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Abstract

We study Poisson Multinomial Distributions – a fundamental family of discrete distributions
that generalize the binomial and multinomial distributions, and are commonly encountered in
computer science. Formally, an (n, k)-Poisson Multinomial Distribution (PMD) is a random
variable of the form X =

∑n
i=1Xi, where the Xi’s are independent random vectors supported

on the set {e1, e2, . . . , ek} of standard basis vectors in Rk. In this paper, we obtain a refined
structural understanding of PMDs by analyzing their Fourier transform. As our core structural
result, we prove that the Fourier transform of PMDs is approximately sparse, i.e., roughly
speaking, its L1-norm is small outside a small set. By building on this result, we obtain the
following applications:

Learning Theory. We design the first computationally efficient learning algorithm for
PMDs with respect to the total variation distance. Our algorithm learns an arbitrary (n, k)-

PMD within variation distance ε using a near-optimal sample size of Õk(1/ε2), and runs in time

Õk(1/ε2) · log n. Previously, no algorithm with a poly(1/ε) runtime was known, even for k = 3.

Game Theory. We give the first efficient polynomial-time approximation scheme (EPTAS)
for computing Nash equilibria in anonymous games. For normalized anonymous games with n
players and k strategies, our algorithm computes a well-supported ε-Nash equilibrium in time

nO(k3) · (k/ε)O(k3 log(k/ε)/ log log(k/ε))k−1

. The best previous algorithm for this problem [DP08,

DP14] had running time n(f(k)/ε)
k

, where f(k) = Ω(kk
2

), for any k > 2.

Statistics. We prove a multivariate central limit theorem (CLT) that relates an arbitrary
PMD to a discretized multivariate Gaussian with the same mean and covariance, in total vari-
ation distance. Our new CLT strengthens the CLT of Valiant and Valiant [VV10, VV11] by
completely removing the dependence on n in the error bound.

Along the way we prove several new structural results of independent interest about PMDs.
These include: (i) a robust moment-matching lemma, roughly stating that two PMDs that
approximately agree on their low-degree parameter moments are close in variation distance;
(ii) near-optimal size proper ε-covers for PMDs in total variation distance (constructive upper
bound and nearly-matching lower bound). In addition to Fourier analysis, we employ a number
of analytic tools, including the saddlepoint method from complex analysis, that may find other
applications.

∗Supported by a Marie Curie Career Integration Grant and EPSRC grant EP/L021749/1.
†Some of this work was done while visiting the University of Edinburgh.
‡Supported by EPSRC grant EP/L021749/1.



1 Introduction

1.1 Background and Motivation The Poisson Multinomial Distribution (PMD) is the discrete
probability distribution of a sum of mutually independent categorical random variables over the
same sample space. A categorical random variable (k-CRV) describes the result of a random event
that takes on one of k ≥ 2 possible outcomes. Formally, an (n, k)-PMD is any random variable
of the form X =

∑n
i=1Xi, where the Xi’s are independent random vectors supported on the set

{e1, e2, . . . , ek} of standard basis vectors in Rk.
PMDs comprise a broad class of discrete distributions of fundamental importance in computer

science, probability, and statistics. A large body of work in the probability and statistics literature
has been devoted to the study of the behavior of PMDs under various structural conditions [Bar88,
Loh92, BHJ92, Ben03, Roo99, Roo10]. PMDs generalize the familiar binomial and multinomial
distributions, and describe many distributions commonly encountered in computer science (see,
e.g., [DP07, DP08, Val08, VV11]). The k = 2 case corresponds to the Poisson binomial distribution
(PBD), introduced by Poisson [Poi37] as a non-trivial generalization of the binomial distribution.

Recent years have witnessed a flurry of research activity on PMDs and related distributions,
from several perspectives of theoretical computer science, including learning [DDS12, DDO+13,
DKS15a, DKT15, DKS15b], property testing [Val08, VV10, VV11], computational game the-
ory [DP07, DP08, BCI+08, DP09, DP14, GT14], and derandomization [GMRZ11, BDS12, De15,
GKM15]. More specifically, the following questions have been of interest to the TCS community:

1. Is there a statistically and computationally efficient algorithm for learning PMDs from inde-
pendent samples in total variation distance?

2. How fast can we compute approximate Nash equilibria in anonymous games with many players
and a small number of strategies per player?

3. How well can a PMD be approximated, in total variation distance, by a discretized Gaussian
with the same mean and covariance matrix?

The first question is a fundamental problem in unsupervised learning that has received consider-
able recent attention in TCS [DDS12, DDO+13, DKS15a, DKT15, DKS15b]. The aforementioned
works have studied the learnability of PMDs, and related distribution families, in particular PBDs
(i.e., (n, 2)-PMDs) and sums of independent integer random variables. Prior to this work, no
computationally efficient learning algorithm for PMDs was known, even for the case of k = 3.

The second question concerns an important class of succinct games previously studied in the
economics literature [Mil96, Blo99, Blo05], whose (exact) Nash equilibrium computation was re-
cently shown to be intractable [CDO15]. The formal connection between computing Nash equilibria
in these games and PMDs was established in a sequence of papers by Daskalakis and Papadim-
itriou [DP07, DP08, DP09, DP14], who leveraged it to gave the first PTAS for the problem. Prior
to this work, no efficient PTAS was known, even for anonymous games with 3 strategies per player.

The third question refers to the design of Central Limit Theorems (CLTs) for PMDs with
respect to the total variation distance. Despite substantial amount of work in probability theory,
the first strong CLT of this form appears to have been shown by Valiant and Valiant [VV10, VV11],
motivated by applications in distribution property testing. [VV10, VV11] leveraged their CLT to
obtain tight lower bounds for several fundamental problems in property testing. We remark that
the error bound of the [VV10] CLT has a logarithmic dependence on the size n of the PMD (number
of summands), and it was conjectured in [VV10] that this dependence is unnecessary.
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1.2 Our Results The main technical contribution of this work is the use of Fourier analytic
techniques to obtain a refined understanding of the structure of PMDs. As our core structural
result, we prove that the Fourier transform of PMDs is approximately sparse, i.e., roughly speaking,
its L1-norm is small outside a small set. By building on this property, we are able to obtain various
new structural results about PMDs, and make progress on the three questions stated in the previous
subsection. In this subsection, we describe our algorithmic and structural contributions in detail.

We start by stating our algorithmic results in learning and computational game theory, followed
by an informal description of our structural results and the connections between them.

Distribution Learning. As our main learning result, we obtain the first statistically and com-
putationally efficient learning algorithm for PMDs with respect to the total variation distance. In
particular, we show:

Theorem 1.1 (Efficiently Learning PMDs). For all n, k ∈ Z+ and ε > 0, there is an algorithm for
learning (n, k)-PMDs with the following performance guarantee: Let P be an unknown (n, k)-PMD.
The algorithm uses m = O

(
k4k log2k(k/ε)/ε2

)
samples from P, runs in time1O

(
k6k log3k(k/ε)/ε2

)
·

log n, and with probability at least 9/10 outputs an ε-sampler for P.

We remark that our learning algorithm outputs a succinct description of its hypothesis H, via
its Discrete Fourier Transform (DFT), Ĥ, which is supported on a small size set. We show that
the DFT gives both an efficient ε-sampler and an efficient ε-evaluation oracle for P.

Our algorithm learns an unknown (n, k)-PMD within variation distance ε, with sample complex-
ity Õk(1/ε

2), and computational complexity Õk(1/ε
2)·log n. The sample complexity of our algorithm

is near-optimal for any fixed k, as Ω(k/ε2) samples are necessary, even for n = 1. We note that
recent work by Daskalakis et al. [DKT15] established a similar sample upper bound, however their

algorithm is not computationally efficient. More specifically, it runs in time (1/ε)Ω(k5k logk+1(1/ε)),
which is quasi-polynomial in 1/ε, even for k = 2. For the k = 2 case, in recent work [DKS15a] the
authors of this paper gave an algorithm with sample complexity and runtime Õ(1/ε2). Prior to this
work, no algorithm with a poly(1/ε) sample size and runtime was known, even for k = 3.

Our learning algorithm and its analysis are described in Section 3.

Computational Game Theory. As our second algorithmic contribution, we give the first effi-
cient polynomial-time approximation scheme (EPTAS) for computing Nash equilibria in anonymous
games with many players and a small number of strategies. In anonymous games, all players have
the same set of strategies, and the payoff of a player depends on the strategy played by the player
and the number of other players who play each of the strategies. In particular, we show:

Theorem 1.2 (EPTAS for Nash in Anonymous Games). There is an EPTAS for the mixed Nash
equilibrium problem for normalized anonymous games with a constant number of strategies. More
precisely, there exists an algorithm with the following performance guarantee: for all ε > 0, and
any normalized anonymous game G of n players and k strategies, the algorithm runs in time
(kn)O(k3)(1/ε)O(k3 log(k/ε)/ log log(k/ε))k−1

, and outputs a (well-supported) ε-Nash equilibrium of G.

The previous PTAS for this problem [DP08, DP14] has running time nO(2k
2
(f(k)/ε)6k), where

f(k) ≤ 23k−1kk
2+1k!. Our algorithm decouples the dependence on n and 1/ε, and, importantly,

its running time dependence on 1/ε is quasi-polynomial. For k = 2, an algorithm with runtime

1We work in the standard “word RAM” model in which basic arithmetic operations on O(logn)-bit integers are
assumed to take constant time.
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poly(n)(1/ε)O(log2(1/ε)) was given in [DP09], which was sharpened to poly(n)(1/ε)O(log(1/ε)) in the
recent work of the authors [DKS15a]. Hence, we obtain, for any value of k, the same qualitative
runtime dependence on 1/ε as in the case k = 2.

Similarly to [DP08, DP14], our algorithm proceeds by constructing a proper ε-cover, in total
variation distance, for the space of PMDs. A proper ε-cover for Mn,k, the set of all (n, k)-PMDs,
is a subset C of Mn,k such that any distribution in Mn,k is within total variation distance ε from
some distribution in C. Our main technical contribution is the efficient construction of a proper
ε-cover of near-minimum size (see Theorem 1.4). We note that, as follows from Theorem 1.5, the
quasi-polynomial dependence on 1/ε and the doubly exponential dependence on k in the runtime
are unavoidable for any cover-based algorithm. Our cover upper and lower bounds and our Nash
approximation algorithm are given in Section 4.

Statistics. Using our Fourier-based machinery, we prove a strong “size-free” CLT relating the
total variation distance between a PMD and an appropriately discretized Gaussian with the same
mean and covariance matrix. In particular, we show:

Theorem 1.3. Let X be an (n, k)-PMD with covariance matrix Σ. Suppose that Σ has no eigenvec-
tors other than 1 = (1, 1, . . . , 1) with eigenvalue less than σ. Then, there exists a discrete Gaussian
G so that

dTV (X,G) ≤ poly(k)/poly(σ).

As mentioned above, Valiant and Valiant [VV10, VV11] proved a CLT of this form and used
it as their main technical tool to obtain tight information-theoretic lower bounds for fundamental
statistical estimation tasks. This and related CLTs have since been used in proving lower bounds
for other problems (see, e.g., [CST14]). The error bound in the CLT of [VV10, VV11] is of the form
poly(k)/poly(σ) · (1 + log n)2/3, i.e., it has a dependence on the size n of the underlying PMD. Our
Theorem 1.3 provides a qualitative improvement over the aforementioned bound, by establishing
that no dependence on n is necessary. We note that [VV10] conjectured that such a qualitative
improvement may be possible.

We remark that our techniques for proving Theorem 1.3 are orthogonal to those of [VV10,
VV11]. While Valiant and Valiant use Stein’s method, we prove our strengthened CLT using the
Fourier techniques that underly this paper. We view Fourier analysis as the right technical tool
to analyze sums of independent random variables. An additional ingredient that we require is the
saddlepoint method from complex analysis. We hope that our new CLT will be of broader use as
an analytic tool to the TCS community. Our CLT is proved in Section 5.

Structure of PMDs. We now provide a brief intuitive overview of our new structural results
for PMDs, the relation between them, and their connection to our algorithmic results mentioned
above. The unifying theme of our work is a refined analysis of the structure of PMDs, based on
their Fourier transform. The Fourier transform is one of the most natural technical tools to consider
for analyzing sums of independent random variables, and indeed one of the classical proofs of the
(asymptotic) central limit theorem is based on Fourier methods. The basis of our results, both
algorithmic and structural, is the following statement:

Informal Lemma (Sparsity of the Fourier Transform of PMDs.) For any (n, k)-PMD P, and any
ε > 0 there exists a “small” set T = T (P, ε), such that the L1-norm of its Fourier transform, P̂,
outside the set T is at most ε.

We will need two different versions of the above statement for our applications, and therefore we
do not provide a formal statement at this stage. The precise meaning of the term “small” depends
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on the setting: For the continuous Fourier transform, we essentially prove that the product of the
volume of the effective support of the Fourier transform times the number of points in the effective
support of our distribution is small. In particular, the set T is a scaled version of the dual ellipsoid
to the ellipsoid defined by the covariance matrix of P. Hence, roughly speaking, P̂ has an effective
support that is the dual of the effective support of P. (See Lemma 4.2 in Section 4 for the precise
statement.)

In the case of the Discrete Fourier Transform (DFT), we show that there exists a discrete set
with small cardinality, such that L1-norm of the DFT outside this set is small. At a high-level,
to prove this statement, we need the appropriate definition of the (multidimensional) DFT, which
turns out to be non-trivial, and is crucial for the computational efficiency of our learning algorithm.
More specifically, we chose the period of the DFT to reflect the shape of the effective support of
our PMD. (See Proposition 3.8 in Section 3 for the statement.)

With Fourier sparsity as our starting point, we obtain new structural results of independent
interest for PMDs. The first is a “robust” moment-matching lemma, which we now informally
state:

Informal Lemma (Parameter Moment Closeness Implies Closeness in Distribution.) For any pair
of (n, k)-PMDs P,Q, if the “low-degree” parameter moment profiles of P and Q are close, then
P,Q are close in total variation distance.

See Definition 2.2 for the definition of parameter moments of a PMD. The formal statement
of the aforementioned lemma appears as Lemma 4.6 in Section 4.1. Our robust moment-matching
lemma is the basis for our proper cover algorithm and our EPTAS for Nash equilibria in anonymous
games. Our constructive cover upper bound is the following:

Theorem 1.4 (Optimal Covers for PMDs). For all n, k ∈ Z+, k > 2, and ε > 0, there exists an
ε-cover Mn,k,ε ⊆Mn,k, under the total variation distance, of the set Mn,k of (n, k)-PMDs of size

|Mn,k,ε| ≤ nO(k2) · (1/ε)O(k log(k/ε)/ log log(k/ε))k−1
. In addition, there exists an algorithm to construct

the set Mn,k,ε that runs in time nO(k3) · (1/ε)O(k3 log(k/ε)/ log log(k/ε))k−1
.

A sparse proper cover quantifies the “size” of the space of PMDs and provides useful structural
information that can be exploited in a variety of applications. In addition to Nash equilibria
in anonymous games, our efficient proper cover construction provides a smaller search space for
approximately solving essentially any optimization problem over PMDs. As another corollary of our
cover construction, we obtain the first EPTAS for computing threat points in anonymous games.

Perhaps surprisingly, we also prove that our above upper bound is essentially tight:

Theorem 1.5 (Cover Lower Bound for PMDs). For any k > 2, ε > 0 sufficiently small as a
function of k, and n = Ωk(log(1/ε)/ log log(1/ε))k−1, any ε-cover for Mn,k has size at least nΩ(k) ·
(1/ε)Ωk(log(1/ε)/ log log(1/ε))k−1

.

We remark that, in previous work [DKS15a], the authors proved a tight cover size bound of
n · (1/ε)Θ(k log(1/ε)) for (n, k)-SIIRVs, i.e., sums of n independent scalar random variables each
supported on [k]. While a cover size lower bound for (n, k)-SIIRVs directly implies the same lower
bound for (n, k)-PMDs, the opposite is not true. Indeed, Theorems 1.4 and 1.5 show that covers
for (n, k)-PMDs are inherently larger, requiring a doubly exponential dependence on k.

1.3 Our Approach and Techniques At a high-level, the Fourier techniques of this paper can
be viewed as a highly non-trivial generalization of the techniques in our recent paper [DKS15a]
on sums of independent scalar random variables. We would like to emphasize that a number of
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new conceptual and technical ideas are required to overcome the various obstacles arising in the
multi-dimensional setting.

We start with an intuitive explanation of two key ideas that form the basis of our approach.

Sparsity of the Fourier Transform of PMDs. Since the Fourier Transform (FT) of a PMD is
the product of the FTs of its component CRVs, its magnitude is the product of terms each bounded
from above by 1. Note that each term in the product is strictly less than 1 except in a small region,
unless the component CRV is trivial (i.e., essentially deterministic). Roughly speaking, to establish
the sparsity of the FT of PMDs, we proceed as follows: We bound from above the magnitude of
the FT by the FT of a Gaussian with the same covariance matrix as our PMD. (See, for example,
Lemma 3.10.) This gives us tail bounds for the FT of the PMD in terms of the FT of this Gaussian,
and when combined with the concentration of the PMD itself, yields the desired property.

Approximation of the logarithm of the Fourier Transform. A key ingredient in our proofs
is the approximation of the logarithm of the Fourier Transform (log FT) of PMDs by low-degree
polynomials. Observe that the log FT is a sum of terms, which is convenient for the analysis. We
focus on approximating the log FT by a low-degree Taylor polynomial within the effective support
of the FT. (Note that outside the effective support the log FT can be infinity.) Morally speaking,
the log FT is smooth, i.e., it is approximated by the first several terms of its Taylor series. Formally
however, this statement is in general not true and requires various technical conditions, depending
on the setting. One important point to note is that the sparsity of the FT controls the domain
in which this approximation will need to hold, and thus help us bound the Taylor error. We will
need to ensure that the sizes of the Taylor coefficients are not too large given the location of the
effective support, which turns out to be a non-trivial technical hurdle. To ensure this, we need to
be very careful about how we perform this Taylor expansion. In particular, the correct choice of
the point that we Taylor expand around will be critical for our applications. We elaborate on these
difficulties in the relevant technical sections. Finally, we remark that the degree of polynomial
approximation we will require depends on the setting: In our cover upper bounds, we will require
(nearly) logarithmic degree, while for our CLT degree-2 approximation suffices.

We are now ready to give an overview of the ideas in the proofs of each of our results.

Efficient Learning Algorithm. The high-level structure of our learning algorithm relies on the
sparsity of the Fourier transform, and is similar to the algorithm in our previous work [DKS15a] for
learning sums of independent integer random variables. More specifically, our learning algorithm
estimates the effective support of the DFT, and then computes the empirical DFT in this effective
support. This high-level description would perhaps suffice, if we were only interested in bounding
the sample complexity. In order to obtain a computationally efficient algorithm, it is crucial to use
the appropriate definition of the DFT and its inverse.

In more detail, our algorithm works as follows: It starts by drawing poly(k) samples to estimate
the mean vector and covariance matrix of our PMD to good accuracy. Using these estimates, we
can bound the effective support of our distribution in an appropriate ellipsoid. In particular, we
show that our PMD lies (whp) in a fundamental domain of an appropriate integer lattice L = MZk,
where M ∈ Zk×k is an integer matrix whose columns are appropriate functions of the eigenvalues
and eigenvectors of the (sample) covariance matrix. This property allows us to learn our unknown
PMD X by learning the random variable X (mod L). To do this, we learn its Discrete Fourier
transform. Let L∗ be the dual lattice to L (i.e., the set of points ξ so that ξ · x ∈ Z for all
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x ∈ L). Importantly, we define the DFT, P̂, of our PMD X ∼ P on the dual lattice L∗, that is,
P̂ : L∗/Zk → C with P̂(ξ) = E[e(ξ ·X)]. A useful property of this definition is the following: the
probability that X (mod L) attains a given value x is given by the inverse DFT, defined on the
lattice L, namely Pr [X (mod L) = x] = 1

| det(M)|
∑

ξ∈L∗/Zk P̂(ξ)e(−ξ · x).
The main structural property needed for the analysis of our algorithm is that there exists an

explicit set T with integer coordinates and cardinality (k log(1/ε))O(k) that contains all but O(ε)
of the L1 mass of P̂. Given this property, our algorithm draws an additional set of samples of size
(k log(1/ε))O(k)/ε2 from the PMD, and computes the empirical DFT (modulo L) on its effective
support T. Using these ingredients, we are able to show that the inverse of the empirical DFT
defines a pseudo-distribution that is ε-close to our unknown PMD in total variation distance.

Observe that the support of the inverse DFT can be large, namely Ω(nk−1). Our algorithm does
not explicitly evaluate the inverse DFT at all these points, but outputs a succinct description of
its hypothesis H, via its DFT Ĥ. We emphasize that this succinct description suffices to efficiently
obtain both an approximate evaluation oracle and an approximate sampler for our target PMD
P. Indeed, it is clear that computing the inverse DFT at a single point can be done in time
O(|T |) = (k log(1/ε))O(k), and gives an approximate oracle for the probability mass function of P.
By using additional algorithmic ingredients, we show how to use an oracle for the DFT, Ĥ, as a
black-box to obtain a computationally efficient approximate sampler for P.

Our learning algorithm and its analysis are given in Section 3.

Constructive Proper Cover and Anonymous Games. The correctness of our learning algo-
rithm easily implies (see Section 3.3) an algorithm to construct a non-proper ε-cover for PMDs of

size nO(k2) ·(1/ε)log(1/ε))O(k)
. While this upper bound is close to being best possible (see Section 4.5),

it does not suffice for our algorithmic applications in anonymous games. For these applications,
it is crucial to obtain an efficient algorithm that constructs a proper ε-cover, and in fact one that
works in a certain stylized way.

To construct a proper cover, we rely on the sparsity of the continuous Fourier Transform of
PMDs. Namely, we show that for any PMD P, with effective support S ⊆ [n]k, there exists an
appropriately defined set T ⊆ [0, 1]k such that the contribution of T to the L1-norm of |P̂| is at
most ε/|S|. By using this property, we show that any two PMDs, with approximately the same
variance in each direction, that have continuous Fourier transforms close to each other in the set T,
are close in total variation distance. We build on this lemma to prove our robust moment-matching
result. Roughly speaking, we show that two PMDs, with approximately the same variance in each
direction, that are “close” to each other in their low-degree parameter moments are also close in
total variation distance. We emphasize that the meaning of the term “close” here is quite subtle: we
need to appropriately partition the component CRVs into groups, and approximate the parameter
moments of the PMDs formed by each group within a different degree and different accuracy for
each degree. (See Lemma 4.6 in Section 4.1.)

Our algorithm to construct a proper cover, and our EPTAS for Nash equilibria in anonymous
games proceed by a careful dynamic programming approach, that is based on our aforementioned
robust moment-matching result.

Finally, we note that combining our moment-matching lemma with a recent result in algebraic
geometry gives us the following structural result of independent interest: Every PMD is ε-close to
another PMD that is a sum of at most O(k + log(1/ε))k distinct k-CRVs.

The aforementioned algorithmic and structural results are given in Section 4.
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Cover Size Lower Bound. As mentioned above, a crucial ingredient of our cover upper bound
is a robust moment-matching lemma, which translates closeness between the low-degree parameter
moments of two PMDs to closeness between their Fourier Transforms, and in turn to closeness in
total variation distance. To prove our cover lower bound, we follow the opposite direction. We
construct an explicit set of PMDs with the property that any pair of distinct PMDs in our set
have a non-trivial difference in (at least) one of their low-degree parameter moments. We then
show that difference in one of the parameter moments implies that there exists a point where the
probability generating functions have a non-trivial difference. Notably, our proof for this step is
non-constructive making essential use of Cauchy’s integral formula. Finally, we can easily translate
a pointwise difference between the probability generating functions to a non-trivial total variation
distance error. We present our cover lower bound construction in Section 4.5.

Central Limit Theorem for PMDs. The basic idea of the proof of our CLT will be to compare
the Fourier transform of our PMD X to that of the discrete Gaussian G with the same mean
and covariance. By taking the inverse Fourier transform, we will be able to conclude that these
distributions are pointwise close. A careful analysis using a Taylor approximation and the fact that
both X̂ and Ĝ have small effective support, gives us a total variation distance error independent of
the size n. Alas, this approach results in an error dependence that is exponential in k. To obtain
an error bound that scales polynomially with k, we require stronger bounds between X and G at
points away from the mean. Intuitively, we need to take advantage of cancellation in the inverse
Fourier transform integrals. To achieve this, we will use the saddlepoint method from complex
analysis. The full proof of our CLT is given in Section 5.

1.4 Related and Prior Work There is extensive literature on distribution learning and com-
putation of approximate Nash equilibria in various classes of games. We have already mentioned
the most relevant references in the introduction.

Daskalakis et al. [DKT15] studied the structure and learnability of PMDs. They obtained a

non-proper ε-cover of size nk
2 · 2O(k5k log(1/ε)k+2), and an information-theoretic upper bound on the

learning sample complexity of O(k5k log(1/ε)k+2/ε2). The dependence on 1/ε in their cover size is
also quasi-polynomial, but is suboptimal as follows from our upper and lower bounds. Importantly,
the [DKT15] construction yields a non-proper cover. As previously mentioned, a proper cover
construction is necessary for our algorithmic applications. We note that the learning algorithm
of [DKT15] relies on enumeration over a cover, hence runs in time quasi-polynomial in 1/ε, even for
k = 2. The techniques of [DKT15] are orthogonal to ours. Their cover upper bound is obtained by a
clever black-box application of the CLT of [VV10], combined with a non-robust moment-matching
lemma that they deduce from a result of Roos [Roo02]. We remind the reader that our Fourier
techniques strengthen both these technical tools: Theorem 1.3 strengthens the CLT of [VV10], and
we prove a robust and quantitatively essentially optimal moment-matching lemma.

In recent work [DKS15a], the authors used Fourier analytic techniques to study the structure
and learnability of sums of independent integer random variables (SIIRVs). The techniques of this
paper can be viewed as a (highly nontrivial) generalization of those in [DKS15a]. We also note
that the upper bounds we obtain in this paper for learning and covering PMDs do not subsume the
ones in [DKS15a]. In fact, our cover upper and lower bounds in this work show that optimal covers
for PMDs are inherently larger than optimal covers for SIIRVs. Moreover, the sample complexity
of our SIIRV learning algorithm [DKS15a] is significantly better than that of our PMD learning
algorithm in this paper.
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1.5 Organization In Section 3, we describe and analyze our learning algorithm for PMDs.
Section 4 contains our proper cover upper bound construction, our cover size lower bound, and
the related approximation algorithm for Nash equilibria in anonymous games. Finally, Section 5
contains the proof of our CLT.

2 Preliminaries

In this section, we record the necessary definitions and terminology that will be used throughout
the technical sections of this paper.

Notation. For n ∈ Z+, we will denote [n]
def
= {1, . . . , n}. For a vector v ∈ Rn, and p ≥ 1, we will

denote ‖v‖p
def
= (

∑n
i=1 |vi|p)

1/p . We will use the boldface notation 0 to denote the zero vector or
matrix in the appropriate dimension.

Poisson Multinomial Distributions. We start by defining our basic object of study:

Definition 2.1 ((n, k)-PMD). For k ∈ Z+, let ej , j ∈ [k], be the standard unit vector along di-
mension j in Rk. A k-Categorical Random Variable (k-CRV) is a vector random variable supported
on the set {e1, e2, . . . , ek}. A k-Poisson Multinomial Distribution of order n, or (n, k)-PMD, is any
vector random variable of the form X =

∑n
i=1Xi where the Xi’s are independent k-CRVs. We will

denote by Mn,k the set of all (n, k)-PMDs.

