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Abstract

We study the problem of agnostically learning halfspaces which is defined by a fixed but
unknown distribution D on Q™ x {+1}. We define Errgarr(D) as the least error of a halfspace
classifier for D. A learner who can access D has to return a hypothesis whose error is small
compared to Errgarr(D).

Using the recently developed method of [33] we prove hardness of learning results assuming
that random K-XOR formulas are hard to (strongly) refute. We show that no efficient learning
algorithm has non-trivial worst-case performance even under the guarantees that Errgarr(D) <
7 for arbitrarily small constant > 0, and that D is supported in {+1}" x {£1}. Namely, even
under these favorable conditions, and for every ¢ > 0, it is hard to return a hypothesis with
error < % — L In particular, no efficient algorithm can achieve a constant approximation ratio.

ne’
Under a stronger version of the assumption (where K can be poly-logarithmic in n), we can take

log*~

n=2" ") for arbitrarily small » > 0. These results substantially improve on previously

known results [31, 38, 50, 51, 44], that only show hardness of exact learning.

*Department of Mathematics, The Hebrew University and Microsoft Research Herzliya.



1 Introduction

In the problem of agnostically learning halfspaces, a learner is given an access to a distribution D
on Q" x {£1}. The goal is to output® (a description of) a classifier h : Q* — {41} whose error,
Errp(h) := Pr(, )p (h(z) # y), is small comparing to Errgarr(D) — the error of the best classifier
of the from h,,(z) = sign((w, x)). We say that a learning algorithm learns halfspaces if, given an
accuracy parameter € > 0, it outputs a classifier with error at most Errgapp(D) + €. The learner
is efficient if it runs in time poly (n, %) and the output hypothesis can be evaluated in poly (n, %)
time given its description. The learner has an approximation ratio o = a(n) if it is guaranteed to
return A with Errp(h) < a-Errgarr(D) + . We emphasize that we consider the general, improper,
setting where the learner has the freedom to return a hypothesis that is not a halfspace classifier.

The problem of learning halfspaces is as old as the field of machine learning, starting with the
perceptron algorithm [56, 55], through the modern SVM [27, 61, 60, 28, 29] and AdaBoost [5&, 57,

]. Halfspaces are widely used in practice, have been extensively studied theoretically, and in fact
motivated much of the existing theory, both the statistical and the computational.

Despite all that, the gap between the performance of best known algorithms and best known
lower bounds is dramatic. Best known efficient algorithms [1&] for the problem have a poor approx-
imation ratio of Q (n), and have performance better than trivial only when Errgapr(D) < © (1).
As for lower bounds, strong N'P-hardness results are known [3, 5, 41, 38] only for algorithms that
are restricted to return a halfspace classifier (a.k.a. proper algorithms). For general algorithms, no
N'P-hardness results are known, yet several results [31, 38, 50, 51, 44] show that it is hard to agon-
stically learn halfspaces under several (cryptographic and average case) complexity assumptions.
However, these results are quantitatively very weak, as they only rule out exact learning (i.e., with
approximation ratio 1). For example, they do not rule out algorithms that predict only 1.001 times
worst than the best halfspace classifier.

The main result of this paper is a quantitatively strong hardness results, assuming that (strongly)
refuting random K-XOR formulas is hard. Using the recently developed framework of the author
with Linial and Shalev-Shwartz [33], we show that for arbitrarily small constant n > 0 and every
¢ > 0, no poly(n)-time algorithm can return a hypothesis with error < % — #, even when it is
guaranteed that Errgapp(D) < 7, and that D is supported in {£+1}" x {#1}. This implies in
particular, that there is no efficient learning algorithm with a constant approximation ratio. Under
a stronger version of the assumption (where K is allowed to be poly-logarithmic in n), we can take
n= 9= log'™(n) for arbitrarily small v > 0. This implies hardness of approximation up to a factor
of 212" (") Interestingly, this is even stronger than the best known results [8, 41, 38] for proper
algorithms.

1.1 The random K-XOR assumption

Unless we face a dramatic breakthrough in complexity theory, it seems unlikely that hardness
of learning can be established on standard complexity assumptions such as P # NP (see [0, 33]).
Indeed, all currently known lower bounds are based on cryptographic and average-case assumptions.
One type of such assumptions, on which we rely in this paper, concern the random K-XOR problem.
This problem has been extensively studied, and assumptions about its intractability were used to
prove hardness of approximation results [1], establish public-key cryptography [1, 7], and statistical-
computational tradeoffs [11].

!Throughout, we require algorithms to succeed with a constant probability (that can be standardly amplified by
repetition).



A K-tuple is a mapping C : {#1}" — {£1}* in which each output coordinate is a literal and
the K literals correspond to K different variables. The collection of K-tuples is denoted &), . A
K-formula is a collection J = {Cy,...,Cp} of K-tuples. An instance to the K-XOR problem is
a K-formula, and the goal is to find an assignment ¢ € {£1}" that maximizes VALy xor(J) :=
|{j:XORK£Si(w)):1}|. We define the value of J as VALxor(J) := maxye(+13» VALy xor(J). We
will allow K to vary with n (but still be fixed for every n). For example, we can look of the
[log(n)]-XOR problem.

We will consider the problem of distinguishing random formulas from formulas with high
value. Concretely, for m = m(n), K = K(n) and 1 > n = n(n) > 0, we say that the problem
CSPrandl=n(XOR) is easy, if there exists an efficient randomized algorithm, A with the following
properties. Its input is a K-formula J with n variables and m constraints and its output satisfies:

o If VALxor(J) > 1 — 1, then

(A(J) = “non-random”) >

coins of A

>~ w

e If J is random?, then with probability 1 — 0, (1) over the choice of .J,

3
P — o« A
coins f)f A (A(J) random ) 4

It is not hard to see that the problem gets easier as m gets larger, and as n gets smaller. For n = 0,

the problem is actually easy, as it can be solved using Gaussian elimination. However, even for
slightly larger n’s the problems seems to become hard. For example, for any constant 1 > 0, best

known algorithms [37, 25, 26, 11, 3] only work with m = (n§> In light of that, we put forward
the following two assumptions.

Assumption 1.1 There are constants ¢ > 0 and % > n > 0 such that for every K and m =
nelosEWVE 4he problem CSprandl=n(XOR) is hard.

Assumption 1.2 There are constants ¢ > 0 and % > n > 0 such that for every s, K = log®(n)
and m = n°K | the problem CSP™41=7(XORy) is hard.

We outline below some evidence to the assumptions, in addition to known algorithms’ perfor-
mance.

Hardness of approximation. Hastad’s celebrated result [13] asserts that if P % NP, then for
every n > 0, it is hard to distinguish K-XOR instances with value > 1 —» from instances with with
value < % + n. Since the value of a random formula is approximately %, we can interpret Hastad’s
result as claiming that it is hard to distinguish formulas with value 1 — n from “semi-random”
K-XOR formulas (i.e., formulas whose value is approximately the value of a random formula).
Therefore, our assumptions can be seen as a strengthening of Hastad’s result.

