be carried
out in time nO(k)– see Lemma 8.

Details on this conversion process are provided in Section 6.
Our lower bound is described further in Section 7. Our technique shows a lower bound on
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the metric entropy of a polynomial map of the moments of PMDs using an extension of Bézout’s
theorem and other tools from algebraic geometry.

Learning. Finally, we give a new learning algorithm for PMDs:

Theorem 5. For all n, k ∈ N and ε > 0, there is a learning algorithm for (n, k)-PMDs with the
following properties: Let X =

∑n
i=1Xi be any (n, k)-Poisson multinomial random vector. The

algorithm uses poly(k,log(1/ε))k

ε2
samples from X, runs in time4 poly

(
k
ε

)k2
and with probability at

least 9/10 outputs a (succinct description of a) random vector X̃ such that dTV(X, X̃) ≤ ε.

This improves the learning algorithm from [DKT15] by eliminating the superpolynomial depen-
dence on ε in the running time that was obtained in that paper. Our algorithm exploits properties
of the continuous Fourier transform of a PMD, as opposed to recent work by Diakonikolas, Kane
and Stewart on learning univariate sums of independent integer random variables, which uses the
discrete Fourier transform [DKS16b]. They also apply similar discrete Fourier techniques in their
simultaneous work on PMDs [DKS16a].

We note that such Fourier-based learning algorithms may simply output a description of the
Fourier transform of a distribution. This allows one to compute the PMF of the distribution at any
point of interest, but it is not obvious how to sample from such a description. Our algorithm outputs
an explicit description of a distribution, which allows one to efficiently (i.e., in time independent
of n) draw samples from the distribution. In contrast, they output the Fourier transform of a
distribution and describe how to sample from it.

For more details on our learning algorithm, refer to Section 8.

1.1 Comparison of Results with [DKS16a]

Simultaneous to our work, Diakonikolas, Kane, and Stewart also studied Poisson Multinomial
distributions [DKS16a]. In this section, we describe and compare their results with ours. While both
papers independently prove many qualitatively similar results, the techniques are quite different,
and thus both may be of independent interest.

Both papers prove new CLTs, which manage to remove the dependence on n which is found in
the CLT of [VV11], while the dependence on k and 1/σ remains polynomial. Additionally, both
works improve upon the previous best covers for PMDs [DKT15]. First, both manage to reduce
the size of the cover – interestingly, the two improvements seem to be orthogonal. Our result
improves the dependence on n from nk2 to nO(k), while theirs improves the dependence on k and
1/ε from (1/ε)O(k5k logk+1(1/ε)) to (1/ε)O(k log(k/ε)/ log log(k/ε))k−1

.5 Furthermore, both papers describe
how to efficiently achieve a proper cover of this size. These cover sizes are asymptotically optimal,
as shown by lower bounds in both papers. In particular, the double-exponential dependence in
k is necessary. Both works also consider the problem of finding approximate Nash equilibria in
anonymous games. The complexity of both algorithms is roughly comparable to the PMD cover
size. Finally, both papers study the learning of PMDs, obtaining algorithms with sample complex-
ity poly(k, log(1/ε))k/ε2. The runtime of our algorithm is poly(k/ε)k

2
, and the runtime of their

algorithm is poly(k, log(1/ε))k/ε2 · log n, both in the standard word RAM model.

4We work in the standard “word RAM” model in which basic arithmetic operations on O(log n)-bit integers are
assumed to take constant time.

5 We note that this upper bound holds for k > 2: for k = 2, [DKS16b] proves the tight cover size bound of
n · (1/ε)Θ(log(1/ε)).
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2 Preliminaries

2.1 Definitions

We more formally define several of the distribution classes we consider.

Definition 1. A k-Categorical Random Variable (k-CRV) is a random variable that takes values
in {e1, . . . , ek} where ej is the k-dimensional unit vector along direction j. π(i) is the probability
of observing ei.

Definition 2. An (n, k)-Poisson Multinomial Distribution ((n, k)-PMD) is given by the law of
the sum of n independent but not necessarily identical k-CRVs. An (n, k)-PMD is parameterized
by a nonnegative matrix π ∈ [0, 1]n×k each of whose rows sum to 1 is denoted by Mπ, and is
defined by the following random process: for each row π(i, ·) of matrix π interpret it as a probability
distribution over the columns of π and draw a column index from this distribution. Finally, return
a row vector recording the total number of samples falling into each column (the histogram of the
samples).

We note that a sample from an (n, k)-PMD is redundant – given k−1 coordinates of a sample, we
can recover the final coordinate by noting that the sum of all k coordinates is n. For instance, while
a Binomial distribution is over a support of size 2, a sample is 1-dimensional since the frequency
of the other coordinate may be inferred given the parameter n. With this inspiration in mind, we
define the Generalized Multinomial Distribution, which is the primary object of study in [VV11].

Definition 3. A Truncated k-Categorical Random Variable is a random variable that takes values
in {0, e1, . . . , ek−1} where ej is the (k − 1)-dimensional unit vector along direction j, and 0 is the
(k − 1) dimensional zero vector. ρ(0) is the probability of observing the zero vector, and ρ(i) is the
probability of observing ei.

Definition 4. An (n, k)-Generalized Multinomial Distribution ((n, k)-GMD) is given by the law of
the sum of n independent but not necessarily identical truncated k-CRVs. A GMD is parameterized
by a nonnegative matrix ρ ∈ [0, 1]n×(k−1) each of whose rows sum to at most 1 is denoted by Gρ,
and is defined by the following random process: for each row ρ(i, ·) of matrix ρ interpret it as a
probability distribution over the columns of ρ – including, if

∑k
j=1 ρ(i, j) < 1, an “invisible” column

0 – and draw a column index from this distribution. Finally, return a row vector recording the total
number of samples falling into each column (the histogram of the samples).

For both (n, k)-PMDs and (n, k)-GMDs, we will refer to n and k as the size and dimension,
respectively.

We note that a PMD corresponds to a GMD where the “invisible” column is the zero vector,
and thus the definition of GMDs is more general than that of PMDs. However, whenever we refer
to a GMD in this paper, it will explicitly have a non-zero invisible column.

While we will approximate the Multinomial distribution with Gaussian distributions, it does
not make sense to compare discrete distributions with continuous distributions, since the total
variation distance is always 1. As such, we must discretize the Gaussian distributions. We will use
the notation ⌊x⌉ to say that x is rounded to the nearest integer (with ties being broken arbitrarily).
If x is a vector, we round each coordinate independently to the nearest integer.

Definition 5. The k-dimensional Discretized Gaussian Distribution with mean µ and covariance
matrix Σ, denoted ⌊N (µ,Σ)⌉, is the distribution with support Zk obtained by sampling according to
the k-dimensional Gaussian N (µ,Σ), and then rounding each coordinate to the nearest integer.
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As seen in the definition of an (n, k)-GMD, we have one coordinate which is equal to n minus
the sum of the other coordinates. We define a similar notion for a discretized Gaussian. However,
we go one step further, to take care of when there are several such Gaussians which live in disjoint
dimensions. By this, we mean that given two Gaussians, the set of directions in which they have
a non-zero variance are disjoint. Without loss of generality (because we can simply relabel the
dimensions), we assume all of a Gaussian’s non-zero variance directions are consecutive, i.e., the
covariance matrix is all zeros, except for a single block on the diagonal. Therefore, when we add
the covariance matrices, the result is block diagonal. The resulting distribution is described in the
following definition.

Definition 6. The structure preserving rounding of a multidimensional Gaussian Distribution
takes as input a multi-dimensional Gaussian N (µ,Σ) with Σ in block-diagonal form. It chooses
one coordinate as a “pivot” in each block, samples from the Gaussian ignoring these pivots and
rounds each value to the nearest integer. Finally, the pivot coordinate of each block is set by taking
the difference between the sum of the means and the sum of the values sampled within the block.

Finally, we formally define the notion of a cover.

Definition 7. An ε-cover for a set of distributions S is a set of distributions S ′ such that for any
distribution X ∈ S, there exists some distribution Y ∈ S ′ such that dTV(X,Y ) ≤ ε. A cover is
proper if S ′ ⊆ S.

2.2 Probability Metrics

To compare probability distributions, we will require the total variation and Kolmogorov distances:

Definition 8. The total variation distance between two probability measures P and Q on a σ-
algebra F is defined by

dTV(P,Q) = sup
A∈F

|P (A) −Q(A)| = 1

2
‖P −Q‖1.

Unless explicitly stated otherwise, in this paper, when two distributions are said to be ε-close,
we mean in total variation distance.

Definition 9. The Kolmogorov distance between two probability measures P and Q with CDFs FP

and FQ is defined by
dK(P,Q) = sup

x∈R
|FP (x)− FQ(x)|.

We note that Kolmogorov distance is, in general, weaker than total variation distance. In
particular, total variation distance between two distributions is lower bounded by the Kolmogorov
distance.

Fact 1. dK(P,Q) ≤ dTV(P,Q)

2.3 Miscellaneous Lemmata

We will use the following tools for bounding total variation distance between various random
variables.
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Lemma 1 (Data Processing Inequality for Total Variation Distance). Let X,X ′ be two random
variables over a domain Ω. Fix any (possibly randomized) function F on Ω (which may be viewed as
a distribution over deterministic functions on Ω) and let F (X) be the random variable such that a
draw from F (X) is obtained by drawing independently x from X and f from F and then outputting
f(x) (likewise for F (X ′)). Then we have

dTV

(
F (X), F (X ′)

)
≤ dTV

(
X,X ′) .

Proposition 1 (Berry-Esseen theorem [Ber41, Ess42, She10]). Let X1, . . . ,Xn be independent ran-
dom variables, with E[Xi] = 0, E[X2

i ] = σ2
i > 0, E[|Xi|3] = ρi < ∞, and define X =

∑n
i=1Xi, σ

2 =∑n
i=1 σ

2
i , ρ =

∑n
i=1 ρi. Then for an absolute constant C0 ≤ 0.56,

dK(X,N (0, σ2)) ≤ C0ρ

σ3
.

Proposition 2 (Proposition 32 in [VV10]). Given two k-dimensional Gaussians N1 = N (µ1,Σ1),N2 =
N (µ2,Σ2) such that for all i, j ∈ [k], |Σ1(i, j) − Σ2(i, j)| ≤ α, and the minimum eigenvalue of Σ1

is at least σ2 ≥ α,

dTV (N1,N2) ≤
‖µ1 − µ2‖2√

2πσ2
+

kα√
2πe(σ2 − α)

.

In addition, we prove the following general purpose lemma showing that two multivariate Gaus-
sians with spectrally-close moments are close in total variation distance. This is intended to be a
multivariate version of Proposition B.4 of [DDO+13], which proves a similar statement for univari-
ate Gaussians. The proof appears in Section A.

Lemma 2. Suppose there exist two k-dimensional Gaussians, X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2),
such that for all unit vectors v,

|vT (µ1 − µ2)| ≤ εsv,

|vT (Σ1 − Σ2)v| ≤
εs2v
2
√
k
;

where s2v = max{vTΣ1v, v
TΣ2v}. Then dTV(X,Y ) ≤ ε.

2.4 Results on PMDs from [DKT15]

Our work builds upon recent structural results on PMDs [DKT15]. We recall some of the key
results which we will refer to in this paper.

Two key parameters used in this paper are c = c(ε, k) = poly(ε/k) and t = t(ε, k) = poly(k/ε),

set as c =
(

ε2

k5

)1+δc
and t =

(
k19

cε6

)1+δt
, for constants δc, δt > 0.

The main tool from this paper we will use is the structural characterization, stating that every
PMD is close to the sum of an appropriately discretized Gaussian and a “sparse” PMD.

Theorem 6 (Theorem 5 from [DKT15]). For parameters c and t as described above, every (n, k)-
Poisson multinomial random vector is ε-close to the sum of a Gaussian with a structure preserving
rounding and a (tk2, k)-Poisson multinomial random vector. For each block of the Gaussian, the
minimum non-zero eigenvalue of Σi is at least tc

2k4
.

Finally, we will also use their rounding procedure, which relates a PMD to a nearby PMD with
all parameters either equal to or sufficiently far from 0 and 1:

Lemma 3 (Lemma 1 from [DKT15]). For any c ≤ 1
2k , given access to the parameter matrix ρ for

an (n, k)-PMD Mρ, we can efficiently construct another (n, k)-PMD M ρ̂, such that, for all i, j,

ρ̂(i, j) 6∈ (0, c), and dTV

(
Mρ,M ρ̂

)
< O

(
c1/2k5/2 log1/2

(
1
ck

))
.
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3 A Size-Free CLT

We overview our proof of Theorem 1. Recall that the Central Limit Theorem of Valiant and Valiant,
(1), has a poly-logarithmic dependence on the size parameter of the GMD. Their work raised the
question whether this CLT could be made size-independent, and we resolve this conjecture by
showing that it can be. This qualitative improvement comes at a quantitative loss in the polynomial
dependence of the bound on the parameters k and σ2.

Our CLT builds off of the structural result of [DKT15], Theorem 6, which we use as a black
box. This structural result says that every (n, k)-PMD is ε-close to the sum of an appropriately
discretized Gaussian and a (poly(k/ε), k)-PMD. We note that the statement of Theorem 6 does
not tell us anything about the moments of this Gaussian and sparse PMD, while our new CLT
requires that the discretized Gaussian has the same moments as the original PMD. We prove this
CLT in two steps. First, we show that the original PMD X and the discretized Gaussian from the
cover G are close in total variation distance, i.e., we show that we can “drop” the sparse PMD
component from Theorem 6 in the relevant approximation regime. Then, we bound the distance
between the discretized Gaussian from the cover, G, and a discretized Gaussian with the same
mean and covariance as the original PMD, GX . The proof is concluded by combining these two
bounds using the triangle inequality.

To bound the distance between the original PMD X and the discretized Gaussian from the cover
G, we start by invoking Theorem 6 with parameter ε = poly(k/σ). This tells us that the PMD is
close to the sum of a discretized Gaussian with a structure preserving rounding G and a “sparse”
PMD P , which has size parameter at most some poly(σ) = o(σ). We first show that the structure
preserving rounding only has a single block in its structure. This is proved by contradiction. If there
were multiple blocks in the structure, there would exist some direction v in which G contributes 0
variance. Since P is sparse, it can contribute at most o(σ) variance when projected in direction v.
However, we know that X had at least σ2 variance in direction v. By projecting both X and P
in direction v and applying Berry-Esseen’s theorem, we can show that such a large discrepancy in
the variance implies large Kolmogorov distance between the projections, see Proposition 5. This
acts as a certificate demonstrating a large total variation distance, contradicting our invocation of
Theorem 6, and thus the Gaussian has a single block in its structure. By a similar contradiction
argument, we can also argue that G has a large variance (Ω(σ2)) when projected in any direction.
Since G’s variance is at least Ω(σ2) in any direction, while P is only supported over {0, . . . , o(σ)}k ,
it can be shown that P ’s contribution to the distribution is negligible using Proposition 6, and
thus we can remove it at low cost; i.e. dTV(G + P,G) is small. Since Theorem 6 implied that
dTV(X,G+P ) was small, by triangle inequality, we have shown that the original PMD X and the
discretized Gaussian from the cover G are close in total variation distance.

Next, we bound the distance between the discretized Gaussian from the cover, G, and a dis-
cretized Gaussian with the same moments as the original PMD, GX . At this point, we know that
X and G are close in total variation distance. By projecting both distributions in some direction
and considering true Gaussians with the same moments as X and G, it can be shown that the
first two moments are similar in this direction – otherwise, the true Gaussians would be far from
each other in the Kolmogorov metric. This implies that the first two moments of X and G are
close in every direction, as guaranteed by Proposition 8. Applying Lemma 2 tells us that bona-fide
Gaussians with moments which are close in every direction are therefore close in total variation
distance. The proof is concluded by applying the Data Processing inequality, which shows that the
corresponding discretized Gaussians G and GX are close as well.

We state and prove many useful lemmas in Section 3.1, which we combine to complete the proof
of Theorem 1 in Section 3.2.
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3.1 Useful Lemmas

The following two propositions bound the Kolmogorov distance between a univariate Gaussian and
the projection of a GMD or a discretized Gaussian, respectively.

Proposition 3. Suppose that there exists an (n, k)-generalized multinomial random vector X, with
mean vector µ and covariance matrix Σ. Then for any unit vector v,

dK(v
TX,N (vTµ, vTΣv)) ≤ 1

σ
,

where σ2 is the minimum eigenvalue of Σ.

Proof. We apply the Berry-Esseen theorem (Proposition 1). Let Yi = Xi − E[Xi] to recenter
the random variables, and we will now compare Y =

∑
i Yi with N (0, vTΣv). We note that

vTYi ∈ [−
√
2,
√
2]. Letting σ2

i = Var(vTYi) and ρi = E
[∣∣vTYi

∣∣3
]
, this implies that ρi ≤

√
2σ2

i , and

thus the Berry-Esseen bound gives

dK(v
TY,N (0, vTΣv)) ≤ 0.56 (

∑
i ρi)(∑

i σ
2
i

)3/2 ≤
(∑

i σ
2
i

)
(∑

i σ
2
i

)3/2 =
1

(∑
i σ

2
i

)1/2 ≤ 1

σ
.

Proposition 4. Suppose there exists a random variable X ∼ ⌊N (µ,Σ)⌉. Then for any unit vector
v,

dK(v
TX,N (vTµ, vTΣv)) ≤

√
k√

2πσ
,

where σ2 is the minimum eigenvalue of Σ.

Proof. Let Y ∼ N (µ,Σ). We first show |vT (Y − ⌊Y ⌉)| ≤
√
k
2 , which holds by Cauchy-Schwarz:

‖v‖2 = 1 and ‖Y − ⌊Y ⌉‖2 ≤
√
k · ‖Y − ⌊Y ⌉‖∞ ≤

√
k
2 . Thus,

vTY −
√
k

2
≤ vT ⌊Y ⌉ ≤ vTY +

√
k

2
.

Using F to denote the corresponding CDFs, this stochastic dominance condition implies that for
any y ∈ R,

F
vT Y−

√
k
2

(y) ≤ FvT ⌊Y ⌉(y) ≤ F
vT Y+

√
k
2

(y).

Furthermore,
F
vT Y−

√
k
2

(y) ≤ FvT Y (y) ≤ F
vT Y+

√
k
2

(y)

and

F
vT Y+

√
k
2

(y)− F
vT Y−

√
k
2

(y) ≤
√
k · 1√

2πσ
,

because the two distributions are univariate Gaussians with the same variance (which is at least
σ2) and means shifted by

√
k. This implies

|FvT Y (y)− FvT ⌊Y ⌉(y)| ≤
√
k√

2πσ
,

as desired.

11



The following proposition compares a Gaussian X and an arbitrary distribution Y . It shows
that if Y ’s variance is much smaller than X’s, then they must be far in Kolmogorov distance.

Proposition 5. Suppose there exists a univariate Gaussian X with variance σ2
X , and a distribution

Y with variance σ2
Y < σ2

X . Then the Kolmogorov distance between X and Y is at least 1
2−
(
σY
σX

)2/3
.