We will require the following notion of a parameter moment for a PMD:

Definition 2.2 (mth-parameter moment of a PMD). Let X =
∑n

i=1Xi be an (n, k)-PMD such that
for 1 ≤ i ≤ n and 1 ≤ j ≤ k we denote pi,j = Pr[Xi = ej ]. For m = (m1, . . . ,mk) ∈ Zk+, we define

the mth-parameter moment of X to be Mm(X)
def
=
∑n

i=1

∏k
j=1 p

mj

i,j . We will refer to |m|1 =
∑k

j=1mj

as the degree of the parameter moment Mm(X).

(Pseudo-)Distributions and Total Variation Distance. A function P : A→ R, over a finite
set A, is called a distribution if P(a) ≥ 0 for all a ∈ A, and

∑
a∈A P(a) = 1. The function P is

called a pseudo-distribution if
∑

a∈A P(a) = 1. For S ⊆ A, we sometimes write P(S) to denote∑
a∈S P(a). A distribution P supported on a finite domain A can be viewed as the probability

mass function of a random variable X, i.e., P(a) = PrX∼P[X = a].
The total variation distance between two pseudo-distributions P and Q supported on a finite

domain A is dTV (P,Q)
def
= maxS⊆A |P(S)−Q(S)| = (1/2)·‖P−Q‖1 = (1/2)·

∑
a∈A |P(a)−Q(a)|.

If X and Y are two random variables ranging over a finite set, their total variation distance
dTV (X,Y ) is defined as the total variation distance between their distributions. For convenience,
we will often blur the distinction between a random variable and its distribution.

Covers. Let (X , d) be a metric space. Given ε > 0, a subset Y ⊆ X is said to be a proper ε-cover
of X with respect to the metric d : X 2 → R+, if for every x ∈ X there exists some y ∈ Y such that
d(x,y) ≤ ε. (If Y is not necessarily a subset of X , then we obtain a non-proper ε-cover.) There may
exist many ε-covers of X , but one is typically interested in one with the minimum cardinality. The
ε-covering number of (X , d) is the minimum cardinality of any ε-cover of X . Intuitively, the covering
number of a metric space captures the “size” of the space. In this work, we will be interested on
efficiently constructing sparse covers for PMDs under the total variation distance metric.
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Distribution Learning. We now define the notion of distribution learning we use in this pa-
per. Note that an explicit description of a discrete distribution via its probability mass function
scales linearly with the support size. Since we are interested in the computational complexity of
distribution learning, our algorithms will need to use a succinct description of their output hypoth-
esis. A simple succinct representation of a discrete distribution is via an evaluation oracle for the
probability mass function:

Definition 2.3 (Evaluation Oracle). Let P be a distribution over [n]k. An evaluation oracle for P
is a polynomial size circuit C with m = O(k log n) input bits z ∈ [n]k such that for each z ∈ [n]k,
the output of the circuit C(z) equals the binary representation of the probability P(z). For ε > 0,
an ε-evaluation oracle for P is an evaluation oracle for some pseudo-distribution P′ which has
dTV (P′,P) ≤ ε.

One of the most general ways to succinctly specify a distribution is to give the code of an efficient
algorithm that takes “pure” randomness and transforms it into a sample from the distribution. This
is the standard notion of a sampler:

Definition 2.4 (Sampler). Let P be a distribution over [n]k. An ε-sampler for P is a circuit C
with m = O(k log n + log(1/ε)) input bits z and m′ = O(k log n) output bits y which is such that
when z ∼ Um then y ∼ P′, for some distribution P′ which has dTV (P′,P) ≤ ε.

We can now give a formal definition of distribution learning:

Definition 2.5 (Distribution Learning). Let D be a family of distributions. A randomized algo-
rithm AD is a distribution learning algorithm for class D, if for any ε > 0, and any P ∈ D, on
input ε and sample access to P, with probability 9/10, algorithm AD outputs an ε-sampler (or an
ε-evaluation oracle) for P.

Remark 2.6. We emphasize that our learning algorithm in Section 3 outputs both an ε-sampler
and an ε-evaluation oracle for the target distribution.

Anonymous Games and Nash Equilibria. An anonymous game is a triple (n, k, {ui`}i∈[n],`∈[k])
where [n], n ≥ 2, is the set of players, [k], k ≥ 2, a common set of strategies available to all players,
and ui` the payoff function of player i when she plays strategy `. This function maps the set of

partitions Πk
n−1 = {(x1, . . . , xk) | x` ∈ Z+ for all ` ∈ [k] ∧

∑k
`=1 x` = n − 1} to the interval [0, 1].

That is, it is assumed that the payoff of each player depends on her own strategy and only the
number of other players choosing each of the k strategies.

We denote by ∆k
n−1 the convex hull of the set Πk

n−1, i.e., ∆k
n−1 = {(x1, . . . , xk) | x` ≥

0 for all ` ∈ [k] ∧
∑k

`=1 x` = n − 1}. A mixed strategy is an element of ∆k def
= ∆k

1. A mixed
strategy profile is a mapping δ from [n] to ∆k. We denote by δi the mixed strategy of player i
in the profile δ and δ−i the collection of all mixed strategies but i’s in δ. For ε ≥ 0, a mixed
strategy profile δ is a (well-supported) ε-Nash equilibrium iff for all i ∈ [n] and `, `′ ∈ [k] we have:
Ex∼δ−i

[ui`(x)] > Ex∼δ−i
[ui`′(x)] + ε =⇒ δi(`

′) = 0. Note that given a mixed strategy profile δ, we
can compute a player’s expected payoff in time poly(nk) by straightforward dynamic programming.

Note that the mixed strategy δi of player i ∈ [n] defines the k-CRV Xi, i.e., a random vector
supported in the set {e1, . . . , ek}, such that Pr[Xi = e`] = δi(`), for all `. Hence, if (X1, . . . , Xn)
is a mixed strategy profile, the expected payoff of player i ∈ [n] for using pure strategy ` ∈ [k] is

E
[
ui`

(∑
j 6=i,j∈[n]Xj

)]
.
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Multidimensional Fourier Transform. Throughout this paper, we will make essential use of
the (continuous and the discrete) multidimensional Fourier transform. For x ∈ R, we will denote

e(x)
def
= exp(−2πix). The (continuous) Fourier Transform (FT) of a function F : Zk → C is the

function F̂ : [0, 1]k → C defined as F̂ (ξ) =
∑

x∈Zk e(ξ · x)F (x). For the case that F is a probability

mass function, we can equivalently write F̂ (ξ) = Ex∼F [e(ξ · x)] .
For computational purposes, we will also need the Discrete Fourier Transform (DFT) and its

inverse, whose definition is somewhat more subtle. Let M ∈ Zk×k be an integer k × k matrix. We

consider the integer lattice L = L(M) = MZk def
= {p ∈ Zk | p = Mq, q ∈ Zk}, and its dual lattice

L∗ = L∗(M)
def
= {ξ ∈ Rk | ξ · x ∈ Z for all x ∈ L}. Note that L∗ = (MT )−1Zk, and that L∗ is not

necessarily integral. The quotient Zk/L is the set of equivalence classes of points in Zk such that
two points x, y ∈ Zk are in the same equivalence class iff x− y ∈ L. Similarly, the quotient L∗/Zk
is the set of equivalence classes of points in L∗ such that any two points x, y ∈ L∗ are in the same
equivalence class iff x− y ∈ Zk.

The Discrete Fourier Transform (DFT) modulo M , M ∈ Zk×k, of a function F : Zk → C
is the function F̂M : L∗/Zk → C defined as F̂M (ξ) =

∑
x∈Zk e(ξ · x)F (x). (We will remove the

subscript M when it is clear from the context.) Similarly, for the case that F is a probability
mass function, we can equivalently write F̂ (ξ) = Ex∼F [e(ξ · x)] . The inverse DFT of a function
Ĝ : L∗/Zk → C is the function G : A → C defined on a fundamental domain A of L(M) as
follows: G(x) = 1

| det(M)|
∑

ξ∈L∗/Zk Ĝ(x)e(−ξ · x). Note that these operations are inverse of each

other, namely for any function F : A→ C, the inverse DFT of F̂ is identified with F.
Let X =

∑n
i=1Xi be an (n, k)-PMD such that for 1 ≤ i ≤ n and 1 ≤ j ≤ k we denote

pi,j = Pr[Xi = ej ], where
∑k

j=1 pi,j = 1. To avoid clutter in the notation, we will sometimes use
the symbol X to denote the corresponding probability mass function. With this convention, we
can write that X̂(ξ) =

∏n
i=1 X̂i(ξ) =

∏n
i=1

∑k
j=1 e(ξj)pi,j .

Basics from Linear Algebra. We remind the reader a few basic definitions from linear al-
gebra that we will repeatedly use throughout this paper. The Frobenius norm of A ∈ Rm×n is

‖A‖F
def
=
√∑

i,j A
2
i,j . The spectral norm (or induced L2-norm) of A ∈ Rm×n is defined as ‖A‖2

def
=

maxx:‖x‖2=1 ‖Ax‖2 =
√
λmax(ATA). We note that for any A ∈ Rm×n, it holds ‖A‖2 ≤ ‖A‖F . A

symmetric matrix A ∈ Rn×n is called positive semidefinite (PSD), denoted by A � 0, if xTAx ≥ 0
for all x ∈ Rn, or equivalently all the eigenvalues of A are nonnegative. Similarly, a symmetric
matrix A ∈ Rn×n is called positive definite (PD), denoted by A � 0, if xTAx > 0 for all x ∈ Rn,
x 6= 0, or equivalently all the eigenvalues of A are strictly positive. For two symmetric matrices
A,B ∈ Rn×n we write A � B to denote that the difference A−B is PSD, i.e., A−B � 0. Similarly,
we write A � B to denote that the difference A−B is PD, i.e., A−B � 0.

3 Efficiently Learning PMDs

In this section, we describe and analyze our sample near-optimal and computationally efficient
learning algorithm for PMDs. This section is organized as follows: In Section 3.1, we give our
main algorithm which, given samples from a PMD P, efficiently computes a succinct description
of a hypothesis pseudo-distribution H such that dTV (H,P) ≤ ε/3. As previously explained, the
succinct description of H is via its DFT Ĥ, which is supported on a discrete set T of cardinality
|T | = (k log(1/ε))O(k). Note that Ĥ provides an ε-evaluation oracle for P with running time O(|T |).
In Section 3.2, we show how to use Ĥ, in a black-box manner, to efficiently obtain an ε-sampler
for P, i.e., sample from a distribution Q such that dTV (Q,P) ≤ ε. Finally, in Section 3.3 we show
how a nearly–tight cover upper bound can easily be deduced from our learning algorithm.
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3.1 Main Learning Algorithm In this subsection, we give an algorithm Efficient-Learn-PMD

establishing the following theorem:

Theorem 3.1. For all n, k ∈ Z+ and ε > 0, the algorithm Efficient-Learn-PMD has the following
performance guarantee: Let P be an unknown (n, k)-PMD. The algorithm uses O

(
k4k log2k(k/ε)/ε2

)
samples from P, runs in time O

(
k6k log3k(k/ε)/ε2 + k4 log logn

)
, and outputs the DFT Ĥ of a

pseudo-distribution H that, with probability at least 9/10, satisfies dTV (H,P) ≤ ε/3.
Our learning algorithm is described in the following pseudo-code:

Algorithm Efficient-Learn-PMD

Input: sample access to an (n, k)-PMD X ∼ P and ε > 0.
Output: A set T ⊆ (R/Z)k of cardinality |T | ≤ O(k2 log(k/ε))k, and the DFT Ĥ : T → C of a
pseudo-distribution H such that dTV (H,P) ≤ ε/3.

Let C > 0 be a sufficiently large universal constant.

1. Draw m0 = O(k4) samples from X, and let µ̂ be the sample mean and Σ̂ the sample
covariance matrix.

2. Compute an approximate spectral decomposition of Σ̂, i.e., an orthonormal eigenbasis vi
with corresponding eigenvalues λi, i ∈ [k].

3. Let M ∈ Zk×k be the matrix whose ith column is the closest integer point to the vector

C

(√
k ln(k/ε)λi + k2 ln2(k/ε)

)
vi.

4. Define T ⊆ (R/Z)k to be the set of points ξ = (ξ1, . . . , ξk) of the form ξ = (MT )−1 · v+Zk,
for some v ∈ Zk with ‖v‖2 ≤ C2k2 ln(k/ε).

5. Draw m = O
(
k4k log2k(k/ε)/ε2

)
samples si, i ∈ [m], from X, and output the empirical

DFT Ĥ : T → C, i.e., Ĥ(ξ) = 1
m

∑m
i=1 e(ξ · si).

/* The DFT Ĥ is a succinct description of the pseudo-distribution H, the inverse DFT of
Ĥ, defined by: H(x) = 1

| det(M)|
∑

ξ∈T Ĥ(ξ)e(−ξ · x), for x ∈ Zk ∩ (µ̂ + M · (−1/2, 1/2]k),

and H(x) = 0 otherwise. Our algorithm does not output H explicitly, but implicitly via
its DFT.*/

Let X be the unknown target (n, k)-PMD. We will denote by P the probability mass function
of X, i.e., X ∼ P. Throughout this analysis, we will denote by µ and Σ the mean vector and
covariance matrix of X.

First, note that the algorithm Efficient-Learn-PMD is easily seen to have the desired sample
and time complexity. Indeed, the algorithm draws m0 samples in Step 1 and m samples in Step 5,
for a total sample complexity of O(k4k log2k(k/ε)/ε2). The runtime of the algorithm is dominated
by computing the DFT in Step 5 which takes time O(m|T |) = O(k6k log3k(k/ε)/ε2). Computing
an approximate eigendecomposition can be done in time O(k4 log logn)(see, e.g., [PC99]). The
remaining part of this section is devoted to proving the correctness of our algorithm.

Remark 3.2. We remark that in Step 4 of our algorithm, the notation ξ = (MT )−1 · v+Zk refers
to an equivalence class of points. In particular, any pair of distinct vectors v, v′ ∈ Zk satisfying
‖v‖2, ‖v′‖2 ≤ C2k2 ln(k/ε), and (MT )−1 ·(v−v′) ∈ Zk correspond to the same point ξ, and therefore
are not counted twice.
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Overview of Analysis. We begin with a brief overview of the analysis. First, we show (Lemma 3.3)
that at least 1 − O(ε) of the probability mass of X lies in the ellipsoid with center µ and co-
variance matrix Σ̃ = O(k log(k/ε))Σ + O(k log(k/ε))2I. Moreover, with high probability over the
samples drawn in Step 1 of the algorithm, the estimates Σ̂ and µ̂ will be good approximations of
Σ and µ (Lemma 3.4). By combining these two lemmas, we obtain (Corollary 3.5) that at least
1 − O(ε) of the probability mass of X lies in the ellipsoid with center µ̂ and covariance matrix
Σ′ = O(k log(k/ε))Σ̂ +O(k log(k/ε))2I.

By the above, and by our choice of the matrix M ∈ Zk×k, we use linear-algebraic arguments to
prove (Lemma 3.6) that almost all of the probability mass of X lies in the set µ̂+M(−1/2, 1/2]k,
a fundamental domain of the lattice L = MZk. This lemma is crucial because it implies that, to
learn our PMD X, it suffices to learn the random variable X (mod L). We do this by learning the
Discrete Fourier transform of this distribution. This step can be implemented efficiently due to the
sparsity property of the DFT (Proposition 3.8): except for points in T , the magnitude of the DFT
will be very small. Establishing the desired sparsity property for the DFT is the main technical
contribution of this section.

Given the above, it it fairly easy to complete the analysis of correctness. For every point in T we
can learn the DFT up to absolute error O(1/

√
m). Since the cardinality of T is appropriately small,

this implies that the total error over T is small. The sparsity property of the DFT (Lemma 3.14)
completes the proof.

Detailed Analysis. We now proceed with the detailed analysis of our algorithm. We start
by showing that PMDs are concentrated with high probability. More specifically, the following
lemma shows that an unknown PMD X, with mean vector µ and covariance matrix Σ, is effectively
supported in an ellipsoid centered at µ, whose principal axes are determined by the eigenvectors
and eigenvalues of Σ and the desired concentration probability:

Lemma 3.3. Let X be an (n, k)-PMD with mean vector µ and covariance matrix Σ. For any
0 < ε < 1, consider the positive-definite matrix Σ̃ = k ln(k/ε)Σ+k2 ln2(k/ε)I. Then, with probability
at least 1− ε/10 over X, we have that (X − µ)T · Σ̃−1 · (X − µ) = O(1).

Proof. Let X =
∑n

i=1Xi, where the Xi’s are independent k-CRVs. We can write µ = E[X] =∑n
i=1 µi, where µi = E[Xi]. Note that for any unit vector u ∈ Rk, ‖u‖2 = 1, we have that the scalar

random variable u · (X − µ) is a sum of independent, mean 0, bounded random variables. Indeed,
we have that u · (X − µ) =

∑n
i=1 u · (Xi − µi), and that E[u · (Xi − µi)] = u · (E[Xi] − µi) = 0.

Moreover, we can write

|u · (Xi − µi)| ≤ ‖u‖2 · ‖Xi − µi‖2 ≤ ‖Xi‖2 + ‖µi‖2 ≤ 1 +
√
k‖µi‖1 ≤ 2

√
k ,

where we used the Cauchy-Schwartz inequality twice, the triangle inequality, and the fact that a
k-CRV Xi with mean µi by definition satisfy ‖Xi‖2 = 1, and ‖µi‖1 = 1.

Let ν be the variance of u · (X − µ). By Bernstein’s inequality, we obtain that for t =√
2ν ln(10k/ε) + 2

√
k ln(10k/ε) it holds

Pr [|u · (X − µ)| > t] ≤ exp

(
− t2/2

ν + 2
√
kt/3

)
≤ ε

10k
. (1)

Let Σ, the covariance matrix of X, have an orthonormal eigenbasis uj ∈ Rk, ‖uj‖2 = 1, with
corresponding eigenvalues νj , j ∈ [k]. Since Σ is positive-semidefinite, we have that νj ≥ 0, for all
j ∈ [k]. We consider the random variable uj · (X − µ). In addition to being a sum of independent,
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mean 0, bounded random variables, we claim that Var[uj · (X − µ)] = νj . First, it is clear that
Var[uj · (X − µ)] = E

[
(uj · (X − µ))2

]
. Moreover, note that for any vector v ∈ Rk, we have that

E[(v · (X − µ))2] = vT · Σ · v. For v = uj , we thus get E
[
(uj · (X − µ))2

]
= uTj · Σ · uj = νj .

Applying (1) for uj · (X − µ), with tj =
√

2νj ln(10k/ε) + 2
√
k ln(10k/ε), yields that for all

j ∈ [k] we have

Pr [|uj · (X − µ)| > tj ] ≤ exp

(
−

t2j/2

νj + 2
√
ktj/3

)
≤ ε

10k
.

By a union bound, it follows that

Pr [∀j ∈ [k] : |uj · (X − µ)| ≤ tj ] ≥ 1− ε/10 .

We condition on this event.
Since uj and νj are the eigenvectors and eigenvalues of Σ, we have that Σ = UT · diag (νj) · U,

where U has jth column uj . We can thus write

Σ̃ = UT · diag
(
kνj ln(k/ε) + k2 ln2(k/ε)

)
· U.

Therefore, we have:

(X − µ)T · Σ̃−1 · (X − µ) =

∥∥∥∥∥diag

(√
kνj ln(k/ε) + k2 ln2(k/ε)

)−1

· UT · (X − µ)

∥∥∥∥∥
2

2

≤ k

∥∥∥∥∥diag

(√
kνj ln(k/ε) + k2 ln2(k/ε)

)−1

· UT · (X − µ)

∥∥∥∥∥
2

∞

=

max
j∈[k]

|uj · (X − µ)|√
νj ln(k/ε) + k ln2(k/ε)

2

= O(1) ,

where the last inequality follows from our conditioning, the definition of tj , and the elementary
inequality

√
a+ b ≥ (

√
a+
√
b)/
√

2, a, b ∈ R+. This completes the proof of Lemma 3.3.

Lemma 3.3 shows that an arbitrary (n, k)-PMD X puts at least 1− ε/10 of its probability mass
in the ellipsoid E = {x ∈ Rk : (x − µ)T · (Σ̃)−1 · (x − µ) ≤ c}, where c > 0 is an appropriate
universal constant. This is the ellipsoid centered at µ, whose principal semiaxes are parallel to
the uj ’s, i.e., the eigenvectors of Σ, or equivalently of (Σ̃)−1. The length of the principal semiaxis

corresponding to uj is determined by the corresponding eigenvalue of (Σ̃)−1, and is equal to c−1/2 ·√
kνj ln(k/ε) + k2 ln2(k/ε).

Note that this ellipsoid depends on the mean vector µ and covariance matrix Σ, that are
unknown to the algorithm. To obtain a bounding ellipsoid that is known to the algorithm, we will
use the following lemma (see Appendix A for the simple proof) showing that µ̂ and Σ̂ are good
approximations to µ and Σ respectively.

Lemma 3.4. With probability at least 19/20 over the samples drawn in Step 1 of the algorithm,
we have that (µ̂− µ)T · (Σ + I)−1 · (µ̂− µ) = O(1), and 2(Σ + I) � Σ̂ + I � (Σ + I)/2.
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We also need to deal with the error introduced in the eigendecomposition of Σ̂. Concretely,
we factorize Σ̂ as V TΛV, for an orthogonal matrix V and diagonal matrix Λ. This factorization
is necessarily inexact. By increasing the precision to which we learn Σ̂ by a constant factor, we
can still have 2(Σ + I) � V TΛV + I � (Σ + I)/2. We could redefine Σ̂ in terms of our computed
orthonormal eigenbasis, i.e., Σ̂ := V TΛV . Thus, we may henceforth assume that the decomposition
Σ̂ = V TΛV is exact.

For the rest of this section, we will condition on the event that the statements of Lemma 3.4 are
satisfied. By combining Lemmas 3.3 and 3.4 , we show that we can get a known ellipsoid containing
the effective support of X, by replacing µ and Σ in the definition of E by their sample versions.
More specifically, we have the following corollary:

Corollary 3.5. Let Σ′ = k ln(k/ε)Σ̂ + k2 ln2(k/ε)I. Then, with probability at least 1 − ε/10 over
X, we have that (X − µ̂)T · (Σ′)−1 · (X − µ̂) = O(1).

Proof. By Lemma 3.4, it holds that 2(Σ + I) � Σ̂ + I � (Σ + I)/2. Hence, we have that

2
(
k ln(k/ε)Σ + k2 ln2(k/ε)I

)
� k ln(k/ε)Σ̂ + k2 ln2(k/ε)I � 1

2

(
k ln(k/ε)Σ + k2 ln2(k/ε)I

)
.

In terms of Σ′ and Σ̃, this is 2Σ̃ � Σ′ � 1
2 Σ̃. By standard results, taking inverses reverses the

positive semi-definite ordering (see e.g., Corollary 7.7.4 (a) in [HJ85]). Hence,

2Σ̃−1 � Σ′−1 � 1

2
Σ̃−1 .

Combining the above with Lemma 3.3, with probability at least 1− ε/10 over X we have that

(X − µ)T · Σ′−1 · (X − µ) ≤ 2(X − µ)T · Σ̃−1 · (X − µ) = O(1) . (2)

Since Σ′ � 1
2 Σ̃ � Σ + I, and therefore (Σ′)−1 � (Σ + I)−1, Lemma 3.4 gives that

(µ̂− µ)T · Σ′−1 · (µ̂− µ) ≤ (µ̂− µ)T · (Σ + I)−1 · (µ̂− µ) = O(1) . (3)

We then obtain:

(X − µ̂)T · (Σ′)−1 · (X − µ̂) = ((X − µ)− (µ̂− µ))T · (Σ′)−1 · ((X − µ)− (µ̂− µ))

= (X − µ)T · Σ′−1 · (X − µ) + (µ̂− µ)T · Σ′−1 · (µ̂− µ)

− (X − µ)T · Σ′−1 · (µ̂− µ)− (µ̂− µ)T · Σ′−1 · (X − µ) .

Equations (2) and (3) yield that the first two terms are O(1). Since Σ′−1 is positive-definite,
xTΣ′−1y as a function of vectors x, y ∈ Rk is an inner product. So, we may apply the Cauchy-
Schwartz inequality to bound each of the last two terms from above by√

((X − µ)T · Σ′−1 · (X − µ)) · ((µ̂− µ)T · Σ′−1 · (µ̂− µ)) = O(1) ,

where the last equality follows from (2) and (3). This completes the proof of Corollary 3.5.

Corollary 3.5 shows that our unknown PMD X puts at least 1 − ε/10 of its probability mass
in the ellipsoid E ′ = {x ∈ Rk : (x − µ̂)T · (Σ′)−1 · (x − µ̂) ≤ c}, for an appropriate universal
constant c > 0. This is the ellipsoid centered at µ̂, whose principal semiaxes are parallel to the
vj ’s, the eigenvectors of Σ̂, and the length of the principal semiaxis parallel to vj is equal to

c−1/2 ·
√
kλj ln(k/ε) + k2 ln2(k/ε).
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Our next step is to to relate the ellipsoid E ′ to the integer matrix M ∈ Zk×k used in our

algorithm. Let M ′ ∈ Rk×k be the matrix with jth column C

(√
k ln(k/ε)λj + k2 ln2(k/ε)

)
vj ,

where C > 0 is the constant in the algorithm statement. The matrix M ∈ Zk×k is obtained
by rounding each entry of M ′ to the closest integer point. We note that the ellipsoid E ′ can be
equivalently expressed as E ′ = {x ∈ Rk : ‖(M ′)−1 · (x− µ̂)‖2 ≤ 1/4}. Using the relation between M
and M ′, we show that E ′ is enclosed in the ellipsoid {x ∈ Rk : ‖(M)−1 ·(x− µ̂)‖2 < 1/2}, which is in
turn enclosed in the parallelepiped with integer corner points {x ∈ Rk : ‖(M)−1 · (x− µ̂)‖∞ < 1/2}.
This parallelepiped is a fundamental domain of the lattice L = MZk. Formally, we have:

Lemma 3.6. With probability at least 1− ε/10 over X, we have that X ∈ µ̂+M(−1/2, 1/2]k.

Proof. Let M ′ ∈ Rk×k be the matrix with columns C

(√
k ln(k/ε)λi + k2 ln2(k/ε)

)
vi, where C > 0

is the constant in the algorithm statement. Note that,

M ′(M ′)T = C2k ln(k/ε)Σ̂ + C2k2 ln2(k/ε)I = C2Σ′ . (4)

For a large enough constant C, Corollary 3.5 implies that with probability at least 1− ε/10,

‖(M ′)−1 · (X − µ̂)‖22 = C−2(X − µ̂)T · (Σ′)−1 · (X − µ̂) ≤ 1/16 . (5)

Note that the above is an equivalent description of the ellipsoid E ′. Our lemma will follow from the
following claim:

Claim 3.7. For any x ∈ Rk, it holds

‖M−1x‖2 < 2‖(M ′)−1x‖2 and ‖MTx‖2 < 2‖(M ′)Tx‖2 . (6)

Proof. By construction, M and M ′ differ by at most 1 in each entry, and therefore M −M ′ has
Frobenius norm (and, thus, induced L2-norm) at most k. For any x ∈ Rk, we thus have that

‖(M ′)Tx‖2 =
√
xT ·M ′ · (M ′)T · x ≥

√
xT · (C2k2I) · x > 2k‖x‖2 ,

and therefore

‖MTx‖2 ≥ ‖(M ′)Tx‖2 − ‖(M −M ′)T ‖2‖x‖2 >
1

2
‖(M ′)Tx‖2.

