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Abstract

We give a new general approach for designing exact exponential-time algorithms for subset
problems. In a subset problem the input implicitly describes a family of sets over a universe
of size n and the task is to determine whether the family contains at least one set. A typical
example of a subset problem is Weighted d-SAT. Here, the input is a CNF-formula with
clauses of size at most d, and an integer W . The universe is the set of variables and the
variables have integer weights. The family contains all the subsets S of variables such that the
total weight of the variables in S does not exceed W , and setting the variables in S to 1 and
the remaining variables to 0 satisfies the formula. Our approach is based on “monotone local
search”, where the goal is to extend a partial solution to a solution by adding as few elements as
possible. More formally, in the extension problem we are also given as input a subset X of the
universe and an integer k. The task is to determine whether one can add at most k elements
to X to obtain a set in the (implicitly defined) family. Our main result is that a cknO(1) time
algorithm for the extension problem immediately yields a randomized algorithm for finding a
solution of any size with running time O((2− 1

c )n).
In many cases, the extension problem can be reduced to simply finding a solution of size at

most k. Furthermore, efficient algorithms for finding small solutions have been extensively stud-
ied in the field of parameterized algorithms. Directly applying these algorithms, our theorem
yields in one stroke significant improvements over the best known exponential-time algorithms
for several well-studied problems, including d-Hitting Set, Feedback Vertex Set, Node
Unique Label Cover, and Weighted d-SAT. Our results demonstrate an interesting and
very concrete connection between parameterized algorithms and exact exponential-time algo-
rithms.

We also show how to derandomize our algorithms at the cost of a subexponential multi-
plicative factor in the running time. Our derandomization is based on an efficient construction
of a new pseudo-random object that might be of independent interest. Finally, we extend our
methods to establish new combinatorial upper bounds and develop enumeration algorithms.
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1 Introduction

In the area of exact exponential-time algorithms, the objective is to design algorithms that outper-
form brute-force for computationally intractable problems. Because the problems are intractable
we do not hope for polynomial time algorithms. Instead the aim is to allow super-polynomial time
and design algorithms that are significantly faster than brute-force. For subset problems in NP,
where the goal is to find a subset with some specific properties in a universe on n elements, the
brute-force algorithm that tries all possible solutions has running time 2nnO(1). Thus our goal is
typically to design an algorithm with running time cnnO(1) for c < 2, and we try to minimize the
constant c. We refer to the textbook of Fomin and Kratsch [20] for an introduction to the field.

In the area of parameterized algorithms (see [12]), the goal is to design efficient algorithms for
the “easy” instances of computationally intractable problems. Here the running time is measured
not only in terms of the input size n, but also in terms of a parameter k which is expected to be
small for “easy” instances. For subset problems the parameter k is often chosen to be the size of the
solution sought for, and many subset problems have parameterized algorithms that find a solution
of size k (if there is one) in time cknO(1) for a constant c, which is often much larger than 2.

In this paper we address the following question: Can an efficient algorithm for the easy instances
of a hard problem yield a non-trivial algorithm for all instances of that problem? More concretely,
can parameterized algorithms for a problem be used to speed up exact exponential-time algorithms
for the same problem? Our main result is an affirmative answer to this question: we show that,
for a large class of problems, an algorithm with running time cknO(1) for any c > 1 immediately
implies an exact algorithm with running time O((2− 1

c )
n+o(n)) for the problem. Our main result,

coupled with the fastest known parameterized algorithms, gives in one stroke the first non-trivial
exact algorithm for a number of problems, and simultaneously significantly improves over the best
known exact algorithms for several well studied problems; see Table 1 for a non-exhaustive list
of corollaries. Our approach is also useful to prove upper bounds on the number of interesting
combinatorial objects, and to design efficient algorithms that enumerate these objects; see Table 2.

At this point it is worth noting that a simple connection between algorithms running in time
cknO(1) for c < 4 and exact exponential-time algorithms beating O(2n) has been known for a long
time. For subset problems, where we are looking for a specific subset of size k in a universe of size
n, to beat O(2n) one only needs to outperform brute-force for values of k that are very close to
n/2. Indeed, for k sufficiently far away from n/2, trying all subsets of size k takes time

(
n
k

)
nO(1)

which is significantly faster than O(2n). Thus, if there is an algorithm deciding whether there is
a solution of size at most k in time cknO(1) for some c < 4, we can deduce that the problem can
be solved in time O((2 − ε)n) for an ε > 0 that depends only on c. On the other hand, it is easy
to see that this trade-off between ck and

(
n
k

)
does not yield any improvement over 2n when c ≥ 4.

Our main result significantly outperforms the algorithms obtained by this trade-off for every value
of c > 1, and further yields better than O(2n) time algorithms even for c ≥ 4.

As a concrete example, consider the Interval Vertex Deletion problem. Here the input is
a graph G and an integer k and the task is to determine whether G can be turned into an interval
graph by deleting k vertices. The fastest parameterized algorithm for the problem is due to Cao
[8] and runs in time 8knO(1). Combining this algorithm with the simple trade-off scheme described
above does not outperform brute-force, since 8 ≥ 4. The fastest previously known exponential-time
algorithm for the problem is due to Bliznets et al. [4], and runs in time O((2− ε)n) for ε < 10−20.
On the other hand, combining the parameterized algorithm, as a black box, with our main result
immediately yields a 1.875n+o(n) time algorithm for Interval Vertex Deletion.

Our results. We need some definitions in order to state our results precisely. We define an implicit
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set system as a function Φ that takes as input a string I ∈ {0, 1}∗ and outputs a set system (UI ,FI),
where UI is a universe and FI is a collection of subsets of UI . The string I is referred to as an
instance and we denote by |UI | = n the size of the universe and by |I| = N the size of the instance.
We assume that N ≥ n. The implicit set system Φ is said to be polynomial time computable if (a)
there exists a polynomial time algorithm that given I produces UI , and (b) there exists a polynomial
time algorithm that given I, UI and a subset S of UI determines whether S ∈ FI . All implicit set
systems discussed in this paper are polynomial time computable, except for the minimal satisfying
assignments of d-CNF formulas which are not polynomial time computable unless P=NP [44].

An implicit set system Φ naturally leads to some problems about the set system (UI ,FI). Find
a set in FI . Is FI non-empty? What is the cardinality of FI? In this paper we will primarily focus
on the first and last problems. Examples of implicit sets systems include the set of all feedback
vertex sets of a graph of size at most k, the set of all satisfying assignments of a CNF formula of
weight at most W , and the set of all minimal hitting sets of a set system. Next we formally define
subset problems.

Φ-Subset
Input: An instance I
Output: A set S ∈ FI if one exists.

An example of a subset problem is Min-Ones d-Sat. Here for an integer k and a propositional
formula F in conjunctive normal form (CNF) where each clause has at most d literals, the task is
to determine whether F has a satisfying assignment with Hamming weight at most k, i.e., setting
at most k variables to 1. In our setting, the instance I consists of the input formula F and the
integer k, encoded as a string over 0s and 1s. The implicit set system Φ is a function from I to
(UI ,FI), where UI is the set of variables of F , and FI is the set of all satisfying assignments of
Hamming weight at most k.

Our results will rely on parameterized algorithms for a generalization of subset problems where
we are also given as input a set X ⊆ UI and an integer k and the question is whether it is possible
to obtain a set from FI by adding at most k elements from UI to X. We give a formal definition
of such problems, which we call extension problems.

Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Question: Does there exists a subset S ⊆ (UI \X) such that S ∪X ∈ FI and |S| ≤ k?

Our first main result gives exponential-time randomized algorithms for Φ-Subset based on single-
exponential parameterized algorithms for Φ-Extension with parameter k. Our randomized algo-
rithms are Monte Carlo algorithms with one-sided error. On no-instances they always return no,
and on yes-instances they return yes (or output a certificate) with probability > 1

2 .

Theorem 1. If there exists an algorithm for Φ-Extension with running time ckNO(1) then there
exists a randomized algorithm for Φ-Subset with running time (2− 1

c )
nNO(1).

Our second main result is that the algorithm of Theorem 1 can be derandomized at the cost of a
subexponential factor in n in the running time.

Theorem 2. If there exists an algorithm for Φ-Extension with running time ckNO(1) then there
exists an algorithm for Φ-Subset with running time (2− 1

c )
n+o(n)NO(1).

To exemplify the power of these theorems, we give a few examples of applications. We have already
seen the first example, the 1.875n+o(n) time algorithm for Interval Vertex Deletion. Let us
now consider the Min-Ones d-SAT problem described above.
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A simple branching algorithm solves the extension problem for Min-Ones d-SAT as follows.
Suppose we have already selected a set X of variables to set to 1, remove all clauses containing a
positive literal on X, and remove negative literals on X from the remaining clauses. Start from
the all-0 assignment on the remaining variables, with a budget for flipping k variables from 0 to 1.
As long as there is an unsatisfied clause, guess which one of the at most d variables in this clause
should be flipped from 0 to 1, and for each proceed recursively with the budget decreased by one.
The recursion tree of this algorithm has depth at most k, and each node of the recursion tree has
at most d children, thus this algorithm terminates in time dk · nO(1).

Hence, by Theorem 2, Min-Ones d-SAT can be solved in time (2− 1
d)n+o(n). For d = 3 there is

a faster parameterized algorithm with running time 2.562knO(1) due to Kutzkov and Scheder [31].
Thus Min-Ones 3-SAT can be solved in time O(1.6097n). Since d-Hitting Set is a special case
of Min-Ones d-SAT, the same bounds hold for this problem as well, and the same approach works
for weighted variants of these problems. However, due to faster known parameterized algorithms
for d-Hitting Set, our theorem implies faster exact algorithms for d-Hitting Set with running
time (2− 1

(d−0.9255))n.
Another interesting example is the Feedback Vertex Set problem. Here the task is to decide,

for a graph G and an integer k, whether G can be made acyclic by removing k vertices. While this
problem is trivially solvable in time 2nnO(1) for n-vertex graphs, breaking the 2n-barrier for the
problem was an open problem in the area for some time. The first algorithm breaking the barrier is
due to Razgon [36]. The running time O(1.8899n) of the algorithm from [36] was improved in [18]
to O(1.7548n). Then Xiao and Nagamochi [43] gave an algorithm with running time O(1.7356n).
Finally an algorithm of running time O(1.7347n) was obtained in [21]. For the parameterized
version of the problem there was also a chain of improvements [9, 10, 15, 25] resulting in a 3knO(1)

time randomized algorithm [13] and a 3.591knO(1) time deterministic algorithm [28]. This, coupled
with our main theorem, immediately gives us randomized and deterministic algorithms of running
times O(1.6667n) and O(1.7216n), respectively.

More generally, let Π be a hereditary family of graphs. That is, if G ∈ Π then so are all its
induced subgraphs. Examples of hereditary families include the edgeless graphs, forests, bipartite
graphs, chordal graphs, interval graphs, split graphs, and perfect graphs. Of course this list is not
exhaustive. For every hereditary graph family Π there is a natural vertex deletion problem, that
we define here.

Π-Vertex Deletion
Input: An undirected (or directed) graph G and an integer k.
Question: Is there a set S ⊆ V (G) with |S| ≤ k such that G− S ∈ Π?

We can cast Π-Vertex Deletion as a Φ-Subset problem as follows. The instance I describes
the graph G, so UI = V (G) and FI is the family of subsets S of V (G) of size at most k such that
G−S ∈ Π. Notice that a polynomial time algorithm to determine whether a graph G is in Π yields
a polynomial time algorithm to determine whether a set S is in FI , implying that Φ is polynomial
time computable. Moreover, a ckNO(1) time algorithm for Π-Vertex Deletion trivially gives the
same running time for its extension variant, since vertices in X can simply be deleted. Also, if Π
is characterized by a set of forbidden induced subgraphs which all have at most d vertices, such as
cographs (d = 4) and split graphs (d = 5), we can reduce the Π-Vertex Deletion problem to
d-Hitting Set where the number of elements is the number of vertices of the input graph.

In Table 1 we list more applications of Theorem 2. We also provide the running times of
the fastest known parameterized and exact algorithms. The problem definitions are given in the
appendix. For most of these problems, the results are obtained by simply using the fastest known
parameterized algorithm in combination with Theorem 2. Some of the results (for Weighted
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Problem Name Parameterized New bound Previous Bound

Feedback Vertex Set 3k (r) [13] 1.6667n (r)

Feedback Vertex Set 3.592k [28] 1.7217n 1.7347n [21]

Subset Feedback Vertex Set 4k [42] 1.7500n 1.8638n [19]

Feedback Vertex Set in Tournaments 1.6181k [30] 1.3820n 1.4656n [30]

Group Feedback Vertex Set 4k [42] 1.7500n NPR

Node Unique Label Cover |Σ|2k [42] (2− 1
|Σ|2 )n NPR

Vertex (r, `)-Partization (r, ` ≤ 2) 3.3146k [3, 29] 1.6984n NPR

Interval Vertex Deletion 8k [8] 1.8750n (2− ε)n for ε < 10−20 [4]

Proper Interval Vertex Deletion 6k [40, 7] 1.8334n (2− ε)n for ε < 10−20 [4]

Block Graph Vertex Deletion 4k [1] 1.7500n (2− ε)n for ε < 10−20 [4]

Cluster Vertex Deletion 1.9102k [5] 1.4765n 1.6181n [17]

Thread Graph Vertex Deletion 8k [27] 1.8750n NPR

Multicut on Trees 1.5538k [26] 1.3565n NPR

3-Hitting Set 2.0755k [41] 1.5182n 1.6278n [41]

4-Hitting Set 3.0755k [17] 1.6750n 1.8704n [17]

d-Hitting Set (d ≥ 3) (d− 0.9245)k [17] (2− 1
(d−0.9245)

)n [11, 17]

Min-Ones 3-SAT 2.562k [31] 1.6097n NPR

Min-Ones d-SAT (d ≥ 4) dk (2− 1
d
)n NPR

Weighted d-SAT (d ≥ 3) dk (2− 1
d
)n NPR

Weighted Feedback Vertex Set 3.6181k [1] 1.7237n 1.8638n [18]

Weighted 3-Hitting Set 2.168k [39] 1.5388n 1.6755n [11]

Weighted d-Hitting Set (d ≥ 4) (d− 0.832)k [17, 39] (2− 1
d−0.932

)n [11]

Table 1: Summary of known and new results for different optimization problems. NPR means that
we are not aware of any previous algorithms faster than brute-force. All bounds suppress factors
polynomial in the input size N . The algorithms in the first row are randomized (r).

d-Hitting Set) follow from a variant that relies on algorithms for a permissive version of Φ-Ex-
tension; see Subsection 2.3.