Proof. We consider the event that a sample falls in an interval of width 2k centered at E[Y ]. As a
certificate of a large Kolmogorov distance between X and Y , we show that the probability assigned
to this interval is very different for X versus Y .

First, by Chebyshev’s inequality, we know that

Pr [|Y − E[Y ]| ≤ k] ≥ 1− σ2
Y

k2
.

On the other hand, we know that

Pr [|X − E[Y ]| ≤ k] ≤ Pr [|X − E[X]| ≤ k] = erf

(
k√
2σX

)
≤ k√

2πσX
,

where the last inequality uses the Taylor expansion of the error function.
The difference in probability assigned to this interval is at least

1− σ2
Y

k2
− k√

2πσX
.

Setting k = σ
2/3
Y σ

1/3
X gives

dK(X,Y ) ≥ 1

2

(
1−

(
σY
σX

)2/3

− 1√
2π

(
σY
σX

)2/3
)

≥ 1

2
−
(
σY
σX

)2/3

,

as desired.

The following proposition tells us if we are considering the sum of two random variables, one
being a Gaussian with a large variance and one being an arbitrary distribution with a small support,
we can remove all contribution from the distribution with small support and not pay a large cost
in total variation distance.

Proposition 6. Suppose X and Y are independent random variables, where X ∼ ⌊N (µ,Σ)⌉ ∈ Rk

and Y is supported on S = {0, . . . ,m}k. Then dTV(X,X + Y ) ≤ m
√
k√

2πσ
, where σ is the minimum

eigenvalue of Σ.

Proof. We start by applying a law of total probability for total variation distance:

dTV(X,X + Y ) ≤
∑

v∈S
Pr(Y = v)dTV(X,X + v) =

∑

v∈S
Pr(Y = v)dTV(⌊N (µ,Σ)⌉, ⌊N (µ + v,Σ)⌉).

Using the data processing inequality for total variation distance (Lemma 1):

dTV(⌊N (µ,Σ)⌉, ⌊N (µ + v,Σ)⌉) ≤ dTV(N (µ,Σ),N (µ + v,Σ)) ≤ ‖v‖√
2πσ

≤ m
√
k√

2πσ
,

where the second last inequality follows from Proposition 2. We conclude by observing that
dTV(X,X + Y ) is a convex combination of such terms.

12



The next proposition tells us that Kolmogorov closeness implies parameter closeness for uni-
variate Gaussians.

Proposition 7. Consider two univariate Gaussians X ∼ N (µ1, σ
2
1) and Y ∼ N (µ2, σ

2
2) where

σ1 ≤ σ2. For any α ∈ (0, 1), if dK(X,Y ) ≤ α
10 , then |µ2 − µ1| ≤ ασ1 and |σ2

2 − σ2
1 | ≤ 3ασ2

1 .

Proof. We start by proving the following statement: For any α ∈ (0, 1), if |µ2 − µ1| ≥ ασ1 or
|σ2 − σ1| ≥ ασ1 , then dK(X,Y ) ≥ α

10 . The proof follows by contraposition, and observing that
multiplying both sides of |σ2 − σ1| ≤ ασ1 by (σ2 + σ1), bounding σ2 ≤ (1 + α)σ1, and α ≤ 1 imply
|σ2

2 − σ2
1 | ≤ 3ασ2

1 .
Without loss of generality, assume µ1 ≤ µ2. We will first show the conclusion assuming the

means are separated, and then assuming the variances are separated.
Suppose |µ2 − µ1| ≥ ασ1. Consider the point x = µ2. At this point, the CDF of the second

Gaussian is equal to 1
2 . The CDF of the first Gaussian is 1

2

(
1 + erf

(
µ2−µ1√

2σ1

))
≥ 1

2

(
1 + erf

(
α√
2

))
.

Therefore, dK(N1,N2) ≥ 1
2erf

(
α√
2

)
≥ α

10 , where the last inequality holds for all α ∈ (0, 1).

Now, suppose |σ2 − σ1| ≥ ασ1. Consider the point x = µ1 +
√
2σ1. At this point, the CDF

of the first Gaussian equal to 1
2(1 + erf(1)). Similarly, the CDF of the second Gaussian is at most

1
2

(
1 + erf

(
σ1
σ2

))
≤ 1

2

(
1 + erf

(
1

1+α

))
. Therefore, dK(N1,N2) ≥ erf(1)−erf( 1

1+α)
2 ≥ α

10 where the

last inequality holds for all α ∈ (0, 1).

Our final proposition in this section applies the previous proposition, showing that total vari-
ation closeness implies parameter closeness (in any projection) when considering a GMD and a
discretized Gaussian.

Proposition 8. Suppose X is an (n, k)-GMD, and Y is a k-dimensional discretized Gaussian such
that dTV(X,Y ) ≤ α. Let µX and ΣX be the mean vector and covariance matrix (respectively) of
X, and define µY and ΣY similarly for Y . For a unit vector v, let σ2

v = min{vTΣXv, vTΣY v}, and
let σ2 = minv σ

2
v . If α+ 2

√
k

σ ≤ 1/10, then for all unit vectors v

|vT (µX − µY )| ≤ 10

(
α+

2
√
k

σ

)
σv;

|vT (ΣX − ΣY )v| ≤ 30

(
α+

2
√
k

σ

)
σ2
v .

Proof. Consider the projections of X and Y onto v. By Propositions 3 and 4 and the triangle
inequality, the Kolmogorov distance between the univariate Gaussians with the same mean and

variance is at most α+ 2
√
k

σ . Applying Proposition 7 implies the desired result.

3.2 Proof of Theorem 1

We will prove the statement for a sufficiently large constant C. Thus we only need examine the
case

k3

σ1/10
≤ 1

C
, (5)

otherwise the conclusion of the theorem statement is vacuous since total variation distance is at
most 1.
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As a starting point, we convert from a GMD to the corresponding (n, k)-Poisson multinomial

random vector X and apply Theorem 6 with ε = k3

σ1/10 . This gives us that

dTV(X,G+ P ) ≤ k3

σ1/10
,

where G is a Gaussian with a structure preserving rounding and P is a (tk2, k)-Poisson multinomial

random vector. By the definition of t in Section 2.4, we have that t ≤ C′σ9/10

k2 for some constant C ′.
Thus, P is a (C ′σ9/10, k)-Poisson multinomial random vector.

First, we argue that the Gaussian component G only has a single block in its structure. We
prove this by contradiction – suppose there exist multiple blocks in its structure. Let one of the
pivots be the pivot coordinate for the GMD, and ignore this dimension. If there are multiple blocks,
the rounding procedure implies that there exists a direction v in which the variance of the resulting
covariance matrix of the Gaussian is 0. In direction v, the maximum possible value for the variance

of P is C′σ9/10

4 , giving us an upper bound for the variance of G + P . However, we know that
the variance of X in direction v is at least σ2, by the assumption in the theorem statement. By
Proposition 3, projectingX in direction v and converting to a univariate GaussianXg with the same
mean and variance incurs a cost of at most 1

σ in Kolmogorov distance. Also projecting G + P in
direction v, Proposition 5 tells us that dK(v

TX, vT (G+P )) ≥ dK(Xg, v
T (G+P ))−dK(v

TX,Xg) ≥
1
2 −
(

C′

4σ11/10

)1/3
− 1

σ . Because σ ≥ C10 (as assumed in (5)), we have that dK(v
TX, vT (G+P )) > 1

3 .

Since we know dTV(X,G+ P ) ≤ k3

σ1/10 , this implies that dK(v
TX, vT (G+ P )) ≤ dTV(v

TX, vT (G+

P )) ≤ k3

σ1/10 should also hold, which is a contradiction for large C, as k3

σ1/10 ≤ 1
C < 1

3 . Therefore,
the Gaussian component G only has a single block in its structure.

Since we have established that the Gaussian component G only has a single block, we will
convert back to the original GMD domain for the remainder of the proof. Recall that the original
GMD is Mρ, and we let D be the discretized Gaussian and S be the (C ′σ9/10, k)-Generalized
multinomial random vector with the same pivot coordinate as Mρ. Now, we wish to upper bound
dTV(M

ρ,D), i.e., we want to eliminate the sparse GMD from our statement. First, we wish to
argue that D has a large variance in every direction, and thus removing S will not have a large
effect. This is done by the same method in the above paragraph. Let the minimum variance of D
in any direction be ζ2. Then to avoid the same contradiction as above, we require that

1

2
−
(

C′σ9/10

4 + ζ2

σ2

)1/3

− 1

σ
≤ 1

C
.

This can be manipulated to show that

ζ2 ≥ 1

16
σ2. (6)

Now, applying Proposition 6 and the triangle inequality, we get

dTV(M
ρ,D) ≤ k3

σ1/10
+

4C ′√k√
2πσ1/10

. (7)

Finally, to conclude, we must compare D with a discretized Gaussian with the same moments
as Mρ, i.e., we wish to upper bound dTV(D, ⌊N (µ,Σ)⌉). Recall that µ and Σ are the mean and
covariance of Mρ, and let µD and ΣD be the mean and covariance of D. Apply Proposition 8 to
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Mρ and D using the guarantees of Equations (6) and (7). This implies that their moments are
close:

|vT (µ− µD)| ≤ 10

(
k3

σ1/10
+

4C ′√k√
2πσ1/10

+
8
√
k

σ

)
σv;

|vT (Σ − ΣD)v| ≤ 30

(
k3

σ1/10
+

4C ′√k√
2πσ1/10

+
8
√
k

σ

)
σ2
v ,

where σ2
v = min{vTΣv, vTΣDv}.

We use the Data Processing Inequality (Lemma 1) followed by Lemma 2 with these guarantees
to give:

dTV (D, ⌊N (µ,Σ)⌉) ≤ dTV (N (µD,ΣD),N (µ,Σ)) ≤ 60

(
k3

σ1/10
+

4C ′√k√
2πσ1/10

+
8
√
k

σ

)
√
k.

Finally, applying the triangle inequality with Equation (7) gives

dTV (Mρ, ⌊N (µ,Σ)⌉) ≤ dTV(M
ρ,D) ≤ 61

(
k7/2

σ1/10
+

4C ′k√
2πσ1/10

+
8k

σ

)
.

Choosing the constant C sufficiently large completes the proof.

4 A PTAS for Anonymous Games

Here, we overview the algorithm of Theorem 2. The algorithm starts with a guess of X =
∑

i Xi

at a Nash equilibrium VX = (X1, . . . ,Xn) of the game, where Xi represents the mixed strategy
of player i. While there are infinitely many X’s to guess, our proper cover theorem (Theorem 3)
implies that every X can be approximated by some Y =

∑
i Yi, where VY = (Y1, . . . , Yn) ∈ Sε,

dTV(X,Y ) ≤ ε and |Sε| is of the order of at most (3). What we would like to claim is that if Y
approximates X, then VY is an approximate Nash equilibrium of the game up to a permutation of
the Yi’s. This is unfortunately not necessarily true, but the following guarantees would suffice:

∀i : support(Yi) ⊆ support(Xi) ∧ dTV


∑

j 6=i

Xj ,
∑

j 6=i

Yj


 ≤ ε. (8)

Indeed, if the above guarantee held, then the expected payoff of every player i from any pure
strategy σ would not change by more than an additive O(ε) if we changed the strategies of all other
players from (Xj)j 6=i to (Yj)j 6=i. So, if VX were a Nash equilibrium and support(Yi) ⊆ support(Xi),
it would follow that Yi is an approximate best response of player i to (Yj)j 6=i. So VY would be an
approximate equilibrium.

Unfortunately, we do not know how to construct a proper ε-cover Sε of all (n, k)-PMDs that
has size of order (3) and such that for any VX there exists some VY ∈ Sε satisfying Condition (8).
Nevertheless, we can exploit our CLT and the structural result of [DKT15] (restated as Theorem 6
in this paper) to bypass this difficulty. Roughly speaking [DKT15] approximate a given VX =
(X1, . . . ,Xn) by first discretizing the parameters of all Xi’s into fine enough accuracy (this is
shown to only cost some O(ε) in total variation distance), then partitioning the Xi’s into a small
group L of size poly(k/ε) that are left intact, and a large group whose sum is approximated by a
discretized multidimensional Gaussian (up to another cost of O(ε) in total variation distance). It
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is further shown that the distribution of the sum of variables in L can be summarized through the
vector ~m of its first O(log 1/ε) moments (at a loss of an additional O(ε) in total variation distance),
while the discretized Gaussian through its first two moments (µ,Σ). Moreover, it is shown that
the Gaussian has at least poly(k/ε) variance in all directions where it has non-zero variance. By
enumerating over all possible summary statistics (~m, µ,Σ), a non-proper cover of all (n, k)-PMDs
can be obtained, whose size is of the order of (3).

Suppose now that VX = (X1, . . . ,Xn) is a Nash equilibrium whose approximating statistic in
the non-proper cover is some (~m, µ,Σ). Given a correct guess for this statistic, our goal is to uncover
an approximate Nash equilibrium VY = (Y1, . . . , Yn) of the game. By the construction of the cover,
we know that every player i either contributed his discretized Xi to the discretized Gaussian with
parameters (µ,Σ), or to the small group of variables with moments ~m. So, letting C be the set of
k-CRVs whose parameters have the discretization accuracy used in the construction of the cover,
we need to assign some Yi ∈ C to each player i such that:

(a) There exists a poly(k/ε)-size subset L of players such that
∑

i∈L Yi has vector of moments
~m, while

∑
i/∈L Yi has first two moments (µ,Σ).

(b) For all i, Yi is a best response to
∑

j 6=i Yj.

To find a good assignment, we first construct a compatibility graph between players and mixed
strategies in C. We add an edge between some i and some Yi ∈ C iff at least one of the following
two conditions is met. We also annotate the edge with all conditions that are met:

1. (Yi is compatible with i ∈ L): Yi is an approximate best response to the “environment”
i would observe if i contributed to ~m. If i contributed to ~m and Condition (a) were met,
then we can deduce what PMD player i would see in his environment. Indeed, this would
be within some O(ε) in total variation distance to a the sum of a Gaussian random vector
with parameters (µ,Σ) and a PMD whose first O(log(1/ε)) moments are the same as ~m after
removing the contribution of Yi. The updated moment vector can be computed from ~m and
Yi as moments are symmetric polynomials of the underlying parameters. Given the updated
moment vector, the PMD is determined to within ε in total variation distance, so its sum with
the discretized Gaussian is also determined, and we can also efficiently determine whether Yi

is an approximate best response of player i to that distribution.

2. (Yi is compatible with i ∈ L̄): Yi is an approximate best response to the “environment”
i would observe if i contributed to the discretized Gaussian with parameters (µ,Σ). First,
for this to be the case Yi must be “compatible” with Σ, i.e. not correlating uncorrelated
pairs of dimensions/adding variance in zero-variance dimensions (or in other words, the block
structure of Σ should be preserved). Moreover, since all non-zero eigenvalues of Σ are at least
poly(k/ε)-large, the discretized Gaussian with parameters (µ,Σ) and (µ−E[Yi],Σ−cov(Yi))
are approximately the same(Proposition 2). At the same time, due to the largeness of the non-
zero eigenvalues of Σ, if condition (a) were eventually true, then our CLT (Theorem 1) would
imply that

∑
j∈L̄\{i} Yj is well-approximated by the discretized Gaussian with parameters

(µ−E[Yi],Σ− cov(Yi)), and hence by that with parameters (µ,Σ). So, if i ∈ L̄, i is assigned
Yi, and Condition (a) is eventually met, then the PMD that player i sees in his environment
is pinned down to within O(ε) in total variation distance: it is approximately the sum of the
discretized Gaussian with parameters (µ,Σ) and a PMD with moments ~m. We can therefore
check if Yi is an approximate best response to that distribution.

After constructing the compatibility graph as above, we need to see if there is an assignment of
players to compatible mixed strategies from C so that (a) is satisfied. This looks non-trivial, but
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it can be done using dynamic programming. We sweep through the players, maintaining as state
all possible leftover moments (~m′, µ′,Σ′) that may arise from assignments of a prefix of players to
compatible mixed strategies. Given the discretization of C, the set of possible states is bounded
by (3). Importantly, the compatibility graph has the property that player i is happy when given a
compatible strategy as long as the overall assignment matches (~m, µ,Σ).

4.1 Preliminaries for Anonymous Games

Definition 10. An anonymous game is a triple G = (n, k, {uij}) where [n] = {1, . . . , n}, n ≥ 2,

is the set of players, [k] = {1, . . . , k}, k ≥ 2, is the set of strategies, and uij with i ∈ [n] and
j ∈ [k] is the utility of player i when she plays strategy j, a function mapping the set of partitions
Πk

n−1 = {(x1, . . . , xk) : xi ∈ N0 for all i ∈ [k],
∑k

i=1 xi = n− 1} to the interval [0, 1].

A mixed strategy profile ρ is a set of n distributions {ρi ∈ ∆k}i∈[n], where by ∆k we denote the
(k − 1)-dimensional simplex, or, equivalently, the set of distributions over [k]. A mixed strategy
profile ρ is an ε-approximately well supported Nash equilibrium (or an ε-Nash equilibrium, for short)
if, for all i ∈ [n] and j ∈ [k],

Ex∼ρ−i [u
i
j(x)] < max

j′∈[k]
Ex∼ρ−i [u

i
j′(x)]− ε ⇒ ρij = 0,

where ρ−i is the distribution over Πk
n−1 obtained by drawing n − 1 random samples from [k]

independently according to the distributions ρi′ , i
′ 6= i, and forming the induced partition. We

note that this an ε-Nash equilibrium is stronger than the related concept of an ε-approximate Nash
equilibrium (see, i.e., [DGP09] for further discussion of this distinction). Throughout this paper,
we solely consider the harder problem of computing an ε-Nash equilibrium.

A 0-Nash equilibrium is simply called a Nash equilibrium and it is always guaranteed to exist
by Nash’s theorem.

4.2 An Algorithm for Anonymous Games

In a Nash equilibrium ρ of an anonymous game every player uses a mixed strategy ρi selecting
strategy j with probability ρij. The distribution of the number of players which select each of the
strategies is an (n, k)-PMD. Using the fact that there exist small size ε-covers for PMDs, we can
efficiently search over the space of all strategies and identify a mixed strategy profile that produces
an ε-Nash equilibrium. We show that there exists an efficient polynomial time approximation
scheme (EPTAS) for computing an ε-Nash equilibrium, thus proving Theorem 2.

The algorithm works by guessing an aggregate statistic (m,µ,Σ) that describes the overall
behavior of all players. This statistic is based on the structural theorem shown in [DKT15], which
shows that the overall PMD that describes the mixed strategy profile can be approximately written
as sum of a discretized Gaussian and a sparse PMD with only poly(k/ε) components. Moreover,
for the sparse PMD knowledge of the log(1/ε) moments (which is equivalent to knowing the power-
sums of all the summands up to poly(1/ε), suffices to describe it within ε in total variation distance.
Thus, the algorithm requires guessing the power-sums m of the sparse PMD and the mean µ and
covariance Σ of the discretized Gaussian.