Similarly, we get ‖MTx‖2 ≤ ‖(M ′)Tx‖2 + ‖(M −M ′)T ‖2‖x‖2 < 2‖(M ′)Tx‖2. In terms of the PSD
ordering, we have:

1

4
M ′(M ′)T ≺MMT ≺ 4M ′(M ′)T . (7)

SinceM ′(M ′)T � I, bothM ′(M ′)T andMMT are positive-definite, and soM andM ′ are invertible.
Taking inverses in Equation (7) reverses the ordering, that is:

1

4
(M ′−1)TM ′−1 ≺ (M−1)TM−1 ≺ 4(M ′−1)TM ′−1 .

The claim now follows.

Hence, Claim 3.7 implies that with probability at least 1− ε/10, we have:

‖M−1(X − µ̂)‖∞ ≤ ‖M−1(X − µ̂)‖2 < 2‖(M ′)−1(X − µ̂)‖2 < 1/2 ,

where the last inequality follows from (5). In other words, with probability at least 1 − ε/10, X
lies in µ̂+M(−1/2, 1/2]k, which was to be proved.
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Recall that L denotes the lattice MZk. The above lemma implies that it is sufficient to learn
the random variable X (mod L). To do this, we will learn its Discrete Fourier transform. Let
L∗ be the dual lattice to L. Recall that the DFT of the PMD P, with X ∼ P, is the function
P̂ : L∗/Zk → C defined by P̂(ξ) = E[e(ξ ·X)]. Moreover, the probability that X (mod L) attains
a given value x is given by the inverse DFT, namely

Pr [X (mod L) = x] =
1

| det(M)|
∑

ξ∈L∗/Zk

P̂(ξ)e(−ξ · x) .

The main component of the analysis is the following proposition, establishing that the total contri-
bution to the above sum coming from points ξ 6∈ T is small. In particular, we prove the following:

Proposition 3.8. We have that
∑

ξ∈(L∗/Zk)\T |P̂(ξ)| < ε/10.

To prove this proposition, we will need a number of intermediate claims and lemmas. We start
with the following claim, showing that for every point ξ ∈ Rk, there exists an integer shift whose
coordinates lie in an interval of length strictly less than 1:

Claim 3.9. For each ξ ∈ Rk, there exists a ∈ Z+ with 0 ≤ a ≤ k, and b ∈ Zk such that

ξ − b ∈
[

a
k+1 ,

a+k
k+1

]k
.

Proof. Consider the k fractional parts of the coordinates of ξ, i.e., ξi − bξic, for 1 ≤ i ≤ k. Now

consider the k + 1 intervals Ia′ =
(
a′−1
k+1 ,

a′

k+1

)
, for 1 ≤ a′ ≤ k + 1. By the pigeonhole principle,

there is an a′ such that ξi − bξic /∈ Ia′ , for all i, 1 ≤ i ≤ k. We define a = a′ when a′ < k + 1, and
a = 0 when a′ = k + 1.

For any i, with 1 ≤ i ≤ k, since ξi − bξic /∈ Ia′ , we have that ξi − bξic ∈
[
0, a−1

k+1

]
∪
[

a
k+1 , 1

]
(taking the first interval to be empty if a = 0). Hence, by setting one of bi = bξic, or bi = bξic − 1,

we get ξi − bi ∈
[

a
k+1 ,

a+k
k+1

]
. This completes the proof.

The following lemma gives a “Gaussian decay” upper bound on the magnitude of the DFT, at
points ξ whose coordinates lie in an interval of length less than 1. Roughly speaking, the proof of
Proposition 3.8 proceeds by applying this lemma for all ξ /∈ T.

Lemma 3.10. Fix δ ∈ (0, 1). Suppose that ξ ∈ Rk has coordinates lying in an interval I of length
1− δ. Then, |P̂(ξ)| = exp(−Ω(δ2ξT · Σ · ξ)).

Proof. Since P is a PMD, we have X =
∑n

i=1Xi, where Xi ∼ Pi for independent k-CRV’s Pi, we

have that |P̂(ξ)| =
∏n
i=1 |P̂i(ξ)|. Note also that ξT ·Σ ·ξ = Var[ξ ·X] =

∑n
i=1 Var[ξ ·Xi]. It therefore

suffices to show that for each i ∈ [n] it holds

|P̂i(ξ)| = exp(−Ω(δ2Var[ξ ·Xi])) .

Let X ′i ∼ Pi be an independent copy of Xi, and Yi = Xi − X ′i. We note that Var[ξ · Xi] =

(1/2)E[(ξ · Yi)2], and that |P̂i(ξ)|2 = E[e(ξ · Yi)]. Since Yi is a symmetric random variable, we have
that

|P̂i(ξ)|2 = E[e(ξ · Yi)] = E[cos(2πξ · Yi)] .

We will need the following technical claim:

Claim 3.11. Fix 0 < δ < 1. For all x ∈ R with |x| ≤ 1− δ, it holds 1− cos(2πx) ≥ δ2x2.
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Proof. When 0 ≤ |x| ≤ 1/4, sin(2πx) is concave, since its second derivative is −4π2 sin(2πx) ≤ 0.
So, we have sin(2πx) ≥ (1 − 4x) sin(0) + 4x sin(π/2) = 4x. Integrating the latter inequality, we
obtain that (1− cos(2πx))/2π ≥ 2x2, i.e., (1− cos(2πx)) ≥ 4πx2. Thus, for 0 ≤ |x| ≤ 1/4, we have
1− cos(2πx)) ≥ 4πx2 ≥ δ2x2.

When 1/4 ≤ |x| ≤ 3/4, we have (1 − cos(2πx)) ≥ 1 ≥ δ2x2. Finally, when 3/4 ≤ |x| ≤ 1 − δ,
we have 0 ≤ 1− |x| ≤ δ ≤ 1/4, and therefore 1− cos(2πx) = 1− cos(2π(1− |x|)) ≥ 1− cos(2πδ) ≥
4πδ2 ≥ δ2x2. This establishes the proof of the claim.

Since ξ · Yi is by assumption supported on the interval [−1 + δ, 1− δ], we have that |P̂i(ξ)|2 is

E[cos(2πξ · Yi)] = E[1− Ω(δ2(ξ · Yi)2)] ≤ exp(−Ω(δ2E[(ξ · Yi)2])) = exp(−Ω(δ2Var[ξ ·Xi])) .

This completes the proof of Lemma 3.10.

We are now ready to prove the following crucial lemma, which shows that the DFT of P is
effectively supported on the set T.

Lemma 3.12. For integers 0 ≤ a ≤ k, we have that∑
ξ∈L∗∩[ a

k+1
,a+k
k+1 ]

k\(T+Zk)

|P̂(ξ)| < ε

10(k + 1)
.

We start by providing a brief overview of the proof. First note that Claim 3.9 and Lemma 3.10
together imply that for ξ ∈ [a/(k+ 1), (a+ k)/(k+ 1)]k, if ξT ·Σ · ξ ≥ k2 log(1/ε′), then |P̂(ξ)| ≤ ε′,
for any ε′ > 0. Observe that the set {ξ ∈ Rk : ξT · Σ · ξ ≤ k2 log(1/ε′)} is not an ellipsoid,
because Σ is singular. However, by using the fact that M and M ′ are close to each other, – more
specifically, using ingredients from the proof of Lemma 3.6 – we are able to bound its intersection
with [a/(k + 1), (a+ k)/(k + 1)]k by an appropriate ellipsoid of the form {ξT · (M ·MT ) · ξ ≤ r}.

The gain here is that MT ξ ∈ Zk. This allows us to provide an upper bound on the cardinality
of the set of lattice points in L∗ in one of these ellipsoids. Note that, in terms of v = MT ξ, these
are the integer points that lie in a sphere of some radius r > r0 = C2k2 ln(k/ε). Now, if we consider
the set 2tr0 ≤ ξT · (MMT ) · ξ < 2t+1r0, we have both an upper bound on the magnitude of the
DFT and on the number of integer points in the set. By summing over all values of t ≥ 0, we get
an upper bound on the error coming from points outside of T.

Proof of Lemma 3.12. Since ξ /∈ T + Zk, we have that ‖MT ξ‖2 > C2k2 ln(k/ε). Since the coor-

dinates of ξ lie in
[

a
k+1 ,

a+k
k+1

]
, an interval of length 1 − 1/(k + 1), we may apply Lemma 3.10 to

obtain:

|P̂(ξ)| = exp
(
−Ω

(
k−2ξT · Σ · ξ

))
= exp

(
−Ω

(
k−2ξT · (Σ̂− I) · ξ

))
(by Lemma 3.4)

= exp

(
−Ω

(
k−2

(
ξTM ′(M ′)T ξ

C2k log(k/ε)
− k log(k/ε)‖ξ‖22

)))
(by Equation (4))

= exp

(
−Ω

(
k−2

(
‖(M ′)T ξ‖22
C2k log(k/ε)

− k2 log(k/ε)‖ξ‖2∞
)))

= exp

(
−Ω

(
k−2

(
‖MT ξ‖22

C2k log(k/ε)
− k2 log(k/ε)‖ξ‖2∞

)))
(by Equation (6))

= exp
(
−Ω

(
C−2k−3 log−1(k/ε)‖MT ξ‖22 − log(k/ε)

))
(since ‖ξ‖∞ ≤ 2)

= exp
(
−Ω

(
C−2k−3 log−1(k/ε)‖MT ξ‖22

))
. (since ‖MT ξ‖2 > C2k2 ln(k/ε))
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Next note that for ξ ∈ L∗ we have that MT ξ ∈ Zk. Thus, letting v = MT ξ, it suffices to show that∑
v∈Zk,‖v‖2≥C2k2 ln(k/ε)

exp
(
−Ω

(
C−2k−3 log−1(k/ε)‖v‖22

))
<

ε

10(k + 1)
. (8)

Although the integer points in the above sum are not in the sphere ‖v‖2 ≤ C2k2 ln(k/ε), they lie
in some sphere ‖v‖2 ≤ 2t+1C2k2 ln(k/ε), for some integer t > 0. The number of integral points in
one of these spheres is less than that of the appropriate enclosing cube. Namely, we have that

#
{
v ∈ Zk, ‖v‖2 ≤ 2t+1C2k2 ln(k/ε)

}
≤ #

{
v ∈ Zk, ‖v‖∞ ≤ 2t+1C2k2 ln(k/ε)

}
=

(
1 + 2b2t+1C2k2 ln(k/ε)c

)k
. (9)

Inequality (8) is obtained by bounding the LHS from above as follows:

∞∑
t=0

exp
(
−Ω(C−2k−3 log−1(k/ε)(2tC2k2 ln(k/ε))2)

)
·#
{
v ∈ Zk, ‖v‖2 ≤ 2t+1C2k2 ln(k/ε)

}
=
∞∑
t=0

exp
(
−Ω(Ck log(k/ε)4t)

)
·#
{
v ∈ Zk, ‖v‖2 ≤ 2t+1C2k2 ln(k/ε)

}
≤
∞∑
t=0

exp
(
−Ω(Ck log(k/ε)4t)

)
·
(
2t+2C2k2 log(k/ε)

)k
(by Equation (9))

=
∞∑
t=0

exp
(
−Ω(Ck log(k/ε)4t)

)
exp (O(k(t+ log k + log log(k/ε))))

≤ exp (− ln((k + 1)/10ε)) ·
∞∑
t=0

exp(−k
√
C(4t − t)))

≤ ε2

10(k + 1)
·
∞∑
t=0

exp(−
√
C(4t − t))

<
ε

10(k + 1)
.

This completes the proof of Lemma 3.12.

We are now prepared to prove Proposition 3.8.

Proof of Proposition 3.8. Let Ta be the set of points ξ ∈ Rk which have a lift with all coordinates in

the interval
[

a
k+1 ,

a+k
k+1

]k
, for some integer 0 ≤ a ≤ k. By Claim 3.9, we have that

⋃
a Ta = (L∗/Zk).

By Lemma 3.12, for all 0 ≤ a ≤ k, ∑
ξ∈Ta\T

|P̂(ξ)| < ε

10(k + 1)
,

and so we have: ∑
ξ∈(L∗/Zk)\T

|P̂(ξ)| ≤
k∑
a=0

∑
ξ∈Ta\T

|P̂(ξ)| < ε/10 .
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Our next simple lemma states that the empirical DFT is a good approximation to the true
DFT on the set T.

Lemma 3.13. Letting m = (C5k4 ln2(k/ε))k/ε2, with 19/20 probability over the choice of m sam-
ples in Step 5, we have that

∑
ξ∈T |Ĥ(ξ)− P̂(ξ)| < ε/10.

Proof. For any given ξ ∈ T, we note that Ĥ(ξ) is the average of m samples from e(ξ ·X), a random
variable whose distribution has mean P̂(ξ) and variance at most O(1). Therefore, we have that

E[|Ĥ(ξ)− P̂(ξ)|] ≤ O(1)/
√
m.

Summing over ξ ∈ T, and noting that |T | ≤ O(C2k2 log(k/ε))k, we get that the expectation of the
quantity in question is less than ε/400. Markov’s inequality completes the argument.

Finally, we bound from above the total variation distance between P and H.

Lemma 3.14. Assuming that the conclusion of the previous lemma holds, then for any x ∈ Zk/L
we have that ∣∣∣∣∣∣Pr[X ≡ x (mod L)]− 1

|det(M)|
∑
ξ∈T

Ĥ(ξ)e(−ξ · x)

∣∣∣∣∣∣ ≤ ε

5|det(M)|
.

Proof. We note that∣∣∣∣∣∣Pr[X ≡ x (mod L)]− 1

|det(M)|
∑
ξ∈T

Ĥ(ξ)e(−ξ · x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

| det(M)|
∑

ξ∈L∗/Zk

P̂(ξ)e(−ξ · x)− 1

det(M)

∑
ξ∈T

Ĥ(ξ)e(−ξ · x)

∣∣∣∣∣∣
≤ 1

|det(M)|
∑

ξ∈L∗/Zk,ξ 6∈T

|P̂(ξ)| − 1

| det(M)|
∑
ξ∈T
|P̂(ξ)− Ĥ(ξ)|

≤ ε

5|det(M)|
,

where the last line follows from Proposition 3.8 and Lemma 3.13.

It follows that, for each x ∈ µ̂+M(−1/2, 1/2]k, our hypothesis pseudo-distribution H(x) equals
the probability that X ≡ x (mod L) plus an error of at most ε

5| det(M)| . In other words, the pseudo-

distribution defined by H (mod L) differs fromX (mod L) by at most
(

ε
5|det(M)|

)
|Zk/L| = ε/5.On

the other hand, letting X ′ ∼ P′ be obtained by moving a sample from X to its unique representative
modulo L lying in µ̂ + M(−1/2, 1/2]k, we have that X = X ′ with probability at least 1 − ε/10.
Therefore, dTV (P,P′) ≤ ε/10. Note that X (mod L) = X ′ (mod L), and so dTV (H (mod L),P′

(mod L)) < ε/5. Moreover, H and P′ are both supported on the same fundamental domain of L,
and hence dTV (H,P′) = dTV (H (mod L),P′ (mod L)) < ε/5. Therefore, assuming that the above
high probability events hold, we have that dTV (H,P) ≤ dTV (H,P′) + dTV (P,P′) ≤ 3ε/10.

This completes the analysis and the proof of Theorem 3.1.
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3.2 An Efficient Sampler for our Hypothesis The learning algorithm of Section 3.1 outputs
a succinct description of the hypothesis pseudo-distribution H, via its DFT. This immediately
provides us with an efficient evaluation oracle for H, i.e., an ε-evaluation oracle for our target PMD
P. The running time of this oracle is linear in the size of T, the effective support of the DFT.

Note that we can explicitly output the hypothesis H by computing the inverse DFT at all the
points of the support of H. However, in contrast to the effective support of Ĥ, the support of H can
be large, and this explicit description would not lead to a computationally efficient algorithm. In this
subsection, we show how to efficiently obtain an ε-sampler for our unknown PMD P, using the DFT
representation of H as a black-box. In particular, starting with the DFT of an accurate hypothesis
H, represented via its DFT, we show how to efficiently obtain an ε-sampler for the unknown target
distribution. We remark that the efficient procedure of this subsection is not restricted to PMDs,
but is more general, applying to all discrete distributions with an approximately sparse DFT (over
any dimension) for which an efficient oracle for the DFT is available.

In particular, we prove the following theorem:

Theorem 3.15. Let M ∈ Zk×k, m ∈ Rk, and S = m + M(−1/2, 1/2]k ∩ Zk. Let H : S → R be
a pseudo-distribution succinctly represented via its DFT (modulo M), Ĥ, which is supported on
a set T, i.e., H(x) = (1/|det(M)|) ·

∑
ξ∈T e(−ξ · x)Ĥ(ξ), for x ∈ S, with 0 ∈ T and Ĥ(0) =

1. Suppose that there exists a distribution P with dTV (H,P) ≤ ε/3. Then, there exists an ε-
sampler for P, i.e., a sampler for a distribution Q such that dTV (P,Q) ≤ ε, running in time
O(log(|det(M)|) log(| det(M)|/ε) · |T | · poly(k)).

We remark that the ε-sampler in the above theorem statement can be described as a randomized
algorithm that takes as input M , T , Ĥ(ξ), for ξ ∈ T, and the Smith normal form decomposition of
M(see Lemma 3.21).

We start by observing that our main learning result, Theorem 1.1, follows by combining The-
orem 3.1 with Theorem 3.15. Indeed, note that the matrix M in the definition of our PMD

algorithm in Section 3.1 satisfies |det(M)| ≤ O(

√
det(Σ̃)) ≤ (nk log(1/ε))O(k). Also recall that

|T | = O(k2k logk(k/ε)). Since M has largest entry n, by Lemma 3.21, we can compute its Smith
normal form decomposition in time poly(k) log n. Hence, for the case of PMDs, we obtain the
following corollary, establishing Theorem 1.1:

Corollary 3.16. For all n, k ∈ Z+ and ε > 0, there is an algorithm with the following performance
guarantee: Let P be an unknown (n, k)-PMD. The algorithm uses O

(
k4k log2k(k/ε)/ε2

)
samples

from P, runs in time O
(
k6k log3k(k/ε)/ε2 · log n

)
, and with probability at least 9/10 outputs an

ε-sampler for P. This ε-sampler runs (i.e., produces a sample) in time poly(k)O(k2k logk+1(k/ε)) ·
log2 n.

This section is devoted to the proof of Theorem 3.15. We first handle the case of one-dimensional
distributions, and then appropriately reduce the high-dimensional case to the one-dimensional.

Remark 3.17. We remark that the assumption that Ĥ(0) = 1 in our theorem statement, en-
sures that

∑
x∈S H(x) = 1, and so, for any distribution P over S the total variational distance

dTV (H,P)
def
= 1

2

∑
x∈S |H(x)−P(x)| is well behaved in the sense that dTV (H,P) =

∑
x:P(x)>H(x)(P(x)−

H(x)) =
∑

x:P(x)<H(x)(H(x)−P(x)). This fact will be useful in the correctness of our sampler.

We start by providing some high-level intuition. Roughly speaking, we obtain the desired
sampler by considering an appropriate definition of a Cumulative Distribution Function (CDF)
corresponding to H. For the 1-dimensional case (i.e., the case k = 1 in our theorem statement), the
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definition of the CDF is clear, and our sampler proceeds as follows: We use the DFT to obtain a
closed form expression for the CDF of H, and then we query the CDF using an appropriate binary
search procedure to sample from the distribution. One subtle point is that H(x) is a pseudo-
distribution, i.e. it is not necessarily non-negative at all points. Our analysis shows that this does
not pose any problems with correctness, by using the aforementioned remark.

For the case of two or more dimensions (k ≥ 2), we essentially provide a computationally
efficient reduction to the 1-dimensional case. In particular, we exploit the fact that the underlying
domain is discrete, to define an efficiently computable bijection from the domain to the integers,
and consider the corresponding 1-dimensional CDF. To achieve this, we efficiently decompose the
integer matrix M ∈ Zk×k using a version of the Smith Normal Form, effectively reducing to the case
that M is diagonal. For the diagonal case, we can intuitively treat the dimensions independently,
using the lexicographic ordering.

Our first lemma handles the 1-dimensional case, assuming the existence of an efficient oracle
for the CDF:

Lemma 3.18. Given a pseudo-distribution H supported on [a, b] ∩ Z, a, b ∈ Z, with CDF cH(x) =∑
i:a≤i≤x H(i) (which satisfies cH(b) = 1), and oracle access to a function c(x) so that |c(x) −

cH(x)| < ε/(10(b − a + 1)) for all x, we have the following: If there is a distribution P with
dTV (H,P) ≤ ε/3, there is a sampler for a distribution Q with dTV (P,Q) ≤ ε, using O(log(b+ 1−
a)+log(1/ε)) uniform random bits as input, and running in time O((D+1)(log(b+1−a))+log(1/ε)),
where D is the running time of evaluating the CDF c(x).

Proof. We begin our analysis by producing an algorithm that works when we are able to exactly
sample cH(x).

We can compute an inverse to the CDF dH : [0, 1]→ [a, b]∩Z, at y ∈ [0, 1], using binary search,
as follows:

1. We have an interval [a′, b′], initially [a− 1, b], with cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′).

2. If b′ − a′ = 1, output dH(y) = b′.

3. Otherwise, find the midpoint c′ = b(a′ + b′)/2c.

4. If cH(a′) < cH(c′) and y ≤ cH(c′), repeat with [a′, c′]; else repeat with [c′, b].

The function dH can be thought of as some kind of inverse to the CDF cH : [a− 1, b] ∩ Z → [0, 1]
in the following sense:

Claim 3.19. The function dH satisfies: For any y ∈ [0, 1], it holds cH(dH(y)−1) ≤ y ≤ cH(dH(y))
and cH(dH(y)− 1) < cH(dH(y)).

Proof. Note that if we don’t have cH(a′) < cH(c′) and y ≤ cH(c′), then cH(c′) < y ≤ cH(b′). So,
Step 4 gives an interval [a′, b′] which satisfies cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′). The initial
interval [a − 1, b] satisfies these conditions since cH(a − 1) = 0 and cH(b) = 1. By induction, all
[a′, b′] in the execution of the above algorithm have cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′). Since
this is impossible if a′ = b′, and Step 4 always recurses on a shorter interval, we eventually have
b′ − a′ = 1. Then, the conditions cH(a′) ≤ y ≤ cH(b′) and cH(a′) < cH(b′) give the claim.

Computing dH(y) requires O(log(b−a+1)) evaluations of cH, and O(log(b−a+1)) comparisons
of y. For the rest of this proof, we will use n = b− a+ 1 to denote the support size.
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Consider the random variable dH(Y ), for Y uniformly distributed in [0, 1], whose distribution
we will call Q′. When dH(Y ) = x, we have cH(x − 1) ≤ Y ≤ cH(x), and so when Q′(x) > 0, we
have Q′(x) ≤ Pr [cH(x− 1) ≤ Y ≤ cH(x)] = cH(x) − cH(x − 1) = H(x). So, when H(x) > 0, we
have H(x) ≥ Q′(x). But when H(x) ≤ 0, we have Q′(x) = 0, since then cH(x) < cH(x− 1) and no
y has cH(x− 1) ≤ y ≤ cH(x). So, we have dTV (Q′,H) =

∑
x:H(x)<0−H(x) ≤ dTV (H,P) ≤ ε/3.

We now show how to effectively sample from Q′. The issue is how to simulate a sample from
the uniform distribution on [0, 1] with uniform random bits. We do this by flipping coins for the
bits of Y lazily. We note that we will only need to know more than m bits of Y if Y is within 2−m

of one of the values of cH(x) for some x. By a union bound, this happens with probability at most
n2−m over the choice of Y. Therefore, for m > log2(10n/ε), the probability that this will happen is
at most ε/10 and can be ignored.

Therefore, the random variable dH(Y ′), for Y ′ uniformly distributed on the multiples of 2−r in
[0, 1) for r = O(log n+ log(1/ε)), has distribution Q′ that satisfies dTV (Q,Q′) ≤ ε/10. This means
that dTV (P,Q′) ≤ dTV (P,H) +dTV (H,Q) +dTV (Q,Q′) ≤ 9ε/10. That is, we obtain an ε-sampler
that uses O(log n+ log(1/ε)) coin flips, O(log n) calls to cH(x), and has the desired running time.

We now need to show how this can be simulated without access to cH, and instead only having
access to its approximation c(x). The modification required is rather straightforward. Essentially,
we can run the same algorithm using c(x) in place of cH(x). We note that all comparisons with Y
will produce the same result, unless the chosen Y is between c(x) and cH(x) for some value of x.
Observe that because of our bounds on their difference, the probability of this occurring for any
given value of x is at most ε/(10n). By a union bound, the probability of it occurring for any x is
at most ε/10. Thus, with probability at least 1 − ε/10 our algorithm returns the same result that
it would have had it had access to cH(x) instead of c(x). This implies that the variable sampled
by this algorithm has variation distance at most ε/10 from what would have been sampled by our
other algorithm. Therefore, this algorithm samples a Q with dTV (P,Q) ≤ ε.

We next show that we can efficiently compute an appropriate CDF using the DFT. For the
1-dimensional case, this follows easily via a closed form expression. For the high-dimensional case,
we first obtain a closed form expression for the case that the matrix M is diagonal. We then reduce
the general case to the diagonal case, by using a Smith normal form decomposition.

Proposition 3.20. For H as in Theorem 3.15, we have the following:

(i) If k = 1, there is an algorithm to compute the CDF cH : [a, b] ∩ Z → [0, 1] with cH(x) =∑
i:a≤i≤x H(i) to any precision δ > 0, where a = m − dM/2e + 1 and b = m + bM/2c,

M ∈ Z+. The algorithm runs in time O(|T | log(1/δ)).

(ii) If M ∈ Zk×k is diagonal, there is an algorithm which computes the CDF to any precision
δ > 0 under the lexicographic ordering ≤lex, i.e., cH(x) =

∑
y∈T :y≤lexx

H(y). The algorithm

runs in time O(k2|T | log(1/δ)).

(iii) For any M ∈ Zk×k, there is an explicit ordering ≤g for which we can compute the CDF
cH(x) =

∑
y∈T :y≤gx

H(y) to any precision δ > 0. This computation can be done in time

O(k2|T | log(1/δ) + poly(k)).

In cases (ii) and (iii), we can also compute the embedding of the corresponding ordering onto the
integers [|detM |] = {1, 2, ..., |detM |}, i.e., we can give a monotone bijection f : S → [| detM |] for
which we can efficiently compute f and f−1 (i.e., with the same running time bound we give for
computing cH(x)).
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Proof. Recall that the PMF of H at x ∈ S is given by the inverse DFT:

H(x) =
1

|detM |
∑
ξ∈T

e(−ξ · x)Ĥ(ξ) . (10)

Proof of (i): For (i), the CDF is given by:

cH(x) =
1

M

∑
i:a≤i≤x

∑
ξ∈T

e(−ξx)Ĥ(ξ)

=
1

M

∑
ξ∈T

Ĥ(ξ)
∑

i:a≤i≤x
e(−ξx)

When ξ 6= 0, the term
∑

i:a≤i≤x e(−ξ · x) is a geometric series. By standard results on its sum, we
have: ∑

i:a≤i≤x
e(−ξx) =

e(−ξa)− e(−ξ(x+ 1))

1− e(−ξ)
.

When ξ = 0, e(−ξ) = 1, and we get
∑

a≤i≤x e(−ξx) = i+1−a. In this case, we also have Ĥ(ξ) = 1.
Putting this together we have:

cH(x) =
1

M

i+ 1− a+
∑

ξ∈T\{0}

Ĥ(ξ)
e(−ξa)− e(−ξ(x+ 1))

1− e(−ξ)

 . (11)

Hence, we obtain a closed form expression for the CDF that can be approximated to desired
precision in time O(|T | log(1/δ)).