We also extend the technique developed for decision problems to enumeration problems and
to prove combinatorial upper bounds. For example, a minimal satisfying assignment of a d-CNF
formula is a satisfying assignment a such that no other satisfying assignment sets every variable to
0 that a sets to 0. It is interesting to investigate the number of minimal satisfying assignments of
d-CNF formulas, algorithms to enumerate these assignments, and upper bounds and enumeration
algorithms for other combinatorial objects.

Formally, let Φ be an implicit set system and c ≥ 1 be a real-valued constant. We say that Φ
is c-uniform if, for every instance I, set X ⊆ UI , and integer k ≤ n − |X|, the cardinality of the
collection

FkI,X = {S ⊆ UI \X : |S| = k and S ∪X ∈ FI}

is at most cknO(1). The next theorem will provide new combinatorial upper bounds for collections
generated by c-uniform implicit set systems.

Theorem 3. Let c > 1 and Φ be an implicit set system. If Φ is c-uniform, then |FI | ≤
(
2− 1

c

)n
nO(1)

for every instance I.

We say that an implicit set system Φ is efficiently c-uniform if there exists an algorithm that given
I, X and k enumerates all elements of FkI,X in time ckNO(1). In this case, we can enumerate FI in
the same time, up to a subexponential factor in n.
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Problem Name c-uniform New bound Previous Bound

Minimal FVSs in Tournaments 3 1.6667n 1.6740n [23]
Minimal 3-Hitting Sets 3 1.6667n 1.6755n [11]
Minimal 4-Hitting Sets 4 1.7500n 1.8863n [11]
Minimal 5-Hitting Sets 5 1.8000n 1.9538n [11]
Minimal d-Hitting Sets d (2− 1

d
)n (2− εd)n with εd < 1/d [11]

Minimal d-Sat (d ≥ 2) d (2− 1
d
)n NPR

Minimal FVSs in chordal graphs 3 1.6667n 1.6708n [24]
Minimal Subset FVSs in chordal graphs 3 1.6667n NPR
Maximal r-colorable induced subgraphs of perfect graphs r + 1 (2− 1

r+1
)n NPR

Table 2: Summary of known and new results for different combinatorial bounds. NPR means that
we are not aware of any previous results better than 2n. All bounds suppress factors polynomial
in the universe size n.

Theorem 4. Let c > 1 and Φ be an implicit set system. If Φ is efficiently c-uniform, then there is

an algorithm that given as input I enumerates FI in time
(
2− 1

c

)n+o(n)
NO(1).

For minimal satisfying assignments of d-CNF formulas, we observe that the afore-mentioned branch-
ing algorithm for the extension version of Min-Ones d-Sat, which explores the Hamming ball of
radius k around the all-0 assignment of the reduced instance, encounters all minimal satisfying
assignments extending X by at most k variables. Thus, minimal satisfying assignments for d-CNF
formulas are d-uniform. It follows immediately that minimal d-hitting sets are d-uniform and they
are also efficiently d-uniform.

By a classical theorem of Moon from 1971 [33], the number of maximal transitive subtourna-
ments in an n-vertex tournament does not exceed 1.7170n. In [23], Gaspers and Mnich improved
this bound to 1.6740n. Our approach yields immediately a better bound of O(1.6667n) since every
directed 3-cycle needs to be hit. Similarly, in chordal graphs, a set is a feedback vertex set (FVS)
if it hits every 3-cycle. For maximal r-colorable induced subgraphs of perfect graphs it suffices to
hit every clique of size r + 1. Some consequences of our results for enumeration algorithms and
combinatorial bounds are given in Table 2.

Local Search versus Monotone Local Search. One of the successful approaches for obtain-
ing exact exponential-time algorithms for d-SAT is based on sampling and local search. In his
breakthrough paper Schöning [38] introduced the following simple and elegant approach: sample
a random assignment and then do a local search in a Hamming ball of small radius around this
assignment. With the right choice of the parameter for the local search algorithm (the Hamming
distance, in this case) it is possible to prove that with a reasonable amount of samples this algorithm
decides the satisfiability of a given formula with good probability. The running time of Schöning’s
algorithm on formulas with n variables is O((2 − 2/d)n) and it was shown by Moser and Scheder
[34] how to derandomize it in almost the same running time, see also [14].

While this method has been very successful for satisfiability, it is not clear how to apply this
approach to other NP-complete problems, in particular to optimization problems, like finding a
satisfying assignment of Hamming weight at most k or finding a hitting set of size at most k. The
reason why Schöning’s approach cannot be directly applied to optimization problems is that it is
very difficult to get efficient local search algorithms for these problems.

Consider for example Min-Ones d-Sat. If we select some assignment a as a center of Hamming
ball Br of radius r, there is a dramatic difference between searching for any satisfying assignment
in Br, and a satisfying assignment of Hamming weight at most k in Br. In the first case the local
search problem can be solved in time dr · nO(1). In the second case we do not know any better

5



alternative to a brute-force search. Indeed, an algorithm with running time on the form f(r) ·nO(1)

for any function f would imply that FPT = W[1]. This issue is not specific to Min-Ones d-Sat: it
is known that the problem of searching a Hamming ball Br of radius r is W[1]-hard parameterized
by r for most natural optimization problems [16].

Despite this obstacle, our approach is based on sampling an initial solution, and then performing
a local search from that solution. The way we get around the hardness of local search is to make
the local search problem easier, at the cost of reducing the success probability of the sampling
step. Specifically, we only consider monotone local search, where we are not allowed to remove any
elements from the solution, and only allowed to add at most k new elements. Instead of searching
a Hamming ball around the initial solution, we look for a solution in a Hamming cone. Monotone
local search is equivalent to the extension problem, and it turns out that the extension problem
can very often be reduced to the problem of finding a solution of size at most k. This allows us to
use for our monotone local search the powerful toolbox developed for parameterized algorithms.

Our approach. Our algorithm is based on random sampling. Suppose we are looking for a solution
S of size k in a universe U of size n, and we have already found some set X of size t which we
know is a subset of S. At this point, one option we have is to run the extension algorithm – this
would take time ck−t · nO(1). Another option is to pick a random vertex x from U \X, add x to X
and then proceed. We succeed if x is in S \X, so the probability of success is (k − t)/(n − t). If
we succeed in picking x from S \X then k − t drops by 1, so running the extension algorithm on
X ∪ {x} is a factor c faster than running it on X. Therefore, as long as (k − t)/(n− t) ≥ 1/c it is
better to keep sampling vertices and adding them to X. When (k− t)/(n− t) < 1/c it is better to
run the algorithm for the extension problem. This is the entire algorithm!