As we will show, knowledge of an individual’s strategy together with the aggregate statistic
(m,µ,Σ) for the overall mixed strategy profile, allows us to compute an approximate distribution
Di that discribes the player’s view about the aggregate strategy of everyone else. If we manage to
assign strategies ρi to every player so that ρ−i approximately matched Di and additionally each
player only chooses strategies that corresponds to approximate best responses with respect to his

17



view Di we will obtain an ε-Nash equilibrium. The following lemma formalizes this intuition and
is the main tool we use in the proof of Theorem 2.

Lemma 4. Consider the anonymous game G = (n, k, {uij}) and let D1,D2, ...,Dn be arbitrary

distributions over Zk. If there exists an (n, k)-PMD ρ such that:

• For all i ∈ [n], dTV(ρ−i,Di) ≤ ε1

• For all i ∈ [n] and j ∈ [k], Ex∼Di [u
i
j(x)] < maxj′∈[k]Ex∼Di [u

i
j′(x)]− ε2 ⇒ ρij = 0,

Then, ρ is an (2ε1 + ε2)-Nash equilibrium for the game G.

Proof. For any i ∈ [n] and j ∈ [k], we have that |Ex∼Di [u
i
j(x)]− Ex∼ρ−i [u

i
j(x)]| ≤ ε1, since i ∈ [n],

dTV(ρ−i,Di) ≤ ε1. Therefore,

max
j′∈[k]

Ex∼ρ−i [u
i
j′(x)]− Ex∼ρ−i [u

i
j(x)] > ε2 + 2ε1 ⇒

max
j′∈[k]

Ex∼Di [u
i
j′(x)]− Ex∼Di [u

i
j(x)] > ε2 ⇒ ρij = 0

Proof of Theorem 2. Consider the game G = (n, k, {uij}). By Nash’s theorem there always exists
a Nash equilibrium. Let ρ be such an equilibrium where every player uses a mixed strategy ρi
selecting strategy j with probability ρij . The distribution of vectors which give the number of
players which select each of the strategies is an (n, k)-PMD.

To get an efficient algorithm, we need to search over a restricted set of strategies for each player.
To be able to do that we must show that an ε-Nash equilibrium exists in a more restricted space.
To argue that, we begin by a Nash equilibrium ρ and perform a series of operations that maintain
the property that the resulting mixed strategy profile is an ε-equilibrium.

1. We first proceed by rounding the probabilities ρij so that they are either 0 or at least c

as done in Lemma 3. This gives a PMD ρ(1) that is O(c1/2k5/2 log1/2(1/ck))-close in total

variation distance to ρ . Moreover, if we consider the PMD ρ
(1)
−i , which is the (n − 1, k)-

PMD obtained by removing the i-th component from the rounded PMD ρ(1), this is also
O(c1/2k5/2 log1/2(1/ck))-close in total variation to ρ−i, i.e. the PMD obtained after removing
the i-th component from the original PMD ρ. The proof of this statement is almost identical
to the proof in [DKT15] and is omitted. That proof uses Poisson approximations to bound
the total variation between the rounded and the unrounded PMDs and uses the fact that the
means of the two PMDs can differ by at most c in each coordinate. The only difference is that
here, the means of the two PMDs can differ by at most 2c in each coordinate which results
in the same asymptotic bound for total variation distance. Moreover, note the rounding

procedure doesn’t change any probabilities that were originally 0, i.e. ρij = 0 ⇒ ρ
(1)
ij = 0.

2. We now discretize all parameters ρ
(1)
ij into multiples of ⌈nkε ⌉−1 to get a new PMD ρ(2). This

preserves the support of every CRV and makes sure that parameters that were at least c

originally remain at least c− ε
nk . Moreover, since |r̂ij−r̄ij | < ε

nk , it holds that dTV(ρ
(1)
i , ρ

(2)
i ) <

ε/n which implies that dTV(ρ
(1)
−i , ρ

(2)
−i ) < ε. This means that overall, for all i ∈ [n] and j ∈ [k],

dTV(ρ−i, ρ
(2)
−i ) < ε+O(c1/2k5/2 log1/2(1/ck)) < 2ε and ρij = 0 ⇒ ρ

(2)
ij = 0.

3. By the structural theorem of [DKT15], the components ρ
(2)
i of the PMD ρ(2) can be partitioned

into two PMDs:
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• a sparse PMD of size tk2: As in step 2, we can discretize all its probabilities into multiples
of ⌈ tk3ε ⌉−1 to obtain a PMD ρsparse that is ε-close in total variation distance.

• a large PMD of size n− tk2: This PMD ρlarge is shown in [DKT15] to be approximable
within ε in total variation distance by a discretized Gaussian g (with a structure preserv-
ing rounding) that has the same mean and covariance. The Gaussian consists of one or
many blocks and has minimum non-zero eigenvalue at least tc

2k4
. Since all the probabili-

ties of the PMD are discretized into multiples of ⌈nkε ⌉−1, the entries of the mean vector

of the Gaussian are also multiples of ⌈nkε ⌉−1 and the entries of the covariance matrix are

integer multiples of ⌈nkε ⌉−2.

Note that the support of every CRV in the PMD ρsparse∗ρlarge is a subset of the support of the
corresponding CRV in the PMD of the Nash equilibrium ρ. Moreover for every CRV i in ρsparse

and i′ in ρlarge, it holds that dTV(ρ−i, ρ
sparse
−i ∗ ρlarge) < 3ε and dTV(ρ−i′ , ρ

sparse ∗ ρlarge−i′ ) < 3ε.

After performing the steps above, we have shown that an O(ε)-Nash equilibrium can be found
by searching over a limited set of parameters. In particular we require to search over ρsparse with
accuracy ⌈ tk3ε ⌉−1 and on ρlarge with accuracy ⌈nkε ⌉−1. The search space unfortunately is still very
large since it requires searching over ρlarge with high accuracy. The main idea to reduce the search
space for the problem is to note that the large PMD is approximable by a discretized Gaussian g
(with a structure preserving rounding) that has large non-zero eigenvalues, i.e. dTV(ρ

large, g) < ε.
For every player i in the sparse PMD, his view about the aggregate strategy of the others is

approximately the same as if the large PMD was replaced by the Gaussian, i.e.

dTV(ρ
sparse
−i ∗ ρlarge, ρsparse ∗ g) < ε

Moreover, for every player i that corresponds to a CRV in the large PMD, his view about the
aggregate strategy of the others is approximately the same as if the rest of the components in the
large PMD were replaced by a Gaussian g−i with the same mean and covariance ρlarge−i , i.e.

dTV(ρ
sparse ∗ ρlarge−i , ρsparse ∗ g−i) < ε

At this point, the aggregate behavior of all players can be summarized by describing the prob-
abilities of the sparse PMD and providing the mean and covariance of the Gaussian. However,
as shown in Lemma 22 and Lemma 23 of [DKT15], it is possible reduce the search space by only
keeping track of the first log(1/ε) moments/power-sums of the sparse PMD. In particular, for a
PMD π let mα1,..,αk

(π) be the power sum
∑

i

∏k
j=1 (πij)

αj . If a PMD πA has the same power sums

mα1,..,αk
(πA) as the PMD πB for α1, .., αk ∈ Z≥0 such that

∑k
j=1 αj ≤ log(1/ε) and additionally

|πA
ij − πB

i′j| ≤ (4ek3)−1 then dTV(π
A, πB) < 2ε. Using this fact, we can partition the CRVs of the

sparse PMD into at most (4ek3)k smaller components according to the value of the probability
in each of the coordinates and replace all CRVs within every partition with a PMD that matches
their corresponding power-sums without significant loss in total variation. So knowledge of the
power-sums mα1,..,αk

(π) for every sub-PMD in the partition is sufficient to approximately describe
the distribution of the sparse PMD.

With those observations in hand, we proceed to give the algorithm for computing ε-equilibria
for anonymous games. To do this, we first guess the mean µ and covariance Σ of the Gaussian
component as well as all the power-sums m of the sparse PMD. We then try to construct CRVs for
every player so that the overall mean and covariance as well as the power-sums match those that we
guessed and moreover every player’s CRV assigns positive probability mass only to approximately
optimal strategies. If we are able to do so, Lemma 4 implies that this gives an approximate Nash
equilibrium. In more detail, the algorithm performs the following steps:

19



1. Guess the mean and covariance of the Gaussian component and the power sums of the sparse
PMD. For every guess, we repeat the next steps until a feasible solution is found.

We need to guess the powersums for (4ek3)k different PMDs since CRVs are first clustered
according to their value in every coordinate. Since the parameters of the sparse PMD are

all multiples of ⌈ tk3ε ⌉−1, this results in at most 2k
5k logk+2( 1

ε) distinct power-sum vectors in
total6. For the gaussian component all entries of the mean and covariance are multiples of
⌈nkε ⌉ which requires ⌈nkε ⌉O(k2) guesses in total.

2. For every player, we need to compute the contribution of his mixed strategy (CRV) to the
overall distribution. If that player is to be assigned in the sparse component, its probabili-
ties are all multiples of ⌈ tk3ε ⌉−1 and we can compute its contribution to the power-sums m.
Similarly, if that player is to be assigned in the gaussian component its probabilities are all
multiples of ⌈nkε ⌉−1 and we can easily compute its contribution to the mean and covariance.

However, not all assignments are feasible. We need to consider only CRVs for that player
that assign positive probability mass to coordinates that are approximately best responses
to the strategy of other players. Even though we don’t know the strategies of the others
exactly, we can compute a good approximate description of the players view by subtracting
from the power sums m the players contribution (if any) and computing any PMD that
matches those power-sums. Similarly, if the player is mapped to the gaussian component
we subtract the players mean and covariance from the overall mean µ and covariance Σ and
compute a discretized Gaussian with the resulting mean and covariance instead. We say that
an assignment of a player to a component (sparse or Gaussian) and a specific distribution
over strategies is feasible if it approximately maximizes the player’s utility u with respect to
his approximate view about the strategies of others.

3. To find if there exists a set of feasible strategies that matches the guessed statistic (m,µ,Σ),
we use dynamic programming. The states of our dynamic program are the following: For
any prefix of players, we keep track of the remaining power-sums, mean and covariance we
need to account for. We iteratively process players one by one keeping track of which states
are reachable. Our estimation is feasible if after processing all players we have accounted for
all the power-sums, mean and covariance in our original guess. If we find such a solution, we
output the assignment of players to mixed strategies that resulted in this solution.

This algorithm is always guaranteed to find a solution ρ̂, since the PMD ρsparse ∗ ρlarge that we
got by modifying a Nash equilibrium for the game, satisfies all the constraints we imposed. We now
claim that the resulting PMD from this algorithm is an ε-Nash equilibrium. The main ingredient
to showing this is applying the CLT we developed in Theorem 1 to show that the view ρ̂−i for every
player i is close to the view that was assumed when choosing feasible strategies for every player.
Indeed, by the CLT all the CRVs that were mapped in the Gaussian component are approximable
by a Gaussian with the same mean and covariance, while CRVs that were mapped in the sparse
component have the same power-sums as those that we had guessed.

Applying Lemma 4 directly shows that this is indeed an O(ε)-Nash equilibrium.
The total runtime of the algorithm is polynomial on the number of states of the above dynamic

program. Since there are ⌈nkε ⌉O(k2) Gaussian parameters in total as well as 2k
5k logk+2( 1

ε ) power

sums in total, the overall runtime is nO(k2)2poly(k,log(1/ε))
k
and the theorem follows.

6This upper bound was derived in [DKT15]
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5 An n
O(k) Non-Proper Cover for PMDs

On the road to getting the proper cover described by Theorem 3, we first show Theorem 7. This
constructs a non-proper cover of the same size. The main theorem of this section is the following:

Theorem 7. For all n, k ∈ N, and ε > 0, there exists a (non-proper) ε-cover, in total variation
distance, of the set of all (n, k)-PMDs whose size is

nO(k) ·min
{
2poly(k/ε), 2O(k5k logk+2(1/ε))

}
.

Moreover, we can efficiently enumerate this cover in time polynomial in its size.

This theorem should be contrasted with Theorem 3, which provides a proper cover of similar
size. It should also be contrasted to Theorem 2 of [DKT15], which provides a cover with a leading
factor of nk2 , so the cover presented here improves the exponent of n from quadratic to linear in
the dimension. This is the correct order of exponential dependence on k, as simply counting the
number of (n, k)-PMDs with deterministic summands gives a lower bound of nΩ(k). We also show
in Section 7 that the quasi-polynomial dependence on 1/ε with an exponent of Ω(k) cannot be
avoided, as we provide an essentially matching lower bound on the cover size.

The starting point for our cover will be Theorem 6, stating that every (n, k)-PMD is ε-close
to the sum of an appropriately discretized Gaussian and a (poly(k/ε), k)-PMD. We generate an
ε/2-cover for each and combine them by triangle inequality.

Covering the sparse PMD. We cover the sparse PMD component using the same methods as
in [DKT15]. The first, naive way of covering this component involves gridding over all poly(k/ε)
parameters with poly(ε/k) granularity. This results in a cover size of 2poly(k/ε).

The more sophisticated way of covering this component uses a “moment matching” technique.
A result by Roos [Roo02] shows that the probability mass function can be written as the weighted
sum of partial derivatives of a standard multinomial distribution. When analyzed carefully, his
result implies that the lower order moments of the distribution are sufficient to characterize the
PMD. In other words, any two PMDs with identical “moment profiles” (which describe these lower
order moments) are close in total variation distance, and it suffices to keep only one representative

for each moment profile. This method results in a cover of size 2O(k5k logk+2(1/ε)). Combining this
with the other approach gives a cover of size

min
{
2poly(k/ε), 2O(k5k logk+2(1/ε))

}
.

For more details, see the proof of Theorem 2 of [DKT15].

Covering the discretized Gaussian. To cover the Gaussian component, [DKT15] grid over
all O(k2) parameters of the Gaussian component, arguing the effectiveness of the gridding using
Proposition 2. This gridding results in the leading factor of nO(k2) in the size of the cover. In
contrast, we use a spectral covering approach: instead of trying to grid over all parameters of the
covariance matrix, we first sparsify it and then match the magnitude of its projection in every
direction. In particular, we establish a cover of the following nature:

Lemma 5. Let Gn,k,ε be the set of all Gaussians with structure preserving roundings which may
arise as a consequence of Theorem 6 when applied to (n, k)-Poisson multinomial random vectors
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with parameter ε. Then there exists a set S of Gaussians with structure preserving roundings of

size at most nO(k) ·
(
k
ε

)O(k3)
with the following properties:

For any G ∈ Gn,k,ε, there exists a Ĝ ∈ S, such that G and Ĝ have the same block structure (i.e.,
the partition of coordinates), and within each block, have the same pivot coordinate and sum for the
mean vector coordinates. Furthermore, for each block i, letting (µi,Σi) and (µ̂i, Σ̂i) be the mean
and covariance for the block (excluding the pivot coordinate), we have that for all unit vectors v,

• |vT (µi − µ̂i)| ≤ εσiv
k ;

• |vT (Σi − Σ̂i)v| ≤ εσ2
iv

2k3/2
;

where σ2
iv = max{vTΣiv, v

T Σ̂iv}.

This lemma statement is slightly technical due to the nature of the Gaussians with structure pre-
serving roundings. It essentially says that we cover the set of Gaussians arising from the structural
theorem by matching their block structure exactly, and within each block, matching the moments
spectrally. Plugging these guarantees into Lemma 2 and applying the data processing inequality
for total variation distance (Lemma 1) gives the desired closeness.

For simplicity of exposition, for the remainder of this overview section, we assume that the
Gaussian’s structure preserving rounding consists of a single block, an assumption we do not make
in the full proof (described in Section 5.1). By the guarantees of the structural result, in this case,
the minimum eigenvalue of the covariance matrix is at least some poly(k/ε). So the goal of our
exposition in this section is to produce a cover of Gaussians that may result from Theorem 6 and
whose covariance matrices have minimum eigenvalue at least poly(k/ε).

Since the mean vector only has k parameters, we can grid over the entries. Though we require

a spectral guarantee, this naive gridding is sufficient. This gives a set of size
(
nk
ε

)O(k)
, such that,

for any Gaussian which may arise from Theorem 6, its mean vector is approximated by a mean
vector in our set with the approximation guarantees required by Lemma 2.

Covering the covariance matrix takes more care. At a high level, our approach views PMDs
through the lens of spectral graph theory and exploits the existence of spectral sparsifiers. Recall
the definition of the Laplacian matrix of a graph:

Definition 11. Given an undirected weighted graph G = (V,E,w) on n vertices, its Laplacian
matrix is an n× n matrix LG where

LG(i, j) =





∑
k 6=iw(i, k) if i = j

−w(i, j) if i 6= j ∧ (i, j) ∈ E,

0 otherwise

To see the connection to PMDs, we observe that the covariance matrix of a PMD is the Laplacian
matrix of a graph defined by the parameters. For a single k-CRV X with parameter vector π, it
can be shown that the variance of Xi is π(i)(1−π(i)) and the covariance of Xi and Xj is −π(i)π(j).

Since
∑k

i=1 π(i) = 1, the covariance matrix is equal to the Laplacian matrix of a graph on k nodes
with w(i, j) = π(i)π(j). This can be extended to (n, k)-PMDs by observing that the sum of random
variables has a covariance matrix equal to the sum of the individual covariance matrices, and a
similar statement holds for graphs and the corresponding Laplacian matrices. We summarize this
connection in the following observation:
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Observation 1. The covariance matrix of an (n, k)-Poisson Multinomial Distribution Mπ cor-
responds to the Laplacian matrix of a graph G = (V,E,w) on k nodes, where the w(i, j) =∑n

ℓ=1 π(ℓ, i)π(ℓ, j).

At the core of our approach, we use the following celebrated result of Batson, Spielman, and
Srivastava [BSS12], which says that the Laplacian matrix of a graph on k vertices can be spectrally
approximated by the Laplacian matrix of a graph with only O(k) edges:

Theorem 8 (Theorem 1.1 in [BSS12]). For every ε ∈ (0, 1), every undirected weighted graph
G = (V,E,w) on n vertices contains a weighted subgraph H = (V, F, w̃) with ⌈(n − 1)/ε2⌉ edges
which satisfies

(1 − ε)2LG � LH � (1 + ε)2LG,

where LG is the Laplacian matrix of the graph G.

Using this tool, the approach will proceed as follows. This theorem implies that, for every
true covariance matrix Σ, there exists a matrix M1 with only O(k) entries which preserves every
projection up to a multiplicative factor of 1/5. We can obtain a matrix M2 with the same sparsity
pattern as M1 by guessing which subset of O(k) entries is non-zero, requiring exp(k · log k) guesses.
Furthermore, we can grid over the non-zero entries of M2 to ensure that it approximates every
projection of M1 up to a multiplicative factor of 1/25. Since M1 has minimum eigenvalue poly(k/ε)

and maximum entry O(n), gridding requires only
(
n·k
ε

)O(k)
guesses, and we get that M2 gives a 1/4

multiplicative spectral approximation to Σ. To make our approximation finer, we will O(ε/
√
k)-

cover the set of PSD matrices within a 1/4-neighborhood of M2. We first recall the definition of a
cover in this context:

Definition 12. Let S be a set of symmetric k× k PSD matrices. An ε-cover of the set S, denoted
by Sε, is a set of PSD matrices such that for any matrix A ∈ S, there exists a matrix B ∈ Sε such
that for all vectors y: |yT (A−B)y| ≤ εyTAy.