Proof of (ii): For (ii), we can write M = diag(Mi), 1 ≤ i ≤ k, and S =
∏k
i=1([ai, bi] ∩ Z), where

ai = mi − d|Mi|/2e+ 1 and bi = mi + b|Mi|/2c. With our lexicographic ordering, we have:

cH(x) =
∑

y∈S:y≤lexx

H(y)

=

x1−1∑
y1=a1

b2∑
y2=a2

· · ·
bk∑

yk=ak

H(y)

+

x2−1∑
y2=a2

b3∑
y3=a3

· · ·
bk∑

yk=ak

H(x1, y2, . . . , yk)

. . .

+

xk−1∑
yk=ak

H(x1, . . . , xk−1, yk)

+ H(x) .
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To avoid clutter in the notation, we define cH,i(x) to be one of these sums, i.e.,

cH,i(x)
def
=

xi−1∑
yi=ai

bi+1∑
yi+1=ai+1

· · ·
bk∑

yk=ak

H(x1, . . . , xi−1, yi, . . . , yk)

=
1

|det(M)|
·
xi−1∑
yi=ai

bi+1∑
yi+1=ai+1

· · ·
bk∑

yk=ak

∑
ξ∈T

Ĥ(ξ)e

− i−1∑
j=1

ξjxj −
k∑
j=i

ξjyj


=

1

|det(M)|
·
∑
ξ∈T

Ĥ(ξ)e

− i−1∑
j=1

ξjxj

(xi−1∑
yi=ai

e(−ξiyi)

)
k∏

j=i+1

bi∑
yi=ai

e(−ξjyj)

=
1

|det(M)|
·
∑
ξ∈T

Ĥ(ξ)e

− i−1∑
j=1

ξjxj

 si(ai, xi − 1)
k∏

j=i+1

sj(aj , bj) ,

where si(a
′
i, b
′
i) :=

∑b′i
yi=a′i

e(−ξiyi). As before, this is a geometric series, so either ξi = 0, when we

have si = b′i + 1− a′i, or si =
e(−ξia′i)−e(−ξ(b′i+1))

1−e(−ξ) .

We can thus evaluate cH,i in O(|T |k) arithmetic operations and so compute cH(x) to desired
accuracy in O(|T |k2 log(1/δ)) time. We also note that f : S → {0, 1, ..., (

∏
i |Mi|)− 1}, defined by

f(x) :=
∑

i(xi−ai)
∏i
j=1Mj is a strictly monotone bijection, and that f and f−1 can be computed

in time O(k). Now, cH(f−1(y) is the CDF of the distribution on y ∈ {0, 1, ..., (
∏
i |Mi|)− 1} whose

PMF is given by H(f−1(y)).

Proof of (iii): We will reduce (iii) to (ii). To do this, we use Smith normal form, a canonical
factorization of integer matrices:

Lemma 3.21 (See [Sto00], [Sto96])). Given any integer matrix M ∈ Zk×k, we can factorize M
as M = U · D · V , where U,D, V ∈ Zk×k with D diagonal and U ,V unimodular, i.e., |det(U)| =
| det(V )| = 1, and therefore U−1, V −1 ∈ Zk×k. This factorization can be computed in time

poly(k) log max
i,j
|Mi,j |.

Note that the Smith normal form satisfies additional conditions on D than those in Lemma
3.21, but we are only interested in finding such a decomposition where D is a diagonal integer
matrix.

We note that the integer lattices MZk and UDZk are identical, since if x = Mb for b ∈ Zk,
then x = UDc for c = V b ∈ Zk. For any ξ ∈ (MT )−1Zk, ξ = (UT )−1(DT )−1(V T )−1b, for b ∈ Z.
Then, if we take ν = UT ξ, we have ν ∈ (DV )−1Zk = D−1Zk.

Hence, we can re-write (10) as follows:

H(x) =
1

|detM |
∑

ν∈UTT

e
(
−νU−1x

)
Ĥ((UT )−1ν) .

Since UTT ⊆ D−1Zk, substituting y = U−1x almost gives us the conditions which would allow us to
apply (ii). The issue is that for x ∈ m+M(−1/2, 1/2]k, we have U−1X ∈ U−1m+DV (−1/2, 1/2]k,
but we do not necessarily have U−1X ∈ U−1m+D(−1/2, 1/2]k. The following claim gives the details
of how to change the fundamental domain:
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Claim 3.22. Given a non-singular M ∈ Zk×k and m,x ∈ Rk, then x′ = x + MR
(
M−1(m− x)

)
is the unique x′ ∈ m + M(−1/2, 1/2]k with x − x′ ∈ MZk, where R(x) is x with each coordinate
rounded to the nearest integer, rounding half integers up, i.e., (R(x))i := 1

2 + dxi − 1
2e.

So we take y = g(x)
def
= U−1x + DR

(
(UD)−1m− (UD)−1x

)
, which using Claim 3.22 has

g(x) ∈ U−1m+D(−1/2, 1/2]k. We need the inverse function of g : m+M(−1/2, 1/2]k → U−1m+
D(−1/2, 1/2]k. Note that g−1(y) = Uy + D−1R(U−1m − y), which again by Claim 3.22 is in
m+M(−1/2, 1/2]k.

So, if y = g(x), since |det(M)| = | det(U)| · | det(D)| · | det(V )| = |det(D)|, we have:

H(g−1(y)) =
1

|det(D)|
∑

ν∈UTT

e(ν · y)Ĥ((UT )−1ν) . (12)

Now, we can take H(g−1(y) to be a function of y supported on U−1m+D(−1/2, 1/2]k with a sparse
DFT modulo D supported on UTT ⊆ D−1Zk. At this point, we can apply the algorithm of (ii),
which gives a way to compute the CDF of H(g−1(y)) with respect to the lexicographic ordering on
y. Note that g and g−1 can be computed in time poly(k), or more precisely the running time of
matrix multiplication and inversion.

For the ordering on x ∈ S, which has x1 ≤g x2 when g(x1) ≤lex g(x2), we can compute
cH(x) =

∑
y∈S:y≤gx

H(y) by applying the algorithm in (ii) to the function given in (12) applied at

g(x). So, we can compute cH(x) in time O(k2|T |+ poly(k)). Again, the function given by f(g(x)),
where f is as in (ii) is a monotone bijection from S to {0, 1, . . . ,det(M)− 1}, and we can calculate
this function and its inverse in time poly(k).

Now we can prove the main theorem of this subsection.

Proof of Theorem 3.15. By Proposition 3.20 (iii), there is a bijection f which takes the support S
of H to the integers {0, 1, . . . , |S| − 1}, and we can efficiently calculate the CDF of the distribution
considered on this set of integers. So, we can apply Lemma 3.18 to this CDF on this distribution.
This gives us an ε-sampler for this distribution, which we can then apply f−1 to each sample to
get an ε-sampler for H. To find the time it takes to compute each sample, we need to substitute
D = O(poly(k)+k2|T | log(|det(M)|/ε)) from the running time of the CDF in Proposition 3.20 (iii)
into the bound in Lemma 3.18, yielding

O(log(| det(M)|) log(| det(M)|/ε) · |T | · poly(k))

time. This completes the proof.

3.3 Using our Learning Algorithm to Obtain a Cover As an application of our learning
algorithm in Section 3.1, we provide a simple proof that the spaceMn,k of all (n, k)-PMDs has an ε-

cover under the total variation distance of size nO(k2) ·2O(k log(1/ε))O(k)

. Our argument is constructive,
yielding an efficient algorithm to construct a non-proper ε-cover of this size.

Two remarks are in order: (i) the non-proper cover construction in this subsection does not
suffice for our algorithmic applications of Section 4. These applications require the efficient con-
struction of a proper ε-cover plus additional algorithmic ingredients. (ii) The upper bound on the
cover size obtained here is nearly optimal, as follows from our lower bound in Section 4.5.

The idea behind using our algorithm to obtain a cover is quite simple. In order to determine
its hypothesis, H, our algorithm Efficient-Learn-PMD requires the following quantities:

• A vector µ̂ ∈ Rk and a PSD matrix Σ̂ ∈ Rk×k satisfying the conclusions of Lemma 3.4.
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• Values of the DFT Ĥ(ξ), for all ξ ∈ T, so that
∑

ξ∈T |Ĥ(ξ) − P̂(ξ)| < ε/10. Recall that

T
def
=
{
ξ = (MT )−1v |

(
v ∈ Zk

)
∧
(
‖v‖2 ≤ C2k2 ln(k/ε)

)}
.

Given this information, the analysis in Section 3.1 carries over immediately. The algorithm
Efficient-Learn-PMD works by estimating the mean and covariance using samples, and then
taking Ĥ(ξ) to be the sample Fourier transform. If we instead guess the values of these quantities
using an appropriate discretization, we obtain an ε-cover for Mn,k. More specifically, we discretize
the above quantities as follows:

• To discretize the mean vector, we consider a 1-cover Y1 of the set Y def
= {y = (y1, . . . , yk) ∈

Rk : (yi ≥ 0) ∧ (
∑k

i=1 yi = k)} with respect to the L2 norm. It is easy to construct such a
cover with size |Y1| ≤ O(n)k.

• To discretize the covariance matrix, we consider a 1/2-cover S1/2 of the set of matrices S def
=

{A ∈ Rk×k : (A � 0)∧ ‖A‖2 ≤ n}, with respect to the spectral norm ‖ · ‖2. Note that we can
construct such a 1/2-cover with size |S1/2| ≤ (4n + 1)k(k+1)/2. This is because any maximal
1/4-packing of this space (i.e., a maximal set of matrices in S with pairwise distance under the
spectral norm at least 1/4) is such a 1/2-cover. Observe that for any such maximal packing,
the balls of radius 1/4 centered at these points are disjoint and contained in the ball (under
the spectral norm) about the origin of radius (n+ 1/4). Since the ball of radius (n+ 1/4) has
volume (4n + 1)k(k+1)/2 times as much as the ball of radius 1/4, a simple volume argument
completes the proof.

• Finally, to discretize the Fourier transform, we consider a δ-cover Cδ of the unit disc on the
complex plane C, with respect to the standard distance on C, where

δ
def
= ε(2C2k2 log(k/ε))−k/10 = ε/(10t) ≤ ε/(10|T |).

We note that t
def
= (2C2k2 log(k/ε))k is an upper bound on |T |.

We claim that there is an ε-cover of the space of (n, k)-PMDs indexed by Y1 × S1/2 × Ctδ. Such

a cover is clearly of the desired size. The cover is constructed as follows: We let µ̂ and Σ̂ be
the selected elements from Y1 and S1/2, respectively. We use these elements to define the matrix

M ∈ Zk×k as in the algorithm description. We then use our elements of Cδ as the values of Ĥ(ξ)
for ξ ∈ T (noting that |T | ≤ t).

We claim that for any (n, k)-PMD P there exists a choice of parameters, so that the returned
distribution H is within total variation distance ε of P. We show this as follows: Let µ and Σ be
the true mean and covariance matrix of P. We have that µ ∈ Y and that Σ ∈ S. Therefore, there
exist µ̂ ∈ Y1 and Σ̂ ∈ S1/2 so that |µ− µ̂|2 ≤ 1 and I/2 � Σ− Σ̂ � −I/2. It is easy to see that these
conditions imply the conclusions of Lemma 3.4. Additionally, we can pick elements of Cδ in order
to make |Ĥ(ξ)− P̂(ξ)| < ε/(10|T |) for each ξ ∈ T. This will give that

∑
ξ∈T |Ĥ(ξ)− P̂(ξ)| < ε/10.

In particular, the hypothesis H indexed by this collection of parameters will be within variation
distance ε of P. Hence, the set we have constructed is an ε-cover, and our proof is complete.

4 Efficient Proper Covers and Nash Equilibria in Anonymous Games

In this section, we give our efficient proper cover construction for PMDs, and our EPTAS for
computing Nash equilibria in anonymous games. These algorithmic results are based on new
structural results for PMDs that we establish. The structure of this section is as follows: In
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Section 4.1, we show the desired sparsity property of the continuous Fourier transform of PMDs,
and use it to prove our robust moment-matching lemma. Our dynamic-programming algorithm
for efficiently constructing a proper cover relies on this lemma, and is given in Section 4.2. By
building on the proper cover construction, in Section 4.3 we give our EPTAS for Nash equilibria
in anonymous games. In Section 4.4, we combine our moment-matching lemma with recent results
in algebraic geometry, to show that any PMD is close to another PMD with few distinct CRV
components. Finally, in Section 4.5 we prove out cover size lower bound.

4.1 Low-Degree Parameter Moment Closeness Implies Closeness in Variation Dis-
tance In this subsection, we establish the sparsity of the continuous Fourier transform of PMDs,
and use it to prove our robust moment-matching lemma, translating closeness in the low-degree
parameter moments to closeness in total variation distance.

At a high-level, our robust moment-matching lemma (Lemma 4.6) is proved by combining
the sparsity of the continuous Fourier transform of PMDs (Lemma 4.2) with very careful Taylor
approximations of the logarithm of the Fourier transform (log FT) of our PMDs. For technical
reasons related to the convergence of the log FT, we will need one additional property from our
PMDs. In particular, we require that each component k-CRV has the same most likely outcome.
This assumption is essentially without loss of generality. There exist at most k such outcomes,
and we can express an arbitrary PMD as a sum of k independent component PMDs whose k-CRV
components satisfy this property. Formally, we have the following definition:

Definition 4.1. We say that a k-CRV W is j-maximal, for some j ∈ [k], if for all ` ∈ [k] we
have Pr[W = ej ] ≥ Pr[W = e`]. We say that an (n, k)-PMD X =

∑n
i=1Xi is j-maximal, for some

j ∈ [k], if for all 1 ≤ i ≤ n Xi is a j-maximal k-CRV.

Any (n, k)-PMD X can be written as X =
∑k

i=1X
i, where Xi is an i-maximal (ni, k)-PMD,

with
∑

i ni = n. For the rest of this intuitive explanation, we focus on two (n, k)-PMDs X,Y that
are promised to be i-maximal, for some i ∈ [k].

To guarantee that X̂, Ŷ have roughly the same effective support, we also assume that they
have roughly the same variance in each direction. We will show that if the low-degree parameter
moments of X and Y are close to each other, then X and Y are close in total variation distance.
We proceed by partitioning the k-CRV components of our PMDs into groups, based on their
maximum probability element ej , with j 6= i. The maximum probability of a k-CRV quantifies
its maximum contribution to the variance of the PMD in some direction. Roughly speaking, the
smaller this contribution is, the fewer terms in the Taylor approximation are needed to achieve
a given error. More specifically, we consider three different groups, partitioning the component
k-CRVs into ones with small, medium, and large contribution to the variance in some direction.
For the PMD (defined by the CRVs) of the first group, we only need to approximate the first 2
parameter moments. For the PMD of the second group, we approximate the low-degree parameter
moments up to degree Ok(log(1/ε)/ log log(1/ε)). Finally, the third group is guaranteed to have
very few component k-CRVS, hence we can afford to approximate the individual parameters.

To quantify the above, we need some more notation and definitions. To avoid clutter in the
notation, we focus without loss of generality on the case i = k, i.e., our PMDs are k-maximal. For
a k-maximal (n, k)-PMD, X, let X =

∑n
i=1Xi, where the Xi is a k-CRV with pi,j = Pr[Xi = ej ]

for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Observe that
∑k

j=1 pi,j = 1, for 1 ≤ i ≤ n, hence the definition of

k-maximality implies that pi,k ≥ 1/k for all i. Note that the jth component of the random vector
X is a PBD with parameters pi,j , 1 ≤ i ≤ n. Let sj(X) =

∑n
i=1 pi,j be the expected value of the

jth component of X. We can assume that sj(X) ≥ ε/k, for all 1 ≤ j ≤ k − 1; otherwise, we can
remove the corresponding coordinates and introduce an error of at most ε in variation distance.
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Note that, for j 6= k, the variance of the jth coordinate of X is in [sj(X)/2, sj(X)]. Indeed,
the aforementioned variance equals

∑n
i=1 pi,j(1 − pi,j), which is clearly at most sj(X). The other

direction follows by observing that, for all j 6= k, we have 1 ≥ pi,k+pi,j ≥ 2pi,j , or pi,j ≤ 1/2, where
we again used the k-maximality of X. Therefore, by Bernstein’s inequality and a union bound,
there is a set S ⊆ [n]k of size

|S| ≤
k−1∏
j=1

(
1 + 12sj(X)1/2 ln(2k/ε)

)
≤ O

(
log(k/ε)(k−1)

)
·
k−1∏
j=1

(1 + 12sj(X)1/2) ,

so that X lies in S with probability at least 1− ε.
We start by showing that the continuous Fourier transform of a PMD is approximately sparse,

namely it is effectively supported on a small set T. More precisely, we prove that there exists a
set T in the Fourier domain such that the integral of the absolute value of the Fourier transform
outside T multiplied by the size of the effective support |S| of our PMD is small.

Lemma 4.2 (Sparsity of the FT for PMDs). Let X be k-maximal (k, n)-PMD with effective support
S. Let

T
def
=
{
ξ ∈ [0, 1]k : [ξj − ξk] < Ck(1 + 12sj(X))−1/2 log1/2(1/ε)

}
,

where [x] is the distance between x and the nearest integer, and C > 0 is a sufficiently large universal
constant. Then, we have that ∫

T
|X̂| � ε/|S|.

Proof. To prove the lemma, we will need the following technical claim:

Claim 4.3. For all ξ = (ξ1, . . . , ξk) ∈ [0, 1]k, for all 1 ≤ i ≤ n and 1 ≤ j ≤ k − 1, it holds:

|X̂i(ξ)| = exp(−Ω(pi,j [ξj − ξk]2/k)) .

Proof. The claim follows from the following sequence of (in-)equalities:

|X̂i(ξ)|2 =
( k∑
j=1

pi,je(ξj)
)( k∑

j′=1

pi,j′e(−ξj′)
)

=
∑
j,j′

pi,jpi,j′e(ξj − ξj′)

=
∑
j,j′

pi,jpi,j′ cos(2π(ξj − ξj′)) = 1−
∑
j 6=j′

pi,jpi,j′
(
1− cos(2π(ξj − ξj′))

)
=1−

∑
j 6=j′

pi,jpi,j′
(
1− Ω([ξj − ξj′ ])2

)
(by Claim 3.11 with δ = 1

2)

= exp

−Ω

∑
j 6=j′

pi,j′pi,j [ξj − ξj′ ]2


= exp

−Ω

∑
j<k

pi,jpi,k[ξj − ξk]2


= exp
(
−Ω

(
pi,j [ξj − ξk]2/k

))
,

where the last lines uses the fact pi,k ≥ 1/k, which follows from k-maximality.
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As a consequence of Claim 4.3, we have that

|X̂(ξ)| =
n∏
i=1

|X̂i(ξ)| = exp(−Ω(sj(X)[ξj − ξk]2/k)) . (13)

Let T = [0, 1]k \ T be the complement of T . To bound
∫
T |X̂|, we proceed as follows: For ` ∈ Z+,

we define the sets

T ` =
{
ξ : max([ξj − ξk]/(Ck(1 + 12sj(X))−1/2 log1/2(1/ε))) ∈ [2`, 2`+1]

}
,

and observe that T ⊆ ∪`∈Z+T `. Now, Equation (13) implies that for ξ ∈ T ` it holds |X̂(ξ)| ≤ ε10k2` ,
where we used the assumption that the constant C is sufficiently large. It is easy to see that the
volume of T ` is at most O(2`k log1/2(1/ε))k

∏
j<k(1 + 12sj(X))−1/2. We can bound

∫
T |X̂| from

above by the sum over ` of the maximum value of |X̂| within T ` times the volume of T `, namely∫
T
|X̂| ≤

∞∑
`=0

∫
T `

|X̂| ≤
∞∑
`=0

(
sup
ξ∈T `

|X̂(ξ)|

)
Vol(T `) ≤ εk

∏
j<k

(1 + 12sj(X))−1/2 � ε/|S|.

This completes the proof of Lemma 4.2.

We now use the sparsity of the Fourier transform to show that if two k-maximal PMDs, with
similar variances in each direction, have Fourier transforms that are pointwise sufficiently close to
each other in this effective support, then they are close to each other in total variation distance.

Lemma 4.4. Let X and Y be k-maximal (k, n)-PMDs, satisfying 1/2 ≤ (1+sj(X))/(1+sj(Y )) ≤ 2

for all j, 1 ≤ j ≤ k − 1. Let T
def
=
{
ξ ∈ [0, 1]k : [ξj − ξk] < Ck(1 + 12sj(X))−1/2 log1/2(1/ε)

}
,

where [x] is the distance between x and the nearest integer, and C > 0 is a sufficiently large
universal constant. Suppose that for all ξ ∈ T it holds |X̂(ξ) − Ŷ (ξ)| ≤ ε(Ck log(k/ε))−2k. Then,
dTV (X,Y ) ≤ ε.

Proof. We start with an intuitive explanation of the proof. Since 1 + sj(X), 1 + sj(Y ) are within a
factor of 2 for 1 ≤ j ≤ k− 1, it follows from the above that X and Y are both effectively supported
on a set S ⊆ [n]k of size |S| ≤ O (log(k/ε))k−1 ·

∏k−1
j=1

(
1 + 12sj(X)1/2

)
. Therefore, to prove the

lemma, it is sufficient to establish that ‖X − Y ‖∞ ≤ O(ε/|S|).
We prove this statement in two steps by analyzing the continuous Fourier transforms X̂ and

Ŷ . The first step of the proof exploits the fact that the Fourier transforms of X and Y are
each essentially supported on the set T of the lemma statement. Recalling the assumption that
(1 + sj(X))/(1 + sj(Y )) ∈ [1/2, 2], 1 ≤ j ≤ k − 1, an application of Lemma 4.2 yields that

∫
T |X̂|

and
∫
T |Ŷ | are both at most ε/|S|. Thus, we have that∫

T
|X̂ − Ŷ | ≤

∫
T
|X̂|+

∫
T
|Ŷ | � ε/|S| .

In the second step of the proof, we use the assumption that the absolute difference |X̂(ξ)−Ŷ (ξ)|,
ξ ∈ T , is small, and the fact that

∫
T |X̂| and

∫
T |Ŷ | are individually small, to show that ‖X̂− Ŷ ‖1 ≤

O(ε/|S|). The straightforward inequality ‖X −Y ‖∞ ≤ ‖X̂ − Ŷ ‖1 combined with the concentration
of X,Y completes the proof.

Given the aforementioned, in order to bound ‖X̂ − Ŷ ‖1, it suffices to show that the integral
over T is small. By the assumption of the lemma, we have that |X̂(ξ)− Ŷ (ξ)| is point-wise at most
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ε(Ck log(k/ε))−2k over T . We obtain an upper bound on
∫
T |X̂− Ŷ | by multiplying this quantity by

the volume of T . Note that the volume of T is at most O(k log1/2(1/ε))k−1
∏
j<k(1+12sj(X))−1/2).

Hence, ∫
T
|X̂ − Ŷ | ≤ ε ·Θ(log(k/ε))−k ·

∏
j<k

(1 + 12sj(X))−1/2 � ε/|S|.

Combining the above, we get that ‖X − Y ‖∞ ≤ ‖X̂ − Ŷ ‖1 = O(ε/|S|), which implies that the
L1 distance between X and Y over S is O(ε). The contribution of S to the L1 distance is at
most ε, since both X and Y are in S with probability at least 1 − ε. This completes the proof of
Lemma 4.4.

We use this lemma as technical tool for our robust moment-matching lemma. As mentioned in
the beginning of the section, we will need to handle separately the component k-CRVs that have
a significant contribution to the variance in some direction. This is formalized in the following
definition:

Definition 4.5. Let X be a k-maximal (n, k)-PMD with X =
∑n

i=1Xi and 0 < δ ≤ 1. For a given
` ∈ [n], we say that a particular component k-CRV X`, with p`,j = Pr[X` = ej ], is δ-exceptional if
there exists a coordinate j, with 1 ≤ j ≤ k− 1, such that p`,j ≥ δ ·

√
1 + sj(X). We will denote by

E(δ,X) ⊆ [n] the set of δ-exceptional components of X.

Recall that the variance of the jth coordinate of X is in [sj(X)/2, sj(X)]. Therefore, the above
definition states that the jth coordinate of Xi has probability mass which is at least a δ-fraction of
the standard deviation across the jth coordinate of X.

We remark that for any (n, k)-PMD X, at most k/δ2 of its component k-CRVs are δ-exceptional.
To see this, we observe that the number of δ-exceptional components is at most k − 1 times
the number of (δ, j)-exceptional components, i.e., the k-CRVs Xi which are δ-exceptional for the
same value of j. We claim that for any j, 1 ≤ j ≤ k − 1, the number of (δ, j)-exceptional
components is at most 1/δ2. Indeed, let Ej ⊆ [n] denote the corresponding set. Then, we have
that

∑
i∈Ej

p2
i,j ≥ δ2|Ej |sj(X) = δ2|Ej |

∑n
i=1 pi,j . Noting that

∑
i∈Ej

p2
i,j ≤

∑n
i=1 p

2
i,j ≤

∑n
i=1 pi,j ,

we get that δ2|Ej | ≤ 1, thus yielding the claim.
We now have all the necessary ingredients for our robust moment-matching lemma. Roughly

speaking, we partition the coordinate k-CRVs of our k-maximal PMDs into three groups. For
appropriate values 0 < δ1 < δ2, we have: (i) k-CRVs that are not δ1-exceptional, (ii) k-CRVs
that are δ1-exceptional, but not δ2-exceptional, and (iii) δ2-exceptional k-CRVs. For group (i),
we will only need to approximate the first two parameter moments in order to get a good Taylor
approximation, and for group (ii) we need to approximate as many as Ok(log(1/ε)/ log log(1/ε))
degree parameter moments. Group (iii) has Ok(log3/2(1/ε)) coordinate k-CRVs, hence we simply
approximate the individual (relatively few) parameters each to high precision. Formally, we have:

Lemma 4.6. Let X and Y be k-maximal (n, k)-PMDs, satisfying 1/2 ≤ (1+sj(X))/(1+sj(Y )) ≤ 2
for all j, 1 ≤ j ≤ k − 1. Let C be a sufficiently large constant. Suppose that the component k-
CRVs of X and Y can be partitioned into three groups, so that X = X(1) + X(2) + X(3) and
Y = Y (1) + Y (2) + Y (3), where X(t) and Y (t), 1 ≤ t ≤ 3, are PMDs over the same number of
k-CRVs. Additionally assume the following: (i) for t ≤ 2 the random variables X(t) and Y (t)

have no δt-exceptional components, where δ1 = δ1(ε)
def
= ε(Ck log(k/ε))−3k−3 and δ2 = δ2(ε)

def
=

k−1 log−3/4(1/ε), and (ii) there is a bijection between the component k-CRVs of X(3) with those in
Y (3), so that corresponding k-CRVs have total variation distance at most ε/3n3, where n3 is the
number of such k-CRVs.
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Finally, suppose that for t ≤ 2, and all vectors m ∈ Zk+ with mk = 0 and |m|1 ≤ Kt it holds

|Mm(X(t))−Mm(Y (t))|(2k)|m|1 ≤ γ = γ(ε)
def
= ε(Ck log(k/ε))−2k−1 ,

where K1 = 2 and K2 = K2(ε) = C(log(1/ε)/ log log(1/ε) + k). Then dTV (X,Y ) ≤ ε.