While the description of the algorithm is simple, the analysis is a bit more involved. At a first
glance it is not at all obvious that a 100k ·nO(1) time algorithm for the extension problem gives any
advantage over trying all subsets of size k in

(
n
k

)
time. To see why our approach outperforms

(
n
k

)
,

it is helpful to think of the brute-force algorithm as a randomized algorithm that picks a random
subset of size k by picking one vertex at a time and inserting it into the solution. The success
probability of such an algorithm is

k

n
· k − 1

n− 1
· k − 2

n− 2
· . . . · 2

n− (k − 2)
· 1

n− (k − 1)
=

1(
n
k

) .
Notice that in the beginning of the random process the success probability of each step is high,
but that it gets progressively worse, and that in the very end it is close to 1/n. At some point we
have picked t vertices and (k − t)/(n − t) drops below 1/c. Here we run the extension algorithm,
spending time ck−t, instead of continuing with brute-force, which would take time(

n− t
k − t

)
=
n− t
k − t

· n− t− 1

k − t− 1
· . . . · n− k + 2

2
· n− k + 1

1

which is a product of k − t larger and larger terms, with even the first and smallest term being
greater than c. Thus we can conclude that any ck algorithm will give some improvement over 2n.

Notice that if the algorithm is looking for a set of size k in a universe of size n, the number
t of vertices to sample before the algorithm should switch from picking more random vertices to
running the extension algorithm can directly be deduced from n, k, and c. The algorithm picks a
random set X of size t, and runs the extension algorithm on X. We succeed if X is a subset of a
solution, hence the success probability is p =

(
k
t

)
/
(
n
t

)
. In order to get constant success probability,

we run the algorithm 1/p times, taking time ck−t · nO(1) for each run.
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In order to derandomize the algorithm we show that it is possible to construct in time (1/p)·2o(n)

a family F of sets of size t, such that |F| ≤ (1/p) · 2o(n), and every set of size k has a subset of
size t in F . Thus, it suffices to construct F and run the extension algorithm on each set X in F .
The construction of the family F lends ideas from Naor et al. [35], however their methods are not
directly applicable to our setting.

The main technical contribution of this paper is a non-trivial generalization of local-search based
satisfiability algorithms to a wide class of optimization problems. Instead of covering the search
space by Hamming balls, we cover it by Hamming cones and use a parameterized algorithm to
search for a solution in each of the cones.

2 Combining Random Sampling with FPT Algorithms

In this section we prove our main results, Theorems 1–4, that will give new algorithms to find a set
in FI and to enumerate the sets in FI . For many potential applications, the objective is to find a
minimum-size set with certain properties, for example that the removal of this set of vertices yields
an acyclic graph. This can easily be done using the algorithms resulting from Theorems 1 and 2
with only a polynomial overhead by using binary search over k, the size of the targeted set S, and
specifying that FI contains only sets of size at most k.

2.1 Picking Random Subsets of the Solution.

This subsection is devoted to the proof of Theorem 1. The theorem will follow from the following
lemma, which gives a new randomized algorithm for Φ-Extension.

Lemma 2.1. If there is a constant c > 1 and an algorithm for Φ-Extension with running
time ckNO(1), then there is a randomized algorithm for Φ-Extension with running time (2 −
1
c )
n−|X|NO(1).

Proof. Let B be an algorithm for Φ-Extension with running time ckNO(1). We now give another
algorithm, A, for the same problem. A is a randomized algorithm and consists of the following two
steps for an input instance (I,X, k′) with k′ ≤ k.

1. Choose an integer t ≤ k′ depending on c, n, k′ and |X|, and then select a random subset Y
of UI \X of size t. The choice of t will be discussed towards the end of the proof.

2. Run Algorithm B on the instance (I,X ∪ Y, k′ − t) and return the answer.

This completes the description of Algorithm A. Its running time is clearly upper bounded by
ck
′−tNO(1).

If A returns yes for (I,X, k′), this is because B returned yes for (I,X ∪ Y, k′ − t). In this case
there exists a set S ⊆ UI \ (X ∪ Y ) of size at most k′ − t ≤ k − t such that S ∪X ∪ Y ∈ FI . Thus,
Y ∪ S witnesses that (I,X, k) is indeed a yes-instance.

Next we lower bound the probability that A returns yes in case there exists a set S ⊆ UI \X
of size exactly k′ such that X ∪ S ∈ FI . The algorithm A picks a set Y of size t at random from
UI \X. There are

(
n−|X|
t

)
possible choices for Y . If A picks one of the

(
k′

t

)
subsets of S as Y then

A returns yes. Thus, given that there exists a set S ⊆ UI \X of size k′ such that X ∪ S ∈ FI , we
have that

Pr [A returns yes] ≥ Pr[Y ⊆ S] =

(
k′

t

)
/

(
n− |X|

t

)
.
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Let p(k′) =
(
k′

t

)
/
(
n−|X|
t

)
. For each k′ ∈ {0, . . . , k}, our main algorithm runsA independently 1/p(k′)

times with parameter k′. The algorithm returns yes if any of the runs of A return yes. If (I,X, k)
is a yes-instance, then the main algorithm returns yes with probability at least mink′≤k{1 − (1 −
p(k′))1/p(k′)} ≥ 1− 1

e >
1
2 . Next we upper bound the running time of the main algorithm, which is

∑
k′≤k

1

p(k′)
· ck′−tNO(1) ≤ max

k′≤k

(
n−|X|
t

)(
k′

t

) · ck′−tNO(1) ≤ max
k≤n−|X|

(
n−|X|
t

)(
k
t

) · ck−tNO(1).

We are now ready to discuss the choice of t in the algorithm A. The algorithm A chooses the

value for t that gives the minimum value of
(n−|X|t )

(k
′
t )
· ck′−t. Thus, for fixed n and |X| the running

time of the algorithm is upper bounded by

max
0≤k≤n−|X|

{
min

0≤t≤k

{(
n−|X|
t

)(
k
t

) ck−tNO(1)

}}
. (1)

We upper bound the expression in (1) by
(
2− 1

c

)n−|X|
NO(1) in Lemma 2.2. The running time of

the algorithm is thus upper bounded by
(
2− 1

c

)n−|X|
NO(1), completing the proof.

Remark 1. The proof of Lemma 2.1 goes through just as well when B is a randomized algorithm.
If B is deterministic or has one-sided error (possibly saying no whereas it should say yes), then the
algorithm of Lemma 2.1 also has one sided error. If B has two sided error, then the algorithm of
Lemma 2.1 has two sided error as well.

Now we give the technical lemma that was used to upper bound the running time of the
algorithm described in Lemma 2.1.

Lemma 2.2. Let c > 1 be a fixed constant, and let n and k ≤ n be non-negative integers. Then,

max
0≤k≤n

{
min

0≤t≤k

{(
n
t

)(
k
t

) ck−t}} ≤ (2− 1

c

)n
nO(1)

Proof. Setting µ = k
n and α = t

n , we have that

max
0≤k≤n

{
min

0≤t≤k

{(
n
t

)(
k
t

) ck−t}} = max
0≤µ≤1

 min
0≤α≤µ


(

n
dαne

)(dµne
dαne

)c(µ−α)n


 · O(1)

The right hand side of the equation above is upper bounded by picking a concrete value of α for

every value of µ, rather than minimizing over all α. We set α = max
(

0, 1−cµ
1−c

)
. One can show

that this choice of α minimizes the internal expression. In particular, this basically guarantees that
k−t
n−t = 1

c , and this is the natural threshold for when to stop sampling (see the discussion in the
introduction).

First, consider the case where α = 0. The expression is upper bounded by cn/c since 1− cµ ≥ 0.
To show that

(
2− 1

c

)n ≥ cn/c, it suffices to show that 2 − 1
c − c

1/c ≥ 0. But this is so because

2− 1
c − c

1/c = 0 when c = 1 and it is increasing with c when c > 1.