Now, if we could O(ε/
√
k)-cover the set of all matrices 1/4-close to M2, we would obtain an

O(ε/
√
k)-approximation to Σ. We do so using the following lemma, which provides a method to

generate such a cover. A slight generalization of this statement appeared as Lemma 9 in [DKT15],
but we give a slightly simpler proof in Section 5.2 for completeness.

Lemma 6 (Lemma 9 in [DKT15]). Let A be a symmetric k × k PSD matrix with minimum
eigenvalue at least 1 and let S be the set of all matrices B such that |yT (A−B)y| ≤ ε1y

TAy for all

vectors y, where ε1 ∈ [0, 1/4]. Then, there exists an ε-cover Sε of S that has size |Sε| ≤
(
k
ε

)O(k2)
.

Combining the above, we obtain a set of covariance matrices of size nO(k) ·
(
1
ε

)poly(k)
such

that, for any Gaussian which may arise in Theorem 6, its covariance matrix is approximated by a
covariance matrix in our cover as required by Lemma 2.

Combining the guarantees obtained for the mean and the covariance matrix, we find that they

satisfy both conditions of Lemma 2. Therefore, we have described a cover of size nO(k) ·
(
1
ε

)poly(k)
for all possible Gaussian components. The proof of Theorem 7 is completed by taking the Cartesian
product of this Gaussian cover with the cover for the (poly(k/ε), k)-PMD component.

For more details on covering the Gaussian component, see Section 5.1.

23



5.1 Details on Covering the Gaussian Component

Recall that the Gaussian component will have a structure preserving rounding. The first step in
designing our cover will be to guess the partitioning into blocks. There are k dimensions, resulting
in at most k! different block structures. In what follows, we will describe how to cover a single block
up to accuracy O( εk ), taking the Cartesian product of the resulting sets will give an O(ε)-cover of
the entire Gaussian at the additional cost of k in the exponent.

For a single block which consists of dimensions Si, we must first guess the size parameter ni

and which dimension is to be used as the pivot. The former is an integer between 0 and n, and
guessing it comes at a cost of n in our cover size. Guessing the latter comes at a |Si| cost in our
cover size.

Recall that our strategy will be to spectrally match the parameters of the true Gaussian. We will
conclude the two distributions are close using the guarantees provided by Lemma 2. We describe
how to obtain such guarantees for both the mean and covariance matrix separately.

5.1.1 Covering the Mean Vector of a Block

We know the mean of the block will be contained in the cube [0, ni]
|Si|. For some α(k, ε) (which for

simplicity, we assume divides ni), consider the lattice {0, α, 2α, . . . , ni}|Si|, which has (ni
α + 1)|Si|

points. We note that the maximum ℓ2 distance between the mean µ and the closest point of this
lattice µ̂ is at most α

√
k, and therefore, for any unit vector v, we have that |vT (µ − µ̂)| ≤ α

√
k.

We also know that the minimum variance of any projection the Gaussian is large, in particular,

at least tc
2k4 , so the standard deviation in any direction v is σv ≥

√
tc
2k4 . Choosing α ≤ k5/ε ≤

εσv/k
3/2 implies that α

√
k ≤ εσv/k. This shows that the first condition of Lemma 2 is satisfied to

approximate this block up to ε
k accuracy. Substituting the value of α, we cover the mean with a

set of size at most
(
niε
k5

+ 1
)|Si|.

5.1.2 Covering the Covariance Matrix of a Block

We will use the characterization provided by Observation 1, which tells us that the covariance
matrix of an (n, k)-PMD is the Laplacian matrix of a graph defined by the parameters of the
distribution. Recall from the proof of Theorem 6 (which appears in [DKT15]), the covariance
matrix of the Gaussian we are attempting to match is also the covariance matrix of an (ni, |Si|)-
Generalized Multinomial Distribution. For the remainder of this proof, we let G be the graph
defined by this characterization for the covariance matrix of the corresponding (ni, |Si|)-Poisson
Multinomial Distribution.

As a starting point, we use Theorem 8, which shows the existence of spectral sparsifiers. In
particular it implies that, if given G on |Si| nodes and we want a subgraphH such that (1−1/5)LG �
LH � (1 + 1/5)LG, there exists an H with at most 110|Si| edges which gives this approximation.
The first step in covering the covariance matrix is to guess which edges are present in the graph.
Since there are

(|Si|
2

)
possible edges in the graph, this requires at most

( (|Si|
2

)

110|Si|

)
≤ k220k

guesses.
Now that we know which edges are present in the graph, the goal is to guess the weights of these

edges. Ideally, we would like to obtain a graph M with the guarantee that (1− 1/25)LH � LM �
(1 + 1/25)LH . However, this is stronger than we can hope for, since recalling that LH has a zero
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eigenvalue, it would require that the diagonals of LM and LH are exactly equal. Instead, we recall
that we have a pivot coordinate which will be left out of the Gaussian’s covariance matrix, and we
only have to match projections which are orthogonal to this direction. Without loss of generality,
assume that the pivot coordinate is 1. For any unit vector v ∈ Rk orthogonal to e1, we will obtain
an LM such that

vT (LH − LM )v ≤ 1

25
vTLHv,

which will imply

vT (LG − LM )v ≤ 1

4
vTLGv.

Further, recall that our structural result implies that 1
25v

TLHv ≥ tc
100k4

, so it suffices to obtain a
graph M such that

vT (LH − LM )v ≤ tc

100k4
.

For a unit vector v and |Si| × |Si| PSD matrices A and B,

vT (A−B)v =
∑

i,j

vivj(A(i, j) −B(i, j)) ≤ |Si|2 max
i,j

|A(i, j) −B(i, j)|.

Suppose we guess the edge weights of M such that they are at most tc
100k7 away from those of H.

This tells us maxi 6=j |LH(i, j) − LM(i, j)| ≤ tc
100k7 , and since the diagonal entries of LM are the

sums of the off-diagonal entries, maxi |LH(i, i) − LM(i, i)| ≤ tc
100k6 . This implies that it suffices to

additively estimate the edge weights up to accuracy tc
100k6

. Since the maximum entry of LG is at

most ni, the spectral guarantee implies that the maximum entry of LH is at most 6ni
5 , and similarly,

the maximum edge weight. Therefore, gridding over all 110|Si| non-zero edge weights, we define a
set with at most (

6ni/5

tc/100k7

)110|Si|
≤
(

3niε
5

250k11

)110|Si|

candidates.
At this point, we have a PSD matrix LM which, when projected onto the subspace orthogonal

to e1, is 1/4-spectrally close to the target covariance matrix. We wish to ε
2k3/2

-cover the space of
all PSD matrices which are 1/4-spectrally close to this matrix. We will use Lemma 6, which we
instantiate with parameter “ε” set to ε

2k3/2
, allowing us to generate a ε

2k3/2
-cover of a 1

4 -neighborhood

of a given PSD matrix with
(
k
ε

)O(k2)
candidates. Since we knew one of the previous candidates

was 1
4 -close to the target, this gives us a matrix which satisfies the second condition of Lemma 2

to approximate this block up to ε
k accuracy. The size of this cover is at most

k220k ·
(

3niε
5

250k11

)110|Si|
·
(
k

ε

)O(k2)

= nO(|Si|)
(
k

ε

)O(k2)

.

5.1.3 Putting the Guarantees Together

At this point, to cover a single block up to accuracy O(ε/k), we have a set of size at most

n · |Si| ·
(niε

k5
+ 1
)|Si| · nO(|Si|)

(
k

ε

)O(k2)

= nO(|Si|)
(
k

ε

)O(k2)

.
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Taking the Cartesian product of sets and multiplying by the number of guesses for the block
structure of the Gaussian, we get an overall cover of size

k! ·
∏

Si

(
nO(|Si|)

(
k

ε

)O(k2)
)

= nO(k)

(
k

ε

)O(k3)

.

Combining with the cover for the (poly(k/ε), k)-PMD component, we obtain an overall cover
for (n, k)-PMDs of size

nO(k) ·min
{
2poly(k/ε), 2O(k5k ·logk+2(1/ε))

}
,

as desired.

5.2 Proof of Lemma 6

To construct the cover, we will make use of the eigenvalues and eigenvectors of the matrix A. We
first show that for any matrix B ∈ S, its eigenvalues are close to the eigenvalues of A.

Proposition 9. Let A,B be two symmetric k × k PSD matrices such that for all vectors y with
‖y‖ = 1, |yT (A−B)y| ≤ ε1y

TAy for some constant ε1 > 0. Then for the eigenvalues λA
1 ≤ ... ≤ λA

k

of A, and the eigenvalues λB
1 ≤ ... ≤ λB

k of B, it holds that:

|λA
i − λB

i | ≤ ε1λ
A
i

Proof. From Courant’s minimax principle, we have that the i-th eigenvalue of A is equal to:

λA
i = max

C
min

(‖x‖=1
Cx=0)

xTAx

where C is an (i− 1)× k matrix. For the matrix B, we have that

λB
i = max

C
min

(‖x‖=1
Cx=0)

xTBx ≤ max
C

min
(‖x‖=1
Cx=0)

(1 + ε1)x
TAx = (1 + ε1)λ

A
i

Similarly, we have that λB
i ≥ (1− ε1)λ

A
i , so the result follows.

By computing the eigenvalues µ1 ≤ · · · ≤ µk of A, we have estimates of the eigenvalues λ1, . . . , λk

of B within a multiplicative factor of 1 ± 2ε1. We can improve our estimates to a better multi-
plicative factor 1 ± ε by gridding multiplicatively around each eigenvalue. This requires another

log1+ε

(
1+2ε1
1−2ε1

)
= O(1/ε) guesses per eigenvalue. So in total, we require

(
1
ε

)O(k)
guesses for obtain-

ing accurate estimates λ′
1, . . . , λ

′
k of the eigenvalues of B.

Once we know (approximately) the eigenvalues of B, we will try to guess also its eigenvectors
v1, . . . , vk. We will do this by performing a careful gridding around the eigenvectors of A which we
can assume, without loss of generality (by rotating), to be the standard basis vectors e1, e2, . . . , ek.
So for each eigenvector vz of B, we will try to approximate it by guessing its projections to the
eigenvectors of A.

We now bound the projections of eigenvectors of A to eigenvectors of B. Since we know that

eTi Bei ≤ (1 + ε1)e
T
i Aei, we get that

∑
z λz(vzei)

2 ≤ (1 + ε1)µi which implies that vz,i ≤
√

2µi

λz
.

Moreover, since λz ≥ max{(1−ε1)µz, 1} ≥ max{1
2µz, 1}, we know that the projection of vz to ei will

be smaller than 2
√

µi

max{µz ,1} . An additional bound for the projection of vz to ei can be obtained
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by considering the variance of the matrices A and B in the direction vz. Since we know that

vTz Bvz ≥ (1− ε1)v
T
z Avz, we get that

∑
i µi(vzei)

2 ≤ λz
1−ε1

≤ 2λz which implies that vz,i ≤
√

2λz
µi

.

We now guess vectors v′1, ..., v
′
k that approximate the eigenvectors of B by additively gridding

over the projections to each eigenvector of A. In particular, our candidate guesses for v′z · ei = v′z,i

will be ℓε′ min
{
2
√

µi

max{µz ,1} , 1
}

with ℓ ∈ {0, 1, . . . , 1/ε′}, for a small enough ε′ that only depends

on k and ε . This will give us an approximation v′z for the eigenvector vz, with the guarantee that

|v′z,i− vz,i| ≤ ε′ min
{
2
√

µi

max{µz ,1} , 1
}
. This requires 1

ε′ guesses for each projection, and thus
(
1
ε′
)k2

guesses for all k2 projections. The final covariance matrix we output is then B̂ =
∑

z λ
′
zv

′
z(v

′
z)

T .

We will now show that the covariance matrix B̂ satisfies the property that it is close in all
directions to B. To do this we will make use of the following lemma from [DKT15]. This roughly
states that two PSD matrices spectrally approximate each other in O(k2) particular directions,
then they spectrally approximate each other in every direction.

Lemma 7 (Lemma 25 from [DKT15]). Let Σ, Σ̂ ∈ Rk×k be two symmetric, positive semi-definite
matrices, and let (λ1, v1), . . . , (λk, vk) be the eigenvalue-eigenvector pairs of Σ. Suppose that

• For all i ∈ [k],
∣∣∣
(

vi√
λi

)T(
Σ̂− Σ

)(
vi√
λi

)∣∣∣ ≤ ε,

• For all i, j ∈ [k],
∣∣∣
(

vi√
λi

+
vj√
λj

)T(
Σ̂− Σ

)(
vi√
λi

+
vj√
λj

)∣∣∣ ≤ 4ε.

Then for all y ∈ Rk,
∣∣∣yT
(
Σ̂− Σ

)
y
∣∣∣ ≤ 3kεyTΣy.

We will only consider directions y = vz√
λz

for z ∈ [k] and y = vz√
λz

+
vz′√
λz′

for z, z′ ∈ [k].

We first consider direction y = vz√
λz
. We have that:

vTz√
λz

B̂
vz√
λz

=
∑

i

λ′
i

λz
(vTz v

′
i)
2 =

∑

i

λ′
i

λz
(vTz vi+vTz (v

′
i−vi))

2 =
λ′
z

λz
(1+vTz (v

′
z−vz))

2+
∑

i 6=z

λ′
i

λz
(vTz (v

′
i−vi))

2

The first term is in the range [(1− ε)(1 − kε′)2, (1 + ε)(1 + kε′)2], which for ε′ ≤ ε/k, becomes
(1±O(ε)). The rest of the terms can be bounded as follows:

27



λ′
i

λz
(vz(v

′
i − vi))

2 ≤ (1 + ε)
λi

λz
(
∑

j

vz,j(v
′
i,j − vi,j))

2

≤ (1 + ε)
λi

λz


∑

j

√
2
λz

µj
ε′2
√

µj

max{µi, 1}




2

≤ (1 + ε)
λi

λz


∑

j

2ε′
√
2λz

√
1

max{µi, 1}




2

≤ (1 + ε)


∑

j

2ε′
√

2λi

max{µi, 1}




2

≤ (1 + ε)

(
4kε′

√
µi

max{µi, 1}

)2

≤ (1 + ε)
(
8kε′

)2

≤ ε

k

for ε′ = O(
√

ε
k3 ). This means that vTz B̂vz ∈ (1 − ε, 1 + ε)λz . The proof is similar for directions

y = vz√
λz

+
vz′√
λz′

for z, z′ ∈ [k].

Overall, we can get an estimate B̂ of any matrix B ∈ S by making at most
(
k
ε

)O(k2)
guesses,

which implies an ε-cover of this size.

6 A Proper Cover for PMDs

We show how to turn the non-proper cover of Section 5 into a proper one as described by Theorem 3,
using Theorem 1. We note that a non-constructive proper cover follows immediately from Theorem
7, since for each element of an improper ε/2-cover that lies within ε/2 of a PMD, we can match
it with such a PMD. The resulting set of PMDs defines then a proper ε-cover. Our focus in this
section is to provide an efficient construction of a proper cover.

Our approach will be to enumerate the improper cover of Theorem 7 and convert each distribu-
tion to a nearby (n, k)-PMD. This cover consists of distributions which are the sum of a Gaussian
with a structure preserving rounding and a (poly(k/ε), k)-PMD. Since the (poly(k/ε), k)-PMD
component is already a collection of k-CRVs, this part of the cover is already proper, and it suffices
to convert the Gaussian component into a nearby (n− poly(k/ε), k)-PMD.

The main technical lemma we prove is the following, which states that if a discretized Gaussian
G is spectrally close to a GMD ρ, we can obtain a new GMD ρ′ which is spectrally close to ρ:

Lemma 8. Let ⌊N (µ,Σ)⌉ be a discretized Gaussian and suppose there exists a (n, k)-GMD ρ with
mean µρ and covariance Σρ such that for all vectors v it holds that |vT (µ − µρ)| ≤ ε1

√
vTΣv and

|vT (Σ− Σρ)v| ≤ ε2v
TΣv.

Then, it is possible to compute in time nO(k) a (n, k)-GMD ρ′ with mean µρ′ and covariance Σρ′

such that for all vectors v it holds that |vT (µ− µρ′)| ≤ ε1
√
vTΣv +3k2.5‖v‖2 and |vT (Σ−Σρ′)v| ≤

ε2v
TΣv + 3k3‖v‖22.
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We prove this lemma using the Shapley-Folkman lemma [Sta69], which states that the Minkowski
sum of a large number of sets is approximately convex:

Lemma 9 (Shapley-Folkman lemma). Let S1, . . . , Sn be a collection of sets in Rd, and let S =
{∑n

i=1 xi | x1 ∈ S1, ..., xn ∈ Sn} be their Minkowski sum. Then, letting conv(X) denote the convex
hull of X, every x ∈ conv(S) =

∑n
i=1 xi where xi ∈ conv(Si) for i = 1, . . . , n and |{i | xi 6∈ Si}| ≤ d.

With this lemma in hand, the proof of Lemma 8 proceeds as follows. Let M be the set of all
possible mean and covariances for a single CRV, and M⊕n be the Minkowski sum of n copies of M.
Given a discretized Gaussian with mean and covariance (µ,Σ) ∈ M⊕n, we would ideally like to find
{x1, . . . , xn} such that

∑n
i=1 xi = (µ,Σ). However, since this set is not convex, this optimization

problem is not obviously tractable. Instead, we convert (µ,Σ) to a spectrally close (µ̂, Σ̂) which lies
on the convex hull of M⊕n, which can be done using a linear program. At this point, we exploit
the “almost convex” characterization provided the Shapley-Folkman lemma, and we will iteratively
“peel off” plausible CRVs. More specifically, noting that the moment profile is at most k2 + k
dimensional and applying Lemma 9, we can use a linear program to find the parameters of a single
CRV such that subtracting its moments gives a moment profile which lies on the convex hull of
M⊕n−1. We repeat n−k2−k times until we are left with a point on the convex hull of M⊕k2+k, at
which point we may pick the last k2 + k CRVs arbitrarily. The proof is completed by arguing that
the resulting GMD satisfies the theorem conditions. For the full proof of Lemma 8, see Section 6.1.

We now prove Theorem 3. As mentioned before, for our starting point, we relate our orig-
inal PMD π to the sum of a discretized Gaussian with a structure preserving rounding and a
(poly(k/ε′), k)-PMD using 7, for some ε′ to be set later. This comes at a cost of ε′ in total variation
distance. The CRVs corresponding to the sparse PMD are already in the form desired for the
proper cover, and we ignore them for the remainder of the proof. We also know that the discretized
Gaussian’s mean and covariance matrix arose from the mean and covariance matrix of some PMD.
This covariance matrix has a block structure, where each block has a minimum eigenvalue of at
least k15

2ε′6 . At this point, we wish to show that each block of the current PMD π̃ is ε/k-close to
each block of the PMD after applying the method of Lemma 8, π′. This will be proven by relating
a block of π̃ and π′ to the corresponding discretized Gaussians using Theorem 1, and arguing that
the discretized Gaussians are close using Lemma 2.