Proof. First, note that dTV (X,Y ) ≤
∑3

t=1 dTV (X(t), Y (t)), so it suffices to show that dTV (X(t), Y (t)) =
ε/3, for t = 1, 2, 3. This holds trivially for t = 3, by assumption. To prove the statement for t = 1, 2,

by Lemma 4.4, it is sufficient to show that X̂(t) and Ŷ (t) are point-wise close on the set T , namely

that for all ξ ∈ T it holds |X̂(t)(ξ)− Ŷ (t)(ξ)| ≤ ε(Ck log(k/ε))−2k. To show this, we show separately

that X̂(t) is close to Ŷ (t) for each t = 1, 2.
Let X(t) =

∑
i∈At

Xi, where At ⊆ [n] with |At| = nt. We have the following formula for the

Fourier transform of X(t):

X̂(t)(ξ) =
∏
i∈At

k∑
j=1

e(ξj)pi,j

= e(ntξk)
∏
i∈At

1−
k−1∑
j=1

(1− e(ξj − ξk))pi,j


= e(ntξk) exp

∑
i∈At

log

1−
k−1∑
j=1

(1− e(ξj − ξk))pi,j


= e(ntξk) exp

−∑
i∈At

∞∑
`=1

1

`

k−1∑
j=1

(1− e(ξj − ξk))pi,j

`


= e(ntξk) exp

− ∑
m∈Zk−1

+

(
|m|1
m

)
1

|m|1
Mm(X(t))

k−1∏
j=1

(1− e(ξj − ξk))mj

 . (14)

An analogous formula holds for Ŷ (t). To prove the lemma, we will show that, for all ξ ∈ T , the two
corresponding expressions inside the exponential of (14) agree for X(t) and Y (t), up to a sufficiently
small error.

We first deal with the terms with |m|1 ≤ Kt, t = 1, 2. By the statement of the lemma, for any
two such terms we have that |Mm(X(t)) −Mm(Y (t))| ≤ (2k)−|m|1 · ε(Ck log(k/ε))−2k. Hence, for
any ξ ∈ [0, 1]k, the contribution of these terms to the difference is at most

ε(Ck log(k/ε))−2k−1
∑

m∈Zk−1
+ , |m|1≤Kt

(
|m|1
m

)
(2k)−|m|12|m|1 ≤ Ktε(Ck log(k/ε))−2k−1 ≤ ε(Ck log(k/ε))−2k .

To deal with the remaining terms, we need the following technical claim:

Claim 4.7. Let X(t) be as above. For t ≤ 2 and m ∈ Zk−1
+ with |m|1 ≥ 2, we have that

|Mm(X(t))|
k−1∏
j=1

(
(1 + sj(X))−1/2 log1/2(1/ε)

)mj

≤ log|m|1/2(1/ε) · δ|m|1−2
t .
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Proof. By definition we have that Mm(X(t)) =
∑

i∈At

∏k−1
j=1 p

mj

i,j . Thus, the claim is equivalent to
showing that ∑

i∈At

k−1∏
j=1

(
pi,j · (1 + sj(X))−1/2(X)

)mj

≤ δ|m|1−2
t .

Since, by definition, X(t) does not contain any δt-exceptional k-CRV components, we have that for
all i ∈ At and all j ∈ [k−1] it holds pi,j · (1 + sj(X))−1/2(X) ≤ δt. Now observe that decreasing any
component of m by 1 decreases the left hand side of the above by a factor of at least δt. Therefore,
it suffices to prove the desired inequality for |m|1 = 2, i.e., to show that∑

i∈At

(
pi,j1(1 + sj1(X))−1/2

)(
pi,j2(1 + sj2(X))−1/2

)
≤ 1.

Indeed, the above inequality holds true, as follows from an application of the Cauchy-Schwartz
inequality, and the fact that ∑

i∈At

p2
i,j ≤

n∑
i=1

pi,j = sj(X)≤ sj(X) + 1.

This completes the proof of Claim 4.7.

Now, for ξ ∈ T , the contribution to the exponent of (14), coming from terms with |m|1 > Kt,
is at most∑

`>Kt

∑
m∈Zk−1

+ :|m|1=`

( `
m

)
1

`
Mm(X(t))

k−1∏
j=1

O([ξj − ξk])mj

 ≤ ∑
`>Kt

k` · log`/2(1/ε) · δ`−2
t . (15)

Equation (15) requires a few facts to be justified. First, we use the multinomial identity
∑

m∈Zk−1
+ :|m|1=`

(
`
m

)
=

(k − 1)`. We also require the fact that

|1− e(ξj − ξk)| ≤ O([ξj − ξk]) ,

ξ ∈ [0, 1]T , and recall that [ξj − ξk] < Ck(1 + 12sj(X))−1/2 log1/2(1/ε), for ξ ∈ T. Combining the
above with Claim 4.7 gives (15).

Finally, we claim that∑
`>Kt

k` · log`/2(1/ε) · δ`−2
t ≤ ε(Ck log(k/ε))−2k ,

where the last inequality holds for both t = 1, 2, as can be readily verified from the definition
of δ1, δ2,K1,K2. Combining with the bounds for smaller |m|1, we get that the absolute difference

between X̂(t) and Ŷ (t) on T is at most ε(Ck log(k/ε))−2k. Therefore, Lemma 4.2 implies that
dTV (X(t), Y (t)) ≤ ε. A suitable definition of C in the statement of the lemma to make this ε/3
completes the proof of Lemma 4.6.

Remark 4.8. We note that the quantitive statement of Lemma 4.6 is crucial for our algorithm:
(i) The set of non δ1-exceptional components can contain up to n k-CRVs. Since we only need to
approximate only the first 2 parameter moments for this set, this only involves poly(n) possibilities.
(ii) The set of δ1-exceptional but not δ2-exceptional k-CRVs has size O(k/δ2

1), which is independent
of n. In this case, we approximate the first Ok(log(1/ε)/ log log(1/ε)) parameter moments, and the
total number of possibilities is independent of n and bounded by an appropriate quasipolynomial
function of 1/ε. (ii) The set of δ2-exceptional components is sufficiently small, so that we can afford
to do a brute-force grid over the parameters.
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4.2 Efficient Construction of a Proper Cover As a warm-up for our proper cover algorithm,
we use the structural lemma of the previous section to show the following upper bound on the cover
size of PMDs.

Proposition 4.9. For all n, k ∈ Z+, k > 2, and ε > 0, there exists an ε-cover of the set of
(n, k)-PMDs of size nO(k3)(1/ε)O(k log(1/ε)/ log log(1/ε))k−1

.

Remark 4.10. We remark that, for the sake of simplicity, we have not optimized the dependence
of our cover upper bound on the parameter n. With a slightly more careful argument, one can
easily obtain a cover size upper bound nO(k2)(1/ε)O(k log(1/ε)/ log log(1/ε))k−1

. On the other hand, the
asymptotic dependence of our upper bound on the error parameter ε is optimal. In Section 4.5, we
show a lower bound of (1/ε)Ωk(log(1/ε)/ log log(1/ε))k−1

.

Proof of Proposition 4.9. Let X be an arbitrary (n, k)-PMD. We can write X as
∑k

i=1X
i, where

Xi is an i-maximal (n(i), k)-PMD, where
∑k

i=1 n
(i) = n. By the subadditivity of the total variation

distance for independent random variables, it suffices to show that the set of i-maximal (n, k)-PMDs

has an ε/k-cover of size nO(k2)(1/ε)O(k log(k/ε)/ log log(k/ε))k−1
.

To establish the aforementioned upper bound on the cover size of i-maximal PMDs, we focus
without loss of generality on the case i = k. The proof proceeds by an appropriate application of
Lemma 4.6 and a counting argument. The idea is fairly simple: for a k-maximal (n, k)-PMD X,
we start by approximating the means sj(X), 1 ≤ j ≤ k − 1, within a factor of 2, and then impose
an appropriate grid on its low-degree parameter moments.

We associate to such a k-maximal (n, k)-PMD X the following data, and claim that if X and
Y are two k-maximal PMDs with the same data, then their total variational distance is at most

ε′
def
= ε/k. An ε′-cover for the set of k-maximal (n, k)-PMDs can then be obtained by taking one

representative X for each possible setting of the data in question. Let us denote δ′1
def
= δ1(ε′),

δ′2
def
= δ2(ε′), γ′

def
= γ(ε′), K ′1

def
= K1 = 2, and K ′2

def
= K2(ε′), where the functions δ1(ε), δ2(ε), γ(ε),

and K2(ε) are defined in the statement of Lemma 4.6.
In particular, for any X, we partition the coordinates of [n] into the sets A1 = E(δ′1, X),

A2 = E(δ′2, X) \ A1, and A3 = E(δ′2, X). We use these subsets to define X(1), X(2) and X(3) on
n1, n2, n3 k-CRVs respectively.

Now, to X we associate the following data:

• n1, n2, n3.

• The nearest integer to log2(sj(X) + 1) for each j, 1 ≤ j ≤ k − 1.

• The nearest integer multiple of γ′/(2k)|m|1 to each of the Mm(X(1)) for |m|1 ≤ 2.

• The nearest integer multiple of γ′/(2k)|m|1 to Mm(X(2)) for |m|1 ≤ K ′2.

• Rounding of each of the pi,j for i ∈ A3 to the nearest integer multiple of ε′/(kn3).

First, note that if X and Y are k-maximal (n, k)-PMDs with the same associated data, then they
are partitioned as X = X(1) + X(2) + X(3), Y = Y (1) + Y (2) + Y (3), where X(t), Y (t), t ≤ 2,
have no δ′t-exceptional variables and have the same number of component k-CRVs. Furthermore,
1 + sj(X) and 1 + sj(Y ) differ by at most a factor of 2 for each j. We also must have that
|Mm(X(t))−Mm(Y (t))|(2k)|m|1 ≤ γ′ for |m|1 ≤ K ′t, and there is a bijection between the variables in
X(3) and those in Y (3) so that corresponding variables differ by at most ε′/(kn3) in each parameter
(and, thus, differ by at most ε′/n3 in total variation distance). Lemma 4.6 implies that if X and
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Y have the same data, then dTV (X,Y ) ≤ ε′. Hence, this does provide an ε′-cover for the set of
k-maximal (n, k)-PMDs.

We are left to prove that this cover is of the appropriate size. To do that, we need to prove a
bound on the number of possible values that can be taken by the above data. We have at most
n choices for each ni, and O(log(n)) choices for each of the k rounded values of log2(sj(X) +
1) (since each is an integer between 0 and log2(n) + 1). X(1) has O(k2) parameter moments
with |m|1 ≤ 2, and there are at most O(kn/γ′) options for each of them (since each parameter
moment is at most n). There are O((k + K ′2)k−1) parameter moments of X(2) that need to be
considered. By Claim 4.7, each such parameter moment has magnitude at most O(k/δ′1

2), and, by
our aforementioned rounding, needs to be evaluated to additive accuracy at worst γ′/(2k)K

′
2 . Finally,

note that n3 = |A3| ≤ k/δ′2
2, since the coordinates of A3 are δ′2-exceptional under X. Each of the

corresponding O(k2/δ′2
2) parameters pi,j for i ∈ A3 need to be approximated to precision ε′/(kn3).

We remark that the number of such parameters is less than O(k log(1/ε′)/ log log(1/ε′))k−1, since
k ≥ 3. Putting this together, we obtain that the number of possible values for this data is at most
nO(k2)(1/ε′)O(k log(1/ε′)/ log log(1/ε′))k−1

. This completes the proof of Proposition 4.9.

The proof of Proposition 4.9 can be made algorithmic using Dynamic Programming, yielding
an efficient construction of a proper ε-cover for the set of all (n, k)-PMDs.

Theorem 4.11. Let S1, S2, . . . , Sn be sets of k-CRVs. Let S be the set of (n, k)-PMDs of the form∑n
`=1X`, where X` ∈ S`. There exists an algorithm that runs in time

nO(k3) · (k/ε)O(k3 log(k/ε)/ log log(k/ε))k−1 ·max
`∈[n]
|S`| ,

and returns an ε-cover of S.

Observe that if we choose each Si to be a δ-cover for the set of all k-CRVs, with δ = ε/n, by
the subadditivity of the total variation distance for independent random variables, we obtain an
ε-cover forMn,k, the set of all (n, k)-PMDs. It is easy to see that the set of k-CRVs has an explicit
δ-cover of size O(1/δ)k. This gives the following corollary:

Corollary 4.12. There exists an algorithm that, on input n, k ∈ Z+, k > 2, and ε > 0, computes
a proper ε-cover for the set Mn,k and runs in time nO(k3) · (k/ε)O(k3 log(k/ε)/ log log(k/ε))k−1

.

Proof of Theorem 4.11. The high-level idea is to split each such PMD into its i-maximal PMD

components and approximate each to total variation distance ε′
def
= ε/k. We do this by keeping

track of the appropriate data, along the lines of Proposition 4.9, and using dynamic programming.
For the sake of readability, we start by introducing the notation that is used throughout this

proof. We use X to denote a generic (n, k)-PMD, and Xi, 1 ≤ i ≤ k, to denote its i-maximal
PMD components. For an (n, k)-PMD and a vector m = (m1, . . . ,mk) ∈ Zk+, we denote its mth

parameter moment by Mm(X) =
∑n

`=1

∑k
j=1 p

mj

`,j . Throughout this proof, we will only consider
parameter moments of i-maximal PMDs, in which case the vector m of interest will by construction
satisfy mi = 0, i.e., m = (m1, . . . ,mi−1, 0,mi+1, . . . ,mk).

In the first step of our algorithm, we guess approximations to the quantities 1 + sj(X
i) to

within a factor of 2, where Xi is intended to be the i-maximal PMD component of our final PMD
X. We represent these guesses in the form of a matrix G = (Gi,j)1≤i 6=j≤k. Specifically, we take
Gi,j = (2ai,j +3)/4 for each integer ai,j ≥ 0, where each ai,j is bounded from above by O(log n). For
each fixed guess G, we proceed as follows: For h ∈ [n], we denote by Sh the set of all (h, k)-PMDs
of the form

∑h
`=1X`, where X` ∈ S`. For each h ∈ [n], we compute the set of all possible (distinct)

data DG(X), where X ∈ Sh. The data DG(X) consists of the following:
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• The number of i-maximal k-CRVs of X, for each i, 1 ≤ i ≤ k.

• Letting Xi denote the i-maximal PMD component of X, we partition the k-CRV components
of Xi into three sets based on whether or not they are δ′1-exceptional or δ′2-exceptional with
respect to our guess matrix G for 1 + sj(X

i). Formally, we have the following definition:

Definition 4.13. Let Xi be an i-maximal (hi, k)-PMD with Xi =
∑

`∈Ai X` and 0 < δ ≤ 1.
We say that a particular component k-CRV X`, ` ∈ Ai, is δ-exceptional with respect to
G = (Gi,j), if there exists a coordinate j 6= i, 1 ≤ j ≤ k, such that p`,j ≥ δ ·

√
Gi,j . We will

denote by E(δ,G) ⊆ Ai the set of δ-exceptional coordinates of Xi.

With this notation, we partition Ai into the following three sets: Ai1 = E(δ′1, G), Ai2 =
E(δ′2, G) \Ai1, and Ai3 = E(δ′2, G). For each i, 1 ≤ i ≤ k, we store the following information:

– ni1 = |Ai1|, ni2 = |Ai2|, and ni3 = |Ai3|.
– Approximations s̃j,i of the quantities sj(X

i), for each j 6= i, 1 ≤ j ≤ k to within an
additive error of (h/4n).

– Approximations of the parameter moments Mm

(
(Xi)(1)

)
, for all m = (m1, . . . ,mk) ∈ Zk+

with mi = 0 and |m|1 ≤ 2, to within an additive
(
γ′/(2k)|m|1

)
· (ni1/n).

– Approximations of the parameter moments Mm

(
(Xi)(2)

)
, for all m = (m1, . . . ,mk) ∈ Zk+

with mi = 0 and |m|1 ≤ K ′2 to within an additive
(
γ′/(2k)|m|1

)
· (ni2 · δ′1

2/2k).

– Rounding of each of the parameters p`,j , for each k-CRV X`, ` ∈ Ai3, to the nearest

integer multiple of ε′δ′2
2/2k2.

Note that DG(X) can be stored as a vector of counts and moments. In particular, for the data
associated with k-CRVs in Ai3, 1 ≤ i ≤ k, we can store a vector of counts of the possible roundings
of the parameters using a sparse representation.

We emphasize that our aforementioned approximate description needs to satisfy the following
property: for independent PMDs X and Y , we have that DG(X + Y ) = DG(X) + DG(Y ). This
property is crucial, as it allows us to store only one PMD as a representative for each distinct data
vector. This follows from the fact that, if the property is satisfied, then DG(X + Y ) only depends
on the data associated with X and Y.

To ensure this property is satisfied, for a PMD X =
∑n

`=1X`, where X` is a k-CRV, we define
DG(X) =

∑n
`=1DG(X`). We now need to define DG(W ) for a k-CRV W . For DG(W ), we store

the following information:

• The value of i for which W is i-maximal.

• Whether or not W is δ′1-exceptional and δ′2-exceptional with respect to G.

• sj(W ) = Pr[W = j] rounded down to a multiple of 1/4n, for each j 6= i, 1 ≤ j ≤ k.

• If W is not δ′1-exceptional with respect to G, the nearest integer multiple of γ′/(n(2k)|m|1) to
Mm(W ) for each m ∈ Zk+, with mi = 0 and |m|1 ≤ 2.

• If W is δ′1-exceptional but not δ′2-exceptional with respect to G, the nearest integer multiple
of
(
γ′/(2k)|m|1

)
· (δ′1

2/2k) to Mm(W ), for each m ∈ Zk+ with mi = 0 and |m|1 ≤ K ′2.

• If W is δ′2-exceptional with respect to G, we store roundings of each of the probabilities
Pr[W = j] to the nearest integer multiple of ε′δ′2

2/2k.
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Given the above detailed description, we are ready to describe our dynamic programming based
algorithm. Recall that for each h, 1 ≤ h ≤ n, we compute sets of all possible (distinct) data DG(X),
where X ∈ Sh. We do the computation by a dynamic program that works as follows:

• At the beginning of step h, we have a set Dh−1 of all possibilities of DG(X) for PMDs of

the form X =
∑h−1

`=1 X`, where X` ∈ S`, that have 1 + s̃
DG(X)
j,i ≤ 2Gi,j . Moreover, for each

D ∈ Dh−1, we have a representative PMD YD, given in terms of its k-CRVs, that satisfies
DG(YD) = D.

• To compute Dh, we proceed as follows: We start by computing DG(Xh), for each Xh ∈ Sh.
Then, we compute a list of possible data for Dh as follows: For each D ∈ Dh−1 and Xh ∈ Sh,
we compute the data D+DG(Xh), and the k-CRVs of the PMD YD +Xh that has this data,
since DG(YD +Xh) = D+DG(Xh). We then remove duplicate data from this list, arbitrarily
keeping one PMD that can produce the data. We then remove data D where 1 + s̃Dj,i ≥ 2Gi,j .
This gives our set of possible data Dh. Now, we note that Dh contains all possible data of

PMDs of the form
∑h

`=1X`, where each X` ∈ S`, that have 1 + s̃
DG(X)
j,i ≤ 2Gi,j , and for each

distinct possibility, we have an explicit PMD that has this data.

• After step n, for each D ∈ Dn, we output the data and the associated explicit PMD, if the
following condition is satisfied:

Condition 4.14. For each i, j ∈ Z+, with 1 ≤ i 6= j ≤ k, it holds (a) Gi,j ≤ 1 +

max{0, s̃DG(X)
j,i − 1/4} and (b) 1 + s̃

DG(X)
j,i ≤ 2Gi,j , where s̃

DG(X)
j,i is the approximation to

sj(X
i) in DG(X), and Gi,j is the guess for 1 + sj(X

i) in G.

We claim that the above computation, performed for all values of G, outputs an ε-cover of the set
S. This is formally established using the following claim:

Claim 4.15. (i) For any X,Y ∈ S, if DG(X) = DG(Y ) and DG(X) satisfies Condition 4.14,
then dTV (X,Y ) ≤ ε.

(ii) For any X ∈ S, there exists a G such that DG(X) satisfies for i, j ∈ Z+, with 1 ≤ i 6= j ≤ k,
(a) Gi,j ≤ 1 + max{0, s̃DG(X)

j,i − 3/4} and (b) 1 + s̃
DG(X)
j,i ≤ 2Gi,j , hence also Condition 4.14.

Remark 4.16. Note that Condition (a) in statement (ii) of the claim above is slightly stronger
than that in Condition 4.14. This slightly stronger condition will be needed for the anonymous
games application in the following section.

Proof. To prove (i), we want to use Lemma 4.6 to show that that for all i ∈ [k], the i-maximal
components of X and Y are close, i.e., that dTV (Xi, Y i) ≤ ε/k. To do this, we proceed as follows:

We first show that 1
2 ≤ (1 + sj(X

i))/(1 + sj(Y
i)) ≤ 2. By the definition of s̃

DG(X)
j,i , for each

i-maximal k-CRV X` ∈ Ai, we have sj(X`)− 1
4n ≤ s̃

DG(X)
j,i ≤ sj(X`). Thus, for Xi =

∑
`∈Ai X`, we

have that sj(X
i)−(1/4) ≤ s̃DG(X)

j,i ≤ sj(Xi). Since sj(X
i) ≥ 0, we have that max{0, sj(Xi)−1/4} ≤

s̃
DG(X)
j,i ≤ sj(Xi). Combining this with Condition 4.14 yields that

Gi,j ≤ 1 + sj(X
i) ≤ 2Gi,j . (16)

Since an identical inequality holds for Y, we have that 1
2 ≤ (1 + sj(X

i))/(1 + sj(Y
i)) ≤ 2.

We next show that the set of coordinates Ai1 for X does not contain any δ′1 exceptional variables
for Xi. For all ` ∈ Ai1, since ` is not δ′1-exceptional with respect to G, using (16), we have that
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p`,j ≤ δ′1 ·
√
Gi,j ≤

√
1 + sj(Xi). Similarly, it follows that Ai2 for X does not contain any δ′2-

exceptional variables. The same statements also directly follow for Y.
Now, we obtain bounds on the size of the Ait’s, t = 1, 2, 3. We trivially have |Ai1| ≤ n. From (16),

we have that all variables in Ai2 are δ′1-exceptional with respect to Gi,j . If we denote by Ej ⊆ Ai2
the set of ` ∈ Ai2 with p`,j ≥ δ′1

√
Gi,j , then using (16), we have that

sj(X
i) =

∑
`∈Ai

p`,j ≥
∑
`∈Ai

p2
`,j ≥

∑
`∈Ej

p2
`,j ≥ δ′21 |Ej |Gi,j ≥ δ′21 |Ej |(1 + sj(X

i))/2 ≥ sj(Xi) · δ′21 |Ej |/2.

Thus, |Ej | ≤ 2/δ′21 . Since Ai2 =
⋃k
j=1Ej , we have |Ai2| ≤ 2k/δ′21 . Similarly, we have |Ai3| ≤ 2k/δ′22 .

For ` ∈ Ai1, DG(X`) contains an approximation to Mm(X`) for each m ∈ Zk+ with mi = 0 and
|m|1 ≤ 2, to within accuracy γ′/(2n(2k)|m|1). Since |Ai1| ≤ n, we have that DG(Xi) contains an
approximation to Mm

(
(Xi)(1)

)
to within γ′/(2(2k)|m|1). Since a similar bound holds for (Y i)(1),

and DG

(
(Y i)(1)

)
= DG

(
(Xi)(1)

)
, we have that |Mm

(
(Xi)(1)

)
−Mm

(
(Y i)(1)

)
| ≤ γ′/(2k)|m|1 .

Similarly, for ` ∈ Ai2, DG(X`) contains an approximation to Mm(X`) for each m ∈ Zk+ with

mi = 0 and |m|1 ≤ K ′2 to within accuracy (1/2) ·
(
γ′/(2k)|m|1

)
· (δ′1

2/2k). Since |Ai2| ≤ 2k/δ′22 ,

DG(Xi) contains an approximation to Mm

(
(Xi)(2)

)
to within γ′/(2(2k)|m|1). Since a similar bound

holds for (Y i)(2) and DG

(
(Y i)(2)

)
= DG

(
(Xi)(2)

)
, we have that |Mm

(
(Xi)(2)

)
−Mm

(
(Y i)(2)

)
| ≤

γ′/(2k)|m|1 .
Finally, for ` ∈ Ai3, DG(X`) contains an approximation to p`,j for all j 6= i to within ε′δ′2

2/4k2.
The counts of variables with these approximations are the same in (Xi)(3) and (Y i)(3). So, there
is bijection f from Ai3(X) to Ai3(Y ) such that an `′ = f(`) has DG(X`) = DG(Y`′). Then, we have
that dTV (X`, Y`′) ≤

∑
j 6=i ε

′δ′2
2/2k2 ≤ ε′δ′2

2/2k ≤ ε′/|Ai3|.
We now have all the necessary conditions to apply Lemma 4.6, yielding that dTV (Xi, Y i) ≤ ε/k.

By the sub-additivity of total variational distance, we have dTV (X,Y ) ≤ ε, proving statement (i)
of the claim.

To prove (ii), it suffices to show that for any i, j there is a Gi,j that satisfies the inequalities
claimed. Recall that Gi,j takes values of the form (2a + 3)/4 for an integer a ≥ 0. For a = 0,

Gi,j = 1 and the inequality Gi,j ≤ 1 + max{0, s̃DG(X)
j,i − 3/4} is satisfied for any value of s̃

DG(X)
j,i .

When a ≥ 1, Gi,j > 1, so the inequality Gi,j ≤ 1 + max{0, s̃DG(X)
j,i − 3/4} is only satisfied when

Gi,j ≤ 1 + s̃
DG(X)
j,i − 3/4, i.e., when s̃

DG(X)
j,i ≥ Gi,j − 1/4 = (2a + 2)/4 = (2a−1 + 1)/2. The second

inequality in (i) is satisfied when s̃
DG(X)
j,i ≤ 2Gi,j − 1 = 2 · (2a + 1)/4 = (2a + 1)/2.

Summarizing, for a = 0, we need that s̃
DG(X)
j,i ∈ [0, 1], and for a ≥ 1, we need that s̃

DG(X)
j,i ∈

[(2a−1 + 1)/2, (2a + 1)/2]. So, there is a Gi,j = (2ai,j + 3)/4 for which the required inequalities are
satisfied. Thus, there is a G for which we get the necessary inequalities for all 1 ≤ i, j ≤ k with
i 6= j. This completes the proof of (ii).

We now bound the running time:

Claim 4.17. For a generic (n, k)-PMD X, the number of possible values taken by DG(X) considered

is at most nO(k3)(k/ε)O(k3 log(1/ε)/ log log(1/ε))k−1
.

Proof. For a fixed G, we consider the number of possibilities for DG(Xi) for each 1 ≤ i ≤ k.
For each j 6= i, we approximate sj(X

i) up to an additive 1/(4n). Since 0 ≤ sj(Xi) ≤ n, there
are at most 4n2 possibilities. For all such j we have O(n2k) possibilities.

We approximate the parameter moments ofMm

(
(Xi)(1)

)
as an integer multiple of γ′/(n(2k)|m|1)

for all m with m1 ≤ 2. For each such m, we have 0 ≤ Mm

(
(Xi)(1)

)
≤ n, so there are at
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most n2(2k)|m|1/γ′ = n2(k log(1/ε))O(k)(1/ε) possibilities. There are O(k2) such m, so we have
nO(k2) · (k log(1/ε)O(k3)(1/ε)O(k2) possibilities.

We approximate the parameter moments of Mm

(
(Xi)(2)

)
as a multiple of

(
γ′/(2k)|m|1

)
·(δ′1

2/2k)

for each m with |m|1 ≤ K ′2. The number of k-CRVs in (Xi)(2) is |Ai2| ≤ 2k/δ′21 from the proof
of Claim 4.15. So, for each m, we have 0 ≤ Mm

(
(Xi)(2)

)
≤ |Ai2|, and there are at most

(2k)K
′
2+2/(γ′δ′21 δ

′2
2 ) = kO(k+ln(k/ε)/ ln ln(k/ε)) ln(1/ε)O(k)/ε = (k/ε)O(k) possibilities. Since there are

at most
K ′k−1

2 = O((ln(k/ε)/ ln ln(k/ε) + k)k−1

such moments, there are (k/ε)O(k ln(k/ε)/ ln ln(k/ε)+k2)k−1
possibilities.