Hierarchies and SOS lower bounds. A family of algorithms whose performance has been
analyzed are convex relaxations [241, 59, 2] that belong to certain hierarchies of convex relaxations.
Among those hierarchies, the strongest is the Lasserre hierarchy (a.k.a. Sum of Squares). Algo-
rithms from this family achieves state of the art results for the K-XOR and many similar problems.
In [59] it is shown that relaxations in the Lasserre hierarchy that work in sub-exponential time
cannot solve CSPra%d_’i_n(XORK) for any n,e > 0.

n

2To be precise, the K-tuples are chosen uniformly, and independently from one another.



Lower bounds on statistical algorithms. Another family of algorithms whose performance
has been analyzed are the so-called statistical algorithms. Similarly to hierarchies lower bounds, the
results in [39] imply that statistical algorithms cannot solve CSPraﬁd’l_"(XORK) for any n,e > 0.

o —€

Resolution lower bounds. The length of resolution refutations of random K-XOR formulas

have been extensively studied (e.g. [12, 13, 14, 19]). It is known (Theorem 2.24 in [18]) that random

formulas with n% —¢ constraints only have exponentially long resolution refutations. This shows

that yet another large family of algorithms (the so-called Davis-Putnam algorithms [35]) cannot
efficiently solve CSP™2"! (XOR) for any € > 0.
n2 "¢

Similar assumptions. Several papers relied on similar assumptions. Alekhnovich [!] assumed

that CSPrCa;ld’lfn(XORg) is hard for some n < % and for every C > 0. Applebaum, Barak and

Wigderson [7] assumed that CSP™1=" **(XORy) is hard. Barak and Moitra [11] made the
assumption that CSP™2'™7(XORg) is hard for every € > 0 and n = + —o(1). Assumptions
n2 ¢

on predicates different than K-XOR were made in [32, 36]. The assumption in [36] implies that
CSPrCa;ld’lfn(XORg) is hard for every C' > 0 and n > 0. The assumption in [32] implies that
CSPZE{I_IQI_{_"(XOR?,) is hard for every ¢ > 0 and n > 0. A much more general assumptions was
made in [12]. Tt implies in particular that CSPE""~"(XORk) is hard for every C' > 0 and 7 > 0.

1.2 Previous Results and Related work

Upper bounds. When Errgapr(D) = 0, the problem of learning halfspaces can be solved effi-
ciently using linear programming. However, even for slightly larger error values the problem seems
to become much harder. Currently best known algorithms [13] have non trivial performance only
when it is guaranteed that Errgapp(D) < %. This algorithm also achieves approximation ra-
tio of n, which is currently the best known approximation ratio. Better guarantees are known
under various assumptions on the marginal distribution [10, 20, 30, 44]. For example, a PTAS is

known [30] when the marginal distribution is uniform.

Lower bounds for general algorithms. Several hardness assumptions imply that it is hard
to agnostically learn halfspaces. Feldman, Gopalan, Khot and Ponnuswami [3%] have shown that
based on the security of the Ajtai-Dwork cryptosystem. Kalai, Klivans, Mansour and Servedio
showed the same conclusion [14] based on the hardness of learning parity with noise. Daniely and
Shalev-Shwartz [31] derived the same conclusion based on the hardness of refuting random K-SAT
formulas. Klivans and Kothari [50] showed that assuming that learning sparse parity is hard, it is
hard to learn halfspaces even when the marginal distribution is Gaussian. We note that all these
results only rule out exact algorithms, but say nothing about approximation algorithms. We note
however that by [9, 15], an algorithm with non trivial performance of n-realizable distributions will
result with quasi-polynomial time algorithm for learning constant depth circuits.

Lower bounds for proper algorithms and hardness of approximation. When we restrict
the algorithms to return a halfspace classifier, the problem of learning halfspaces is essentially
equivalent [54] to the computational problem of minimizing disagreements. In this problem we are
given a sample S = {(z1,y1),---, (Tm,ym)} € Q" x {£1}, and the goal is to find a vector w € Q™
that minimizes the fraction of pairs with sign({w,z;)) # y;. The optimal fraction is called the
error of the sample. As a “standard” and basic computational problem, much is known about
it. The problem have been shown NP-hard already in Karp’s famous paper [46]. Soon after the
discovery of the PCP theorem, Arora, Babai, Stern and Sweedyk [8] have shown that assuming that



no quasi-polynomial time algorithm can solve N'P-hard problems, there is no efficient algorithm
with an approximation ratio of 205" () Later on, the corresponding maximization problem was
considered by several authors [4, 17, 23, 41, 38], culminating with Feldman, Gopalan, Khot and
Ponnuswami [38] who showed that assuming that no quasi-polynomial time algorithm can solve

NP hard problems, no efficient algorithm can distinguish samples with error > % —2=Vlog(") from
samples with error < 2~ V1o,

Statistical-Queries Lower bounds. Statistical queries (SQ) algorithms [17] is a class of learn-
ing algorithms whose interaction with D is done only via statistical queries. Concretely, an SQ-
algorithm can specify any function @ : {£1}" x {£1} — {£1} and an error parameter A > 0, and
receive a number e satisfying |E(, ,)~p[Q(z,y)] — e| < A. In this model, an algorithm is efficient
if it makes polynomially many queries with error parameters satisfying % < poly(n) (besides that,
the algorithm is not restricted). While this class is strictly smaller than the class of all algorithms,
most known algorithms admit an SQ version. In addition, as opposed to general algorithms, uncon-
ditional lower bounds are known for SQ algorithms [21] for several learning problems. In particular,
it is known that it is hard to agnostically learn halfspaces using SQ-algorithm (e.g. [15]). We note
that as with previously known lower bounds for general algorithms, these results only rule out exact
algorithms.

Lower bounds on concrete algorithms. A few results [16, 53, 34] showing hardness of ap-
proximation results for several concrete families of algorithms (linear methods).

The methodology of [33]. In light of the great success of complexity theory in establishing
hardness of approximation results for standard computational problems, having such dramatic gaps
between upper and lower bounds is perhaps surprising. The reason for the discrepancy between
learning problems and computational problems is the fact that it is unclear how to reduce NP-hard
problems to learning problems (see [0, 33]). The main obstacle is the ability of a learning algorithm
to return a hypothesis which does not belong to the learnt class (in our case, halfspaces). Until
recently, there was only a single framework, due to Kearns and Valiant [19], to prove lower bounds
on learning problems. The framework of [19] makes it possible to show that certain cryptographic
assumptions imply hardness of certain learning problems. As indicated above, the lower bounds
established by this method are quite far from the performance of best known algorithms.

In a recent paper [33] (see also [32]) we, together with Linial and Shalev-Shwartz, developed a
new framework to prove hardness of learning based on hardness on average of CSP problems. Yet,
in [33] we were not able to use our technique to establish hardness results that are based on a natural
assumption on a well studied problem. Rather, we made a rather speculative hardness assumption,
that is concerned with general CSP problems, most of which were never studied explicitly. We
recognized it as the main weakness of our approach, and therefore the main direction for further
research. About a year after, Allen, O’Donnell and Witmer [3] refuted the assumption of [33]. On
the other hand we [31] were able to overcome the use of our speculative assumption, and prove
hardness of learning of DNF formulas (and other problems) based on a natural assumption on
the complexity of refuting random K-SAT instances, in the spirit of Feige’s assumption [36]. The
current paper continues this line of work.