We focus on one block of π̃. The guarantee of our cover, summarized in Lemma 5, tells us
that the corresponding block of π′ will have a matching pivot and constituent number of CRV’s
ni. Therefore, it suffices to consider the corresponding GMDs which exclude the pivot coordinate,
namely ρ̃ and ρ′. We know that the minimum eigenvalue of this block of ρ̃’s covariance matrix
is at least k15

2ε′6 . The guarantees of Lemma 5 give us an input to Lemma 8 with ε1 = ε
k and

ε2 =
ε

2k3/2
. Since the minimum variance of this block of ρ̃ is sufficiently large, the output of Lemma

8 is a relative spectral approximation to the mean and covariances, with multiplicative 2ε1 and 2ε2
factors, respectively. We note that this implies that the minimum eigenvalue of this block of ρ′’s
covariance matrix is at least k15

4ε′6 .
We convert this block of ρ̃ to the corresponding discretized Gaussian using our CLT, Theorem 1.

Given the aforementioned minimum eigenvalue condition, the cost incurred is at most

O

(
k7/2

(k15/ε′6)1/20

)
= O(k11/4ε′3/10).

We convert the same block of ρ′ to a discretized Gaussian in the same way, incurring the same
cost. Finally, we relate the two discretized Gaussians in total variation distance. As mentioned in
the previous paragraph, the means and covariances are spectrally close up to relative accuracy 2ε

k

29



and ε
k3/2

. We plug this guarantee into Lemma 2 and apply the data processing inequality (Lemma
1) to conclude that the two distributions are O(ε/k)-close. The proof is concluded by setting
ε′ = ε10/3/k25/2 and rescaling ε by a constant factor.

6.1 Proof of Lemma 8

We first argue that rounding all constituent probability vectors in the (n, k)-GMD ρ so that all
their coordinates are integer multiples of 1/n to obtain a (n, k)-GMD ρ̂ approximately preserves
the spectral closeness guarantees with the discretized Gaussian. More specifically, for all vectors v
it holds that:

|vT (µ− µρ̂)| ≤ ε1
√
vTΣv +

√
k‖v‖2 and |vT (Σ− Σρ̂)v| ≤ ε2v

TΣv + k‖v‖22.

We know that ‖µρ − µρ̂‖∞ ≤ 1 and thus ‖µρ − µρ̂‖2 ≤
√
k, so

|vT (µ− µρ̂)| ≤ |vT (µ − µρ)|+ |vT (µρ̂ − µρ)|
≤ ε1

√
vTΣv + ‖µρ − µρ̂‖2‖v‖2

= ε1
√
vTΣv +

√
k‖v‖2

Similarly we have that ‖Σρ − Σρ̂‖max ≤ 1 which implies that |vT (Σρ − Σρ̂)v| ≤ k‖v‖2 for all
vectors v. Thus,

|vT (Σ− Σρ̂)v| ≤ |vT (Σ − Σρ)v| + |vT (Σρ̂ − Σρ)v| ≤ ε2v
TΣv + k‖v‖22.

At this point, we have shown that there exists a (n, k)-GMD with mean and covariance close to
that of the discretized Gaussian such that all its constituent probability vectors have coordinates
that are integer multiples of 1/n. Now, for every probability vector ~p with probabilities that are
multiples of 1/n, consider its moment profile (µ~p,Σ~p), where µ~p = ~p and Σ~p are the mean and
covariance of the k-CRV with probabilities ~p. Let M be the set of all possible moment profiles
generated by such probability vectors ~p. Since there are at most nk−1 probability vectors ~p the set
M has size at most nk−1. Moreover, it is easy to see that for the rounded GMD ρ̂, it holds that
(µρ̂,Σρ̂) ∈ M⊕n where M⊕n = {x | ∃x1, ..., xn ∈ M, x =

∑
i xi} denotes the Minkowski addition

of M with itself n times. This is because the mean and covariance of the GMD is equal to the
sum of the means and covariances of its constituent CRVs, which are all in M since each CRV has
probabilities that are integer multiples of 1/n.

Naively searching over M⊕n for a GMD that satisfies the guarantees of ρ̂ is not easy since
it would require time that is exponential in n. To get a computationally efficient algorithm, we
search instead in the set conv (M⊕n) = conv (M)⊕n where, for a set A, conv(A) denotes its convex
closure, and the equality is a basic property of Minkowski sums. The reason this is easy is that it
is solvable by a linear program as follows:

• For m ∈ M and i ∈ {1, ..., n}, we assign the variables xi,m ≥ 0 that denote whether we want
to pick the moment profile m for the i-th CRV.

• For all i, we need that
∑

m xi,m = 1. This ensures that for all i,
∑

m xi,mm ∈ conv (M).

• We need that the aggregate moment profile (µ̂, Σ̂) =
∑

i,m xi,mm satisfies the closeness con-
straints with (µ,Σ). For all v we require that:

|vT (µ− µ̂)| ≤ ε1
√
vTΣv +

√
k‖v‖2 and |vT (Σ− Σ̂)v| ≤ ε2v

TΣv + k‖v‖22.
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These are all linear constraints so a solution (µ̂, Σ̂) =
∑

i,m xi,mm, can be computed by solving
the linear program using the Ellipsoid method. Note that the constraints of the third bullet are
infinitely many but can be verified efficiently using a separation oracle. To check the first set of
constraints, we can check whether the optimization problem

min
‖v‖≤1

ε1
√
vTΣv +

√
k‖v‖2 − vT (µ − µ̂)

has a negative solution. This is a convex optimization problem which can be solved in polynomial
time. To check the second set of constraints, we note that ε2v

TΣv + k‖v‖22 = vT (ε2Σ + kI)v. By
setting A , (ε2Σ+ kI) and u , A1/2v, we can rewrite the constraints as:

|uT
(
A−1/2

)T
(Σ− Σ̂)A−1/2u|
uTu

≤ 1

This is equivalent to checking whether the maximum eigenvalue of the matrix
(
A−1/2

)T
(Σ−Σ̂)A−1/2

is greater than 1.
At this point, we have efficiently computed a solution (µ̂, Σ̂) ∈ conv (M)⊕n that satisfies the

closeness guarantees and we need to convert it to a solution in the setM⊕n that is also appropriately
close to (µ,Σ) and obtain a GMD with the guarantees of the lemma. By the Shapley-Folkman

theorem, it holds that conv (M)⊕n = M⊕(n−k2−k) ⊕ conv (M)⊕(k2+k) since M ⊂ Rk2+k. We can
greedily construct such a solution by iteratively picking points mi ∈ M for i = 1, . . . , (n− k2 − k)

such that
(
(µ̂, Σ̂)−∑i

j=1mi

)
∈ conv (M)⊕(n−i). The Shapley-Folkman theorem for the space

conv (M)⊕(n−i), guarantees that for all i ≤ (n − k2 − k), a point mi with the required property

always exists. Since membership in conv (M)⊕(n−i) can be checked efficiently by writing a linear
program similar to the one above, we can efficiently run the above process to generate (n− k2 − k)
CRVs. For the remaining k2 + k CRVs, we arbitrarily choose points mn−k2−k+1, ...,mn ∈ M to
obtain a complete (n, k)-GMD ρ′. We argue next that this GMD satisfies the conditions required
by the lemma.

For any m,m′ ∈ conv (M), it holds that ‖m−m′‖∞ ≤ 1. Moreover, (µρ′ ,Σρ′) =
∑n

i=1mi and

(µ̂, Σ̂) =
∑(n−k2−k)

i=1 mi+
∑k2+k

i=1 m′
i. This implies that ‖µρ′−µ̂‖∞ ≤ k2+k and ‖Σρ′−Σ̂‖max ≤ k2+k.

We have that:

|vT (µ− µρ′)| ≤ |vT (µ− µ̂)|+ |vT (µρ′ − µ̂)|
≤ ε1

√
vTΣv +

√
k‖v‖2 + ‖v‖2‖µρ′ − µ̂‖2

≤ ε1
√
vTΣv +

√
k‖v‖2 + (k2 + k)

√
k‖v‖2

= ε1
√
vTΣv + 3k2.5‖v‖2

Similarly, |vT (Σ− Σρ′)v| ≤ |vT (Σ− Σ̂)v|+ |vT (Σ̂− Σρ′)v| ≤ ε2v
TΣv + (k3 + k2 + k1)‖v‖22.

7 A Lower Bound for Covers of PMDs

In this section, we discuss Theorem 4, the lower bound on the size of any ε-cover of (n, k) PMDs.
This theorem shows that it is not possible to get significant improvement on the cover size obtained
in Theorem 3. In particular, the dependence of the size of the cover on 1/ε is tight up to a difference
of 3 in the exponent of log(1/ε).
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It turns out that it is easy to prove a dependence of O(nk) on the size of any ε-cover and most

of the work is involved in showing a lower bound of T (k, ε) = 2log
k−1(1/ε) on the cover size. Thus,

in this overview we only focus on the machinery required to show the lower bound of T (k, ε) on
the ε-cover size. We remark that prior to our work, for k = 2 (i.e. PBDs), Diakonikolas, Kane, and

Stewart obtained a lower bound of 2log
2(1/ε) [DKS16b].

Showing the lower bound on the cover size is equivalent to showing the existence of T (k, ε)-many
(n0, k)-PMDs which are all ε-far from each other where n0 ≤ n. The usual difficulty in showing cover
size lower bounds, is that even if the parameters specifying two PMDs are significantly different,
it is not necessarily true that the resulting PMDs are far in total variation distance. In fact,
directly arguing that two PMDs are far apart in total variation distance seems difficult. Instead,
our strategy is to carefully pick a family of T (k, ε) PMDs and show that for any two distinct PMDs
in this set, there is at least one (k-dimensional) moment α ∈ Z+k of size O(log(1/ε)) such that
the αth moment of the two PMDs are ε-far from each other (by size of the moment α, we mean
‖α‖1.). Usually, gap in moments for two distributions need not translate to significant gap in total
variation distance. However, in our setting, we can choose n0 ≈ logk(1/ε). Since n0 is small, it is
easy to show that if two PMDs differ by ε in one of their moments of size O(log(1/ε)), then they
are ≈ ε far in total variation distance (Claim 3).

Note that the αth-moment of a PMD is a multisymmetric polynomial in the parameters of
the PMD (i.e. invariant under permuting its summands). Next consider the multidimensional
multisymmetric polynomial map where each coordinate in the range corresponds to a moment of
size O(log(1/ε)). Since there are roughly Θk(log

k(1/ε))moments of size O(log(1/ε)), the dimension
of the map is Θk(log

k(1/ε)). The problem of showing lower bounds on the cover size is now
equivalent to showing that the range of this map contains T (k, ε)-many points which are ε-far from
each other. In other words, we need a way to show a lower bound on the metric entropy of this
polynomial map. Such problems are usually treated with tools of algebraic geometry and we adopt
the same strategy. In particular, rather than directly working over the reals, we change the domain
to a finite field F of appropriate size and consider the corresponding polynomial map in F. Once
we are in F, we apply an extension of Bézout’s theorem due to Wooley [Woo96] (Theorem 10)
to show that this map has a large number of points in its range when the underlying domain is
F (Lemma 13). Because of the special structure of the polynomials involved, it is possible to show
that the presence of a large range in a finite field corresponds to an appropriate lower bound on the
metric entropy of the map. We remark that the application of Bézout’s theorem in our context is
not straightforward. In particular, to apply the theorem, one needs to reason about the Jacobian
of this polynomial map. Despite being a very natural family of maps, to the best of our knowledge,
properties of the corresponding Jacobian have not been previously investigated.

7.1 Details

We provide the proof of Theorem 4. The proof will use algebraic geometric tools to argue this fact.
In particular, the main theorem we will prove will be the following:

Theorem 9. There are (m,k)-PMDs Z1, . . . , Zℓ such that for all 1 ≤ i < j ≤ ℓ, dTV (Zi, Zj) ≥ ε

and ℓ = 2Ω̃(logk−1(1/ε))) where m = O(logk−1(1/ε)).

We will now prove Theorem 4 using Theorem 9.

Proof. Note that by assumption n > 2m. It is easy to observe that for any α = (α1, . . . , αk) ∈ Zk

such that
∑

αi = n/2, there are k CRVs X1, . . . ,Xn/2 such that X1+ . . .+Xn/2 is supported on α.

Now, consider any α, β ∈ Zk such that ‖α−β‖1 > m. Then, for any (m,k) PMD Zi, Zj , the supports
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of Zi + α and Zj + β are disjoint. It is now easy to see that we can choose L = ( n
2m )k−1 points

α(1), . . . , α(L) such that for 1 ≤ j ≤ L,
∑k

i=1 α
(j)
i = n/2 and ‖α(j) − α(ℓ)‖1 ≥ m whenever j 6= ℓ.

Now, let Zi1 and Zi2 be two (m,k) PMDs from Theorem 9. Then, both Zi1 + α(j) and Zi2 + α(ℓ)

are (n, k) PMDs and further, dTV (Zi1 + α(j), Zi2 + α(ℓ)) ≥ ε. This gives a set of L · 2Ω̃(logk−1(1/ε)))
(n, k)-PMDs which are ε-far from each other.

Thus, it remains to prove Theorem 9. The proof of this theorem shall involve a combination
of ideas using combinatorics of multisymmetric polynomials and tools from algebraic geometry. In
particular, instead of directly arguing about total variation distance of PMDs, we will argue about
the moments of PMDs. We first observe that for any (m,k) PMD Z, we can associate a matrix PZ ∈
Rm×(k−1) where the entries of the matrix are non-negative such that the entries of any row sum to
at most 1. The semantics of the matrix are that Z = X1+ . . .+Xn where each Xi is an independent
CRV with Pr[Xi = ej] = PZ [i, j] (if 1 ≤ j < k) and Pr[Xi = ek] = 1 −∑j<k PZ [i, j]. Clearly,
the distribution of Z is invariant under permuting the rows of PZ . Further, up to permutations of
columns, the matrix PZ associated with such a Z is unique.
If Z is a (m,k) PMD and α ∈ Z+k, then Mα(Z) = E[Zα] i.e. the αth moment of Z. Here Zα is an
abbreviation of

∏k
i=1 Z

αi
i where Zi the ith component of Z. Thus, Mα(Z) is the αth moment of Z.

The following will be a very useful observation.

Observation 2. Mα(Z) is a multisymmetric polynomial of degree ‖α‖ in the variables {PZ [i, j]}
where 1 ≤ i ≤ m and 1 ≤ j < k. By multisymmetric, we mean the polynomial is invariant under
permuting the rows of PZ .

While the moment Mα(Z) is very natural to consider, for the purposes of proving Theo-
rem 9, it will be useful to define two more families of multisymmetric polynomials (in the variables
{PZ [i, j]}1≤i≤m,1≤j<k). These polynomials will be the elementary multisymmetric polynomials and
the power sum multisymmetric polynomials. Also, from now, we will only restrict our attention
to α where the last entry is 0. This is because, for any β ∈ Z+k, Mβ(Z) can be expressed as a
polynomial combination of Mα(Z) where αk = 0.

Definition 13. Let α ∈ Z+k. Let β ∈ Z‖α‖ such that the entry i occurs exactly αi times in β.
While there are multiple choices for such a β, any canonical choice is good enough. Let 1 ≤ i1 <
. . . < i‖α‖ ≤ m. Then,

Eα(Z) =
∑

σ:{1,...,‖α‖}→[m]

‖α‖∏

j=1

PZ [σ(ij), βj ],

where the sum is taken over all surjections σ from {1, . . . , ‖α‖} → [m] where for i < j, if βi = βj ,
then σ(i) < σ(j).

The definition above might look a little involved, so to illustrate the concept, we will consider
a simple example. For example, if k = 3 and α = (1, 2, 0), then

Eα(Z) =
∑

j<k,i 6=j,k

PZ [i, 1]PZ [j, 2]PZ [k, 2].

Likewise, if k = 4 and α = (1, 1, 1, 0), then

Eα(Z) =
∑

i,j,k all are distinct

PZ [i, 1]PZ [j, 2]PZ [k, 3].

Another family of polynomials which will be very useful in our reasoning will be the family of power
sum multisymmetric polynomials.
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Definition 14. Let α ∈ Z+k. Then,

Pα(Z) =
∑

1≤i≤m

m∏

j=1

PZ [i, j]
αj .

We remark that the polynomials we have defined so far i.e. Mα(·), Eα(·) and Pα(·) are well-
defined formal polynomials and make sense even if the matrix PZ [i, j] has entries from field F

whose characteristic is not zero. This shall be useful for us going forward. For the moment, we will
consider the connection between the family Eα and Mα. We will require the following definition.
For two vectors, α, β ∈ Z+k, we say α � β if αi ≤ βi for 1 ≤ i ≤ k. The first is the following
observation.

Observation 3. For any (m,k)-PMD Z and α ∈ Z+k (with αk = 0), Mα(Z) can be expressed as
a linear combination of Eβ(Z) where β � α.

Proof. As we have already observed, Mα(Z) is a multisymmetric polynomial in entries of the matrix
PZ at degree is at most ‖α‖. To prove that is a linear combination of Eβ for β � α, it suffices to
make the following observation: Note that Mα(Z) is

Mα(Z) = E



k−1∏

j=1

( m∑

i=1

Xi,j

)αj


 .

Observe that any monomial where Xi,j and Xi,ℓ appear together with j 6= ℓ vanishes under the
expectation. Likewise, since Xi,j is supported on {0, 1}, hence Xℓ

i,j = Xi,j for any ℓ ≥ 1. These two
observations coupled with each other imply that Mα is a linear combination of Eβ(·) for β � α.

The next lemma implies bounds on the coefficients of Eβ in expressing Mα. Let us now assume
that Mα =

∑
β�α γβ ·Eβ. It is easy to see the following claim.

Claim 1. For α with αk = 0, we have γα =
∏k−1

j=1 αj!.

The next claim is also fairly easy to prove.

Claim 2.
∑

β�α |γβ| = 2O(k) ·∏k−1
j=1 αj!.

Proof. Let c1, . . . , ck−1 ∈ Z+k be defined as the following:

cj = α · Ij.

In other words, cj is obtained by a pointwise product of α and the indicator vector of the singleton
set {j}. Now, assume that for 1 ≤ j ≤ k − 1,

Mcj(Z) =
∑

βj�cj

γβj
·Eβj

.

Then, it is not difficult to see that

Mα(Z) =
∑

β1�c1

. . .
∑

βk−1�ck−1

Eβ ·
k−1∏

j=1

γβj
,
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where β = β1 + . . . + βk−1. Thus, to prove our claim, it suffices to show that for any particular
1 ≤ j ≤ k − 1, ∑

βj�cj

|γβj
| = O(1) · αj !.

Note that cj is just αj at the jth position and zero everywhere else. We introduce the following
notation: For any integer k, we let P(k) denote the set of its partitions i.e. a tuple of strictly
positive integers summing to k ordered in decreasing sequence. For example, for k = 5, we have 6
distinct partitions (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1). For any partition P ∈ P(k), we use
s(P ) to denote the number of summands in P . For example, for the partition P = (3, 2), s(P ) = 2.
Further, if P = (x1, . . . , xk) is a partition of n, then

(
n

P

)
=

(
n

x1 . . . xk

)
.