From now on, we assume α = 1−cµ
1−c > 0. Thus,

max
0≤µ≤1

 min
0≤α≤µ


(

n
dαne

)(dµne
dαne

)c(µ−α)n


 ≤ max

0≤µ≤1

α= 1−cµ
1−c


(

n
dαne

)(dµne
dαne

)c(µ−α)n

 . (2)
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We will also use the following well known bounds on binomial coefficients to simplify our ex-
pressions,

1

nO(1)

[(
k

n

)− k
n
(

1− k

n

) k
n
−1
]n
≤
(
n

k

)
≤

[(
k

n

)− k
n
(

1− k

n

) k
n
−1
]n
. (3)

Using the upper bound in Equation 2 we obtain the following.(
n
dαne

)(dµne
dαne

)c(µ−α)n ≤

(
α−α(1− α)α−1

(αµ )−α(1− α
µ )α−µ

c(µ−α)

)n
nO(1)

=

(
α−α(1− α)α−1

α−αµα(µ− α)α−µµ(µ−α)
c(µ−α)

)n
nO(1)

=
(

(1− α)α−1(µ− α)µ−αµ−µc(µ−α)
)n
nO(1) (4)

Substituting the value of α in Equation 4, we get the following as the base of the exponent.

(c(1− µ)

c− 1

) c(1−µ)
1−c

(1− µ
c− 1

) 1−µ
c−1

µ−µc
1−µ
c−1

=
( c

c− 1

) c(1−µ)
1−c + 1−µ

c−1
(1− µ)

c(1−µ)
1−c + 1−µ

c−1 µ−µ

=
( c

c− 1

)µ−1
(1− µ)µ−1µ−µ (5)

The last assertion in Equation 5 follows from the following simplification.

c(1− µ)

1− c
+

1− µ
c− 1

=
c(1− µ)− (1− µ)

1− c
=

(c− 1)(1− µ)

1− c
= µ− 1.

To summarize the above discussion, we have upper bounded the expression in the statement of the
lemma by

max
0≤k≤n

{
min

0≤t≤k

{(
n
t

)(
k
t

) ck−t}} ≤ [ max
0≤µ≤1

f(µ)

]n
· nO(1),

where f(µ) =
(

c
c−1

)µ−1
(1− µ)µ−1µ−µ.

We now turn to upper bounding the maximum of f(µ). Clearly, f is continuous and differen-
tiable on the interval [0, 1] and thus f achieves its maximum at µ ∈ {0, 1} or at a point where the
derivative vanishes. Setting µ to 0 and to 1, we get that f(0) = c−1

c and f(1) = 1, respectively.
Next we differentiate f with respect to µ. The product rule for differentiation yields

f ′(µ) = f(µ) ·
(

ln

(
c

c− 1

)
+ (ln(1− µ) + 1)− 1− lnµ

)
.

Since f(µ) 6= 0, we have that f ′(µ) = 0 if and only if

ln

(
c

c− 1

)
+ ln(1− µ)− lnµ = 0,

and the unique solution to this equation is µ = c
2c−1 . Substituting this value of µ = c

2c−1 in f we

get f(µ) = 2− 1
c . Thus the maximum value f can attain on µ ∈ [0, 1] is the maximum of 1, 1− 1

c
and 2− 1

c . Since, c > 1 this implies that f(µ) ≤ 2− 1
c , completing the proof.

By running the algorithm from Lemma 2.1 with X = ∅ and for each value of k ∈ {0, . . . , n}, we
obtain an algorithm for Φ-Subset, and this proves Theorem 1.
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2.2 Derandomization

In this subsection we prove Theorem 2 by derandomizing the algorithm of Theorem 1, at the cost
of a subexponential factor in the running time. The key tool in our derandomization is a new
pseudo-random object, which we call set-inclusion-families, as well as an almost optimal (up to
subexponential factors) construction of such objects.

Definition 2.1. Let U be a universe of size n and let 0 ≤ q ≤ p ≤ n. A family C ⊆
(
U
q

)
is an

(n, p, q)-set-inclusion-family, if for every set S ∈
(
U
p

)
, there exists a set Y ∈ C such that Y ⊆ S.

Let κ(n, p, q) =
(
n
q

)
/
(
p
q

)
. In Section 3 (Theorem 6) we give a deterministic construction of an

(n, p, q)-set-inclusion-family, C, of size at most κ(n, p, q) · 2o(n). The running time of the algorithm
constructing C is also upper bounded by κ(n, p, q) · 2o(n).

The proof of Theorem 2 is now almost identical to the proof of Theorem 1. However, in
Lemma 2.1 we replace the sampling step where the algorithm A picks a set Y ⊆ UI \X of size t at
random, with a construction of an (n − |X|, k, t)-set-inclusion-family C using Theorem 6. Instead
of κ(n− |X|, k, t) · nO(1) independent repetitions of the algorithm A, the new algorithm loops over
all Y ∈ C. The correctness follows from the definition of set-inclusion-families, while the running
time analysis is identical to the analysis of Lemma 2.1.

2.3 Extension to Permissive FPT Subroutines

For some of our applications, our results rely on algorithms for permissive variants of the Φ-Ex-
tension problem. Permissive problems were introduced in the context of local search algorithms
[32] and it has been shown that permissive variants can be fixed-parameter tractable even if the
strict version is W[1]-hard and the optimization problem is NP-hard [22].

Permissive Φ-Extension
Input: An instance I, a set X ⊆ UI , and an integer k.
Output: If there is a subset S ⊆ (UI \X) such that S ∪X ∈ FI and |S| ≤ k, then answer yes;
else if |FI | > 0, then answer yes or no;
else answer no.

We observe that any algorithm solving Φ-Extension also solves Permissive Φ-Extension. How-
ever, using an algorithm for Permissive Φ-Extension will only allow us to solve a decision variant
of the Φ-Subset problem, unless it also returns a certificate in case it answers yes.

Decision Φ-Subset
Input: An instance I
Question: Is |FI | > 0?

The proof of Lemma 2.1 can easily be adapted to the Permissive Φ-Extension problem.

Lemma 2.3. If there exists a constant c > 1 and an algorithm for Permissive Φ-Extension
with running time ckNO(1), then there exists a randomized algorithm for Permissive Φ-Exten-
sion with running time (2− 1

c )
n−|X|NO(1).

Now, any algorithm for Permissive Φ-Extension also solves Decision Φ-Subset. If the algo-
rithm for Permissive Φ-Extension also returns a certificate whenever it answers yes, this also
leads to an algorithm for Φ-Subset. Again, these algorithms can be derandomized at the cost of
a factor 2o(n) in the running time.
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Theorem 5. If there is an algorithm for Permissive Φ-Extension with running time ckNO(1)

then there is an algorithm for Decision Φ-Subset with running time (2− 1
c )
n+o(n)NO(1). More-

over, if the algorithm for Permissive Φ-Extension computes a certificate whenever it answers
yes, then there is an algorithm for Φ-Subset with running time (2− 1

c )
n+o(n)NO(1).

2.4 Enumeration and Combinatorial Upper Bounds

In this subsection, we prove Theorems 3 and 4 on combinatorial upper bounds and enumeration
algorithms.