1.3 Results

Main result We say that a distribution D on Q" x {£1} is n-almost realizable if Errgarr(D) < 1.
An algorithm have non-trivial performance w.r.t. a certain family of distributions if for some ¢ > 0,
its output hypothesis has error < %— # whenever the underlying distribution belongs to the family.

Theorem 1.3 e Under assumption 1.1, for all n > 0, there is no poly(n)-time algorithm with
non-trivial performance on n-almost-realizable distributions on {£1}" x {£1}.

e Under assumption 1.2, for all v > 0, there is no poly(n)-time algorithm with non-trivial
performance on 218" " _glmost-realizable distributions on {£1}" x {£1}.

These results imply in particular that under assumption 1.1 there is no efficient learning algorithm
with a constant approximation ratio, and under assumption 1.2 the is no efficient learning algorithm
with an approximation ratio of 2108'"(n)  As mentioned above, this substantially improves on
previously known results that only showed hardness of exact learning.

Extension to large margin learning Large margin learning is a popular variant of halfspace
learning (e.g. [60, G1]). Here, the learning algorithm faces an somewhat easier task, as it is not
required to classify correctly examples that are very close to the separating hyperplane. Our basic
theorem can be extended to the large margin case. Concretely, we say that a distribution D on
{£1}" x {£1} is n-almost-realizable-with-margin if there is w € R? with "I, Jw;| < poly(n)
such that Pr(y )p (y - (w,z) <1) < n. Theorem 1.3 can be extended to show that no efficient
algorithm can perform better than trivial even when the distribution is almost realized with margin.
Concretely, we have the following theorem.

Theorem 1.4 e Under assumption 1.1, for all n > 0, there is no poly(n)-time algorithm with
non-trivial performance on distributions on {£1}" x {£1} that are n-almost-realizable-with-
marqgin.

e Under assumption 1.2, for all v > 0, there is no poly(n)-time algorithm with non-trivial
performance on distributions on {£1}" x {£1} that are 278" ") _glmost-realizable-with-
marqgin.

Statistical queries version Our proof technique can be adapted to show unconditional lower
bounds for SQ-algorithms. Concretely, we have the following.

Theorem 1.5 There is no efficient SQ-algorithm with non-trivial performance on distributions on
I—v
{1} x {£1} that are 2718 ") _glmost-realizable-with-margin.

Again, this substantially improves on previously known results that only showed hardness of exact
learning.

Implications to hardness of approximation As explained in the previous section, the problem
of proper learning is essentially equivalent to the problem of minimizing disagreements. As our
results hold in particular for proper algorithms, we can conclude the following.

Theorem 1.6 Under assumption 1.2, for every ¢ > 0 and ¢ > 0, no efficient algorithm can
. . . . . 1—e
distinguish samples with error > % —n~¢ from samples with error < 27108 (")



We note that the conclusion of our theorem is stronger than the conclusions of the previously best
known lower bounds for the problem (however, we rely on a stronger assumption). In particular,
it implies that the problem is hard to approximate within a factor of 2103176(”), implying the
conclusion [3] of Arora et. al. It is also strengthen the conclusion [35] of Feldman et. al., improving

the completeness parameter from 2~ V108" ¢ 9-108' (") and the soundness parameter from % —

2~ Vlog(n) ¢4 % —n~¢ We remark that our result holds even if we assume that the input examples
are binary, and in the large margin settings.

2 Main proof ideas

We next elaborate on the main ideas of our main theorem. The full proof is deferred to the
appendix.

2.1 The methodology of [33]

We first describe the methodology of [33] to prove hardness of learning. A sample is a collection
S =A{(x1,y1), -, (@m,ym)} C X x {£1}. The error of h : X — {£1} is Erry(S5) = [ihie)2y

The error of S w.r.t. a hypothesis class H C {1}¥ is Erry/(S) = mingey Erry,(S). The basic idea
behind [33] is that if it is hard to distinguish a sample with small error form a sample that is very
random in a certain sense, then it is hard to (even approximately) learn H.

For the sake of concreteness, we restrict to the problem of learning halfspaces over the boolean
cube. Namely, we take X = {£1}" and X = HALF = {h, | w € R"}. We say that a sample
is strongly scattered® if the labels (i.e., the y;’s) are independent fair coins (in particular, they are
independent from the x;’s). For m = m(n) and n = n(m), we denote by HALF? 5% the problem
of distinguishing a strongly-scattered sample from a sample with Errgapr(S) < 7. Concretely, we
say that the problem is easy if there exists an efficient randomized algorithm A with the following
properties. Its input is a sample S = {(z1,91),. .., (Tm,ym)} C {£1}" x {£1}, and its output
satisfies:

o If Errgarr(S) <7, then

(A(S) = “almost-realizable”) >

coins of A

>~ w

e If S is strongly scattered then, with probability 1 — 0,,(1) over the choice of the labels,

Pr (A(S) = “scattered”) >

coins of A

= w

Theorem 2.1 [75] If for every a > 0 the problem HALF® .5 s hard, then there is no efficient

na
learning algorithm with non-trivial performance on n-almost realizable distributions.

To be self contained, and since Theorem 2.1 is not identical to [33], we outline a proof.

Proof Assume toward a contradiction that the efficient algorithm £ is guaranteed to return a

hypothesis with error < % — % on n-almost realizable distributions. Let M (n) be the maximal

number of random bits used by £ when the examples lie in {£1}". This includes both the bits

3 A weaker notion, called scattering, was used in [33].



describing the examples produced by the oracle and “standard” random bits. Since L is efficient,
M (n) < n¢ for some ¢ > 0. Define

q(n) _ 20/+20 '
We will derive a contradiction by showing how £ can be used to solve HALFS Scat’n To this end,

consider the algorithm A defined below. On input S = {(z1,y1),. .., (Tm, ym)} C {£1}" x {£1},

1. Run £ on S, such that the examples’ oracle generates examples by choosing random examples
from S.

2. Let h be the hypothesis that £ returns. If Errg(h) < % — F> output “almost-realizable”.
Otherwise, output “scattered”.

Next, we show that A solves HALFS(;; 21 Indeed, if Errgarr(S) < n, then £ is guaranteed
1

to return a hypothesis with Errg(h) < 5 — F? and A will output “almost-realizable”. What if

S is strongly scattered? Let G C {£1}{F1}" be the collection of functions that £ might return.

We note that |G| < 2", since each hypothesis in G can be described by n¢ bits. Namely, the
random bits that £ uses and the description of the examples sampled by the oracle. Now, since
D is strongly-scattered, by Hoeffding’s bound, the probability that Errg(h) < % — # for a single

h:{£1}" — {£1} is < exp (—2‘;(;?). By the union bound, the probability that Errg(h) < 3 — &

nC

d _a(n)
for some h € G is at most |G| exp (—2‘;@) < on® — Tz _ on¢ "—n? . It follows that the probability
that A responds “almost-realizable” is o(1). O

2.2 An overview

For the sake of simplicity, we will first explain how to prove a weaker version of Theorem 1.3. At
the end of this section we will explain how to prove Theorem 1.3 in full.

rand,1—

Theorem 2.2 Suppose that for every K > 4 the problem CSP W(XORK) is hard. Then,

there is no efficient algorithm with non-trivial performance on -almost-realizable distributions

on {—1,1,0}" x {£1}.