We approximate each X` for ` ∈ Ai3 as a k-CRV whose probabilities are multiples of εδ′2
2/2k2.

So, there are (2k2/(εδ′2)k = (k/ε)O(k) possible k-CRVs. Since there may be |Ai3| ≤ 2k/δ′22 =

2k2 log3/2(k/ε) such k-CRVs, there are (k/ε)O(k3 log3/2(k/ε)) possibilities.

Multiplying these together, for every G, there are at most nO(k2)(k/ε)O(k ln(k/ε)/ ln ln(k/ε)+k2)k−1

possible values of DG(Xi). Hence, there are at most nO(k3)(k/ε)O(k3 ln(k/ε)/ ln ln(k/ε))k−1
possible

values of DG(X) for a given G. Finally, there are O(log n)k
2

possible values of Gi,j , since Gi,j =
(2ai,j + 3)/4, for integers ai,j , and we do not need to consider Gi,j > n. Therefore, the number of

possible values of DG(X) is at most nO(k3) · (k/ε)O(k3 ln(k/ε)/ ln ln(k/ε))k−1
.

The runtime of the algorithm is dominated by the runtime of the substep of each step h, where
we calculate D + DG(Xh) for all D ∈ Dh−1 and Xh ∈ Sh. Note that D and DG(Xh) are vectors
with O(K ′k2 ) = O(log(k/ε)/ log log(k/ε) + k)k non-zero coordinates. So, the runtime of step h is at
most

|Dh−1| · |Sh| ·O((K ′2)k) = |Sh| · nO(k3) · (k/ε)O(k3 ln(k/ε)/ ln ln(k/ε))k−1
,

by Claim 4.17. The overall runtime of the algorithm is thus nO(k3) · (k/ε)O(k3 ln(k/ε)/ ln ln(k/ε))k−1 ·
maxh |Sh|. This completes the proof of Theorem 4.11.

4.3 An EPTAS for Nash Equilibria in Anonymous Games In this subsection, we describe
our EPTAS for computing Nash equilibria in anonymous games:

Theorem 4.18. There exists an nO(k3)·(k/ε)O(k3 log(k/ε)/ log log(k/ε))k−1
-time algorithm for computing

a (well-supported) ε-Nash Equilibrium in an n-player, k-strategy anonymous game.

This subsection is devoted to the proof of Theorem 4.18.
We compute a well-supported ε-Nash equilibrium, using a procedure similar to [DP14]. We

start by using a dynamic program very similar to that of our Theorem 4.11 in order to construct
an ε/10-cover. We iterate over this ε/10-cover. For each element of the cover, we compute a set of
possible ε/5-best responses. Finally, we again use the dynamic program of Theorem 4.11 to check if
we can construct this element of the cover out of best responses. If we can, then we have found an
ε-Nash equilibrium. Since there exists an ε/5-Nash equilibrium in our cover, this procedure must
produce an output.

In more detail, to compute the aforementioned best responses, we use a modification of the
algorithm in Theorem 4.11, which produces output at the penultimate step. The reason for this
modification is the following: For the approximate Nash equilibrium computation, we need the
data produced by the dynamic program, not just the cover of PMDs. Using this data, we can
subtract the data corresponding to each candidate best response. This allows us to approximate
the distribution of the sum of the other players strategies, which we need in order to calculate the
players expected utilities.
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Recall that a mixed strategy profile for a k-strategy anonymous game can be represented as
a set of k-CRVs, {Xi}i∈[k], where the k-CRV Xi describes the mixed strategy for player i. Recall
that a mixed strategy profile is an ε-approximate Nash equilibrium, if for each player i we have
E[uiXi

(X−i)] ≥ E[ui`(X−i)]− ε, for ` ∈ [k], where X−i =
∑

j∈[n]\{i}Xj is the distribution of the sum
of other players strategies. A strategy profile is an ε-well-supported Nash equilibrium if for each
player i, E[ui`′(X−i)] ≥ E[ui`(X−i)]− ε for each ` ∈ [k] and e`′ in the support of Xi. If this holds for
one player i, then we call Xi an ε(-well-supported) best response to X−i.

Lemma 4.19. Suppose that Xi is a δ-best response to X−i for player i. Then, if an n − 1 PMD
Y−i has dTV (X−i, Y−i) ≤ ε, Xi is a (δ + 2ε)-best response to Y−i. If, additionally, a k-CRV Yi has
Pr[Yi = ej ] = 0 for all j with Pr[Xi = ej ] = 0, then Yi is a (δ + 2ε)-best response to Y−i.

Proof. Since ui`(x) ∈ [0, 1] for ` ∈ [k] and any x in the support of X−i, we have that E[ui`(X−i)]−
E[ui`(Y−i)] ≤ dTV (X−i, Y−i)). Similarly, we have E[ui`(X−i)] − E[ui`(Y−i)] ≤ dTV (X−i, Y−i). Thus,
for all e`′ in the support of Xi and all ` ∈ [k], we have

E[ui`′(Y−i)] ≥ E[ui`′(X−i)]− ε ≥ E[ui`(X−i)]− ε− δ ≥ E[ui`(Y−i)]− 2ε− δ.

That is, Xi is a (δ + 2ε)-best response to Y−i. Since the support of Yi is a subset if the support of
Xi, Yi is also a (δ + 2ε)-best response to Y−i.

We note that by rounding the entries of an actual Nash Equilibrium, there exists an ε/5-Nash
equilibrium where all the probabilities of all the strategies are integer multiples of ε/(10kn):

Claim 4.20. There is an ε/5-well-supported Nash equilibrium {Xi}, where the probabilities Pr[Xi =
ej ] are multiples of ε/(10kn), for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Proof. By Nash’s Theorem, there is a Nash equilibrium {Yi}. We construct {Xi} from {Yi} as
follows: If Yi is `-maximal, then for every j 6= `, we set Pr[Xi = ej ] to be Pr[Yi = ej ] rounded down to
a multiple of ε/(10kn) and Pr[Xi = e`] = 1−

∑
j 6=` Pr[Xj = ej ]. Now, we have dTV (Xi, Yi) ≤ ε/(10n)

and the support of Xi is a subset of the support of Yj . By the sub-additivity of total variational
distance, for every i we have dTV (X−i, Y−i) ≤ ε/10. Since {Yi} is a Nash equilibrium, for all players
i, Yi is a 0-best response to Y−i. By Lemma 4.19, we have that Xi is a 2ε/10-best response to X−i
for all players i. Hence, {Xi} is an ε/5-well supported Nash equilibrium.

Let S be the set of all k-CRVs whose probabilities are multiples of ε/(10kn). We will require

a modification of the algorithm from Theorem 4.11 (applied with Si
def
= S for all i, and ε

def
= ε/5),

which produces output at both step n and step n−1. Specifically, in addition to outputting a subset
VG,n ⊆ DG,n of the data of possible (n, k)-PMDs that satisfy conditions (a) and (b) of Claim‘4.15
(ii), we output the subset VG,n−1 ⊆ DG,n−1 of the data of possible (n− 1, k)-PMDs that satisfy the
slightly weaker conditions (a) and (b) of Condition 4.14 .

In more detail, we need the following guarantees about the output of our modified algorithm:

Claim 4.21. For every PMD X =
∑n

i=1Xi and X−j =
∑

i∈[n]\j Xi, for some 1 ≤ j ≤ n, and any
Xi ∈ S, for 1 ≤ i ≤ n, we have:

• There is a guess G, such that DG(X) ∈ VG,n.

• For any G such that DG(X) ∈ VG,n, we also have DG(X)−DG(Xj) = DG(X−j) ∈ VG,n−1.

• If DG(X) ∈ VG,n, for any PMD Y with DG(Y ) = DG(X) or DG(Y ) = DG(X−j), we have
dTV (X,Y ) ≤ ε/5 or dTV (X−j , Y ) ≤ ε/5 respectively.
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Proof. By Claim 4.15 (ii), there is a G such that DG(X) satisfies conditions (a) and (b) and so
DG(X) ∈ VG,n.

We note that by the correctness of the dynamic program, since X−j is a sum of n − 1 many
k-CRVs in S, we have DG(X−j) ∈ DG,n−1. To show that it is in VG,n−1, we need to show that all

s̃
DG(X−j)
h,i satisfy Condition 4.14, for all 1 ≤ i, h ≤ k and h 6= i. We know that s̃

DG(X)
h,i satisfies the

stronger conditions (a) and (b) of Claim 4.15 (ii). All we need to show is that

s̃
DG(X)
h,i − 1/2 ≤ s̃DG(X−j)

h,i ≤ s̃DG(X)
h,i .

This condition is trivial unless Xj is i-maximal. If it is, we note that Pr[Xj = eh] ≤ Pr[Xj = ei],

and so s̃
DG(Xj)
j,i ≤ Pr[Xj = eh] ≤ 1/2. Thus, DG(X−j) = DG(X)−DG(Xj) ∈ VG,n−1.

We now have that both DG(X) and DG(X−j) satisfy Condition 4.14. Therefore, Claim 4.15 (i)
yields the third claim.

We note that we can calculate the expected utilities efficiently to sufficient precision:

Claim 4.22. Given an anonymous game (n, k, {ui`}i∈[n],`∈[k]) with each utility given to within an
additive ε/2 using O(log(1/ε)) bits, and given a PMD X in terms of its constituent k-CRVs Xi, we
can approximate the expected utility E[ui`(

∑
j 6=iXi)] for any player i and pure strategy ` to within

ε in time O(nk+1 · k log(n) · polylog(1/ε)).

Proof. We can compute the probability mass function of X−i =
∑

j 6=iXj by using the FFT on

[n]k. We calculate the DFT of each Xi, X̂i, calculate the DFT of X−i, X̂−i(ξ) =
∏
j 6=i X̂j , and

finally compute the inverse DFT. To do this within ε/2 total variational error needs time O(nk+1 ·
k log(n)polylog(1/ε)), since we need to use the FFT algorithm n + 1 times. We then use this
approximate pmf to compute the expectation E[ui`(X−i)] =

∑
x u

i
`(x)Xi(x). This takes time O(nk)

and gives error ε.

Henceforth, we will assume that we can compute these expectations exactly, but it should be
clear that computing them to within a suitably small O(ε) error suffices.

Proof of Theorem 4.18. We use the modified dynamic programming algorithm given above to pro-
duce an ε/5-cover with explicit sets VG,n, VG,n−1 of data and PMDs which produce each output
data.

Then, for each G and for each D ∈ VG,n, we try to construct an ε-Nash equilibrium whose
associated PMD X has DG(X) = D. Firstly, for each player i we compute a set Si ⊆ S of best
responses to X. To do this, we check each Xi ∈ S individually. We first check if DG(X)−DG(Xi) ∈
VG,n−1. If it is not, then Claim 4.21 implies that there is no set of strategies for the other players
Xj ∈ S, for j 6= i, such that DG(

∑n
i=1Xi) = D. In this case, we do not put this Xi ∈ Si. If we

do have D−i := D −DG(Xi) ∈ VG,n−1, then we recall that the algorithm gives us an explicit YD−i

such that D(YD−i) = D−i. Now, we calculate the expected utilities E[ui`(YD−i)] for each 1 ≤ ` ≤ k.
If Xi is a 3ε/5-best response to YD−i , then we add it to Si.

When we have calculated the set of best responses Si for each player, we use the algorithm
from Theorem 4.11 with these Si’s and this guess G. If the set of data it outputs contains D, then
we output the explicit PMD X := YD that does so in terms of its constituent CRVs X =

∑n
i=1Xi

and terminate.
To prove correctness, we first show that {Xi} is an ε-Nash equilibrium, and second that that

the algorithm always produces an output. We need to show that Xi is an ε-best response to
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X−i =
∑

j∈[n]\iXj . When we put Xi in Si, we checked that Xi was a 3ε/5-best response to YD−i ,
where D−i = D −DG(Xi). But note that

DG(YD−i) = D −DG(Xi) = DG(X)−DG(Xi) = DG(X−i).

Since D ∈ VG,n and DG(YD−i) = DG(X−i), Claim 4.21 yields that dTV (X−i, YD−i) ≤ ε/5. So, by
Lemma 4.19, we indeed have that Xi is an ε-best response to X−i. Since this holds for all Xi, X
is an ε-Nash equilibrium.

By Claim 4.20, there exists an ε/5-Nash equilibrium {X ′i}, with each X ′i ∈ S. By Claim 4.21,
we have that for X ′ =

∑n
i=1X

′
i, there is a guess G with DG(X ′) ∈ VG,n. So, if the algorithm does

not terminate successfully first, it eventually considers G and D := DG(X ′). We next show that
that the algorithm puts X ′i in Si. For each 1 ≤ i ≤ n, X ′−i =

∑
j∈[n]\iX

′
j has DG(X ′−j) ∈ VG,n−1 by

Claim 4.21, since DG(X ′) ∈ VG,n. So, D−i = D−DG(X ′i) = DG(X ′)−DG(X ′i) = DG(X ′−i), and we
have D−i ∈ VG,n−1. Hence, the algorithm will put X ′i in Si if X ′i is an 4ε/5-best response to YD−i . By
Claim 4.21, since DG(X) ∈ VG,n and DG(X−i) = DG(YD−i), we have dTV (YD−i , X−i) ≤ ε/5. Since
{X ′i} is an ε/5-Nash equilibrium, X ′−i is an ε/5-best response to X ′−i. Since dTV (YD−i , X−i) ≤ ε/5,
by Lemma 4.19, this implies that X ′i is a 3ε/5-best response to YD−i . Thus, the algorithm puts
X ′i in Si. Since each X ′i satisfies X ′i ∈ Si, by Theorem 4.11, the algorithm from that theorem
outputs a set of data that includes DG(X ′) = D. Therefore, if the algorithm does not terminate
successfully first, when it considers G and D, it will produce an output. This completes the proof
of Theorem 4.18.

Threat points in anonymous games. As an additional application of our proper cover con-
struction, we give an EPTAS for computing threat points in anonymous games [BCI+08].

Definition 4.23. The threat point of an anonymous game (n, k, {ui`}i∈[n],`∈[k]) is the vector θ with

θi = min
X−i∈Mn−1,k

max
1≤j≤k

E[uij(X−i)].

Intuitively, If all other players cooperate to try and punish player i, then they can force her
expected utility to be θi but no lower, so long as player i is trying to maximize it. This notion has
applications in finding Nash equilibria in repeated anonymous games.

Corollary 4.24. Given an anonymous game (n, k, {ui`}i∈[n],`∈[k]) with k > 2, we can compute a θ̃

with ‖θ − θ̃‖∞ ≤ ε in time nO(k3) · (k/ε)O(k3 log(k/ε)/ log log(k/ε))k−1
. Additionally, for each player i,

we obtain strategies Xi,j for all other players j 6= i such that max1≤`≤k E[ui`(
∑

j 6=iXi,j)] ≤ θi + ε.

Proof. Using the dynamic programming algorithm of Theorem 4.11, we can construct an ε-cover C
ofMn−1,k. For each player i, we then compute θ̃i = minX−i∈C max1≤j≤k E[uij(X−i)] by brute force.
Additionally, we return the k-CRVs Xi,j that the algorithm gives us as the explicit parameters
of the PMD X−i which achieves this minimum, i.e., with θ̃i = max1≤j≤k E[uij(X−i)]. The running
time of this algorithm is dominated by the dynamic programming step.

We now show correctness. Let Y−i ∈ Mn−1,k be such that θi = max1≤j≤k E[uij(X−i)]. Then,

there exists a Y ′−i ∈ C with dTV (Y−i, Y
′
−i) ≤ ε, and so we have |E[uij(Y−i)] − E[uij(Y

′
−i)]| ≤ ε.

Therefore,
θi = max

1≤j≤k
E[uij(Y−i)] ≥ max

1≤j≤k
E[uij(Y

′
−i)]− ε ≥ θ̃i − ε .

Similarly, there is an X−i ∈ C with θ̃i = max1≤j≤k E[uij(X−i)] ≤ θi. And so we have |θ̃i − θi| ≤ ε,

as required. Additionally, for the
∑

j 6=iXi,j = X−i we have max1≤`≤k E[ui`(
∑

j 6=iXi,j)] = θ̃i ≤
θi + ε.
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4.4 Every PMD is close to a PMD with few distinct parameters In this section, we
prove our structural result that states that any PMD is close to another PMD which is the sum of
k-CRVs with a small number of distinct parameters.

Theorem 4.25. Let n, k ∈ Z+, k > 2, and ε > 0. For any (n, k)-PMD X, there is an (n, k)-PMD
Y such that dTV (X,Y ) ≤ ε satisfying the following property: We can write Y =

∑n
i=1 Yi where

each k-CRV Yi is distributed as one of

O ((log(k/ε)/(log log(k/ε)) + k))k

distinct k-CRVs.

The main geometric tool used to prove this is the following result from [GRW15]:

Lemma 4.26 (Theorem 14 from [GRW15]). Let f(x) be a multivariate polynomial with variables
xi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ k, which is symmetric up to permutations of the i’s, i.e., such that
for any permutation σ ∈ Sn, we have that, for (xσ)i,j := xσ(i),j , for all 1 ≤ i ≤ n and 1 ≤ j ≤ k,

f(xσ) = f(x). Let w ∈ Zk>0. Suppose that f has weighted w degree at most d, i.e., each monomial∏
i,j x

ai,j
i,j has

∑
i,j wjai,j ≤ d. Suppose that the minimum of f(x) is attained by some x′ ∈ Rn, i.e.,

that f(x′) = minx∈Rn×k f(x). Then, there is a point x∗ with f(x∗) = minx∈Rn×k f(x), such that the

number of distinct y ∈ Rk of the form yj = x∗i,j , for some i, is at most
∏k
j=1

⌊
d
wj

⌋
.

Proof of Theorem 4.25. Firstly we’re going to divide our PMD into i-maximal PMDs. We assume
wlog that X is k-maximal below.

We divide this PMD X into component PMDs X(1), X(2), X(3) according to whether these are
δ1 and δ2, as in the proof of Proposition 4.9. We want to show that there exists a Y (1),Y (2) such
that X(1) and Y (1) agree on the first 2 moments, X(2) and Y (2) agree on the first K2 moments, but
each has few distinct CRVs. Then Y = Y (1) + Y (2) + X(3) is close to X by Lemma 4.6 (because
the first moments agree, i.e., we have sj(X) = sj(Y )).

We are going to use Lemma 4.26 to show that we can satisfy some polynomial equations
pl(x) = 0 by setting f to be a sum of squares f(x) =

∑
l pl(x)2. Then if the polynomial equations

have a simultaneous solution at x, f attains its minimum of 0 at x. Some of these pl’s are going
to be symmetric in terms of i. For the rest, we are going to have identical equations that hold for
each individual i, so f overall will be symmetric.

We have X(t) for t = 1, 2, and we want to construct a Y (t) with few distinct k-CRVs. That is, we
want to find pi,j , the probability that Yi = pi,j , for 1 ≤ i ≤ n, 1 ≤ j ≤ k. These pi,j ’s have to satisfy

certain inequalities to ensure each Y
(t)
i is a non-δt exceptional k-CRV and pi,1 ≤ pi,2 ≤ . . . ≤ pi,k.

To do this, we will need to introduce variables whose square is the slack in each of these inequalities.
The free variables of these equations will be pi,1, . . . , pi,k, xi,1, . . . , xi,3k. The equations we con-

sider are as follows:
The following two equations mean that Y

(t)
i is a k-CRV with the necessary properties: For each

1 ≤ i ≤ n and 1 ≤ j ≤ k − 1,
pi,j = x2

i,j (17)

pi,j + x2
i,j+k = pi,k (18)

and

pi,j + x2
i,j+2k = δt

√
1 + sj(X) . (19)

42



For each 1 ≤ i ≤ n,
k∑
j=1

pi,j = 1 . (20)

We need an equation that the mth moment of Y (t) is identical to the mth moment of X(t), i.e.,∑
i

∏
j

p
mj

i,j

−Mm(X(t)) = 0 , (21)

for each moment m with |m|1 ≤ Kt.
If these equations have a solution for real pi,j ’s and xi,j ’s, then the pi,j ’s satisfy all the inequalities

we need. We square all these expressions and sum them giving f. Note that the slack variables
xi,j only appear in monomials of degree 4 in f . We set the weights wj of the pi,j to be 1 and
the weights of the xi,j to be Kt/2. Then, f has w degree 2Kt: (21) has degree Kt in terms of
pi,j , so when we square it to put it in f , it has degree 2Kt. So we have that, for d = 2Kt,∏k
j=1

⌊
d
wj

⌋
= (2Kt)

k43k = O(Kt)
k Now f is symmetric in terms of the n different values of i, so we

can apply Lemma 4.26, which yields that there is a minimum with O(Kt)
k distinct (k+ 1)-vectors

provided that there is any minimum.
However, note that if we set p′i,j = Pr[Xi = ej ] and define the x′i,j appropriately, we obtain an

x′ such that f(x′) = 0. Since f is a sum of squares f(x) ≥ 0. So, there is an x∗ with f(x∗) = 0, but
such that x∗ has O(Kt)

k distinct 4k-vectors (p∗i,1, . . . , p
∗
i,k, x

∗
i,1, . . . , x

∗
i,k).

Using the p∗i,j ’s in this solution, we have a Y (t) with O(Kt)
k distinct CRVs. So, the Y which is

O(ε) close to X has (O(K1)k +O(K2)k + k(log 1/ε)2) distinct k-CRVs. Overall, we have that any
PMD is O(kε)-close to one with

k ·O(K2)k = O ((log(1/ε)/(log log(1/ε)) + k))k

distinct constituent k-CRVs. Thus, every PMD is ε-close to one with k·O ((log(k/ε)/(log log(k/ε)) + k))k

distinct constituent k-CRVs. This completes the proof.

4.5 Cover Size Lower Bound for PMDs In this subsection, we prove our lower bound on
the cover size of PMDs, which is restated below:

Theorem 4.27. (Cover Size Lower Bound for (n, k)-PMDs) Let k > 2, k ∈ Z+, and ε be sufficiently
small as a function of k. For n = Ω((1/k) · log(1/ε)/ log log(1/ε))k−1 any ε-cover of Mn,k under

the total variation distance must be of size nΩ(k) · (1/ε)Ω((1/k)·log(1/ε)/ log log(1/ε))k−1
.

Theorem 4.27 will follow from the following theorem:

Theorem 4.28. Let k > 2, k ∈ Z+, and ε be sufficiently small as a function of k. Let n =
Ω((1/k) · log(1/ε)/ log log(1/ε))k−1. There exists a set S of (n, k)-PMDs so that for x, y ∈ S, x 6= y

implies that dTV (x, y) ≥ ε, and |S| ≥ (1/ε)Ω((1/k)·log(1/ε)/ log log(1/ε))k−1
.

The proof of Theorem 4.28 is quite elaborate and is postponed to the following subsection.

We now show how Theorem 1.5 follows from it. Let n0
def
= Θ((1/k) · log(1/ε)/ log log(1/ε))k−1. By

Theorem 4.28, there exists a set Sn0 of size (1/ε)Ω(n0) consisting of (n0, k)-PMDs that are ε-far
from each other.

We construct (n/n0)Ω(k) appropriate “shifts” of the set Sn0 , by selecting appropriate sets of
n − n0 deterministic component k-CRVs. These sets shift the mean vector of the corresponding
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PMD, while the remaining n0 components form an embedding of the set Sn0 . We remark that the
PMDs corresponding to different shifts have disjoint supports. Therefore, any ε-cover must contain
disjoint ε-covers for each shift, which is isomorphic to Sn0 . Therefore, any ε-cover must be of size

(n/n0)Ω(k) · (1/ε)Ω((1/k)·log(1/ε)/ log log(1/ε))k−1
= nΩ(k) · (1/ε)Ω((1/k)·log(1/ε)/ log log(1/ε))k−1

,

where the last inequality used the fact that nk0 = o((1/ε)n0), if the parameter ε is sufficiently small
as a function of k. This completes the proof. The following subsection is devoted to the proof of
Theorem 4.28.

4.5.1 Proof of Theorem 4.28. Let k > 2, k ∈ Z+, and ε be sufficiently small as a function of
k. Let n = Θ((1/k) · log(1/ε)/ log log(1/ε))k−1.

We express an (n, k)-PMD X as a sum of independent k-CRVs Xs, where s ranges over some
index set. For 1 ≤ j ≤ k − 1, we will denote ps,j = Pr[Xs = ej ]. Note that Pr[Xs = ek] =

1−
∑k−1

j=1 ps,j .
We construct our lower bound set S explicitly as follows. Let 0 < c < 1 be an appropriately

small universal constant. We define the integer parameters a
def
= bc ln(1/ε)/2k ln ln(1/ε))c and

t
def
= bε−cc. We define the set S to have elements indexed by a function f : [a]k−1 → [t], where the

function f corresponds to the PMD

Xf def
=

∑
s∈[a]k−1

Xf
s ,

and the k-CRV Xf
s , s = (s1, . . . , sk−1) ∈ [a]k−1, has the following parameters:

pfs,j =
sj + δj,1ε

3cf(s)

lnk(1/ε)
, (22)

for 1 ≤ j ≤ k − 1. (Note that we use δi,j to denote the standard Kronecker delta function, i.e.,
δi,j = 1 if and only if i = j).

Let F = {f | f : [a]k−1 → [t]} be the set of all functions from [a]k−1 to [t]. Then, we have that

S def
= {Xf : f ∈ F}.

That is, each PMD in S is the sum of ak−1 many k-CRVs, and there are t possibilities for each
k-CRV. Therefore,

|S| = ta
k−1

= (1/ε)Ω((1/k)·log(1/ε)/ log log(1/ε))k−1
.

Observe that all PMDs in S are k-maximal. In particular, for any f ∈ F , s ∈ [a]k−1, and 1 ≤ j ≤
k − 1, the above definition implies that

pfs,j ≤
1

k
· 1

lnk(1/ε)
. (23)

An important observation, that will be used throughout our proof, is that for each k-CRV Xf
s , only

the first out of the k−1 parameters pfs,j , 1 ≤ j ≤ k−1, depends on the function f . More specifically,

the effect of the function f on pfs,1 is a very small perturbation of the numerator. Note that the first
summand in the numerator of (22) is a positive integer, while the summand corresponding to f is
at most ε2c = o(1). We emphasize that this perturbation term is an absolutely crucial ingredient
of our construction. As will become clear from the proof below, this term allows us to show that
distinct PMDs in S have a parameter moment that is substantially different.

The proof proceeds in two main conceptual steps that we explain in detail below.
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First Step. In the first step, we show that for any two distinct PMDs in S, there exists a
parameter moment in which they differ by a non-trivial amount. For m ∈ Zk−1

+ , we recall that

the mth parameter moment of a k-maximal PMD X =
∑

s∈S Xs is defined to be Mm(X)
def
=∑

s∈S
∏k−1
j=1 p

mj

s,j . In Lemma 4.29 below, we show that for any distinct PMDs Xf , Xg ∈ S, there

exists m ∈ [a]k−1 such that their mth parameter moments differ by at least poly(ε).

Lemma 4.29. If f, g : [a]k−1 → [t], with f 6= g, then there exists m ∈ [a]k−1 so that

|Mm(Xf )−Mm(Xg)| ≥ ε4c .

We now give a brief intuitive overview of the proof. It is clear that, for f 6= g, the PMDs
Xf and Xg have distinct parameters. Indeed, since f 6= g, there exists an s ∈ [a]k−1 such that

f(s) 6= g(s), which implies that the k-CRVs Xf
s and Xg

s have pfs,1 6= pgs,1.
We start by pointing out that if two arbitrary PMDs have distinct parameters, there exists a

parameter moment where they differ. This implication uses the fact that PMDs are determined
by their moments, which can be established by showing that the Jacobian matrix of the moment
function is non-singular. Lemma 4.29 is a a robust version of this fact, that applies to PMDs in S,
and is proved by crucially exploiting the structure of the set S.