With these notations in place, it is easy to see that

γβj
=

∑

P∈P(αj):s(P )=βj

(
αj

P

)

Now, it is easy to see that for any integer x > 1, (1.4)x <= x!. If 1(P ) denotes the number of 1 in
the partition P . With this, we have

|γβj
| ≤

∑

P∈P(αj):s(P )=βj

αj !

(1.4)αj
· 1.41(P ).

Thus, implies that ∑

βj�cj

|γβj
| ≤

∑

βj�cj

∑

P∈P(αj):s(P )=βj

αj !

(1.4)αj
· 1.41(P ).

Now, note that the total number of partitions of αj with t ones in it is upper bounded by |P(α− t)|.
However, it is a well-known fact in number theory, that |P(α − t)| ≤ 2O(

√
α−t). Thus,

∑

βj�cj

|γβj
| ≤

αj∑

x=0

αj !

(1.4)αj
· 1.4x · 2O(

√
αj−x) ≤ αj ! ·

∫

x≥0
1.4O(

√
x)−xdx = O(αj !).

This finishes the proof.

Thus, using the last two claims, we infer that there is a linear map which given any α ∈ Z+k

(with αk = 0), maps the set {Eβ(Z)}β�α to the set {Mβ(Z)}β�α. The next lemma bounds the
condition number of this map.

Lemma 10. Let Z and Z ′ be two (m,k)-PMDs such that |Eβ(Z)−Eβ(Z
′)| ≥ δ. Then, there exists

β0 � β such that
|Mβ0(Z)−Mβ0(Z

′)| ≥ δ · c−d.

where c = 2O(k) is the constant appearing in Claim 2.
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Proof. Let c = 2O(k) be the constant appearing in Claim 2. Let |β| = d and i be the smallest
integer such that there exists a β0 � β with |β0| = i and

|Eβ0(Z)−Eβ0(Z
′)| ≥ δ · (2c)i−d.

Note that by assumption, there exists such a β0. Next,

|Mβ0(Z)−Mβ0(Z
′)| =

∣∣ ∑

κ�β0

γκ ·
(
Eκ(Z)−Eκ(Z

′)
)∣∣

≥ γβ0 ·
∣∣(Eβ0(Z)−Eβ0(Z

′)
)∣∣−

∣∣ ∑

κ≺β0

γκ ·
(
Eκ(Z)−Eκ(Z

′)
)∣∣

Applying Claim 1 and Claim 2, we get that

|Mβ0(Z)−Mβ0(Z
′)| ≥

k−1∏

i=1

β0,i!

(∣∣(Eβ0(Z)−Eβ0(Z
′)
)∣∣
)
− c ·

k−1∏

i=1

β0,i!max
κ�β

∣∣(Eκ(Z)−Eκ(Z
′)
)∣∣

Again applying the hypothesis on β0, we have

|Mβ0(Z)−Mβ0(Z
′)| ≥

k−1∏

i=1

β0,i! · δ · (2c)‖β0‖−d − c ·
k−1∏

i=1

β0,i! · δ · (2c)‖β0‖−d−1

≥
k−1∏

i=1

β0,i! · δ · c‖β0‖−d ≥ δ · c−d.

The strategy for the rest of the proof is as follows: Instead of showing Theorem 9, we will show
the following lemma.

Lemma 11. There are (m,k)-PMDs Z1, . . . , Zℓ such that ℓ = 2Ω̃(logk−1(1/ε))), m = O(logk−1(1/ε))
and for every 1 ≤ i < j ≤ ℓ, there exists some α ∈ Z+k such that αk = 0, ‖α‖ = Õ(log(1/ε)) and
|Mα(Zi)−Mα(Zj)| ≥ ε.

To see why it suffices to prove Lemma 11, we have the following claim.

Claim 3. Let Z1, Z2 be two (m,k)-PMDs and α ∈ Zk such that
∣∣Mα(Z1) − Mα(Z2)

∣∣ ≥ δ. Then,

dTV (Z1, Z2) ≥ δ ·m−‖α‖1 .

Proof. Assume towards a contradiction that dTV (Z1, Z2) < δ ·m−‖α‖1 . By definition, this means
that there is a coupling (Z ′

1, Z
′
2) such that the marginal Z ′

1 is distributed as Z1, the marginal Z ′
2 is

distributed as Z2 and Pr[Z ′
1 6= Z ′

2] < δ ·m−‖α‖1 . As the support of both Z1 and Z2 is confined in
the box [0,m]k, it easily follows that

∣∣Mα(Z1)−Mα(Z2)
∣∣ < Pr[Z ′

1 6= Z ′
2] ·m‖α‖1 < δ. This results

in a contradiction, thus completing the proof.

In light of Lemma 10, it instead suffices to prove the following lemma.

Lemma 12. There are (m,k)-PMDs Z1, . . . , Zℓ such that ℓ = 2Ω̃(logk−1(1/ε))), m = O(logk−1(1/ε))
and for every 1 ≤ i < j ≤ ℓ, there exists some α ∈ Z+k such that αk = 0, ‖α‖ = Õ(log(1/ε)) and
|Eα(Zi)−Eα(Zj)| ≥ ε.
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The rest of the proof is towards proving Lemma 12. As we said before, the proof is going
to involve use of algebraic geometry tools. In fact, to prove Lemma 12, instead of considering the
matrices PZ to be real-valued matrices, we will instead first show an equivalent version of Lemma 12
over a finite field F of appropriate size. This change to finite fields will make it easier to apply tools
of algebraic geometry. In particular, we will prove the following lemma.

Lemma 13. For any integer d ∈ N and any finite field F of size 2 ·d ·m(k−1), there are ℓ matrices

A1, . . . , Aℓ in Fm×(k−1) where ℓ = 2Ω̃(logk−1(1/ε))), m = O(logk−1(1/ε)) and for 1 ≤ i < j ≤ ℓ, there
exists α ∈ Z+k where ‖α‖ ≤ d, αk = 0 and

Eα(Ai) 6= Eα(Aj).

Before, we prove Lemma 13, let us see why it implies Lemma 12. To get PMD matrices from
the matrices A1, . . . , Aℓ, we use the following map.

Ai 7→ PZi where PZi [j, j
′] =

{
Ai[j,j

′]
2k|F| if j′ < k

1−∑j′′<k PZi [j, j
′′] if j = k

It is easy to see that this operation defines legitimate (m,k) PMD matrices. Further, note that Eα

is a homogenous polynomial of degree ‖α‖. Thus, it is easy to see that if Eα(Ai) 6= Eα(Aj), then

∣∣Eα(Zi)−Eα(Zj)
∣∣ ≥ 1

|F|‖α‖ .

By choosing |F| to be a field of size O(k · log(1/ε)), we immediately see that it implies the bounds
in Lemms 12. Thus, all that remains to be proven here is Lemma 13. To prove this, let us set
d = Õ(log(1/ε)) and let S = {α ∈ Z+k : αk = 0 and ‖α‖ ≤ d}. We now define the map
ES : Fm×(k−1) → FS which is a multidimensional map indexed by S where the coordinate for
α ∈ Z+k is Eα(·). Note that Lemma 13 amounts to showing a lower bound on the entropy of this
map.
We will need the notion of Jacobian of a map which is defined next.

Definition 15. Let F be any field and let M : Fn → Fm. Then, the Jacobian of M , denoted by JM
is the m× n matrix in F (x1, . . . , xn) where the (i, j)th entry is given by ∂Mi(x1, . . . , xn)/∂j where
Mi denotes the ith coordinate of the map M .

For us, the utility of Jacobian will come from its role in the following theorem.

Theorem 10. [Woo96] Let F be a prime field of size p. Let k and d be integers. Let M : Fs → Fs

be such that any coordinate is a polynomial map of degree at most d. For a ∈ Fs, let

Na =
∣∣{c ∈ F

s : M(c) = a and JM (c) 6= 0
}∣∣

Then, for every a ∈ Fs, Na ≤ ds.

As a consequence, we have the following corollary.

Corollary 2. Let F be a prime field of size p. Let s and d be integers. Let M : Fs′ → Fs be such
that any coordinate is a polynomial map of degree at most d. Let us assume that rank(JM ) = s. If
|F| > 2 · d · s, then, |Range(M)| ≥ |F|s/2ds.
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Proof. Since rank(JM ) = s, it means that there is a submatrix of size s × s (call it J ′
M ) such that

detJM ′ 6= 0 (here the determinant is evaluated over the field of rational functions over F). Let the
s columns correspond to the set of variables L. Since the determinant is a low degree polynomial
(of degree at most d · s in each variable), hence there is choice of the variables outside L to some
values in F such that detJM ′ 6= 0.
For this setting of variables, let M ′ : FL → F be the map restricted to the variables in L. Since
detJM ′ 6= 0, hence JM ′ is a non-zero polynomial of degree at most d · s. Since |F| > 2 · d · s, hence
by Schwartz-Zippel lemma, the set C = {c : detJM (c) 6= 0} has size at least |F|s/2. Applying
Theorem 10, we get the stated claim.

To show a lower bound on the entropy of MS , we will apply Corollary 2. To apply this, we need
to prove that det JMS 6= 0. It is not clear how to show this, so we introduce an intermediate map.

Definition 16. For α ∈ Zk (with αk = 0), we define the map Pα : Fm·(k−1) → F where

P(A) 7→
n∑

i=1

k−1∏

j=1

A[i, j]αj .

The family {Pα} is usually referred to as power-sum multisymmetric polynomials.

The idea here will be that we will relate the family Pα andEα and then argue about the Jacobian
of a map defined in terms of Pα. The following relation between Eα and Pα was established in
Dalbec [Dal99].

Proposition 10.

‖α‖ · Eα +
∑

α=β+γ,
β,γ 6=0

(−1)‖β‖
(‖β‖

β

)
Pβ ·Eγ + (−1)‖α‖

(‖α‖
α

)
Pα = 0.

Using induction, the following lemma is immediate.

Lemma 14. For any α, if either the characteristic of F is 0 is more than ‖α‖, there exist Qα such
that

Pα = Qα

({
Eβ

}

β�α

)

Rather than considering the map Eα, we will consider a restricted version of it. In particular,
choose some matrix A ∈ Fm·(k−2). The exact choice will be specified later. However, given x ∈ Fm,
we can consider a matrix Ax ∈ Fm·(k−1) which is obtained by concatenating x with A where x is
the last row of Ax whereas the first (k − 1) rows are formed by A. Thus, fixing this choice of A,
for every α ∈ Z+k with αk = 0, we can define the map

E′
α : x 7→ Eα(Ax).

Our aim will be to argue that the map E′S : Fm → FS (defined analogously to Eα) has full rank
and thus Corollary 2 is applicable here. Note that, we can also define the map P′

α : Fm → F and
P′S : Fm → FS analogously. As a consequence of Lemma 14, we have that for P′

α(z1, . . . , zm) and
for 1 ≤ j ≤ m,

∂P′
α

∂zj
=
∑

γ�α

∂Qα

({
E′

β

}

β�α

)

∂E′
γ

·
∂E′

γ

∂zj
.
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Consider the field K = F(z1, . . . , zm) (i.e. the field of rational functions over F in the variables
z1, . . . , zm). If JP′S and JE′S are the Jacobians of the maps P′S and E′S respectively, then this
immediately implies that there exists a matrix B ∈ KS×m such that

JP′S = B · JE′S .

Immediately, we have that rank(JP′S ) ≤ rank(JE′S ). Thus, to show a lower bound on rank(JE′S ),
it suffices to show a lower bound on rank(JP′S ). We next show the following claim.

Claim 4. Over K, rank(JP′S ) ≥ |S|/kk provided |F| > d/k.

Proof. Consider the row in JP′S corresponding to α ∈ Z+k where αk = 0. Let us denote it by JP′
α .

It is given by

JP′
α = αk ·

[
z
αk−1

1 ·
k−2∏

j=1

A[1, j]αj . . . . . . z
αk−1
m ·

k−2∏

j=1

A[m, j]αj

]

Now, consider them points in Fk−1 given by Az where z = (z1, . . . , zm). Call these points y1, . . . , ym.
Then, up to the scaling factor αk, JP′

α , is simply the evaluation of the monomial yα′
where

α′ = α − ek at the points y1, . . . , ym. Thus, if we restrict our attention to those α such that
αk 6= 0, then these rows constitute the multivariate interpolation matrix for the monomials given
by such α’s at the points y1, . . . , ym. We would like to prove the non-singularity of this multivariate
interpolation matrix. Let us look at the subset of S such that 1 ≤ αk−1 ≤ d/k and 0 ≤ αk < d/k.
While this is a subset of S, note that the size of this subset is at least |S|/kk. Further, now, let us
assume our points y1, . . . , ym are obtained as follows: Choose some subset L of F of size at least
d/k and consider the (d/k)k obtained by taking a direct product of these points. The interpolation
matrix is then a k-fold tensor product of the univariate interpolation matrix at L (of degree d/k).
If all the points in L are distinct and non-zero, then the univariate interpolation matrix is the
Vandermonde matrix which has a non-zero determinant. This will imply that its k-fold tensor
product has a non-zero determinant concluding the proof.

This implies that rank(JE′S ) ≥ dk/kk. This means that we can choose a square submatrix of
size (d/k)k × (d/k)k of JE′S of full rank. This means there is a subset of S of size dk/kk (call it S ′)
such that

rank(JE′
S′ ) = |S ′|.

Now, applying Corollary 2 to the map E′S′ , we see that the range of the map has size 2Ω̃(logk−1(1/ε)).
This immediately proves Lemma 13.

8 A Fourier-Based Learning Algorithm for PMDs

In this section, we discuss Theorem 5, our learning result for PMDs. Our technique crucially uses
Fourier analysis. We note that the recent work of Diakonikolas, Kane, and Stewart [DKS16b] also
uses Fourier analysis to learn k-SIIRVs, i.e. sums of independent integer valued random variables
taking values in {0, 1, . . . , k − 1}. We note that our use of Fourier analysis is somewhat different
from theirs. In particular, [DKS16b] use the Fourier transform over some discrete group Zm for an
appropriately chosen m. In contrast, we do the usual Fourier analysis over Zk. It turns out doing
Fourier analysis over Zk (rather than a finite group) avoids many problems and may be viewed as
the natural domain for Fourier analysis for such problems.

We believe the application of Fourier analysis to learn such structured distributions is interesting
in its own right and might have application in the future towards obtaining learning algorithms for
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other interesting classes of distributions. In particular, the recent work on the population recovery
problem [WY12, MS13, LZ15] may also be viewed as an example of use of Fourier analysis towards
learning of structured distributions.

We now give a high level description of our learning algorithm. The (n, k)-PMD Z, that we are
aiming to learn is supported on Zk and hence the Fourier transform Ẑ is defined for every ξ ∈ [−1, 1]k

as Ẑ(ξ) = E[ei·π·〈ξ,Z〉]. While our actual algorithm does not perform Fourier inversion explicitly, it
resembles Fourier inversion fairly closely. For the moment, assume that we are performing Fourier
inversion. It immediately becomes clear that a vanilla Fourier inversion will not work – this is
because the Fourier transform is supported on [−1, 1]k which is an uncountable set and thus we
cannot evaluate Ẑ(·) at all points of the support. Rather what we show is that the Fourier transform
of a PMD decays exponentially around any point of the form {−1, 0, 1}k . In particular, if Σ is the
covariance matrix of the PMD, then we show that for ξ ∈ [−1/2, 1/2]k ,

|Ẑ(ξ)| = e−Θ(1)ξTΣξ.

Refer to Corollary 3 for the precise bounds. Similar exponential decay of Fourier transform is also
true around the other points of the form {−1, 0, 1}k . Let us use V =

∏k
i=1(1 + σi) where σ2

i are
the eigenvalues of Σ. It is not difficult to show that all but an ε-fraction of the mass of Z falls
on a set of size V · logk(1/ε) (Lemma 18). On the other hand, using the exponential decay of the
Fourier transform, we have the following crucial claim: We identify a region S ⊆ [−1, 1]k of volume
logk(1/ε)/V such that ∫

ξ 6∈S
|Ẑ(ξ)|2dξ ≤ Õk

( ε

V

)
. (9)

Refer to Claim 7 for the precise bounds. Also, in this informal description, we use Õ to hide the
dependence on k as well as the polylogarithmic factors of 1/ε. This implies that if H is another
function such that |Ĥ(ξ)− Ẑ(ξ)| ≤ ε inside S and 0 outside S, then

∫

ξ∈[−1,1]k
|Ĥ(ξ)− Ẑ(ξ)|2 ≤ Õk

( ε

V

)
. (10)

By using Plancherel’s identity and Cauchy-Schwarz, it immediately follows that
∑

z∈Zk |H(z) −
Z(z)| ≤ Õ(ε).In other words, if we perform Fourier inversion by estimating Ẑ pointwise to error ε
within S and setting it to be 0 outside S, then the ℓ1 distance between our hypothesis and Z is
Õ(ε). We remark that the factor 1/V that we get in (9) and (10) is crucial for our algorithm to
succeed. The only detail we have not specified is how to approximate Ẑ to error ε inside S. Note
that S still has infinitely many points. However, what we show is that there is a carefully chosen
grid Sgrid of size Õk((1/ε)

k) such that estimating Ẑ(ξ) on Sgrid to error ε suffices to estimate Ẑ(ξ)

on S (to error 2ε). This is done by assigning the estimate of Ẑ of the nearest grid point. This uses
the choice of the grid points in S along with the Lipschitz property of the Fourier transform. Note
that since we are evaluating the Fourier transform at (1/ε)k points to error ε, we need Õk(1/ε

2)
samples.

One caveat that remains to be discussed is that we have not commented on the time complexity
of the Fourier inversion algorithm. In the actual algorithm, we do not perform Fourier inversion
out of concerns of time complexity and the fact that the resulting measure obtained from Fourier
inversion while computable need not be samplable. Instead, we use the structural characterization
of PMDs from [DKT15] to decompose Z ≈ G + S where G is a discretized Gaussian and S is
a (poly(k/ε), k) PMD (Theorem 6). Using samples from Z, we can spectrally approximate its
covariance matrix, which then gives us a good handle on the covariance matrix of G, as S has small
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size. In particular, we can construct a (1/ε)O(k)-size spectral cover for the covariance matrix of G
using the covariance matrix of Z. So we can assume that G is essentially known, and the challenge
is to uncover S, using samples from Z. Of course, Z is not actually equal to G + S, but if our
overall algorithm uses ℓ = Õk(1/ε

2) samples, and we have approximate equality of Z and G+S to
within variation distance O(1/ℓ2), say, then we can pretend that Z is actually equal to G + S for
the purposes of our analysis (Claim 10). So knowing G, and getting samples from G+ S we need
to uncover S. We follow a linear programming approach to find the probability density of S. We
enforce constraints on this density so that the Fourier transform of G+ S approximately matches
the empirical Fourier transform of Z. Our choice of the error and points at which we evaluate Ẑ
and enforce this constraint is informed by the discussion above. What is crucial here is that the
Fourier transform of S is a linear function of its probability density and thus we are left to solve a
system of linear constraints.