17

rand,1— s—scat

The course of the proof is to reduce CSP" o5 (XORk) to HALF
nt W(K)
and since K can be arbitrarily large, Theorem 2.2 follows from Theorem 2.1.

’100 . Given that reduction,

The XOR problem as a learning problems

The basic conceptual idea is to interpret the K-XOR problem as a learning problems. FEvery
¢ € {£1}" naturally defines hy : X, k — {£1}, by mapping each K-tuple C to the truth value
of the corresponding constraint, given the assignment 1. Namely, hy(C) = XOR(C(v))). Now, we
can consider the hypothesis class Hx = {hy | ¥ € {£1}"}.

The K-XOR problem can be now formulated as follows. Given J = {C,...,Cp} C Xk,
find hy € ’HK with minimal error on the sample S = {(Cy,1),...,(C,1)}. Now, the problem

rand,1—

CSP,, 05 (XOR) is the problem of distinguishing between the case the Erry, (S) < 155 and

the case where the different C;’s where chosen independently and umformly from X, .

The mapping J +— § is still not a reduction from CSP]rand 1100 (XORk) to the problem of

distinguishing a strongly scattered sample from a sample with small error w.r.t. halfspaces. This
is due to the following points:



e In the case that J is random, S is, in a sense, “very random”. Yet, it is not strongly-scattered.
e We need to measure the error w.r.t. halfspaces rather than Hg.

Next, we explain how we address these two points.

Making the sample scattered

Addressing the first point is relatively easy. Given a sample (C1,1),...,(Cy,, 1), we can produce
a new sample (C1,y}),...,(Ch,,y,,) as follows: for every i € [m], w.p. & we let (C},y}) = (C, 1)
and w.p. % we let (Cl,y.) = (C},—1), where C! is obtained from C; by flipping the sign of the
first literal. It is not hard to see that this reduction maps random instances to strongly scattered
instances. Also, it is not hard to see that the error of every h,, € Hx does not change when moving
from the original sample to the new sample. Therefore, samples with error < ﬁ are mapped to
samples with error < ﬁ.

Note that the reduction not only maps random instances to scattered instances, but in fact has
a stronger property that will be useful for addressing the second point (Replacing Hx by HALF).
Concretely, if the original instance is random, then the (C/,y.)’s are independent and uniform
elements from &, g x {£1}.

Replacing Hx by HALF

To address the second point, we will show a reduction that maps a sample S = {(C1,41),...,(Cm,ym)} C
Xk X {£1} to a sample (z1,y1),..., (Tm,ym) € {—1,1, 0}"\/?1%(}() x {£1}. It will be convenient

to give the reduction the option to output “not-random” instead of producing a new sample. For
large enough K, if m = n%, the reduction has the following properties:

e If the original sample is random (i.e., the examples (Cj, y;) where chosen independently and
uniformly from &, g x {£1}), then w.h.p. the reduction will produce a new sample, and
given that a new sample was indeed produced, it will be strongly scattered.

e If the original sample has error < 1(1)—0 w.r.t. Hg then the reduction will either say that

the original sample is not random, or it will produce a new sample with error < % w.r.t.
halfspaces.

VE
VEKlog(K) and noting that m = (n')#s(X) | it is not hard to see that such a reduction,

1

0 (XOR )

Putting n’ = n

. . . . . . d,1—
together with the previous reduction (the “scattering reduction”), indeed reduces CSPraZ
n4

s—scat, 2

> 100
to HALF® 0100,
n 4log(K)

The reduction will work as follows. It will first test that J := {C1,...,C),} is pseudo random,
in the sense that is satisfies certain (efficiently verifiable) properties (that will be specified later)
that are possessed by random formulas w.h.p. If the test fails, the reduction will say that .S is not
random. Otherwise, the reduction will produce the sample x(S) := (x(C1),91),---, (X(Cm),ym) €
{-1,1, 0}"ﬁlog(K) x {£1}, for a mapping x : X, xk — {—1,1, O}"\/Elogm) that we will specify later.

Next, we explain why this reduction have the desired properties. We start with the case that
S is sandom. In that case, the pseudo-randomness test will pass w.h.p. and the reduction will
produce a new sample. Also, since the properties tested in this test do not depend on the labels,
given that a new sample was indeed produced, the new sample is strongly scattered.



We next deal with the case that Erry, (S) < 1o5. We will show that in this case either the
reduction will say that S is not random, or the new sample will have error < % w.r.t. halfspaces.
To this end we will finally specify x and describe the list of pseudo-random properties.

It will be convenient to define x as a composition x = p o 7w where 7 : X, x — {—1,1,0}"%

and p : {—1,1,0}"F — {~1, 1,0}”\/?1%(1(). We first define w. The indicator vector of a literal is
the vector in {0, —1, 1}" whose all coordinates are zero except the coordinate corresponding to the
literal, that is 1 (—1) if the literal is un-negated (negated). We define 7(C') as a concatenation
of K vectors, where the i’s vector is the indicator vector of the i’th literal in C. As for p, we

let p(z) € {—1, 1,0}"\/?1%(}() be a vector consisting of all products of the form z;, - ... ;, for
r < %\/K log(K), and padded with zeros in the remaining coordinates. We note that for large

enough n, the number of such products is < (nK + 1)%‘/E1°g(K) < pVKlog(K)

Now, it is not hard to see that the error of x(S) w.r.t. halfsapaces is exactly the error of 7(5)
w.r.t. POLy — the hypothesis class consisting of threshold functions of polynomials of degree at most
d2: VK log(K) . Therefore, we will want to show that if Erry, (S) < 155 then Errpor, (m(S)) <
. Suppose that Erry, (5) < ﬁ, and let ¢ € {£1}" such that Erry  (S) < ﬁ. To show that
Errpor, (7(S)) < 125 it is enough to construct a degree < d polynomial p : {—1,1,0}"% — R such

100
that Prj ) (hy(Cj) # sign(p(n(Cj)))) < 5. Indeed, in that case,

ETTPOLd (W(S)) < Pr ] (yj 7£ Sign(p(ﬂ'(Cj))))

j~m
s P s 7 he(C)) + Tr (hy(Cy) # sign(p(r(Cy))))
112

< E L
< By (9)+ 700 = 100 T 100 ~ 100

We note that we will actually find p with a stronger property - namely, that Pt (hy(Cj) # p(7(Cy))) <
1
m .
be needed for proving Theorem 1.3.