Our proof of Lemma 4.29 proceeds as follows: We start by approximating the parameter mo-
ments Mm(Xf ), Xf ∈ S, from above and below, using the definition of the parameters of Xf . This
approximation step allows us to express the desired difference Mm(Xf ) −Mm(Xg) (roughly) as
the product of two terms: the first term is always positive and has magnitude poly(ε), while the
second term is L · (f − g), for a certain linear transformation (matrix) L. We show that L is the
tensor product of matrices Li, where each Li is a Vandermonde matrix on distinct integers. Hence,
each Li is invertible, which in turn implies that L is invertible. Therefore, since f 6= g, we deduce
that L · (f − g) 6= 0. Noting that the elements of this vector are integers, yields the desired lower
bound.

Proof of Lemma 4.29. We begin by approximating the mth parameter moment of Xf . We have
that

Mm(Xf ) =
∑

s∈[a]k−1

k−1∏
j=1

(
sj + δj,1ε

3cf(s)

lnk(1/ε)

)mj

= ln−k‖m‖1(1/ε)
∑

s∈[a]k−1

(s1 + ε3cf(s))m1

k−1∏
j=2

s
mj

j .

Note that in the expression (s1+ε3cf(s))m1 =
∑m1

i=0

(
m1

i

)
sm1−i

1 (ε3cf(s))i, the ratio of the (ε3cf(s))i+1

term to the (ε3cf(s))i term is (m1 − i)ε3cf(s)/s1i ≤ aε2c ≤ 1/2. So, we have

(s1 + ε3cf(s))m1 =

m1∑
i=0

(
m1

i

)
sm1−i

1 (ε3cf(s))i

≤ sm1
1 +m1s

m1−1
1 ε3cf(s) + (m1(m1 − 1)/2)sm1−2

1 (ε3cf(s))2
m1−2∑
i=0

2−i

≤ sm1
1 +m1s

m1−1
1 ε3cf(s) + aaε4c .
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We can therefore write

Mm(Xf ) = ln−k‖m‖1(1/ε)
∑

s∈[a]k−1

(
s1 + ε3cf(s)

)m1

k−1∏
j=2

s
mj

j

≤ ln−k‖m‖1(1/ε)
∑

s∈[a]k−1

(
sm1

1 +m1s
m1−1
1 ε3cf(s) + aaε4c

)k−1∏
j=2

s
mj

j


≤ ln−k‖m‖1(1/ε)

 ∑
s∈[a]k−1

k−1∏
j=1

s
mj

j

+

ε3c ∑
s∈[a]k−1

m1f(s)sm1−1
1

k−1∏
j=2

s
mj

j

+ akaε4c

 .

Note that aka = exp (ak ln a) ≤ exp (ak ln ln 1/ε) ≤ exp (c ln ε/2) = (1/ε)c/2 , and so finally we have

Mm(Xf ) ≤ ln−k‖m‖1(1/ε)

 ∑
s∈[a]k−1

k−1∏
j=1

s
mj

j

+

ε3c ∑
s∈[a]k−1

m1f(s)sm1−1
1

k−1∏
j=2

s
mj

j

+ ε7c/2

 ,

and that

Mm(Xf ) ≥ ln−k‖m‖1(1/ε)

 ∑
s∈[a]k−1

k−1∏
j=1

s
mj

j

+

ε3c ∑
s∈[a]k−1

m1f(s)sm1−1
1

k−1∏
j=2

s
mj

j

 .

An analogous formula holds for the parameter moments of Xg and therefore

Mm(Xf )−Mm(Xg) = ln−k‖m‖1(1/ε)

ε3c ∑
s∈[a]k−1

m1s
m1−1
1

k−1∏
j=2

s
mj

j (f(s)− g(s)) +O(ε7c/2)

 .

We need to show that, for at least one value of m ∈ Zk−1
+ , the integer

∑
s∈[a]k−1

k−1∏
j=1

s
mj−1
j (f(s)− g(s))

is non-zero, since log−k‖m‖1(1/ε) · ε3cm1
∏k−1
j=1 sj > 0 for all s and m.

We observe that these integers are the coordinates of L(f − g), where L : R[a]k−1 → R[a]k−1
is

the linear transformation with

L(h)m
def
=

∑
s∈[a]k−1

k−1∏
j=1

s
mj−1
j (h(s)) ,

for m ∈ [a]k−1. It should be noted that L is the tensor product of the linear transformations
Li : Rm → Rm, with

Li(h)mi =
∑
si∈[a]

smi−1
i h(s) ,

for 1 ≤ i ≤ k−1. Moreover, each Li(h) is given by the Vandermonde matrix on the distinct integers
1, 2, . . . , a, which is non-singular. Since each Li is invertible, the tensor product L is also invertible.
Therefore, L(f − g) is non-zero. That is, there exists an m ∈ [a]k−1 with (L(f − g))m 6= 0, and so

Mm(Xf )−Mm(Xg) = log−k‖m‖1(1/ε) · ε3c ·m1

k−1∏
j=1

sj(L(f − g))m 6= 0 .
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Since m1
∏k−1
j=1 sj(L(f − g))m is an integer, |m1

∏k−1
j=1 sj(L(f − g))m| ≥ 1. So, we get

|Mm(Xf )−Mm(Xg)| ≥ ln−k‖m‖1(1/ε)ε3c .

Finally, we note that ln−k‖m‖1(1/ε) = exp(−k‖m‖1 ln ln 1/ε) ≥ exp(−ka ln ln 1/ε) ≥ εc/2. We
therefore conclude that |Mm(Xf )−Mm(Xg)| ≥ ε4c, as required.

Second Step. In the second step of the proof, we show that two PMDs in S that have a parameter
moment that differs by a non-trivial amount, must differ significantly in total variation distance.
In particular, we prove:

Lemma 4.30. Let f, g : [a]k−1 → [t], with f 6= g. If |Mm(Xf ) − Mm(Xg)| ≥ ε4c for some
m ∈ [a]k−1, then dTV (Xf , Xg) ≥ ε.

We establish this lemma in two sub-steps: We first show that if the mth parameter moments
of two PMDs in S differ by a non-trivial amount, then the corresponding probability generating
functions (PGF) must differ by a non-trivial amount at a point. An intriguing property of our
proof of this claim is that it is non-constructive: we prove that there exists a point where the
PGF’s differ, but we do not explicitly find such a point. Our non-constructive argument makes
essential use of Cauchy’s integral formula. We are then able to directly translate a distance lower
bound between the PGFs to a lower bound in total variation distance.

For a random variable W = (W1, . . . ,Wk) taking values in Zk and z = (z1, . . . , zk−1) ∈ Ck−1,

we recall the definition of the probability generating function: P (W, z)
def
= E

[∏k−1
i=1 z

Wi
i

]
. For a

PMD Xf , we have that

P (Xf , z) = E

 ∏
s∈[a]k−1

k−1∏
i=1

z
Xf

s,i

i

 =
∏

s∈[a]k−1

(
1 +

k−1∑
i=1

pfs,i(zi − 1)

)
.

We start by establishing the following crucial claim:

Claim 4.31. Let f, g : [a]k−1 → [t], with f 6= g. If |Mm(Xf )−Mm(Xg)| ≥ ε4c for some m ∈ [a]k−1,
then there exists z∗ ∈ Ck−1 with ‖z∗‖∞ ≤ 2 such that |P (Xf , z∗)− P (Xg, z∗)| ≥ ε5c.

Before we proceed with the formal proof, we provide an intuitive explanation of the argument.
The proof of Claim 4.31 proceeds as follows: We start by expressing ln

(
P (Xf , z)

)
, the logarithm

of the PGF of a PMD Xf ∈ S, as a Taylor series whose coefficients depend on its parameter
moments Mm(Xf ). We remark that appropriate bounds on the parameter moments of Xf ∈ S
imply that this series is in fact absolutely convergent in an appropriate region R. Note that, using
the aforementioned Taylor expansion, we can express each parameter moment Mm(Xf ), m ∈ Zk−1

+ ,
as a partial derivative of ln

(
P (Xf , z)

)
. Hence, if Xf and Xg are distinct PMDs in S, the difference

|Mm(Xf ) −Mm(Xg)| can also be expressed as the absolute value of the partial derivative of the
difference between the PGFs

∣∣ln (P (Xf , z)
)
− ln (P (Xg, z))

∣∣ .We then use Cauchy’s integral formula
to express this partial derivative as an integral, which we can further be absolutely bounded from
above by the difference

∣∣ln (P (Xf , z∗)
)
− ln (P (Xg, z∗))

∣∣ , for some point z∗ ∈ R. Finally, we use
the fact that ln

(
P (Xf , z)

)
is absolutely bounded for all z ∈ R to complete the proof of the claim.
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Proof of Claim 4.31. For z ∈ Ck−1, let w ∈ Ck−1 be defined by wi = zi − 1, 1 ≤ i ≤ k − 1. When
|wi| ≤ 5, for all 1 ≤ i ≤ k − 1, we take logarithms and obtain:

ln(P (Xf , z)) =
∑

s∈[a]k−1

ln

(
1 +

k−1∑
i=1

pfs,iwi

)

=
∑

s∈[a]k−1

∞∑
`=1

(−1)`+1

`

(
k−1∑
i=1

pfs,iwi

)`

=
∑

s∈[a]k−1

∞∑
`=1

(−1)`+1

`

∑
‖m‖1=`

(
`

m

) k−1∏
i=1

(pfs,i)
mi

k−1∏
i=1

wmi
i

=
∑

a∈Zk−1
≥0

a6=0

(−1)‖m‖1+1

‖m‖1

(
‖m‖1
m

)(k−1∏
i=1

wmi
i

) ∑
s∈[a]k−1

(
k−1∏
i=1

(pfs,i)
mi

)

=
∑

a∈Zk−1
≥0

a6=0

(−1)‖m‖1+1

‖m‖1

(
‖m‖1
m

)(k−1∏
i=1

wmi
i

)
Mm(Xf ).

We note that

|Mm(Xf )| =

∣∣∣∣∣∣
∑

s∈[a]k−1

k−1∏
i=1

(pfs,i)
mi

∣∣∣∣∣∣ ≤ ak−1 ln−(k−1)‖m‖1(1/ε) < (10k)−‖m‖1 ,

where the first inequality follows from (23). Therefore, for ‖z‖∞ ≤ 4 and so ‖w‖∞ ≤ 5, we obtain
that

| ln(P (Xf , z))| ≤
∞∑
`=1

1

`

∑
a∈Zk−1

+

‖m‖1=`

(
‖m‖1
m

)
‖w‖`∞(10k)−` ≤

∞∑
`=1

(k − 1)`5`(10k)−` ≤
∞∑
`=1

2−` = 1 . (24)

This suffices to show that all the series above are absolutely convergent when ‖z‖∞ ≤ 4, and thus
that their manipulations are valid, and that we get the principal branch of the logarithm. To
summarize, for all z ∈ Ck−1 with ‖z‖∞ ≤ 4, and w ∈ Ck−1 with wi = zi − 1, i ∈ [k − 1], we have:

ln(P (Xf , z)) =
∑

a∈Zk−1
≥0

a6=0

(−1)‖m‖1+1

‖m‖1

(
‖m‖1
m

)(k−1∏
i=1

wmi
i

)
Mm(Xf ) . (25)

In particular, we have that the
∏k−1
i=1 w

mi
i coefficient of ln(P (Xf , z)) is an integer multiple of

Mm(Xf )/‖m‖1. This expansion is a Taylor series in the wi’s, so this coefficient is equal to a partial
derivative, which we can extract by Cauchy’s integral formula. Now, suppose that Xf , Xg are
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distinct elements of S. We have that:

|Mm(Xf )−Mm(Xg)|/‖m‖1 ≤ |Mm(Xf )−Mm(Xg)|
(
‖m‖1
m

)
/‖m‖1

=

(
k−1∏
i=1

1/mi!

)∣∣∣∣∣∂‖m‖1 ln(P (Xf , z))− ln(P (Xg, z))

∂wm1
1 · · · ∂wmk−1

k−1

∣∣∣∣∣
=

∣∣∣∣∣(1/2πi)k−1

∮
γ
. . .

∮
γ
(ln(P (Xf , z))− ln(P (Xg, z)))/

k−1∏
i=1

wmi
i dw1 . . . dwk−1

∣∣∣∣∣
≤ max

|w1|=1,...,|wk−1|=1
| ln(P (Xf , z))− ln(P (Xg, z)))/

k−1∏
i=1

wmi
i |

= max
|w1|=1,...,|wk−1|=1

| ln(P (Xf , z))− ln(P (Xg, z)))| ,

where the third line above follows from Cauchy’s integral formula, and γ is the path round the unit
circle.

Now suppose that there exists an m ∈ [a]k−1, i.e., with ‖m‖1 ≤ (k − 1)a, such that it holds
|Mm(Xf ) −Mm(Xg)| ≥ ε4c. By the above, this implies that there is some w∗ = (w∗1, . . . , w

∗
k−1)

with |w∗i | = 1 for all i so that for the corresponding z∗,

| ln(P (Xf , z∗))− ln(P (Xg, z∗))| ≥ ε4c/‖m‖1 ≥ ε4c/(ka) . (26)

Note that ‖z∗‖∞ ≤ ‖w∗‖∞+1 = 2.Hence, z∗ ∈ R.Applying (24), at this z∗, we have | ln(P (Xf , z∗))| ≤
1 and | ln(P (Xg, z∗))| ≤ 1. Therefore, by Equation (26), for this z∗ with ‖z∗‖∞ ≤ 2, we have that

|P (Xf , z∗)− P (Xg, z∗)| = Ω
(
ε4c/(ka)

)
≥ ε5c ,

where the last inequality follows from our definition of a. This completes the proof of Claim 4.31.

We are now ready to translate a lower bound on the distance between the PGFs to a lower
bound on total variation distance. Namely, we prove the following:

Claim 4.32. If there exists z∗ ∈ Ck−1 with ‖z∗‖∞ ≤ 2 such that |P (Xf , z∗) − P (Xg, z∗)| ≥ ε5c,
then dTV (Xf , Xg) ≥ ε.

The main idea of the proof of Claim 4.32 is this: By Equation (24), we know that | ln(P (Xf , z))| ≤
1, for all z ∈ R. We use this fact to show that the contribution to the value of the PGF P (Xf , z∗)
coming from the subset of the probability space {Xf > T} is at most O(2−T ). On the other
hand, the contribution to the difference | ln(P (Xf , z∗)) − ln(P (Xg, z∗))| coming from the set
{Xf ≤ T,Xg ≤ T} can be easily bounded from above by 2T · dTV (Xf , Xg). The claim follows by
selecting an appropriate value of T = Θ(log(1/ε)), balancing these two terms.

Proof. First note that exponentiating Equation (24) at z = (4, 4, . . . , 4), and using the definition
of the PGF we get:

E
[
4
∑k−1

i=1 X
f
i

]
,E
[
4
∑k−1

i=1 X
g
i

]
≤ e .

Therefore, for any z with ‖z‖∞ ≤ 2 and any T ∈ Z+ we have that∣∣∣∣∣∣
∑

x,|x|1≥T

k−1∏
i=1

zxii Pr[Xf = x]

∣∣∣∣∣∣ ≤ (1/2)T
∑

x,|x|1≥T

k−1∏
i=1

4|x|1 Pr[Xf = x] ≤ e(1/2)T .
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A similar bound holds for Xg. By assumption, there exists such a z∗ so that

ε5c ≤
∣∣∣P (Xf , z∗)− P (Xg, z∗)

∣∣∣
=

∣∣∣∣∣∑
x

k−1∏
i=1

(z∗)xii

(
Pr[Xf = x]− Pr[Xg = x]

)∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|x|1<T

k−1∏
i=1

(z∗)xii

(
Pr[Xf = x]− Pr[Xg = x]

)∣∣∣∣∣∣+ 2e(1/2)T

≤ 2T
∑
|x|1<T

∣∣∣Pr[Xf = x]− Pr[Xg = x]
∣∣∣+ 2e(1/2)T

≤ 2TdTV (Xf , Xg) + 2e/2T .

Taking T = d5c log2(1/ε)e, we get

dTV (Xf , Xg) ≥ Ω(ε10c) ≥ ε.

This completes the proof Claim 4.32.

Lemma 4.30 follows by combining Claims 4.31 and 4.32. By putting together Lemmas 4.29
and 4.30, it follows that any two distinct elements of S are ε-separated in total variation dis-
tance. This completes the proof of Theorem 4.28, establishing the correctness of our lower bound
construction.

5 A Size–Free Central Limit Theorem for PMDs

In this section, we prove our new CLT thereby establishing Theorem 1.3. For the purposes of this
section, we define a discrete Gaussian in k dimensions to be a probability distribution supported
on Zk so that the probability of a point x is proportional to eQ(x), for some quadratic polynomial
Q. The formal statement of our CLT is the following:

Theorem 5.1. Let X be an (n, k)-PMD with covariance matrix Σ. Suppose that Σ has no eigenvec-
tors other than 1 = (1, 1, . . . , 1) with eigenvalue less than σ. Then, there exists a discrete Gaussian
G so that

dTV (X,G) ≤ O(k7/2
√

log3(σ)/σ).

We note that our phrasing of the theorem above is slightly different than the CLT statement
of [VV10]. More specifically, we work with (n, k)-PMDs directly, while [VV10] work with projections
of PMDs onto k − 1 coordinates. Also, our notion of a discrete Gaussian is not the same as the
one discussed in [VV10]. At the end of the section, we show how our statement can be rephrased
to be directly comparable to the [VV10] statement.

Proof of Theorem 5.1. We note that unless σ > k7 that there is nothing to prove, and thus we
will assume this throughout the rest of the proof.

The basic idea of the proof will be to compare the Fourier transform of X to that of the
discrete Gaussian with density proportional to the pdf of N (µ,Σ) (where µ is the expectation of
X). By taking the inverse Fourier transform, we will be able to conclude that these distributions
are pointwise close. A careful analysis of this combined with the claim that both X and G have
small effective support will yield our result.
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We start by providing a summary of the main steps of the proof. We start by bounding the
effective support of X under our assumptions (Lemma 5.2 and Corollary 5.3). Then, we describe
the effective support of its Fourier transform (Lemma 5.5). We further show that the effective
support of the distribution X and the Fourier transform of the discrete Gaussian G are similar (see
Lemmas 5.9 and 5.10). We then obtain an estimate of the error between the Fourier transforms of
X and a Gaussian with the same mean and covariance (Lemma 5.8). The difference between the
distributions of X and G at a point, as given by the inverse Fourier transform, is approximately
equal to the integral of this error over the effective support of the Fourier transform of X and G.
If we take bounds on the size of this integral naively, we get a weaker result than Theorem 5.1,
concretely that dTV (X,G) ≤ O(log(σ))kσ−1/2 (Proposition 5.11). Finally, we are able to show the
necessary bound on this integral by using the saddlepoint method.

We already have a bound on the effective support of a general PMD (Lemma 3.3). Using this
lemma, we obtain simpler bounds that hold under our assumptions.

Lemma 5.2. Let X be an (n, k)-PMD with mean µ and covariance matrix Σ, where all non-trivial
eigenvalues of Σ are at least σ, then for any ε > exp(−σ/k), with probability 1− ε over X we have
that

(X − µ)T (Σ + I)−1(X − µ) = O(k log(k/ε)).

Proof. From Lemma 3.3, we have that (X − µ)T (k ln(k/ε)Σ + k2 ln2(k/ε)I)−1(X − µ) = O(1) with
probability at least 1− ε/10.

By our assumptions on Σ, we can write Σ = UTdiag(λi)U, for an orthogonal matrix U with kth

column 1/
√
k and λi ≥ σ for 1 ≤ i ≤ k − 1, and λk = 0.

By our assumptions on ε, we have that σ ≥ k ln(1/ε), and so for 1 ≤ i ≤ k − 1, we have
λi + 1 ≥ 1

2(λi + k ln(1/ε)).
Since 1T (X − µ) = 0, we have that (UT (X − µ))k = 0, and so we can write

(X − µ) · (Σ + I)−1(X − µ) = (UT (X − µ))Tdiag(1/(λi + 1))UT (X − µ)

≤ (UT (X − µ))Tdiag(2/(λi + k ln(1/ε)))UT (X − µ)

= 2k ln(k/ε) · (X − µ)T
(
k ln(k/ε)Σ + k2 ln2(k/ε)I

)−1
(X − µ)

= O(k ln(k/ε)).

Specifically, if we take ε = 1/σ, we have the following:

Corollary 5.3. Let X be as above, and let S be the set of points x ∈ Zk where (x− µ)T1 = 0 and

(x− µ)T (Σ + I)−1(x− µ) ≤ (Ck log(σ)) ,

for some sufficiently large constant C. Then, X ∈ S with probability at least 1− 1/σ, and

|S| =
√

det(Σ + I) ·O(log(σ))k/2.

Proof. Noting that ln(kσ) = O(log σ) since σ > k, by Lemma 5.2, applied with ε = 1/σ, it follows
that x ∈ S with probability 1− 1/σ.

The remainder of the claim is a standard counting argument where we need to bound the
number of integer lattice points within a continuous region (in this case, an ellipsoid). We deal
with this by way of the standard technique of erecting a unit cube about each of the lattice points
and bounding the volume of the union. Note that for x ∈ Zk, the cubes x+ (−1/2, 1/2)k each have
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volume one and are disjoint. Thus, if we define S′ to be the set of y such that there exists an x ∈ S
with ‖y − x‖∞ < 1

2 , then |S| = Vol(S′). For any y ∈ S′, there is an x ∈ S with:

(y − µ) · (Σ + I)−1(y − µ) = (x− µ) · (Σ + I)−1(x− µ) + (y − x) · (Σ + I)−1(y − x) +

2(y − x) · (Σ + I)−1(x− µ)

≤ O((x− µ) · (Σ + I)−1(x− µ) + (y − x) · (Σ + I)−1(y − x))

≤ O(Ck log(σ) + (y − x) · I(y − x))

≤ O(Ck log(σ) + k‖y − x‖2∞)

≤ O(Ck log(σ) + k)

= O(Ck log(σ)) .

That is, S′ is contained in the ellipsoid (y − µ) · (Σ + I)−1(y − µ) ≤ O(Ck log(σ)). The corollary
follows by bounding the volume of this ellipsoid. We have the following simple claim:

Claim 5.4. The volume of the ellipsoid xTA−1x ≤ ck for a symmetric k × k matrix A and c > 0
is
√

det(A) ·O(c)k/2.

Proof. We can factorize A = UTdiag(λi)U
T for some orthogonal matrix U. Then, the ellipsoid is

the set of x with ‖diag(1/
√
ckλi)U

Tx‖2 ≤ 1. The volume of the ellipsoid is∣∣∣det(diag(1/
√
ckλi)U

T )−1
∣∣∣Vk =

√
det(A) · (ck)k/2Vk,

where Vk is the volume of the unit sphere. By standard results, Vk = πk/2/Γ(1 + k/2) = Ω(k)−k/2,
using Stirling’s approximation

Γ(1 + k/2) =
√

2π/(1 + k/2)((1 + k/2)/e)1+k/2(1 +O(2/(k + 2)).

Therefore, the volume is O(
√

det(A) · (c)k/2).

As a consequence, the volume of the ellipsoid (y − µ) · (Σ + I)−1(y − µ) ≤ O(Ck log(σ)) is√
det(Σ + I) · O(C log σ)k/2. Thus, we conclude that |S| ≤ Vol(S′) ≤

√
det(Σ + I) · O(log σ)k/2.

This completes the proof of the corollary.

Next, we proceed to describe the Fourier support of X. In particular, we show that X̂ has
a relatively small effective support, T . Our Fourier sparsity lemma in this section is somewhat
different than in previous section, but the ideas are similar. The proof will similarly need Lemma
3.10.

Lemma 5.5. Let T
def
= {ξ ∈ Rk | ξ ·Σξ ≤ Ck log(σ)}, for C some sufficiently large constant. Then,

we have that:

(i) For all ξ ∈ T, the entries of ξ are contained in an interval of length 2
√
Ck log(σ)/σ.

(ii) Letting T ′ = T ∩ {ξ ∈ Rk | ξ1 ∈ [0, 1]}, it holds Vol(T ′) = det(Σ + I)−1/2 ·O(C log(σ))k/2.

(iii)
∫

[0,1]k\(T+Zk) |X̂(ξ)|dξ ≤ 1/(σ|S|).
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Proof. We define ξ̃ to be the projection of ξ onto the plane where the coordinates sum to 0, i.e.,
ξ̃ = ξ + α1 for some α ∈ R and ξ̃ · 1 = 0. Then, we have that ξ · Σξ ≥ σ|ξ̃|22. Hence, for ξ ∈ T, we
have that |ξ̃|∞ ≤ |ξ̃|2 ≤

√
Ck log(σ)/σ. This implies that for any i, j it holds

|ξi − ξj | = |ξ̃i − ξ̃j | ≤ 2|ξ̃|∞ ≤ 2
√
Ck log(σ)/σ.

This proves (i).
In particular, for any ξ ∈ T, and all i, we have |ξ1 − ξi| ≤ 2

√
Ck log(σ)/σ ≤ 2C. And so if

ξ ∈ T ′, then ξi ∈ [−2
√
C, 1+2

√
C]. Thus, for ξ ∈ T ′, it holds ξ ·ξ ≤ O(C). Thus, for ξ ∈ T ′, we have

ξ · (Σ + I) · ξ ≤ O(Ck log(σ)). By Claim 5.4, we get that Vol(T ′) ≤ det(Σ + I)−1/2O(C log(σ))k/2.
This proves (ii).

By Claim 3.9, for every ξ ∈ [0, 1)k, there is an interval Iξ of length 1 − 1/(k + 1) such that
ξ′ = ξ + b, for some b ∈ Zk, has coordinates in Iξ. Let Tm be the set of ξ such that there is such a
ξ′ with

2m+1Ck log(σ) ≥ ξ′ · Σξ′ ≥ 2mCk log(σ) ,

and ξi = ξ′i − bξ′ic for all 1 ≤ i ≤ k. Then, for every ξ ∈ [0, 1]k, we either have ξ ∈ T + Zk or else
ξ ∈ Tm for some m ≥ 0. Hence,∫

[0,1]k\(T+Zk)
|X̂(ξ)|dξ ≤

∞∑
m=0

Vol(Tm) sup
ξ∈Tm

|X̂(ξ)| . (27)

To bound the RHS above, we need bounds on the volume of each Tm. These can be obtained
using a similar argument to (ii) along with some translation.

Claim 5.6. We have that Vol(Tm) ≤ det(Σ + I)−1/2 ·O(2m+1C log(σ))k/2.

Proof. Let Um be the set of ξ such that there is a ξ′ with 2m+1Ck log(σ) ≥ ξ′ ·Σξ′ and ξi = ξ′i−bξ′ic
for all 1 ≤ i ≤ k. Note that Tm ⊆ Um. Let U ′m be the set of ξ′ with ξ1 ∈ [0, 1] and 2m+1Ck log(σ) ≥
ξ′ · Σξ′. Note that for any ξ′′ with 2m+1Ck log(σ) ≥ ξ′′ · Σξ′′, we have that ξ′′ + λ1 also satisfies
2m+1Ck log(σ) ≥ (ξ′′ + λ1) · Σ(ξ′′ + λ1) for any λ ∈ R. In particular ξ′ = ξ′′ − (bξ′′1c)1) ∈ U ′m.
Note that ξ′′i − bξ′′i c = ξ′i for all i. So Um is the set of ξ such that there is a ξ′ ∈ U ′m with

ξi = ξ′i − bξ′ic. Then, Vol(Um) ≤ Vol(U ′m) since Um = ∪b∈Zn(U ′m ∩
∏k
i=1[bi, bi + 1)) − b, and so

Vol(Um) ≤
∑

b∈Zn Vol(U ′m ∩
∏k
i=1[bi, bi + 1))) = Vol(U ′m).