8.1 Fourier Properties of PMDs

The main idea behind learning PMDs is to look at the Fourier spectrum of PMDs. Specifically,
we will prove two structural results about PMDs. One is that the Fourier spectrum of PMDs
(roughly) has an exponential decay around the origin. The second result we will prove is the Fourier
spectrum is a Lipschitz function and thus to estimate the Fourier spectrum in the entire domain, it
suffices to compute it at a few points. Combining these two results along with standard statements
on Fourier inversion show that if we construct a hypothesis distribution which approximates the
Fourier spectrum of the target PMD at the chosen points and also exhbits a similar exponential
decay in the Fourier spectrum, then the hypothesis distribution is close to the target PMD. While
the condition on Fourier decay is not algorithmically easy to impose, we show that using some ideas
from [DKT15], the problem of imposing these constraints reduces to linear programming. We will
first quickly review the notion of Fourier spectrum of integer valued distributions.

Definition 17. For a random variable Z supported in Zk and ξ ∈ [−1, 1]k, we define

Ẑ(ξ) = Ez∼Z [e
i·π·ξ·z].

We note that the reason to restrict ξ ∈ [−1, 1]k is because the Fourier spectrum of distributions
supported on Zk is periodic with the fundamental period being the box [−1, 1]k.

Let us now recall the setting: P = Z1 + . . . + Zn where Zi are independent random variables
supported on {e1, . . . , ek}. Also for 1 ≤ i ≤ n and 1 ≤ j ≤ k, let pij = Pr[Xi = j]. To specify the
next lemma, for any ξ ∈ [−1, 1]k, we will need to define an associated vector ζ ∈ [−1, 1]k. For any
ξ ∈ [−1, 1], define the associated ζ as follows:

ζ =





ξ if ξ ∈ [−1/2, 1/2]

1− ξ if ξ ∈ [1/2, 1]

−1− ξ if ξ ∈ [−1,−1/2]

For ξ ∈ [−1, 1]k, we obtain ζ ∈ [−1/2, 1/2]k , by doing the above operation coordinatewise. Let
Bℓp(z, r) denote the ℓp ball of radius r around z. To put it succinctly, for ξ ∈ Bℓ∞(z, 1/2) where
z ∈ {−1, 0, 1}k , we obtain ζ = (ξ − z) ◦ (−1)z . Here (−1)z denotes the vector in {−1, 0, 1}k where
the ith coordinate is (−1)zi and ◦ denotes the Hadamard (the coordinate-wise) product of two
vectors. For every ξ ∈ [−1, 1], we call it Type 1 if ξ ∈ [−1/2, 1/2], Type 2 if ξ ∈ [1/2, 1] and Type 3
otherwise.
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Claim 5. Let X be a CRV with covariance matrix Σ. Then, |X̂(ξ)|2 ≤ 1− 1
5 · ζT · Σ · ζ.

Proof.

X̂(ξ) =

k∑

j=1

pj · ei·π·ξj =
k∑

j=1

pj · cos(π · ξj) + i · pj · sin(π · ξj).

This implies

|X̂(ξ)|2 =
k∑

j=1

p2j + 2 ·
∑

1≤i<j≤k

pi · pj · cos(π(ξi − ξj)).

=

k∑

j=1

p2j + 2 ·
∑

1≤i<j≤k

pi · pj ·
(
1− 2 sin2

(
π(ξi − ξj)

2

))

= 1− 4
∑

1≤i≤j≤k

4pi · pj · sin2
(
π(ξi − ξj)

2

)
.

We will first show that for every i, j,

sin2
(
π(ξi − ξj)

2

)
≥ 1

5
· (ζi − ζj)

2. (11)

To prove this, we do a simple case analysis, and use the inequality sin2(πx/2) ≥ x2/5 for |x| ≤ 3/2:

• If both ξi and ξj are of the same type, then note that |ξi − ξj| = |ζi − ζj| ≤ 1 which gives the
required inequality.

• If ξi and ξj are type 2 and 3, then note that |ξi − ξj| = |2− (ζi − ζj)|. This implies that

sin2
(
π(ξi − ξj)

2

)
= sin2

(
π(ζi − ζj)

2

)
.

Noting that |ζi − ζj| ≤ 1 gives the required inequality.

• If ξi is of type 1 and ξj is of type 2, then note that the maximum value that |ξi− ξj| can take
is 3/2. On the other hand, notice that |ξi− ξj| ≥ |ζi− ζj|. These two facts immediately imply
that

sin2
(
π(ξi − ξj)

2

)
≥ 1

5
· (ζi − ζj)

2.

The exact same situation holds if ξi is of type 1 and ξj is of type 3.

Having shown (11), see that this implies that

|X̂(ξ)|2 ≤ 1− 1

5

∑

1≤i≤j≤k

pipj(ζi − ζj)
2.

However, ∑

1≤i≤j≤k

pipj(ζi − ζj)
2 = ζT · Σ · ζ.

This finishes the proof.
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As a corollary, we have the following.

Corollary 3. For any (n, k)-PMD P with covariance matrix Σ, we have that for any ξ ∈ [−1,−1]k:

|P̂ (ξ)|2 ≤ exp

(
−1

5
ζT · Σ · ζ

)
.

Proof. This follows simply by noticing that for a PMD P = X1 + . . . +Xn,

P̂ (ξ) =

n∏

j=1

X̂j(ξ).

Using Claim 5, we have

|P̂ (ξ)|2 ≤
n∏

j=1

(
1− ζT · Σi · ζ

)
,

where Σi is the covariance matrix of Xi. Using the inequality, 1 − x2 ≤ e−x2/2 (for |x| ≤ 1), we
have

|P̂ (ξ)|2 ≤
n∏

j=1

e−
1
5
·ζT ·Σ·ζ .

Lemma 15. Let X be a random variable supported on Rk with mean µ and covariance matrix Σ.
Then the Fourier transform X̂ is Lipschitz in the following sense:

|X̂(ξ)− X̂(ξ′)| ≤ π · (ξ − ξ′) · (Σ + µT · µ) · (ξ − ξ′).

Proof.

∣∣E[ei·π·ξ·X ]−E[ei·π·ξ
′·X ]
∣∣ =

∣∣E[ei·π·ξ·X ·
(
ei·π·(ξ−ξ′)·X − 1

)
]
∣∣ ≤ E[

∣∣(ei·π·(ξ−ξ′)·X − 1
)∣∣]

It is easy to observe that for any θ ∈ R, |ei·θ − 1| ≤ θ2. Applying this to the above inequality, we
have

∣∣E[ei·π·ξ·X ]−E[ei·π·ξ
′·X ]
∣∣ ≤ E[|π · (ξ − ξ′) ·X|2] = π · (ξ − ξ′) · (Σ + µT · µ) · (ξ − ξ′).

We also have the following variant of the above lemma which will be useful for us.

Lemma 16. Let X and Y be two distributions in Rk with the same mean µ and covariance Σ. If
for a point ξ ∈ Rk, |X̂(ξ)− Ŷ (ξ)| ≤ ε, then

∣∣∣X̂(ξ + ζ)− Ŷ (ξ + ζ)
∣∣∣ ≤ ε+ 2ζT · Σ · ζ.

Proof. To prove this, note that
∣∣∣X̂(ξ + ζ)− Ŷ (ξ + ζ)

∣∣∣ =
∣∣∣X̂ ′(ξ + ζ)− Ŷ ′(ξ + ζ)

∣∣∣

where X ′ and Y ′ are the centered random variables obtained by centering X and Y . Likewise,
∣∣∣X̂(ξ)− Ŷ (ξ)

∣∣∣ =
∣∣∣X̂ ′(ξ)− Ŷ ′(ξ)

∣∣∣
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However, by Lemma 15, we have

∣∣∣X̂ ′(ξ)− X̂ ′(ξ + ζ)
∣∣∣ ≤ ζT · Σ · ζ.

Applying the same for the Ŷ ′ and applying triangle inequality, we get the claim.

We now state the Plancherel identity in this setting. In particular, we have the following easy
claim (which can be found in any standard text on Fourier analysis).

Claim 6. Let F : Zk → R. Then,

∫

ξ1∈[−1,1]
. . .

∫

ξk∈[−1,1]
|F̂ (ξ)|2dξ1dξ2 . . . dξk =

∑

z∈Zk

|F (z)|2.

In our setting, F = G − H where G and H are probability measures supported on Zk. The
following easy consequence of Claim 6 will be useful for us.

Corollary 4. Let F,H : Zk → [0, 1] be a probability distributions such that for some S ⊆ Zk,
Pr[F 6∈ S],Pr[H 6∈ S] ≤ ε. Then

dTV(F,H) ≤ ε+
√

|S| ·
√(∫

ξ1∈[−1,1]
. . .

∫

ξk∈[−1,1]
|F̂ −H(ξ)|2dξ1dξ2 . . . dξk

)

Proof. By Claim 6,

∑

z∈S
|F (z)−H(z)|2 ≤

∫

ξ1∈[−1,1]
. . .

∫

ξk∈[−1,1]
|F̂ −H(ξ)|2dξ1dξ2 . . . dξk =

∑

z∈Zk

|F (z) −H(z)|2.

Applying Cauchy-Schwarz inequality,

∑

z∈S
|F (z)−H(z)| ≤

√
|S| ·

√(∫

ξ1∈[−1,1]
. . .

∫

ξk∈[−1,1]
|F̂ −H(ξ)|2dξ1dξ2 . . . dξk

)

The above corollary demonstrates that to learn the PMD to error ε, it suffices to produce
another distribution H whose Fourier spectrum is very close to the Fourier spectrum of F (the
“very small” is quantified by the effective support of F ).

Lemma 17 (Lemma 8 from [DKT15]). Given sample access to a (n, k)-PMD X with mean µ and
covariance matrix Σ, there exists an algorithm which can produce estimates µ̂ and Σ̂ such that with
probability at least 9/10 for every vector y:

|yT (µ̂ − µ)| ≤ ε
√

yTΣy and |yT (Σ̂− Σ)y| ≤ εyTΣy

√
1 +

yT y

yTΣy

The sample and time complexity are O(k4/ε2).

The following is guaranteed by the multidimensional Chernoff bound.
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Lemma 18. Let X be a (n, k)-PMD with mean µ and covariance matrix Σ. Let Lr = {z :
(z − µ) · (z − µ)t � r · Σ}. For r = O(log(1/ε) + log k),

Pr[X 6∈ Lr] ≤ ε.

This implies the following corollary.

Lemma 19. Let µ ∈ Rk and Σ be a PSD matrix with eigenvalues σ2
1 ≥ . . . ≥ σ2

k ≥ 0. Let
Lr = {z : (z − µ) · (z − µ)t � r · Σ}. The total number of points of Zk which lie in Lr is bounded

by
∏k

i=1

(
2σi

√
kr + 1

)
.

Proof. Let the eigenvectors of Σ be v1, . . . , vk with the corresponding eigenvalues σ2
1 , . . . , σ

2
k. Con-

sider any two distinct x, y ∈ Lr. Since x and y are distinct, hence there must be some 1 ≤ i ≤ k
such that the projection of x and y along vi is separated by k−1/2.
Let us denote the projection of x along vi by xi. Then the condition of lying in Lr implies that
|xi| ≤ r · σi. It is then easy to see that if the number of integer points in Lr is more than∏k

i=1

(
2σi

√
kr + 1

)
, then there must be 2 points x and y and some 1 ≤ i ≤ k, |xi−yi| ≤ k−1/2.

Given a (n, k) PMD Z, let µ̂ and Σ̂ be the empirical mean and covariance matrices obtained
from Lemma 17. For technical reasons, instead of working with Σ̂, we create a new PSD matrix
Σ̃ which is obtained as follows: Σ̂ and Σ̃ have the same eigenvectors. If σ̂2

i is the eigenvalue of Σ̂
corresponding to vi, then the corresponding eigenvalue σ̃2 of Σ̃ is (1 − 3ε) · σ̂2

i . Further, after this
operation, if a particular eigenvalue of Σ̃ is smaller than ε, we modify that singular value to make
it 0. Doing this operation ensures that

|yT (Σ̃− Σ)y| ≤ εyTΣy

√
1 +

yTy

yTΣy
and Σ̃ � Σ

which implies that for all eigenvalues σ̃2
i ≤ σ2

i . Note that to learn the PMD, one possible strategy
is to evaluate the Fourier transform of a (n, k)-PMD in the region (ξ1, . . . , ξk) ∈ [−1, 1]k and then
perform a Fourier inversion. Unfortunately, this is too expensive for us. Instead, we show that the
Fourier transform only needs to be evaluated in a very small region.

Definition 18. For a point z ∈ {−1, 0, 1}k , define Cz,r as

Cz,r = {y :
∑

σ̃2
i (ṽi · ((−1)z ◦ (y − z)))2 ≤ r}

and Rz as
Rz = Bℓ∞(z, 1/2) ∩ [−1, 1]k.

Note that [−1, 1]k can be partitioned into the regions Rz (for z ∈ {−1, 0, 1}k). In other words,

[−1, 1]k = ∪z∈{−1,0,1}kRz.

Claim 7. Let Sr = ∪z∈{−1,0,1}k(Rz ∩ Cz,r) and let Sr = [−1, 1]k \ Sr. Then,

∫

(ξ1,...,ξk)∈Sr

|Ẑ(ξ)|2dξ1 . . . dξk ≤ e−r/10
k∏

i=1

1

max

{
σ̃i,

1
k

}
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Proof.
∫

(ξ1,...,ξk)∈Sr

|Ẑ(ξ)|2dξ1 . . . dξk =
∑

z∈{−1,0,1}k

∫

(ξ1,...,ξk)∈Rz\Cz,r

|Ẑ(ξ)|2dξ1 . . . dξk

We now individually bound each of the summands. Fix any particular z. Using Corollary 3
∫

(ξ1,...,ξk)∈Rz\Cz,r

|Ẑ(ξ)|2dξ1 . . . dξk ≤
∫

(ξ1,...,ξk)∈Rz\Cz,r

e−
1
5
ζT ·Σ·ζdξ1 . . . dξk

where ζ = (−1)z ◦ (ξ − z). To bound this, note that since Σ̃ � Σ and Rz ⊂ Bℓ2(z,
√
k/2), we get

∫

(ξ1,...,ξk)∈Rz\Cz,r

e−
1
5
ζT ·Σ·ζdξ1 . . . dξk ≤

∫

(ξ1,...,ξk)∈Bℓ2(z,
√
k/2)

\Cz,r

e−
1
5
·ζT ·Σ̃·ζdξ1 . . . dξk

Using the fact that ℓ2 balls are invariant under rotation, the right hand integral becomes
∫
∑

i σ̃
2
i w

2
i>r; (w1,...,wk)∈Bℓ2(0,

√
k/2)

e−
1
5
·∑ σ̃2

i w
2
i dw1 . . . dwk

Since, Bℓ2(0,
√
k/2) ⊂ Bℓ∞(0,

√
k/2), this is upper bounded by

∫
∑

σ̃2
i w

2
i>r;|wi|≤

√
k/2

e−
1
5
·
∑

σ̃2
i w

2
i dw1 . . . dwk

To upper bound this integral, let Y1 = {j : σ̃j ≤ 1/k}. Then,
∫
∑

σ̃2
i w

2
i>r;|wi|≤

√
k/2

e−
1
5
·
∑

σ̃2
i w

2
i dw1 . . . dwk ≤

∫
∑

σ̃2
i w

2
i>r;|wi|≤

√
k/2

e−
1
5
·
∑

i6∈Y1
σ̃2
i w

2
i dw1 . . . dwk

≤
∫
∑

i6∈Y1
σ̃2
i w

2
i>r/2;|wi|≤

√
k/2

e
− 1

5
·∑i6∈Y1

σ̃2
i w

2
i dw1 . . . dwk

The last inequality uses that r > 2. This integral is now easily seen to be bounded by

∏

i∈Y1

k · e−r/10 ·
∏

i 6∈Y1

1

σ̃i
.

This is exactly the same bound as stated in the claim.

Claim 8. Let Sr = ∪z∈{−1,0,1}k(Rz ∩ Cz,r). Then,

∫

(ξ1,...,ξk)∈Sr

dξ1 . . . dξk ≤ 3k
k∏

i=1

min

{√
k,

2
√
r

σ̃i

}

Proof. Doing the exact same calculation as in the proof of Claim 7,
∫

(ξ1,...,ξk)∈Sr

dξ1 . . . dξk ≤ 3k ·
∫
∑

i σ̃
2
i w

2
i≤r;|wi|≤

√
k/2

dw1 . . . dwk

By using the same manipulation as before, we can upper bound this integral by 3k
∏k

i=1min

{√
k, 2

√
r

σ̃i

}
.
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8.2 Learning algorithm for PMDs

Theorem 6, the structure theorem from [DKT15], allows us to assume that the PMD Z is essentially
a discretized Gaussian G convolved with a sparse PMD S where the sparse PMD is supported on
only poly(k/ε) summands.

By setting ‘ε’ from the Theorem statement to be ε10, we get that dTV (Z,G+S) ≤ ε10. Because
our subsequent learning algorithm will take ≪ O(ε−10) samples, we assume that we are getting
samples from G + S instead of Z and that Z = G + S. Furthermore, using the following claim
from [DKT15], we can get a spectral estimate with accuracy ε10 of the mean and covariance of the
Gaussian G by guessing the partition of coordinates in the covariance matrix of the Gaussian and
going through all elements of the spectral cover of PSD matrices around a fine estimate Ŝ for Σ
obtained using k/ε2 samples from Lemma 17.

Claim 9 (Lemma 9 from [DKT15]). Let A be a symmetric k × k PSD matrix with minimum
eigenvalue 1 and let S be the set of all matrices B such that |yT · (A−B) · y| ≤ ε1y

T ·A · y+ ε2y
T y

where ε1 ∈ [0, 1/4) and ε2 ∈ [0,∞). Then, there exists a cover Sε of size (k · (1+ ε2)/ε)
k2 such that

any B ∈ S is ε-spectrally close to some element in the cover.

The spectral closeness translates to closeness ε10 in total variation distance between Gaussians
(Lemma 2) and again since we will be taking ≪ O(ε−10) samples in the learning algorithm, we can
assume that the gaussian G has exactly the mean µG and covariance ΣG we guessed.

Similarly, we can assume that the sparse-PMD has known mean and covariance µS and ΣS .
This is because any PMD with n′ summands is ε10-close in total variation to a PMD where all the
probabilities are rounded to multiples of ⌈n′k/ε10⌉−1. This fact follows from union-bounding all the
errors of the individual summands. Since n′ = poly(k/ε) for the sparse PMD, all coordinates are
multiples of poly(ε/k), which implies that the mean and covariance coordinates are also multiples
of poly(ε/k) and we can guess them exactly using poly(k/ε)k

2
guesses. Again, since this sparse

PMD is ε10 close and we will be getting much fewer samples, we can assume that the sparse PMD
has exactly the mean and covariance we guessed.