Unfortunately, it is not the case that we can always find such a polynomial. To overcome it, as
explained above, the reduction will first check a set of pseudo-random properties. Concretely, for
all small enough sets of literals, the reduction will check that the number of K-tuples that contain
all the literals in the set is close to what is expected for a random sample. For example, it will
check that the fraction of K-tuples containing the literal z7 is approximately %

It therefore remains to show that for pseudo-random S there is degree < d polynomial p :
{~1,1,0}"% — R such that Prj jm) (hy(Cj) # p(7(Cy))) < 5. To this end, consider the linear
map Ty : R™K — RE that is defined as

Ty (vifva] - - Jor) = ((v1,9), (v2,9), -, (vre, )

We note that VC € X, k, Ty (m(C)) = C(¢p). We will consider polynomials of the form p = p’ o T,
where p’ : {jzl}K — R is a degree < d polynomial. We note that for such p we have

Pr (hy(Cj) #p(n(C)))) = Pr (XOR(C;(¥)) # p'(Cj(¥))))

j~[m] j~[ml

This stronger property is not needed for proving the simplified version (Theorem 2.2), but will

It is therefore enough to find a degree < d polynomial p’ for which Pr, p) (XOR(z) = p'(2)) >
0.99. Here, D() is the distribution of the random variable C; (1)) where j ~ [m]. Now, even though
it is not possible to do that for general distributions, the fact that the sample is pseudo-random
implies that D(z)) is close, in a certain sense, to the uniform distribution on {+1}¥. Now, for



uniform z € {£1}¥ we have that )Zfil zi| < 3VKlog(K) w.p. 1 —o0k(1), and the same holds

for z ~ D(1)). Therefore, since XOR(z2) is fully determined given Zfil z;, and since Zfil z; takes
< d values in the interval [—d, d|, we can take p'(z) = p”(Zfil z;) where p” : R — R is a degree

< %\/Flog(K) polynomial that satisfies P”(Zi[; z;) = XOR(z) whenever ‘Zfil zi| < \/Elog(K).

Proving Theorem 1.3 in full

Theorem 2.2 differs from Theorem 1.3 in two aspects. The first is that in Theorem 1.3 the com-
1

pleteness parameter in the assumption can be arbitrarily close to 5 (rather than 0.99 in Theorem
2.2) and at the same time, the conclusion holds for n-almost realizable distributions for arbitrarily
small n (rather than n = 0.02 in Theorem 2.2). The second aspect, that is much more minor, is
that in Theorem 2.2 the hard distribution can be chosen to be supported in {—1,1,0}" x {£1},
while Theorem 1.3 is slightly more restrictive and requires that the distribution will be supported
in {£1}" x {£1}.

To address the first aspect, we will first reduce the random XOR problem to the random
majority-of-g-XORs problem, and then we will follow a similar (but slightly more involved) argu-
ment as the one described above. The reduction will work as follows. Given a XOR-formula with m
XOR-constraints, the reduction will produce a MXOR-formula with 2 constraints, each of which
is a majority of ¢ random XOR-constraints from the original formula. This reduction will amplify
the completeness parameter toward 1.

To address the second aspect, we note that halfspaces on {—1,1,0}" can be realized by halfspaces

on {£1}?" using the map ¥ : {—1,1,0}" — {£1}?" that is defined as follows:

U(z)=(V(x1),...,V(zy)),

1,1) z=1

where for x € {0,—1,1}, U(x) = ¢ (=1,—1) =z = —1. It is not hard to see that for every w € R"
(-1,1) z=0

we have hy, = hy, o ¥ where w' = %(wl,wl, .+, Wp,wy). This observation shows that if there

is no efficient algorithm with non-trivial performance on 7n(n)-almost-realizable distributions on
{=1,1,0}" x {£1}, then if there is no efficient algorithm with non-trivial performance on 7 (%)-
almost-realizable distributions on {£1}" x {£1}.

A road map

In section A.1 we analyze elementary properties of random formulas, and define accordingly a notion
of a pseudo-random formula. We also show that if J = {C1,...,Cp} C &), is a pseudo-random
formula, then for j ~ [m] and every assignment ¢ € {£1}", the distribution of the random variable
C;(¥) € {£1}¥ is close to the uniform distribution in a certain sense. In section A.2 we show that
for pseudo-random formulas, for every every assignment ¢ € {£1}", the mapping C; — C;(¢) can
be approximated by a low-degree polynomial. Finally, the full reduction is outlined in section A.3.
In section A.4 we briefly explain how our argument can be extended to prove Theorems 1.4 and
1.5.
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A Proof of Theorem 1.3

A.1 Pseudo-random formulas

A partial K-tuple supported in A C [K] is a mapping C : {#1}" — {—1,1,%}® such that the
output coordinates corresponding to A are literals corresponding to | A| different variables, and the
remaining coordinates are the constant function *. The size of C'is |A|. We denote by X, k 4 the
collection of partial K-tuples that are supported in A. We note that

X real = (20)(2n—2) - ... (2n+2 — 2]A)) 1)

For A C [K] we denote by IT4 : {#1}% — {—1,1,%}% the function that maps all coordinates
in [K]\ A to * and leaves the remaining coordinates unchanged. For C' € X, k¢ we denote by
Cp : {£1}" — {—1,1, %} the partial K-tuple IT4oC. For a K-formula .J, and a partial K-tuple C
we define the frequency of C in J as Fr;(C) = Heres:Cy=CH We note that the for random J, if C'is

m

14



a partial K-tuple that is supported in a set A of size ¢, then Fr J(C) is an average of m independent
Bernulli variables with parameter p, ; := By Hoeffding’s bound

1
X kAl - @n)(Cn—2)-...2(n—t+1))"
we have

Lemma A.1 Let J ={Cy,...,Cy} be a random formula. Then, for every partial K -tuple of size
t we have Prj (|Fr;(C) — ppy| > 7) < 2exp (—2m7?)

We say that J is (t, 7)-pseudo-random if ‘FI'J(C) — ppw| < T for every partial K-tuple C' of size
t' < t. We say that J is 7-pseudo-random if it is (K, 7)-pseudo-random. By lemma A.1, the fact
that the number of partial K-tuples is

1+Z( ) )(2n —2) ... (2n+2—2§) <2K(2n)K < (2n)*K

and the union bound we have

Lemma A.2 Let J = {Cy,...,Cp} be a random formula. Then the probability that J is not
T-pseudo-random is at most (2n)*2exp (—2m7?)

For a formula J = {C1,...,Cy,} C &, k and ¢ € {£1}", we denote by D(J,1)) the distribution of
the random variable C; (1) € {£1}¥ where j ~ Uni([m]). A vector z € {—1,1,*}¥ is supported in
AC[K]if A= {ic[K]|z # *}. We say that a distribution D on {1}X is (¢, u)-close to the
uniform distribution if for every z € {—1,1,*}¥ that is supported in a set A € ([k]) we have that

[Prowp (Ma(2) = 2) =27 <y

Lemma A.3 If J is (t,7)-pseudo-random then for every ¢ € {£1}", D(J,v) is (t,n'T)-close to
the uniform distribution.