Theorem 3. Let c > 1 and Φ be an implicit set system. If Φ is c-uniform, then |FI | ≤
(
2− 1

c

)n
nO(1)

for every instance I.

Proof. Let I be an instance and k ≤ n. We prove that the number of sets in FI of size exactly k is
upper bounded by

(
2− 1

c

)n
nO(1). Since k is chosen arbitrarily the bound on |FI | will follow. We

describe below a random process that picks a set W of size k from FI as follows.

1. Choose an integer t based on c, n, and k, then randomly sample a subset X of size t from UI .

2. Uniformly at random pick a set S from Fk−tI,X , and output W = X ∪ S. In the corner case

where Fk−tI,X is empty return the empty set.

This completes the description of the process.
For each set Z ∈ FI of size exactly k, let EZ denote the event that the set W output by the

random process above is equal to Z. Now we lower bound the probability of the event EZ . We
have the following lower bound.

Pr[EZ ] = Pr[X ⊆ Z ∧ S = Z \X]

= Pr[X ⊆ Z]× Pr[S = Z \X | X ⊆ Z] (6)

=

(
k
t

)(
n
t

) × 1

|Fk−tI,X |

Since Φ is c-uniform we have that |Fk−tI,X | ≤ ck−tnO(1), hence

Pr[EZ ] ≥
(
k
t

)(
n
t

)c−(k−t)n−O(1).

We are now ready to discuss the choice of t in the random process. The integer t is chosen such
that the above expression for Pr[EZ ] is maximized (or, in other words, it’s reciprocal is minimized).
By Lemma 2.2 we have that for every k ≤ n there exists a t ≤ k such that(

k
t

)(
n
t

)c−(k−t) ≥ (2− 1

c
)−n · n−O(1).

Hence Pr[EZ ] ≥ (2− 1
c )
−n · n−O(1) for every Z ∈ FI of size k. Since the events EZ are disjoint for

all the different sets Z ∈ FI we have that∑
Z∈FI
|Z|=k

Pr[EZ ] ≤ 1.

This, together with the lower bound on Pr[EZ ] implies that the number of sets in FI of size exactly
k is upper bounded by

(
2− 1

c

)n
nO(1), completing the proof.
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If the implicit set system Φ is efficiently c-uniform then the proof of Theorem 3 can be made
constructive by replacing the sampling step by a construction of an (n, k, t)-set-inclusion-family C
using Theorem 6. For each X ∈ C the algorithm uses the fact that Φ is efficiently c-uniform to
loop over all sets S ∈ Fk−tI,X and output X ∪ S for each such S. Looping over C instead of sampling

X incurs a 2o(n) overhead in the running time of the algorithm. In order to avoid enumerating
duplicates, we also store each set that we output in a trie and for each set that we output, we check
first in linear time whether we have already output that set.

Theorem 4. Let c > 1 and Φ be an implicit set system. If Φ is efficiently c-uniform, then there is

an algorithm that given as input I enumerates FI in time
(
2− 1

c

)n+o(n)
NO(1).

3 Efficient Construction of Set-Inclusion-Families

In this section we give the promised construction of set-inclusion-families. We start by giving a
construction of set-inclusion-families with good bounds on the size, but with a poor bound on the
construction time. Recall that κ(n, p, q) =

(
n
q

)
/
(
p
q

)
.

Lemma 3.1. There is an algorithm that given n, p and q outputs an (n, p, q)-set-inclusion-family
C of size at most κ(n, p, q) · nO(1) in time O(3n).

Proof. We start by giving a randomized algorithm that with positive probability constructs an
(n, p, q)-set-inclusion-family C with the claimed size. We will then discuss how to deterministically
compute such a C within the required time bound. Set t = κ(n, p, q) · (p + 1) log n and construct
the family C = {C1, . . . , Ct} by selecting each set Ci independently and uniformly at random from(
U
q

)
.
By construction, the size of C is within the required bounds. We now argue that with positive

probability C is indeed an (n, p, q)-set-inclusion-family. For a fixed set A ∈
(
U
p

)
, and integer i ≤ t,

we consider the probability that Ci ⊆ A. This probability is 1/κ(n, p, q). Since each Ci is chosen
independently from the other sets in C, the probability that no Ci satisfies Ci ⊆ A is(

1− 1

κ(n, p, q)

)t
≤ e−(p+1) logn ≤ 1

np+1
.

There are
(
n
p

)
choices for A ∈

(
U
p

)
, therefore the union bound yields that the probability that there

exists an A ∈
(
U
p

)
such that no set Ci ∈ C satisfies Ci ⊆ A is upper bounded by 1

np+1 · np = 1
n .

To construct C within the stated running time proceed as follows. We construct an instance of
Set Cover, and then, using a known approximation algorithm for Set Cover, we construct the
desired family. An instance of Set Cover consists of a universe U and a family S of subsets of U .
The objective is to find a minimum sized sub-collection S′ ⊆ S such that the union of elements of
the sets in S′ is U . It is known that Set Cover admits a polynomial time approximation algorithm
with factor O(log |U|). For our problem, the elements of the universe U are uA for every A ∈

(
U
p

)
.

For every set B ∈
(
U
q

)
, let FB consist of all the elements uA ∈ U such that B ⊆ A. The set family S

contains FB for each choice of B ∈
(
U
q

)
. Given a sub-collection S′ ⊆ S we construct the family C(S′)

by taking the sets B ∈
(
U
q

)
such that FB ∈ S′. Clearly, any C(S′) corresponding to a sub-collection

S′ ⊆ S covering U is a (n, p, q)-set-inclusion-family, and vice versa.
Let OPT denote the size of a minimum sized sub-collection S′ ⊆ S covering U . We run the

known O(log |U|)-factor approximation algorithm on our instance and obtain a sub-collection S′ ⊆ S
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covering U . Let C = C(S′). By discussions above we know that C is an (n, p, q)-set-inclusion-family.
Clearly, the size of C is upper bounded by

|C| ≤ OPT · O(log |U|) ≤ t · O(log |U|) ≤ O(t(log np)) ≤ κ(n, p, q) · nO(1).

It is well known that one can implement the approximation algorithm for Set Cover to run in
time O(|U|+

∑
S∈S |S|) = O(

(
n
p

)
+
(
n
q

)(
n−q
p−q
)
) = O(3n). This concludes the proof.

Next we will reduce the problem of finding an (n, p, q)-set-inclusion-family to the same problem,
but with a much smaller value of n. To that end we will use a well-known construction of pair-wise
independent families of functions. Let U be a universe of size n and b be a positive integer. Let X
be a collection of functions from U to [b]. That is, each function f in X takes as input an element
of U and returns an integer from 1 to b. The collection X is said to be pair-wise independent if, for
every i, j ∈ [b] and every u, v ∈ U such that u 6= v we have that

Pr
f∈X

[f(u) = i ∧ f(v) = j] =
1

b2
.

Observe that this implies that any pairwise independent family of functions from U to [b] with
|U | ≥ 2 also satisfies that for every i ∈ [b] and u ∈ U we have Prf∈X [f(u) = i] = 1

b . We will make
use of the following known construction of pair-wise independent families.

Proposition 3.1 ([2]). There is a polynomial time algorithm that given a universe U and integer
b constructs a pair-wise independent family X of functions from U to [b]. The size of X is O(n2).