At this point, we have argued the following:

Claim 10. The PMD Z is equal to the sum of a discretized Gaussian G and a sparse PMD S with
poly(k/ε) summands. The mean and covariance of the Gaussian (µG,ΣG) and of the sparse PMD
(µS ,ΣS) are known, which implies that the mean and covariance of the overall PMD Z is equal to
(µ,Σ) = (µS ,ΣS) + (µG,ΣG).

Our learning algorithm attempts to recover the sparse PMD in order to learn the overall dis-
tribution Z. However, imposing the condition that the distribution we are trying to estimate is a
sparse PMD will involve solving non linear equations making the computation intractable. Rather,
we will seek to learn a sparse distribution S′ supported on [0, T ]k where T = poly(k/ε).

To learn this distribution, we will attempt to estimate its Fourier Transform. We will be mostly
interested in points on the grid:

V =

{
α1 ·

ε

k2k · 6k · ~v1
max{1, σ1}

+ · · ·+ αk ·
ε

k2k · 6k · ~vk
max{1, σk}

: αi ∈ Z

}

where (~vi, σ
2
i ) are the eigenvector, eigenvalue pairs of the matrix Σ. From Corollary 3, we know that

the Fourier transform decays exponentially as we move away from {−1, 0, 1}k , and in particular
Claim 7 bounds the total mass contained at a distance at least r from all the points. For our
purposes, we set r = O(k log k + k log(1/ε)) and perform the following steps to learn the sparse
distribution S′.
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1. Create variables pα for every α ∈ [0, T ]k with the constraints 0 ≤ pα ≤ 1 and
∑

α∈T k pα = 1.

2. Let A1 = ∪z∈{−1,0,1}k{ξ :
∑

σ2
i (vi · ((−1)z ◦ (ξ − z)))2 ≤ r}. Let V1 be the points of the grid

V that lie inA1. For each of those points, get an estimate Ẑest of Ẑ such that |Ẑest−Ẑ| < ε
6k·k2k

and then impose linear constraints on {pα} so that |Re[Ŝ′(ξ) · Ĝ(ξ) − Ẑest(ξ)]| ≤ ε
6k·k2k and

|Im[Ŝ′(ξ) · Ĝ(ξ)− Ẑest(ξ)]| ≤ ε
6k·k2k .

3. Let σ2
G,i, ~vG,i be the eigenvalues and eigenvectors of ΣG

7 and consider the set:

A2 = ∪z∈{−1,0,1}k{ξ :
∑

σ2
G,i (~vG,i · ((−1)z ◦ (ξ − z)))2 ≤ r

2
∧
∑

σ2
i (~vi · ((−1)z ◦ (ξ − z)))2 > r}

Construct a grid of points in [−1, 1]k with a spacing of ε2k

k2k·6k in every direction. Let V2 be
the subset of these points which fall in A2. For all these points impose the conditionss that
|Re[Ŝ′(ξ)]| ≤ e−ζTΣSζ and |Im[Ŝ(ξ)]| ≤ e−ζTΣSζ that follow from Corollary 3.

4. Finally, add the constraints
∑

α pαα = µS and
∑

α pα(α− µS)(α − µS)
T = ΣS

Note that in Step 2, V1 has size at most
(√

r·k2k·6k
ε

)k
. If we naively estimated every Fourier

coefficient in V1 the number of samples would be too high because every Fourier coefficient requires
log(1/δ)/ε2 samples to learn with accuracy ε and probability of failure 1 − δ. However, we can
instead take O(k log(r/ε)/ε2) samples and reuse the same samples to compute all the required
Fourier coefficients. Since the probability of error is very small a simple union bound among all of
the coefficients, shows that with at least constant probability all of them can be estimated within
ε.

To complete the learning algorithm, we repeat the steps above for each of the guessed mean
and covariance matrices (µG,ΣG), (µS ,ΣS). We then perform a hypothesis selection algorithm to
choose a distribution within O(ε) from each of the distributions we obtain. We madeO(poly(k/ε)k

2
)

guesses, and thus obtained O(poly(k/ε)k
2
) candidate hypotheses. Applying the following tourna-

ment theorem for hypothesis selection from [DK14], we can select a good estimate inO
((

k
ε

)2
log(k/ε)

)

samples in O(poly(k/ε)k
2
) runtime.

Theorem 11 (Theorem 19 of [DK14]). There is an algorithm FastTournament(X,H, ε, δ), which is
given sample access to some distribution X and a collection of distributions H = {H1, . . . ,HN} over
some set D, access to a PDF comparator for every pair of distributions Hi,Hj ∈ H, an accuracy

parameter ε > 0, and a confidence parameter δ > 0. The algorithm makes O
(
log 1/δ

ε2 · logN
)

draws from each of X,H1, . . . ,HN and returns some H ∈ H or declares “failure.” If there is
some H∗ ∈ H such that dTV(H

∗,X) ≤ ε then with probability at least 1 − δ the distribution H
that FastTournament returns satisfies dTV(H,X) ≤ 512ε. The total number of operations of the

algorithm is O
(
log 1/δ

ε2

(
N logN + log2 1

δ

))
. Furthermore, the expected number of operations of the

algorithm is O
(
N logN/δ

ε2

)
.

Proof of correctness:

7 We note that, since we may have eigenvalues which are both large and small in magnitude, a naive eigende-
composition algorithm would incur a cost which depends on n. However, as we only require the eigenvalues and
eigenvectors approximately, this cost can be avoided by applying an appropriate power-iteration method. The cost
in terms of k and 1/ε is dominated by the other steps in our algorithm.
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We first show that there is a solution to {pα} which satisfies all the constraints. Indeed, if we
set the sparse distribution S′ to be equal to the distribution S of the sparse PMD we defined above,
we get:

1.
∑

α∈T k pα = 1 since S is a probability distribution supported on [0, T ]k.

2. The constraint |Re[Ŝ′(ξ) · Ĝ(ξ)− Ẑest(ξ)]| ≤ ε
6k ·k2k is satisfied since for S′ = S,

|Re[Ŝ(ξ) · Ĝ(ξ)− Ẑest(ξ)]| = |Re[Ẑ(ξ)− Ẑest(ξ)]| ≤ |Ẑ(ξ)− Ẑest(ξ)| ≤
ε

6k · k2k .

The derivation for the constraint on the imaginary part is identical.

3. From Corollary 3, the sparse PMD satisfies |Ŝ(ξ)| ≤ e−(1/5)·ζTΣSζ everywhere in [−1, 1]k. This
condition implies the imposed constraints which are only evaluated in few points.

4. The distribution S has mean µS and covariance ΣS, so the last constraint is satisfied.

We now prove that any feasible solution {pα} to the above system of constraints defines a
distribution S′ such that dTV(S +G,S′ +G) ≤ ε. To show this, we divide the space [−1, 1]k into
three parts: A1, A2 and A3 = [−1, 1]k \ (A1 ∪A2).

Claim 11. ∫

ξ∈A1

|Ŝ +G(ξ)− Ŝ′ +G(ξ)|2dξ = O

(
ε2 · rk/2

k3k ·∏k
i=1max{σi, 1}

)

Proof. Consider any point ξ in A1. Then, note that there is some ξ′ ∈ V such that for 1 ≤ i ≤ k,
〈ξ − ξ′, ~vi〉 ≤ ε

k2k·6k·max{1,σi} . Applying Lemma 16, we get that

|Ŝ +G(ξ)− Ŝ′ +G(ξ)| ≤ ε ·
√
k

6k · k2k + |Ŝ +G(ξ′)− Ŝ′ +G(ξ′)| ≤ ε · 2
√
k

6k · k2k .

Applying Claim 8, we have

∫

ξ∈A1

|Ŝ +G(ξ)−Ŝ′ +G(ξ)|2dξ ≤ max
ξ∈A1

|Ŝ +G(ξ)−Ŝ′ +G(ξ)|2·
∫

ξ∈A1

dξ = O

(
ε2 · rk/2

k3k ·∏k
i=1 max{σi, 1}

)
.

This finishes the proof.

Claim 12. ∫

ξ∈A2

|Ŝ(ξ)− Ŝ′(ξ)|2dξ = O

(
ε2 · rk/2

k3k ·∏k
i=1 max{σi, 1}

)

Proof. Note that A2 is a subset of the set

B2 = ∪z∈{−1,0,1}k{ξ :
∑

σ2
G,i (~vG,i · ((−1)z ◦ (ξ − z)))2 ≤ r

2
}.

We bound the volume of the set B2. To do this, we again apply Claim 8, and get that

∫

ξ∈B2

dξ = 3k · rk/2 · kk/2
∏k

i=1 max{σG,i, 1}
.
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Note that for any point ξ ∈ A2, we there is a point ξ′ such that ‖ξ − ξ′‖2 ≤ ε2k

k2k·6k and that

|Ŝ′(ξ′)| ≤ e−(1/5)·ζ′TΣS ·ζ′ . Since the variance of ΣS is at most poly(k/ε) in every direction, we get
that

|Ŝ′(ξ)| ≤ e−(1/5)·ζTΣS ·ζ +
ε2k

k2k · 6k .
This implies that ∫

ξ∈A2

|Ŝ(ξ)− Ŝ′(ξ)|2 ≤
∫

ξ∈A2

2 · |Ŝ(ξ)|2 + 2 · |Ŝ′(ξ)|2dξ

By applying Claim 8 to bound the volume of the set A2 ⊆ B2 and using the fact that |Ŝ(ξ)|2 is at
most e−r/20, we get that the first integral is at most

∫

ξ∈A2

2 · |Ŝ(ξ)|2 ≤ e−r/20 ·
k∏

i=1

1

max{σG,i, 1/k}

≤ e−r/20 · poly(k/ε)k ·
k∏

i=1

1

max{σi, 1/k}

The last inequality uses the fact that whenever σG,i ≤ σi, it must imply that all the variance comes
from S and thus σi ≤ poly(k/ε). By plugging the value of r, we get that

∫

ξ∈A2

2 · |Ŝ(ξ)|2 ≤ εk ·
k∏

i=1

1

max{σi, 1}
.

The calculation for the second integral is similar.
∫

ξ∈A2

2 · |Ŝ′(ξ)|2dξ ≤
∫

ξ∈A2

e−(1/5)·ζTΣS ·ζ +
∫

ξ∈A2

ε2k

k2k · 6k dξ

≤ εk ·
k∏

i=1

1

max{σi, 1}
+

∫

ξ∈A2

ε2k

k2k · 6k dξ

≤ εk ·
k∏

i=1

1

max{σi, 1}
+

∫

ξ∈B2

ε2k

k2k · 6k dξ

Here the first inequality follows by exactly the same calculation we did for the first integral whereas
the second inequality uses that A2 ⊆ B2. Now, that we had derived that

∫

ξ∈B2

dξ = 3k · rk/2 · kk/2
∏k

i=1 max{σG,i, 1}
.

However, max{σG,i, 1} ≥ εΘ(1) ·max{σi, 1} (because the variance of S is at most poly(1/ε) in any
direction. This implies that

∫

ξ∈B2

dξ =

(
3

ε

)k

· rk/2 · kk/2
∏k

i=1max{σi, 1}
.

This implies that
∫

ξ∈A2

2 · |Ŝ′(ξ)|2 ≤ εk ·
k∏

i=1

1

max{σi, 1}
.
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Claim 13. ∫

ξ∈A3

|Ŝ +G(ξ)− Ŝ′ +G(ξ)|2dξ = O

(
ε2 · rk/2

k3k ·∏k
i=1max{σi, 1}

)

Proof. Note that Ŝ′ +G(ξ) = Ĝ(ξ) · Ŝ′(ξ). Thus, |Ŝ′ +G(ξ)|2 ≤ |Ĝ(ξ)|2. Applying Claim 7 and
noting that

A3 ⊆ ∪z∈{−1,0,1}k{ξ :
∑

σ2
G,i (~vG,i · ((−1)z ◦ (ξ − z)))2 >

r

2
}

we obtain that ∫

ξ∈A3

|Ĝ(ξ)|2dξ = e−r/10 · kk ·
k∏

i=1

1

max{1, σG,i}

Again using the fact that the variance of S in any direction is at most poly(k/ε),

∫

ξ∈A3

|Ĝ(ξ)|2dξ ≤ e−r/10 · poly(k/ε)k ·
k∏

i=1

k

max{1, σi}

Plugging in the value of r, we get that

∫

ξ∈A3

|Ĝ(ξ)|2dξ ≤ εk ·
k∏

i=1

1

max{1, σi}

This immediately implies the claim.

Combining Claim 11, Claim 12 and Claim 13, we get that

∫

ξ∈[−1,1]k
|Ŝ +G(ξ)− Ŝ′ +G(ξ)|2dξ = ε2 · (k log(1/ε))O(k) ·

k∏

i=1

1

max{σi, 1}
.

We now apply Corollary 4 to derive that

dTV (S +G,S′ +G) ≤ ε · (k log(1/ε))O(k) ·

√√√√
k∏

i=1

1

max{σi, 1}
·

k∏

i=1

(2σi
√
kr + 1).

This is at most dTV (S+G,S′+G) ≤ ε·(k log(1/ε))O(k). Setting ε to be ε′

poly(k,log(1/ε′))k , we complete

the proof of Theorem 5.

9 Open Problems

A number of interesting questions regarding Poisson Multinomial distributions are left open by this
work and [DKS16a]. We outline a few of them here.

1. The complexity of learning Poisson Multinomials. This work and [DKS16a] both give
algorithms for learning PMDs. The sample and time complexities are polynomial in 1/ε
and exponential in k. Meanwhile, [DKT15] gives an algorithm with a sample complexity
polynomial in both parameters, but the time complexity is exponential in k and 1/ε. Is there
an algorithm for learning PMDs with sample and time complexities both polynomial in k and
1/ε?
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2. Exploring the connection between Poisson Multinomials and Laplacian matrices.

In this work, we described a cover for the set of (n, k)-PMDs of size Ok,ε(n
O(k)). Our con-

struction relied crucially on Observation 1 (which states that the covariance matrix of a PMD
is Laplacian) and spectral sparsification results for Laplacian matrices. With this connection
in hand, can one derive other results for PMDs using the wealth of literature on Laplacian
matrices?

3. A tighter central limit theorem. [VV11] proves a central limit theorem between an
(n, k)-GMD and a discretized Gaussian with the same mean and covariance, upper bounding
their total variation distance by O(k4/3σ−1/3 log2/3 n), where σ2 is the smallest eigenvector
of the covariance matrix of the GMD. Both this paper and [DKS16a] qualitatively improve
this bound by removing the dependence on n, while keeping the dependence on k and 1/σ
still polynomial. How well can a GMD be approximated by a discretized Gaussian? In one
dimension, the answer is Θ(1/σ) [CGS10], which implies a the answer for multiple dimensions
is at least Ω(

√
k/σ). [DKS16a] achieves this dependence on 1/σ (up to log factors), but the

optimal dependence on k is currently unknown.

4. Sums of independent integer random vectors. Poisson Multinomial distributions are
the natural multivariate generalization of Poisson Binomial distributions, which have now
been explored in this paper and other recent works [DKT15, DKS16a]. However, we currently
have minimal understanding of any multivariate analogue of sums of independent integer
random variables (i.e., SIIRVs, the object of study in [BĆ02, DDO+13, DKS16b]), which
we will denote as vector SIIRVs (VSIIRVs). The natural definition of such an object is not
immediately clear; one potential definition of an (n, k, d)-VSIIRV may be as the sum of n
independent random vectors in Nd, where each is a distribution over all positive lattice points
at ℓ1 distance at most k from the origin. We note that an (n, 1, d)-VSIIRV is an (n, d)-PMD,
so these objects generalize PMDs at well. An interesting line of study would be to obtain
structural, covering, and learning results for VSIIRVs.
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A Proof of Lemma 2

We instead prove that dTV(X,Y ) ≤ ε
√
k when |vT (µ1 − µ2)| ≤ ε

√
ksv and |vT (Σ1 − Σ2)v| ≤ εs2v

2 ,
which we can see is equivalent to the lemma statement by a rescaling.

Without loss of generality, assume that Σ1 and Σ2 are full rank. If not, the guarantees in the
statement ensure that their nullspace is identical, and we can project to a lower dimension such
that the resulting matrices are full rank.

First, we note that the assumptions in the lemma statement can be converted to be in terms
of the minimum of the two variances, instead of the maximum. Define σ2

v = min{vTΣ1v, v
TΣ2v}.

The second assumption can be rearranged to see that (1 − ε
2)s

2
v ≤ σ2

v . Plugging this back into the
second assumption gives that

|vT (Σ1 − Σ2)v| ≤
εs2v
2

≤ εσ2
v

2(1− ε
2)

≤ εσ2
v ,

where the last inequality holds for ε ≤ 1 (otherwise, the lemma’s conclusion is trivial). Similarly,
the second assumption also implies

√
1− ε

2sv ≤ σv, when plugged into the first assumption gives

|vT (µ1 − µ2)| ≤ ε
√
ksv ≤ ε√

1− ε
2

√
kσv ≤

√
2ε
√
kσv.

For the remainder of the proof, we will use these guarantees instead of the ones in the lemma
statement.
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We recall the standard formula for KL-divergence between two Gaussian distributions. Let {λi}
be the eigenvalues of Σ

−1/2
2 Σ1Σ

−1/2
2 .

dKL (X||Y ) =
1

2

(
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) + Tr(Σ

−1/2
2 Σ1Σ

−1/2
2 )− ln

(
det
(
Σ
−1/2
2 Σ1Σ

−1/2
2

))
− k
)

=
1

2

(
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) +

k∑

i=1

(λi − lnλi − 1)

)

We bound the divergence induced by differences in the means and covariances separately. We
start with the means. Note that

|vT (µ2 − µ1)| ≤
√
2ε
√
kσv ⇒ |vT (µ2 − µ1)|√

vTΣ2v
≤

√
2ε
√
k.

Substituting u = Σ2v gives
|uTΣ−1

2 (µ2 − µ1)|√
uTΣ−1

2 u
≤

√
2ε
√
k.

We let u = µ2 − µ1, giving

√
(µ2 − µ1)TΣ

−1
2 (µ2 − µ1) ≤

√
2ε
√
k,

which implies
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) ≤ 2ε2k.

Now we bound the divergence induced by differences in the covariances. We bound the eigen-

values of Σ
−1/2
2 Σ1Σ

−1/2
2 . Note that

|vT (Σ1 − Σ2)v| ≤ εσ2
v ⇒ 1

1 + ε
≤ vTΣ1v

vTΣ2v
≤ 1 + ε.

Substituting u = Σ
1/2
2 v makes the latter condition equivalent to

1

1 + ε
≤ uTΣ

−1/2
2 Σ1Σ

−1/2
2 u

uTu
≤ 1 + ε.

The Courant-Fischer Theorem implies that 1
1+ε ≤ λi ≤ 1 + ε for all i.

At this point, we note that x− lnx− 1 ≤ (1− x)2 for all x ≥ 1. This implies

k∑

i=1

(λi − lnλi − 1) ≤
k∑

i=1

(1− λi)
2 ≤ ε2k.

Thus, dKL(X||Y ) ≤ 2ε2k. Applying Pinsker’s inequality gives dTV(X,Y ) ≤ ε
√
k, as desired.
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