Proof Fix a vector z € {—1,1 *}K supported in A € ([ t]) We have

by TaG) =2) = P (@Dal) =2)

= e lml | ()W) =2
=~ Y Eml@a=c)
CeXy, k,A|C(Y)=2

= > Fr;(C)

CEXnﬁK,A|C(¢):Z

Denote U = {C € &, k4 | C(¢) = 2z} and note that [U| =n(n—-1)-...-(n—|A|+1) = Ianf‘A\.
By the (¢, 7)-pseudo-randomness of J we have
S Pr ((Ca@) =2) =27 = |3 FryC) 27
j~Uni([m]) i
< Z Dn,|A| — 2=l 4 |U|T
ceUu
= ‘U|pn,\A\ _2_|A“ +|U|T= |U‘T§n|A‘T§ntT
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A.2 Approximately realizing assignments by polynomials

In this section we will show that when a formula J = {Cj,...,C,,} is pseudo-random then for
every assignment ¢ € {£1}" the mapping C' — XOR(C(v)) can be approximately realized by a
low-degree polynomial on J. Namely, there is a low degree polynomial p : X, k — {£1} such that
on most K-tuples C € J, we have p(C) = XOR(C(%)). To this end, we must represent K-tuples
as vectors. The way we will do this is the following. Recall that the indicator vector of a literal is
the vector in {0, —1, 1}" whose all coordinates are zero except the coordinate corresponding to the
literal, that is 1 (—1) if the literal is un-negated (negated). Also, we defined 7 : X, x — {0, -1, 1}"K
such that 7(C) is a concatenation of K vectors, where the i’s vector is the indicator vector of the
i’th literal in C.
We will use the following version of Chernoff’s bound from [52].

Lemma A.4 Let D be a distribution on {£1}£, 1> 5> 0 and % <a< % Assume that for
every z € {—1,1,*} that is supported in a set A of sizer = [BK| we have Prp (Il4(2") = 2) < a’.

Then
ZN'D(ZZZ >5K> <2exp< D(l—gﬁ,a) K)

i=1
Lemma A.5 Let D be a distribution on {1} that is (t, p)-close to the uniform distribution, and
let d such that K2Td“ < d <t. Then, there exists a degree < d polynomial p : {il}K — R such that

i1
Pr (XOR(2) # p(2)) < Zexp (—D (; n %7 % L2 : M) K)

Proof Let A : {+1}¥ — R be the linear mapping A(z) = ZZ 1 %i- We note that XOR(z) is fully
determined given A(z). Namely there is f : R — {£1} such that XOR = f o A. We note that
the image of A has at most d + 1 values in the interval [—d, d]. Therefore, there is a degree < d
polynomial ¢ : R — R that coincides with f on A ({£1}%) N[—d, d]. Consider now the degree < d

polynomial p = go A. We have that p coincides with XOR whenever | Zfi 1 %l < d. Hence, we have

Zz2>>.

The lemma, will now follow from Lemma A.4 when 8 = K and a =
that the conditions of the Lemmas hold, namely, that o < == 5 and that for every z € {—1,1,*}
that is supported in a set A of size r = [SK] = d we have PrZ/ND (Ta(2") = 2) < a. The first

conditions follows from the requirement that K2Td“ < d. For the second condition, since D is
(t, pv)-close to the uniform distribution and d < ¢ we have

=206 ()

<
Pr (XOR(2) # p(2)) < Pr (

. It remains to show

FORONCS
@
> Pr (ITx(2) = 2)
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Lemma A.6 Let J = {C,...,Cp} € X, k be (t,7)-pseudo-random, ¢ € {£1}" and d such that
% < d <t. Then, there exists a degree < d polynomial p : {0, —1, 1}”K — R such that

1 d 1 2%'ndr
P (XOR(C;(0) £ p(r(C) < 20w (-0 (54 5005+ =0 ) K

Proof Since J is (t, 7)-pseudo-random and d < ¢, it is also (d, 7)-pseudo-random. By Lemma A.3
D(J, %) is (d,nr)-close to the uniform distribution. Therefore, by Lemma A.5 there is degree < d
polynomial p’ for which

1 d 1 29lpdr
pr (X () <2exp (-D =+ =z +—"T) k) .
by FORE) #7(2)) < eXp( <2 Tak 2t T4 ) )

Now, let T : R*® — R be the linear map

T (v1fva] .. - |vr) = ((v1, 9), (v2,9), - -, {vK, )

Note that for all C' € &), g, T(7(C)) = C(¢). Consider the degree < d polynomial p =p’ o T. We
have

Pr (XOR(Cj(¥)) # p(r(Cy))) = Pr (XOR(C;(¥)) # p'(T(r(C))))

jtm] s
=, Pr (XOR(C;(v) #¥(C5(v))
= b (XORG) £5/(2)

1 d 1 201,
< 2exp<—D(2—|—2K,2+dT>K>

A.3 The reduction
Step I: Amplifying the gap — from XOR to majority of XORs
For odd ¢, we define the predicate MXOR,  : {1}9% — {£1} by

MXOR%K (Z) = MAJ (XOR(Zl, ceey Zk-), cee 7XOR(Z(q—1)K+17 cee ,ZqK))

A (q,K)-tuple is an element in X, ,x = (X, k)? For a (¢,K)-tuple C = (C!,...,C9) and
an assignment ¢ € {£1}" we denote C(v)) = (C*(¥),...,C9(v)) € {£1}9E A (¢, K)-formula
is a collection J = {C1,...,Cy} of (g, K)-tuples. An instance to the (¢, K)-MXOR problem is a
(¢, K)-formula, and the goal is to find an assignment ) € {£1}" that maximizes VALy yvixor(J) =

b MXOR,.r(GilD=I e define the value of J as VALyxor(J) := maxyei1yn VALy Mxor(J)-

m
Form = m(n), (¢, K) = (q(n), K(n)) and 3 > n = n(n) > 0, we say that the problem CSP?"1=7(MXOR, )
is easy, if there exists an efficient randomized algorithm, A with the following properties. Its input
is a (g, K)-formula J with n variables and m constraints and its output satisfies:

o If VALMXQR(J) >1—mn, then

(A(J) = “non-random”) >

e~ w

coins of A
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e If J is random” then, with probability 1 — 0,(1) over the choice of J,

3
p J) = “random”) > © |
coins 1c“)f.A(.A( ) randomm ) — 4

rand,l— 4exp<72(7] )2 )(

Lemma A.7 The problem CSP™4"(XOR) can be efficiently reduced to CSPL m |

MXOR, k).

We will use the following version of Chernoft’s bound from [52].

Lemma A.8 Let D be a distribution on {0,1}7 and n < 3. Assume that for every A C [q] we have
Pr,.p(Vi€e A,z =1) < nlAl. Then

7y(%23) <o (-0 (o) <om (2 ()

Proof (of Lemma A.7) Given a K-formula J = {C4,...,Cy} € &), k we will produce a (g, K)-
formula J" as follows. We first randomly throw m — m[ %] of J's K-tuples. Then, we randomly
partition the remaining tuples into L%J equally sized ordered bundles. For each such bundle
{Cj,,...,Cj,}, we add to J' the (¢, K)-tuple C' = (Cj,,...,C},). To see that the reduction works
note that:

e If J is random then so is J'.

e Assume now that VALxor(J) > 1—7, and let ¢ € {£1}" be an assignment with VAL, xor(J) >
1 —n. Consider a single random bundle {Cj,,...,C},}. By Lemma A.8 we have that
the probability that for most K-tuples in the bundle we have XORK P)) = —1is <

exp (—2 (n— 5) ) Hence, F [1 — VALyxor(J')] < exp ( By Markov’s in-

(
. / _ _ _ 1)2 > 3
equality we have that VALyxor(J') > 1 —4exp (—2(n—3) q) wp. > 5.