Using Proposition 3.1 we can give a much faster construction of an (n, p, q)-set-inclusion-family
than the one in Lemma 3.1 at the cost of a subexponential overhead in the size of the family.

Theorem 6. There is an algorithm that given n, p and q outputs an (n, p, q)-set-inclusion-family
C of size at most κ(n, p, q) · 2o(n) in time κ(n, p, q) · 2o(n).

Proof. The construction sets β = q/p, selects a number b = dlog ne of buckets and applies Proposi-
tion 3.1 to construct a pairwise independent family X of functions from U to [b]. For each function
f ∈ X and integer i ∈ [b] we set U if = {u ∈ U : f(u) = i} and nif = |U if |. Call a function f good if,

for every i ∈ [b] we have that |nif − n/b| ≤
√
n · b. For every good function f ∈ X , every i ∈ [b] and

every integer s ≤ nif we construct an (nif , s, dβse)-set-inclusion-family C(i,s)
f using Lemma 3.1. We

now describe the family C output by the construction. Each set Y ∈ C is defined by

1. a good f ∈ X ,

2. a sequence p1, . . . , pb of integers such that |pi − p
b | ≤

√
n · b,

3. a sequence Y1, . . . , Yb of sets with Yi ∈ C(i,pi)
f ,

4. a set D ⊆ U of size at most b.

The set Y defined by the tuple (f, p1, . . . , pb, Y1, . . . , Yb, D) is set to Y = (
⋃
i≤b Yi) \ D. This

concludes the construction.
First we analyze the running time of the construction. Constructing the set X takes polynomial

time by Proposition 3.1. For each good f , i ∈ [b] and s ≤ nif , constructing C(i,s)
f using Lemma 3.1

takes time 2o(n) because ni ≤ n
b +
√
n · log n = O( n

logn). There are O(n2) choices for f , at most
O(log n) choices for i and O( n

logn) choices for s. Thus, the overall time of the construction is

2o(n) plus the time to output C. Outputting C can be done spending polynomial time for each set
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Y ∈ C by enumerating over all the tuples (f, p1, . . . , pb, Y1, . . . , Yb, D). Thus, the running time of
the construction is upper bounded by 2o(n) + |C| · nO(1). It remains to upper bound |C|.

The size of C is upper bounded by the number of tuples (f, p1, . . . , pb, Y1, . . . , Yb, D). There are
O(n2) choices for f, at most nb choices for p1, . . . , pb and nO(b) choices for D. Thus, the number of
tuples is upper bounded by 2o(n) times the maximum number of choices for Y1 . . . Yb for any fixed

choice of f, p1 . . . pb and D. For each i, we choose Yi from C(i,pi)
f , so there are κ(nif , pi, dβpie) ·nO(1)

choices for Yi. It follows that the total number of choices for Y1, . . . , Yb is upper bounded by

∏
i≤b

κ(nif , pi, dβpie) · nO(1) ≤ 2o(n) ·
∏
i≤b

( nif
dβpie

)( pi
dβpie

) . (7)

Now, we have that

∏
i≤b

(
nif
dβpie

)
≤
∏
i≤b

[(
dn/be
dp/be

)
· nO(

√
n logn)

]
≤
(
n

p

)
· 2o(n) (8)

In the last transition we used that the number of ways to pick b sets of size dp/be, each from a
universe of size dn/be is upper bounded by the number of ways to pick a set of size b · dp/be from
a universe of size b · dn/be. This in turn is upper bounded by

(
n
p

)
· 2o(n). Furthermore,

∏
i≤b

(
pi

dβpie

)
≥
∏
i≤b

[(
dp/be
dβ(p/b)e

)
· n−O(

√
n logn)

]

≥
[(
β−β(1− β)β−1

)(p/b)
· n−O(1)

]b
· 2−o(n) (9)

≥
(
p

q

)
· 2−o(n)

Here the two last transitions use Equation 3. Inserting the bounds from (8) and (9) into (7) yields
that the total number of choices for Y1, . . . , Yb is upper bounded by κ(n, p, q) · 2o(n) and thus,
|C| ≤ κ(n, p, q) · 2o(n) as well.

All that remains is to argue that C is in fact an (n, p, q)-set-inclusion-family. Towards this,
consider any subset S of U of size exactly p. For any fixed i ∈ [b], consider the process of picking
a random function f from X . We are interested in the random variables |U if | and |U if ∩ S|. Using
indicator variables for each element in U it is easy to show that

E
f∈X

[
|U if |

]
=
n

b
and E

f∈X

[
|U if ∩ S|

]
=
p

b
.

Furthermore, X is pairwise independent, and therefore the covariance of any pair of indicator

variables is 0. Thus, Var
f∈X

[
|U if |

]
≤ n and Var

f∈X

[
|U if ∩ S|

]
≤ n. By Chebyshev’s inequality it follows

that

Pr
[∣∣|U if | − n

b

∣∣ ≥ √n · b] ≤ 1

b2
and Pr

[∣∣|U if ∩ S| − p

b

∣∣ ≥ √n · b] ≤ 1

b2
.

Consider now the probability that at least one of the variables |Ui| or |Ui ∩ S| deviates from its
expectation by at least

√
n · b. Combining the above inequalities with the union bound taken over

all i ∈ [b] yields that this probability is upper bounded by 2b · 1
b2
≤ 2

b . Since b = log n > 2 we have

14



that with non-zero probability, all the random variables |U1|, . . . , |Ub| and |U1 ∩S|, . . . , |Ub ∩S| are
within

√
n · b of their respective means. Thus there exists a function f ∈ X such that for every

i ∈ [b] we have ∣∣|U if | − n

b

∣∣ ≤ √n · b and
∣∣|U if ∩ S| − p

b

∣∣ ≤ √n · b.
In the remainder of the proof let f be such a function in X .

The choice of f implies that f is a good function. For each i ≤ b, let Si = |U if ∩S| and pi = |Si|.
Again, by the choice of f we have that |pi− p

b | ≤
√
n·b. Since C(i,pi)

f is an (nif , pi, dβpie)-set-inclusion-

family, there exists a set Yi ∈ C(i,pi)
f such that Yi ⊆ Si and |Yi| = dβpie. For each i ∈ [b] select such a

Yi from C(i,pi)
f . Finally let D be any subset of

⋃
i≤b Yi of size

∑
i≤b |Yi|− q. Note that |Yi| ≤ βpi+ 1,

thus
∑

i≤b |Yi| − q ≤ b, so |D| ≤ b. Consider finally the tuple (f, p1 . . . pb, Y1, . . . Yb, D). We have
just proved that this tuple satisfies all of the conditions for giving rise to a set Y =

⋃
i≤b Yi \D in

C. However, Yi ⊆ Si for all i, so Y ⊆ S, proving that C is a (n, p, q)-set-inclusion-family.

4 Conclusion and Discusison

In this paper we have shown that for many subset problems, an algorithm that finds a solution
of size k in time cknO(1) directly implies an algorithm with running time O((2 − 1

c )
n+o(n)). We

also show that often, an upper bound of cknO(1) on the number of sets of size at most k in a
family F can yield an upper bound of O((2 − 1

c )
n+o(n)) on the size of F . Our results reveal an

exciting new connection between parameterized algorithms and exponential-time algorithms. All
of our algorithms have a randomized and a deterministic variant. The only down-side of using
the deterministic algorithm rather than the randomized one is a 2o(n) multiplicative factor in the
running time, and an additional 2o(n) space requirement. It is possible to reduce the space overhead
to a much smaller (but still super-polynomial) term, however this would make the presentation
considerably more involved.