Step II: Making the sample scattered — from (MXOR) to (MXOR,-MXOR)

A labeled (g, K)-formula is a collection J = {(C1,y1)...,(Cm,ym)} C &g k. An instance to the
(¢, K)-(MXOR, —=MXOR) problem is a labeled (g, K)-formula, and the goal is to find an assignment
¢ € {£1}" that maximizes VALy vxor(J) = [1:MXOR,, I:n( W)=y}l We define the value of
J as VALyxor(J) = maxyeqi1yn VALy mxor(J). For m = m(n), (¢,K) = (q(n), K(n)) and
% > n = n(n) > 0, we say that the problem CSPX2"1="(MXOR, rr, "MXOR,, k) is easy, if there
exists an efficient randomized algorithm, A4 with the following properties. Its input is a labeled
(¢, K)-formula J with n variables and m constraints and its output satisfies:

o If VALyxor(J) > 1 — 7, then

(A(J) = “non-random”) >

A~ w

coins of A

4To be precise, the (¢, K)-tuples are chosen uniformly, and independently from one another.
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e If J is random® then, with probability 1 — 0,(1) over the choice of J,

Pr (A(J)= “random”) > % .

coins of A

Lemma A.9 The problem CSPIM1=1(MXOR,, ) can be efficiently reduced to CSPF1=1(MXOR, rr, “MXOR,,

Proof Given an instance J = {C1,...,Cy,} to CSPI=1(MXOR,, ), we will produce an instance
J' to CSPErdI=n(MXOR, j, "MXOR, i) as follows. For each Cj, w.p. 3 we will add to J’ the
pair (C;,1), and w.p. & we will add the pair (C%, —1) where C} = (C}l, . .,C;q) is obtained from
C; = (C]l, e ,C’;?) by flipping, for each C]i-, the sign of the first literal. It is not hard to see that
if J is random then so is J'. Also, for every ¢ € {£1}", VALy mxor(J) = VALy mxor(J’), and

therefore, if VALyxor(J) > 1 —n then VALyxor(J') > 1 — 1 as well. O

Step III: Enforcing pseudo-randomness

We say that a labeled (¢, K)-formula J is (¢, 7)-pseudo-random if the K-formula consisting of all the
K-tuples that appear in J is (¢, 7)-pseudo-random. For m = m(n), (¢, K) = (¢(n), K(n)), (t,7) =
(t(n),7(n)) and 3 > n = n(n) > 0, we say that the problem CSP?L?&”TI{"(MXOR%K, -MXOR, k)
is easy, if there exists an efficient randomized algorithm, A with the following properties. Its input
is a labeled (¢, K)-formula J with n variables and m constraints that is (¢, 7)-pseudo-random. Its

output satisfies:

o If VALMXOR(J) >1—mn, then

(A(J) = “non-random”) >

e~ w

coins of A

e If J is random® then, with probability 1 — 0, (1) over the choice of J,

Pr (A(J) = “random”) >

coins of A

>

Lemma A.10 For r = r(n) > 4, the problem CSP;ind’l_n(MXORq,K,_'MXOR%K) can be effi-
ciently reduced to CSPran(E’l_”z> (MXOR,, x, "MXOR,, k).

n",(rn
Proof Given and instance .J to CSP™" !~ (MXOR,, x, "MXOR,, x) we will simply check weather
it is <T, n7£>—pseudo—random or not. If it not, we will say that J is not random. Otherwise, we will

leave it as is as an instance to CSPram(i’l__"z) (MXORy, k, "MXOR, k). To see that this reduction
n",(rn

works, note that

o If VALyixor(J) > n, we will either say that it is not random or produce an (7“, n_£>-pseudo—

random instance with value > .

5To be precise, the (¢, K)-tuples and the labels are chosen uniformly, and independently from one another.
5To be precise, J is chosen uniformly at random from all (¢, 7)-pseudo-random labeled (g, K)-formulas.
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e If J is random, by lemma A.2, it is (r, n_i)—pseudo—random with probability at least

1— (2n)%2exp (—QnTn_%> =1—2exp (K log(2n) — 2nrn_%> >1—-o0,(1).

Hence, w.p. > 1 — 0,(1) the reduction will produce an instance. Now, conditioning on this
event, the produced formulas is a random labeled (¢, K)-formula that is (7‘, n_ﬁ)-pseudo—
random.

a

Step IV: From MXOR to polynomials

Let POL, 4 be the hypothesis class of all functions h : {0,—1,1}* — {+£} that are thresholds of
degree < d polynomials. For v = u(n), d = d(n), m = m(n) and n = n(n) we consider the problem
POL(u, d)i;scat’n of distinguishing a strongly-scattered sample from a sample with Errpor,,(S) < 7.
Concretely, the input is a sample S = {(z1,91), ..., (Tm,ym)} C {—1,1,0}* x {£1}, and we say
that the problem is easy if there exists an efficient randomized algorithm, A with the following
properties. Its input is such a sample S, and its output satisfies:

e If Errpor,,(S) < 7, then

(A(S) = “almost-realizable”) >

coins of A

>~ w

e If S is strongly scattered then, with probability 1 — 0,,(1) over the choice of the labels,

P —_ ) e
il (A(J) = “scattered”) > 1

Lemma A.11 For d such that 520 < d < ¢, CSPI( LI (MXORy i, "MXORy i) can effi-
ciently reduced to POL(ngK, d)5 *“" where

1 2d_1nd7'
'=n+2 — o+ —— K
o =0+ 2o (<D (54 g+ T ) K)

Proof Given a labeled (¢, K)-formula J = {(C1,y1), ..., (Cm,¥m)} C Xy g,k x {1} we will simply
produce the sample S = {(7(C1), yl) (7r( 'm m)} C { 1,1,0}"5 x {+1}. Here, I : X, 4 x —
{—1,1,0}"¥ is the mapping 7(C*,...,C9) = (x(C1),...,7(C?)), where 7 : X, x — {—1,1,0}"E
is as defined in section A.2.

Clearly if J is random then S is scattered. It remains to show that if VALyxor(J) > 1 —17
and J is (¢, 7)-pseudo-random then there is a degree < d polynomial that errs on < 7 fraction of
the examples.

Indeed, let 1p € {£1}" be an assignment that satisfies > 1 — 7 fraction of J’th (g, K)-tuples.
By lemma A.6, there is a polynomial p : { 1,1,0}"K — R of degree < d that satisfies p(7(C)) =

XOR(C(%)) on 1 — 2exp (—D (2 +ob, 1+ 2 1” )K) fraction of J’s K-tuples (here, J’s K-
tuples are the K-tuples that appear in one of J’s (q, K)-tuples).

Let p' : {—1,1,0}"% — R be the degree < d polynomial p/(z) = D i P(ZG1)K41r -+ 0 2iK) - Tt
is not hard to check that sign (p' (7 (C))) = MXOR(C(¢)) on 1—2q exp (—D (% + 5,1+ 2d7;"d7> K)
fraction of J’s (¢, K)-tuples.

Therefore, we have that sign (p/(7(C;))) # y; for at most n+2q exp (—D (% + 5L, 2+ Zd_;”df) K)
fraction of the samples in S. O

l\’)\r—t

o
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Step V: From polynomials to halfspaces

Let u = u(n), m = m(n) and = n(n). Similarly to POL(u, d)5, **", we define HALF (u)}, ****" as
the problem of distinguishing a strongly-scattered sample consisting of m examples in {£1}*x{£1},
from a sample with Errgarr(S) < n.

Lemma A.12 The problem POL(u,d), """ can efficiently reduced to HALF (2 (2(u+1) )S seatn

Proof It will be convenient to decompose the reduction into two steps, where the second only
deals with the issue of replacing {—1,1,0}®+D* by {£1}2@+D?  Given a sample

S = {(xlayl) B (xrmym)} - {_17 170}“ X {il}

the reduction will first produce the sample

p(S) = {(p(@1), 1) -, (p(@m), ym)} C {1, 1,010 x {1},

where p : {-1,1,0}* — {—1,1,0}(“+1)d is defined as follows. We index the coordinates in
{-1,1, 0}(“+1)d by the functions in ([u] U {+})!¥ and we let

Vie(uu{=H, ppla) =Tz .

(where z, := 1). It is not hard to see that the collection of degree < d polynomial functions from
{—1,1,0}" to R equals to
{z= wp(a)) | w e ROFTY

Hence, EH‘POL%d(S) = Errparr(p(9)).
In the second step the reduction will produce the sample

W(p(S)) = {(T(p(@1)), 1) - (W(p(wm))s ym)} € {12V {1}
U {—1,1,0}D" 5 {41320+D7 that is defined as follows:
U(z) = (V(z1),...,9(z,)) ,

(1,1) z=1

where for x € {0, 1,1}, ¥(z) = { (—1,—1) x = —1. It is not hard to see that for every w €
(-1,1) =z=0
RO we have hy = hyy 0 U where w' = F(wy,w, ... s Wyt 1)d, Wys1)e). Therefore we have

Errgarr (¥(p(S5))) < Errpavr(p(S)) = Errpor, ,(5)

Also, it is clear that if S is strongly scattered then so is ¥(p(S)). To summarize, the reduction
S+ W(p(S)) forms a reduction from POL(u,d), **" to HALF (2(u + 1) > seatn O

Connecting the dots

We start with the hard problem CSP™(XOR). Using Lemma A.7 and Lemma A.9, we reduce

it to CSPﬁnfj 2 (MXORq, K, "MXOR, k). Since 7 is bounded away from 3, this can be done with
q = C- K for a constant C' = C(n). We can reduce farther to CSPYand > (MXOR%K7 -MXOR, k)
(by simply throwing away random L’Z | —n"~! tuples from the 1nput formula)
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Now, we use Lemma A.10 to reduce to csprend:2* .1 (MXOR, i, "MXOR, k). Using

nr—1l (r—1,n~ "4 )
Lemma A.11, for every d such that M < d < r we can reduce to POL(nCK?, d)i:iﬁat’” for

d 9d—1,d—r+1 2
"< 27K L 90K 2l—=-———) K| .
n < + 2CK exp ( <2K 7 )

We will choose d such that d = o(r) and d = w ( log(K)K) (the exact choice depend on the

assumption we start with and will be specified later). It is not hard to check that for such a choice,
2dnd—7‘+1
d

it holds that for large enough r and K, &
Cqp > 0. )
Now, by Lemma A.12 we can reduce farther to HALF(TLM)Z:EClat’". Putting n’ = n*, we

conclude that HALF(r/)* 5" _ Since d = o(r), this can be reduced farther (by simply randomly

n/ 4d
throwing examples from the input sample) to HALF(n/ )i;fcat’n for any constant a > 0. By Theorem

2.1, we conclude that there is no efficient learning algorithm that can return a hypothesis with non-
trivial error on a distribution D on {£1}" x {£1} that is 7/-almost realizable by halfspaces.

For the choice of d and the calculation of 7’ in terms of n’, we split to two cases, according to
the assumption we started with.

Case 1 (Assumption 1.1). Here, r = clog(K)vVK and K is constant. We will choose

4
d = logg(K)\/F. We will have n/ < 2_Q(log3(K)). Since K can be arbitrarily large, ' can be
arbitrarily small.
Case 2 (Assumption 1.2). Here, r = ¢K and K = log®(n). Here, we will choose d =
Note that

d2
<d<r—1andn < 2% for a constant

_ K
loglog K*

K
2703 (log log K)?2

. log®(n)
= 9 O3 Toglog K72

3\
IN

< 27 log®~!(n)

Now, log(n’) = 4dlog(n) = 1og1igK log®*t1(n) <log**t1(n). Hence,

n/ < 2flog%(n’)
Since s can be arbitrarily large, we can get ' < 9~ log!~¥(n")

A.4 How to prove Theorems 1.4 and 1.57

We next briefly explain how our argument can be extended to prove Theorems 1.4 and 1.5.

Theorem 1.4 is proved analogously to Theorem 1.3. The only difference is that we have to verify
certain properties of the vector defining the halfspace that almost realizes the sample. Namely, we
have to make sure that (i) the sum of its coefficients of is polynomial in the dimension and (ii) that
whenever we guarantee that its prediction is correct, its inner product with the instance is > 1
in absolute value. These two facts can be straight forwardly verified, by carefully going over the
proof.

Theorem 1.5 can also be proved analogously to Theorem 1.3. The only difference is that we
have to verify that (i) the problem we start with cannot be solved efficiently using statistical queries
and that (ii) the reduction steps can be done using statistical queries. This strategy can indeed
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be carried out, if one is using the result [39] of Feldman, Perkins and Vempala, that shows the
SQ-hardness of the initial problem. However, a simpler strategy can be applied. Concretely, we
can use our argument to reduce the uniform K-sparse-parity learning problem to the problems of
learning halfspaces. In this parity problem, the learning algorithm is given an access to examples
(z,h(x)) where x € {£1}" is uniformly distributed and h computes the XOR of K unknown
variables. It is known [22, 21] that no SQ-algorithm for the problem can return a classifier with
error < % — polK) using n°K) queries with error parameters n=°¥). Lemma A.5 shows that for
any XOR of K variables, there is a polynomial threshold function of degree d that agree with h on

all but 2exp (—%)-fraction of the examples (w.r.t. the uniform distribution). As in the proof of

Theorem 1.3, this fact establishes a reduction to the problem of agnostically learning halfspaces.
All is left to show is that this reduction can be implemented using statistical queries.

Indeed, the reduction is of the following form. It introduces a mapping W : {+1}" — {£1}"
and reduce the original learning problem to the problem of learning (V(x), h(z)), where x is sampled
from the original distribution (the uniform distribution in our case). Now, given a statistical query
Q : {1} x{#1} — {#£1}, in order to evaluate E, [Q(¥(x), h(x))], we can simply query the oracle
of the original problem with the function Q(x,y) := Q(¥(z),y).
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