For the enumeration algorithm of Theorem 4, it is well worth noting that the algorithm only
uses subexponential space if the algorithm is allowed to output the same set multiple times. If
duplicates are not allowed the algorithm needs exponential space in order to store a trie of the
sets that have already been output. Another approach is to use an output-sensitive algorithm. For
example, there is a polynomial-delay polynomial-space algorithm enumerating all feedback vertex
sets in a tournament [23], and its running time is O(1.6667n) by our combinatorial upper bound.

Our analysis also reveals that in order to obtain a (2 − ε)n time algorithm with ε > 1 for a

subset problem, it is sufficient to get a O(ck
(n−|X|

k

)1−δ
) algorithm for any constant c and δ > 0 for

the extension problem. This might be a promising route for obtaining better exact exponential-
time algorithms for problems that currently do not have single-exponential-time parameterized
algorithms. For example, it would be interesting to see whether it is possible to improve on
Razgon’s O(1.9977n) time algorithm [37] for Directed Feedback Vertex Set by designing a

O(ck
(n−|X|

k

)1−δ
) time algorithm.
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[6] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: A Survey, Discrete Math-
ematics and Applications, SIAM, 1999. 21

[7] Y. Cao, Unit interval editing is fixed-parameter tractable, in Proceedings of the 42nd Interna-
tional Colloquium of Automata, Languages and Programming (ICALP), vol. 9134 of Lecture
Notes in Comput. Sci., Springer, 2015, pp. 306–317. 4

[8] Y. Cao, Linear recognition of almost interval graphs, in Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2016), to appear. Available as arXiv CoRR
abs/1403.1515. 1, 4

[9] Y. Cao, J. Chen, and Y. Liu, On feedback vertex set: New measure and new structures,
Algorithmica, 73 (2015), pp. 63–86. 3

[10] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, Improved algorithms for feedback
vertex set problems, J. Computer and System Sciences, 74 (2008), pp. 1188–1198. 3

[11] M. Cochefert, J.-F. Couturier, S. Gaspers, and D. Kratsch, Faster algorithms to
enumerate hypergraph transversals, in Proceedings of the 12th Latin American Theoretical In-
formatics Symposium (LATIN 2016), Lecture Notes in Computer Science, Springer, to appear.
Available as arXiv CoRR abs/1510.05093. 4, 5

[12] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 1

16



[13] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single exponential
time, in Proceedings of the 52nd Annual Symposium on Foundations of Computer Science
(FOCS), IEEE, 2011, pp. 150–159. 3, 4

[14] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
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A Problem definitions

We list the definitions of the problems considered in this paper.

Feedback Vertex Set Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S is acyclic?

Weighted Feedback Vertex Set Parameter: k
Input: An undirected graph G, a positive integer k, a weight function w : V (G) → N, and a
positive integer W .
Question: Is there a set S ⊆ V (G) of size at most k and weight at most W such that G− S
is acyclic?

Subset Feedback Vertex Set Parameter: k
Input: An undirected graph G, a vertex subset T ⊆ V (G), and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S has no cycle
that contains a vertex from T?

Let Γ be a finite group with identity element 1Γ. A Γ-labeled graph is a graph G = (V,E)
with a labeling λ : E → Γ such that λ(u, v)λ(v, u) = 1Γ for every edge uv ∈ E. For a cycle
C = (v1, . . . , vr, v1), define λ(C) = λ(v1, v2) · · · · · λ(vr, v1).

Group Feedback Vertex Set Parameter: k
Input: A group Γ, a Γ-labelled graph (G,λ), and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that every cycle C in
G− S has λ(C) = 1Γ?

Node Unique Label Cover Parameter: |Σ|+ k
Input: An undirected graph G = (V,E), a finite alphabet Σ, an integer k, and for each edge
e ∈ E and each of its endpoints v a permutation ψe,v of Σ such that if e = xy then ψe,x = ψ−1

e,v

Question: Is there a vertex subset S ⊂ V of size at most k and a function Ψ : V \S → Σ such
that for every edge uv ∈ E(G− S) we have (Ψ(u),Ψ(v)) ∈ ψuv,u?

For fixed integers r, ` ≥ 0, a graph G is called an (r, `)-graph if the vertex set V (G) can be
partitioned into r independent sets and ` cliques.

Vertex (r, `)-Partization Parameter: k
Input: A graph G and a positive integer k
Question: Is there a vertex subset S ⊆ V (G) of size at most k such that G − S is an (r, `)-
graph?

Several special cases of this problem are well known and have been widely studied. For example,
(2, 0)- and (1, 1)-graphs correspond to bipartite graphs and split graphs respectively. We note that
Vertex (r, `)-Partization can be solved in O(1.1996(r+`)·n) by taking r copies of the input graph,
` copies of its complement, making all the copies of a same vertex into a clique and computing a
maximum independent set of this graph using the algorithm from [43]. This is faster than O(2n)
when r + ` ≤ 3. We improve on this algorithm for r, ` ≤ 2 and r + ` ≥ 3.
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For the definition of graph classes, including interval graphs, proper interval graphs, block
graphs, cluster graphs, we refer to [6].

Proper Interval Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S is a proper
interval graph?

Interval Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G−S is an interval
graph?

Block Graph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is a block
graph?

Cluster Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S is a cluster
graph?

Thread Graph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G− S is of linear
rank-width one?

Multicut on Trees Parameter: k
Input: A tree T and a set R = {{s1, t1}, . . . , {sr, tr}} of pairs of vertices of T called terminals,
and a positive integer k.
Question: Does there exist a subset S ⊆ E(T ) of size at most k whose removal disconnects
each si from ti, i ∈ [r]?

d-Hitting Set Parameter: k
Input: A family S of subsets of size at most d of a universe U and a positive integer k.
Question: Does there exist a subset S ⊆ U of size at most k such that F is a hitting set for S?

Weighted d-Hitting Set Parameter: k
Input: A family S of subsets of size at most d of a universe U , a weight function w : U → N,
and positive integers k and W .
Question: Does there exist a subset S ⊆ U of size at most k and weight at most W such that
F is a hitting set for S?

Min-Ones d-Sat Parameter: k
Input: A propositional formula F in conjunctive normal form where each clause has at most
d literals and an integer k.
Question: Does F have a satisfying assignment with Hamming weight at most k?
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Weighted d-Sat Parameter: k
Input: A propositional formula F in conjunctive normal form where each clause has at most
d literals, a weight function w : var(F )→ Z, and integers k and W .
Question: Is there a set S ⊆ var(F ) of size at most k and weight at most W such that F is
satisfied by the assignment that sets the variables in S to 1 and all other variables to 0?

Tournament Feedback Vertex Set Parameter: k
Input: A tournament G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G−S is a transitive
tournament?

Split Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is a split
graph?

Cograph Vertex Deletion Parameter: k
Input: An undirected graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G−S is a cograph?

Directed Feedback Vertex Set Parameter: k
Input: A directed graph G and a positive integer k.
Question: Does there exist a subset S ⊆ V (G) of size at most k such that G − S is directed
acyclic graph?
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