Note that by Lemma 5.5 (ii) applied with C := 2m+1C gives the bound

Vol(U ′m) ≤ det(Σ + I)−1/2 ·O(2m+1C log(σ))k/2.

Therefore, we have Vol(Tm) ≤ Vol(Um) ≤ Vol(U ′m) ≤ det(Σ + I)−1/2 · O(2m+1C log(σ))k/2. This
completes the proof.

Next, we obtain bounds on supξ∈Tm |X̂(ξ)| by using Lemma 3.10.

Claim 5.7. For ξ ∈ Tm, it holds |X̂(ξ)| ≤ exp(−Ω(C2m log(σ)/k)). If additionally we have m ≤
4 log2 k, then |X̂(ξ)| = exp(−Ω(C2mk log(σ))).

Proof. Note that ξ′ has coordinates in an interval of length 1− 1/k, so we may apply Lemma 3.10,
yielding

|X̂(ξ)| = |X̂(ξ′)| ≤ exp(−Ω(ξ′T · Σ · ξ′/k2)) = exp(−Ω(C2m log(σ)/k)).
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To get the stronger bound, we need to show that for small m, all the coordinates of ξ′ are in a
shorter interval. As before, we consider ξ̃′, the projection of ξ′ onto the set of x with x · 1 = 0.
Similarly, we have ξ′ · Σξ′ ≥ σ|ξ̃′|22. So, for any i, j, it holds

|ξ′i − ξ′j | ≤ |ξ̃′i − ξ̃′j | ≤ 2|ξ̃′|∞ ≤ 2|ξ̃′|2 ≤
√
ξ′ · Σξ′/σ ≤

√
C2m+1k log(σ)/σ.

For m ≤ log2(σ/Ck log(σ)) − 3, we have that the coordinates of ξ lie in an interval of length 1/2.
Now, Lemma 3.10 gives that

|X̂(ξ)| = |X̂(ξ′)| ≤ exp(−Ω(ξ′T · Σ · ξ′)) = exp(−Ω(Ck2m log(σ)/k)).

Finally, note that 4 log2 k ≤ log2(σ/Ck log(σ))− 3, when σ ≥ Ck3. This completes the proof of the
claim.

Using the above, we can write∫
[0,1]k\(T+Zk)

|X̂(ξ)|dξ ≤
∞∑
m=0

Vol(Tm) sup
ξ∈Tm

|X̂(ξ)|

≤ det(Σ + I)−1/2 ·O(C log(σ))k/2
∞∑
m=0

2mk/2 sup
ξ∈Tm

|X̂(ξ)| .

We divide this sum into two pieces:

4 log2 k∑
m=0

2mk/2 sup
ξ∈Tm

|X̂(ξ)| ≤
log2(σ/Ck log(σ))−3∑

m=0

2mk/2 exp(−Ω(C2mk log(σ)))

≤
4 log2 k∑
m=0

exp(−Ω(C(2m −m)k log(σ)))

≤
4 log2 k∑
m=0

2−m exp(−Ω(Ck log(σ)))

≤ exp(−Ω(Ck log(σ))) = σ−Ω(Ck) ,

and

∞∑
m=4 log2 k

2mk/2 sup
ξ∈Tm

|X̂(ξ)| ≤
∞∑

m=4 log2 k

2mk/2 exp(−Ω(C2m log(σ)/k))

≤
∞∑

m=4 log2 k

exp(−Ω(C(2m −m) log(σ)/k))

≤
∞∑

m=4 log2 k

exp(−Ω(C(k2 +m) log(σ)/k))

≤
∞∑

m=4 log2 k

2−m exp(−Ω(Ck log(σ))) ≤ σ−Ω(Ck) .

We thus have
∫

[0,1]k\(T+Zk) |X̂(ξ)|dξ ≤ det(Σ + I)−1/2O(C log(σ))k/2 log(σ)−O(Ck).
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The previous lemma establishes that the contribution to the Fourier transform of X coming
from points outside of T is negligibly small. We next claim that, for ξ ∈ T, it is approximated by
a Gaussian.

Lemma 5.8. For ξ ∈ T, we have that

X̂(ξ) = exp

(
2πiµ · ξ − 2π2ξ · Σξ +O(C3/2k7/2

√
log3(σ)/σ)

)
.

This also holds for complex ξ, under the assumption that the coordinate-wise complex and real parts
of ξ are in T, i.e., such that Re(ξ) · ΣRe(ξ), Im(ξ) · ΣIm(ξ) ≤ O(Ck log(σ)).

Proof. Recall that X̂(ξ) =
∏n
i=1

∑k
j=1 e(ξj)pij . Let mi be the element of [k] so that pimi is as

large as possible for each i. In particular, pimi ≥ 1/k. We will attempt to approximate the above
product by approximating the log of

∑k
j=1 e(ξj)pij by its Taylor series expansion around the point

(ξmi , ξmi , . . . , ξmi). In particular, by Taylor’s Theorem, we find that

k∑
j=1

e(ξj)pij = exp

2πi

ξmi +
k∑
j=1

pij(ξj − ξmi)

− 2π2

 k∑
j=1

pij(ξj − ξmi)
2

+ 2π2

 k∑
j=1

pij(ξj − ξmi)

2

+ Ei

 ,

where Ei is the third directional derivative in the ξ− (ξmi , . . . , ξmi) direction of log(X̂i(ξ)) at some
point ξ̃ along the line between ξ and (ξmi , . . . , ξmi). Note that the above is exactly

exp
(
2πi(ξ · E[Xi])− 2π2(ξ · Cov(Xi)ξ) + Ei

)
.

Thus, taking a product over i, we find that

X̂(ξ) = exp

(
2πiµ · ξ − 2π2ξ · Σξ +

n∑
i=1

Ei

)
.

We remark that the coefficients of this Taylor series are (up to powers of −2πi) the cumulants
of X.

Since the coordinates of ξ̃ lie in an interval of length at most 1/2, we have that
∑k

j=1 e(ξ̃j)pij
is bounded away from 0. Therefore, we get that

|Ei| = O

( k∑
j=1

pij |ξ̃j − ξmi |3 +
k∑

j1,j2=1

pij1pij2 |ξ̃j1 − ξmi |2|ξ̃j2 − ξmi |

+
k∑

j1,j2,j3=1

pij1pij2pij3 |ξ̃j1 − ξmi ||ξ̃j2 − ξmi ||ξ̃j3 − ξmi |
)
.

Next note that
Var(Xi · ξ̃) ≥ pijpimi |ξ̃j − ξmi |2 ≥ pij |ξ̃j − ξmi |2/k.

Additionally, note that

Ck log(σ) ≥ ξ · Σξ = Var(X · ξ) =
n∑
i=1

Var(Xi · ξ).
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Therefore,
n∑
i=1

pij |ξ̃j − ξmi |2 ≤
n∑
i=1

pij |ξj − ξmi |2 ≤ Ck2 log(σ).

Thus, since |ξ̃j − ξmi | = O(
√
Ck log(σ)/σ) for all i, j we have that

n∑
i=1

k∑
j=1

pij |ξ̃j − ξmi |3 ≤ O(C3/2k7/2
√

log3(σ)/σ).

We have that

n∑
i=1

k∑
j1,j2=1

pij1pij2 |ξ̃j1 − ξmi ||ξ̃j2 − ξmi | ≤
n∑
i=1

 k∑
j=1

pi,j |ξ̃j − ξmi |

2

≤
n∑
i=1

 k∑
j=1

pi,j

 k∑
j=1

pi,j |ξ̃j − ξmi |2


= O(Ck3 log(σ)).

Therefore,
n∑
i=1

k∑
j1,j2=1

pij1pij2 |ξ̃j1 − ξmi |2|ξ̃j2 − ξmi |

and
k∑

j1,j2,j3=1

pij1pij2pij3 |ξ̃j1 − ξmi ||ξ̃j2 − ξmi ||ξ̃j3 − ξmi |

are both

O(C3/2k7/2
√

log3(σ)/σ).

We now define G to be the discrete Gaussian supported on the set of points in Zk whose
coordinates sum to n, so that for such a point p we have:

G(p) = (2π)−(k−1)/2 det(Σ′)−1/2 exp((p− µ) · Σ−1(p− µ)/2) =

∫
ξ,
∑
ξj=0

e(−p · ξ) exp(2πi(ξ · µ)− 2π2ξ · Σξ)

=

∫
ξ,ξ1∈[0,1]

e(−p · ξ) exp(2πi(ξ · µ)− 2π2ξ · Σξ) ,

where Σ′ = Σ + 11T restricted to the space of vectors whose coordinates sum to 0.
We let Ĝ equal

Ĝ(ξ) := exp(2πi(ξ · µ)− 2π2ξ · Σξ).

Next, we claim that G and X have similar effective supports and subsequently that Ĝ and X̂ do
as well. Firstly, the effective support of the distribution of G is similar to that of X, namely S:

Lemma 5.9. The sum of the absolute values of G at points not is S is at most 1/σ.
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Proof. For this it suffices to prove a tail bound for G analogous to that satisfied by X. In particular,
assuming that Σ has unit eigenvectors vi with eigenvalues λi, it suffices to prove that |(G−µ) ·vi| <√
λit except with probability at most exp(−Ω(t2)). Recall that

G(p) = (2π)−(k−1)/2 det(Σ′)−1/2 exp((p− µ) · Σ−1(p− µ)/2).

Let G̃ be the continuous probability density defined by

G̃(x) = (2π)−k/2 det(Σ′)−1/2 exp((x− µ) · Σ′−1(x− µ)/2).

Note that for any p with (p− µ) · 1 = 0, and x ∈ [−1/2, 1/2]k, we have that

G(p) = O
(
G̃(p+ x) + G̃(p− x)

)
.

Therefore, we have that

G(p) = O

(∫
x∈p+[−1/2,1/2]k

G̃(x)

)
.

Applying this formula for each p with (p−µ)·vi ≥
√
λit and noting that (x−µ)·vi ≥ (p−µ)·vi−

√
k ≥√

λit−
√
k yields

Pr(|(G− µ) · vi| >
√
λit) = O(Pr(|(G̃− µ) · vi| >

√
λit−

√
k = exp(−Ω(t2)).

Taking a union bound over 1 ≤ i ≤ k yields our result.

Secondly, the effective support of the Fourier Transform of G is similar to that of X, namely T :

Lemma 5.10. The integral of |Ĝ(ξ)| over ξ with ξ1 ∈ [0, 1] and ξ not in T is at most 1/(|S|σ).

Proof. We consider the integral over ξ ∈ Tm, where

Tm := {ξ : ξ1 ∈ [0, 1] | ξ · Σξ ∈ [2mCk log(σ), 2m+1Ck log(σ)]}.

We note that it has volume 2mkkO(k) logO(k)(σ)/|S|, and that within Tm it holds |Ĝ(ξ)| = exp(−Ω(Ck log(σ)2m)).
From this it is easy to see that the integral over Tm is at most 2−m−1/(|S|σ). Summing over m
yields the result.

We now have all that is necessary to prove a weaker version of our main result.

Proposition 5.11. We have the following:

dTV (X,G) ≤ O(log(σ))kσ−1/2.

Proof. First, we bound the L∞ of the difference. In particular, we note that for any p with integer
coordinates summing to n we have that

X(p) =

∫
ξ∈Rk,ξ1∈[0,1],ξi∈[ξ1−1/2,ξ1+1/2]

e(−p · ξ)X̂(ξ)dξ ,

and

G(p) =

∫
ξ,ξ1∈[0,1]

e(−p · ξ) exp(2πi(ξ · µ)− 2π2ξ · Σξ).
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We note that in both cases the integral for ξ not in T is at most 1/(|S|σ). To show this, we need to
note that any ξ with ξ1 ∈ [0, 1], ξi ∈ [ξ1 − 1/2, ξ1 + 1/2] equivalent to a point of T modulo Zk must
lie in T itself. This is because the element of T must have all its coordinates differing by at most
1/4, and thus must differ from ξ by an integer multiple of (1, 1, . . . , 1). Therefore, we have that

|X(p)−G(p)| =

∣∣∣∣∣
∫
ξ∈T,ξ1∈[0,1]

e(−p · ξ)(X̂(ξ)− Ĝ(ξ))dξ

∣∣∣∣∣+O(1/(|S|σ))

≤
∫
ξ∈T,ξ1∈[0,1]

|X̂(ξ)− Ĝ(ξ)|dξ +O(1/(|S|σ))

≤
∫
ξ∈T,ξ1∈[0,1]

O(C3/2k7/2
√

log3(σ)/σ)dξ +O(1/(|S|σ))

≤ det(Σ + I)−1/2(C3/2
√

log(σ)/σ)O(C log(σ))k/2.

Therefore, the sum of |X(p)−G(p)| over p ∈ S is at most

(C3/2
√

log(σ)/σ)O(C2 log2(σ))k/2.

The sum over p 6∈ S is at most O(1/σ). This completes the proof.

The proof of the main theorem is substantially the same as the above. The one obstacle that
we face is that above we are only able to prove L∞ bounds on the difference between X and G, and
these bounds are too weak for our purposes. What we would like to do is to prove stronger bounds
on the difference between X and G at points p far from µ. In order to do this, we will need to take
advantage of cancellation in the inverse Fourier transform integrals. To achieve this, we will use
the saddle point method from complex analysis.

Proof of Theorem 5.1. For p ∈ S we have as above that

|X(p)−G(p)| =

∣∣∣∣∣
∫
ξ∈T,ξ1∈[0,1]

e(−p · ξ)(X̂(ξ)− Ĝ(ξ))dξ

∣∣∣∣∣+O(1/(|S|σ)).

Let ξ0 ∈ Rk be such that ξ0.1 = 0 and so that Σξ0 = (µ− p)/(2π) (i.e., take ξ0 = (Σ + 11T )−1µ−
p)/(2π)). We think of the integral above as an iterated contour integral. By deforming the contour
associated with the innermost integral, we claim that it is the same as the sum of the integrals over
ξ with Re(ξ) ∈ T,Re(ξ1) ∈ [0, 1] and Im(ξ) = ξ0 and the integral over Re(ξ) ∈ δT,Re(ξ1) ∈ [0, 1]
and Im(ξ) = tξ0 for some t ∈ [0, 1] (the extra pieces that we would need to add at Re(ξ1) = 0 and
Re(ξ1) = 1 cancel out).

Claim 5.12.
∫
ξ∈δT,ξ1∈[0,1] e(−p · ξ)(X̂(ξ)− Ĝ(ξ))dξ equals∫

ξ∈T,ξ1∈[0,1]
e(−p · (ξ + iξ0))(X̂(ξ + iξ0)− Ĝ(ξ + iξ0))dξ

plus ∫
ξ∈δT,ξ1∈[0,1]

∫ 1

t=0
e(−p · (ξ + itξ0))(X̂(ξ + itξ0)− Ĝ(ξ + itξ0))d(tξ0) · dξ.
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Proof. We write f(ξ) = e(−p · ξ)(X̂(ξ) − Ĝ(ξ)). Let O be an orthogonal matrix with kth column
ξ0/‖ξ0‖2. Then, we change variables from ξ to ν = OT ξ, yielding∫

ξ∈T ′
f(ξ)dξ =

∫
ν∈OTT ′

f(OT ν)dν

We can consider this as an iterated integral where νi is integrated from ai(ν1, . . . , νi−1) to bi(ν1, . . . , νi−1).∫
ν∈OTT ′

f(OT ν)dν =

∫ b1

a1

∫ b2(ν1)

a2(ν1)
. . .

∫ bk(ν1,...,νk−1)

ak(ν1,...,νk−1)
f(OT ν)dνk . . . dν2dν1 .

We consider the innermost integral. The function f(OT ν) is a linear combination of exponentials
and so is holomorphic on all of Cn. Let C be the contour which consists of three straight lines,
from ak(ν1, . . . , νk−1) via ak(ν1, . . . , νk−1) + i‖ξ0‖2 and bk(ν1, . . . , νk−1) + i‖ξ0‖2 to bk(ν1, . . . , νk−1).
Then, by standard facts of complex analysis, we have:∫ bk(ν1,...,νk−1)

ak(ν1,...,νk−1)
f(OT ν)dνk

=

∫
C
f(OT ν)dνk

=

∫ 1

0
f(OT (ν1, . . . , νk−1, ak(ν1, . . . , νk−1) + i‖ξ0‖2t))i‖ξ0‖2dt

+

∫ bk(ν1,...,νk−1)

ak(ν1,...,νk−1)
f(OT (ν + i‖ξ0‖2ek))dνk

+

∫ 1

0
f(OT (ν1, . . . , νk−1, bk(ν1, . . . , νk−1) + i‖ξ0‖2(1− t′)))i‖ξ0‖2dt′

The middle part of this path gives the first term in the statement of the claim:∫ b1

a1

∫ b2(ν1)

a2(ν1)
. . .

∫ bk(ν1,...,νk−1)

ak(ν1,...,νk−1)
f(OT (ν + i‖ξ0‖2ek))dνk . . . dν2dν1

=

∫
ν∈OTT ′

f(OT (ν + i‖ξ0‖2ek))

=

∫
ξ∈T ′

f(ξ + iξ0) .

A change of variables allows us to express the sum of the contributions from the first and third
part of the path: ∫ 1

0
f(OT (ν1, . . . , νk−1, ak(ν1, . . . , νk−1) + i‖ξ0‖2t))i‖ξ0‖2dt

−
∫ 1

0
f(OT (ν1, . . . , νk−1, bk(ν1, . . . , νk−1) + i‖ξ0‖2t′))i‖ξ0‖2dt′ .

Changing variables to replace (ν1, . . . , νk−1, ak(ν1, . . . , νk−1)) or (ν1, . . . , νk−1, bk(ν1, . . . , νk−1)) with
ξ ∈ δT or ξ ∈ T ∩ {0, 1} we get an appropriate integral of ±if(ξ + itξ0). We note that the volume
form for ξ0 assigns to a surface element the volume of the projection of that element in the ξ0

direction. Multiplying by ‖ξ0‖2 and the appropriate sign yields exactly the measure ξ0 · dξ. Thus,
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we are left with an integral of f(ξ+ itξ0)d(tξ0) · dξ. However, it should be noted that the measures
ξ0 · dξ are opposite on ξ1 = 0 and ξ1 = 1 boundaries (as dξ is the outward pointing normal). Since
f(ξ+itξ0) = f(ξ+1+itξ0), the integrals over these regions cancel, leaving exactly with the claimed
integral.

In order to estimate this difference, we use Lemma 5.8, which still applies. Furthermore, we
note that

ξ0 · Σξ0 = (p− µ) · Σ−1(p− µ)/(4π2) = O(Ck log(σ)) ,

because p ∈ S.
Therefore, we have that |X(p)−G(p)| is O(1/(|S|σ)) plus

O(k7/2
√

log3(σ)/σ)

∫
C

∣∣exp
(
2πi(µ− p) · ξ − 2π2ξ · Σξ

)∣∣ dξ.
Now, when Im(ξ) = ξ0, we have that

exp
(
2πi(µ− p) · ξ − 2π2ξ · Σξ

)
= exp

(
−(p− µ)Σ−1(p− µ)/2− 2π2Re(ξ) · ΣRe(ξ)

)
.

Integrating, we find that the difference over this region is at most times

O(k7/2
√

log3(σ)/σ)

∫
exp

(
−(p− µ)Σ−1(p− µ)/2− 2π2Re(ξ) · ΣRe(ξ)

)
dξ = O(k7/2

√
log3(σ)/σ)G(p).

The contribution from the part of the contour where Re(ξ) is on the boundary of T is also easy to
bound after noting that both |X̂(ξ)| and |Ĝ(ξ)| are O(σ−k). We furthermore claim that the total
volume of the region of integration is O(

√
kVol(T )). Together, these would imply that the total

integral over this region is O(1/(σ|S|)). To do this, we note that the total volume of the region
being integrated over is at most the volume of the projection of T in the direction perpendicular
to ξ0 times the length of ξ0. In order to analyze this we consider each slice of T given by ξ · 1 = α
separately. Noting that |α| ≤ 2 for all ξ ∈ δT, it suffices to consider only a single slice. In particular,
since for all such α, we have that ξ̃ ∈ T, it suffices to consider the slice α = 0. Along this slice, we
have that T is an ellipsoid. Note that ξ0 ·Σξ0 = (p−µ) · (Σ +11T )−1(p−µ) ≤ Ck log(σ). Therefore
ξ0 ∈ T.

Next, we claim that if E is any ellipsoid in at most k dimensions, and if v is a vector with
v ∈ E, then the product of the length of v times the volume of the projection of E perpendicular
to v is at most O(

√
kVol(E)). This follows after noting that the claim is invariant under affine

transformations, and thus it suffices to consider E the unit ball for which it is easy to verify.
Therefore, for p ∈ S, we have that

|X(p)−G(p)| ≤ O(1/|S|σ) +O(k7/2
√

log3(σ)/σ)G(p).

From this it is easy to see that it is also

|X(p)−G(p)| ≤ O(1/|S|σ) +O(k3/2
√

log3(σ)/σ)X(p).

Summing over p ∈ S gives a total difference of at most

O(k7/2
√

log3(σ)/σ).

Combining this with the fact that the sum of X(p) and G(p) for p not in S is at most 1/σ gives us
that

dTV (X,G) = O(k7/2
√

log3(σ)/σ).

This completes the proof of Theorem 5.1.
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Comparison to the [VV10] CLT. We note that the above statement of Theorem 5.1 is not
immediately comparable to the CLT of [VV10]. More specifically, we work with PMDs directly,
while [VV10] works with projections of PMDs onto k−1 coordinates. Also, our notion of a discrete
Gaussian is not the same as the one discussed in [VV10]. However, it is not difficult to relate the
two results. First, we need to relate our PMD (supported on integer vectors whose coordinates sum
to n) to theirs (which are projections of PMDs onto k − 1 coordinates). In particular, we need to
show that this projection does not skew minimum eigenvalue in the wrong direction. This is done
in the following simple proposition:

Proposition 5.13. Let X be an (n, k)-PMD, and X ′ be obtained by projecting X onto its first
k−1 coordinates. Let Σ and Σ′ be the covariance matrices of X and X ′, respectively, and let σ and
σ′ be the second smallest and smallest eigenvalues respectively of Σ and Σ′. Then, we have σ ≥ σ′.

Proof. Note that, since 1 is in the kernel of Σ, σ is the minimum of v orthogonal to 1 of vT Σv
vT v

.

Whereas, σ′ is the minimum over w ∈ Rk−1\{0} of wT Σ′w
wTw

. This is the same as the minimum over

w in Rk with kth coordinate equal to 0 of wT Σw
wTw

.
Let the minimization problem defining σ be obtained by some particular v orthogonal to 1. In

particular, a v so that σ = vT Σv
vT v

. Let w be the unique vector of the form v + a1 so that w has last
coordinate 0. Then, we have that

σ′ ≥ wTΣw

wTw
=
vTΣv

wTw
≥ vTΣv

vT v
= σ.

This completes the proof.

Next, we need to relate the two slightly different notions of discrete Gaussian.

Proposition 5.14. Let G be a Gaussian in Rk with covariance matrix Σ, which has no eigenvalue
smaller than σ. Let G′ be the discrete Gaussian obtained by rounding the values of G to the nearest
lattice point. Let G′′ be the discrete distribution obtained by assigning each integer lattice point
mass proportional to the probability density function of G. Then, we have that

dTV (G′, G′′) ≤ O(k
√

log(σ)/σ).

Proof. We note that the probability density function of G is proportional to exp(−(x ·Σ−1x)/2)dx.
Suppose that y is another vector with ‖x − y‖∞ < 1. We would like to claim that the probability
density function at y is approximately the same as at x. In particular, we write y = x+ z and note
that

y · Σ−1y = x · Σ−1x+ 2z · Σ−1x+ z · Σ−1z

= x · Σ−1x+ 2(Σ−1/2x) · (Σ−1/2z) +O(|z|22σ−1)

= x · Σ−1x+O(|Σ−1/2x|2
√
k/σ + kσ−1)

= x · Σ−1x+O(
√

(k/σ)x · Σ−1x+ kσ−1).

Note that, for lattice points x, G′(x) is the average over y in a unit cube about x of the pdf of G at
y, while G′′(x) is just the pdf of G at x. These quantities are within a 1+O(

√
(k/σ)x · Σ−1x+kσ−1)

multiple of each other by the above so long as the term in the “O” is o(1). Therefore, for all x
with x · Σ−1x � k log(σ), we have that G′(x) = G′′(x)(1 + O(k

√
log(σ)/σ)). We note however
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that G′ has only a 1/σ probability of x being outside of this range. Furthermore, we claim that
G′′(x) = O(G′(x)) for all x. To see this, note that for any v with ‖v‖∞ ≤ 1/2, we have

G(x) = e−v
T Σ−1v/2

√
G(x+ v)G(x− v) ≤ e−(k/2σ) max{G(x+ v), G(x− v)}.

We assume that σ ≥ k2 or else we have nothing to prove. Then, we have G(x) = O(G(x + v) +
G(x − v)), and by considering the integral that defines G′, we have G′′(x) = O(G′(x)). Thus, G′′

similarly has O(1/σ) mass outside of the range x · Σ−1x � k log(σ). Therefore, the L1 difference
inside the range is O(k

√
log(σ)/σ) and the L1 error from outside is O(1/σ). This completes the

proof.

Armed with these propositions, we have the following corollary of Theorem 5.1:

Corollary 5.15. Let X be an (n, k)-PMD, and X ′ be obtained by projecting X onto its first k− 1
coordinates. Let Σ′ be the covariance matrix of X ′. Suppose that Σ′ has no eigenvectors with
eigenvalue less than σ′. Let G′ be the distribution obtained by sampling from N (E[X ′],Σ′) and
rounding to the nearest point in Zk. Then, we have that

dTV (X ′, G′) ≤ O(k7/2
√

log3(σ′)/σ′).

Proof. Let Σ be the covariance matrix of X. Since X is a PMD, 1 is an eigenvector of Σ with
eigenvalue 0. By Proposition 5.13, the other eigenvalues of Σ are at least σ′. Theorem 5.1 now yields

that dTV (X,G) ≤ O(k7/2
√

log3(σ′)/σ′), where G is a discrete Gaussian in k dimensions (as defined

in the context of the theorem statement). Let G′′ be the discrete Gaussian obtained by projecting G

onto the first k−1 coordinates. Then, we have that dTV (X ′, G′′) ≤ O(k7/2
√

log3(σ′)/σ′). From the

proof of Theorem 5.1, G is proportional to the pdf of N (E[X],Σ). Note that G′′ is proportional to
the pdf of N (E[X ′],Σ′). Then, by Proposition 5.14, it follows that dTV (G′, G′′) ≤ O(k

√
log(σ′)/σ′).

So, by the triangle inequality, we have dTV (X ′, G′) ≤ O(k7/2
√

log3(σ′)/σ′), as required.
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Appendix

A Proof of Lemma 3.4

Lemma 3.4 follows directly from the following statement:

Lemma A.1. If we take O(k4/ε2) samples from an (n, k)-PMD and let µ̂ and Σ̂ be the sample
mean and sample covariance matrix, then with probability 19/20, for any y ∈ Rk, we have:

|yT (µ̂− µ)| ≤ ε
√
yT (Σ + I)y ,

and
|yT (Σ̂− Σ)y| ≤ εyT (Σ + I)y .

The above lemma and its proof follow from a minor modification of an analogous lemma in
[DKT15]. We include the proof here for the sake of completeness. We will use the following simple
lemma:

Lemma A.2 (Lemma 21 from [DKT15]). For any vector y ∈ Rk, given sample access to an
(n, k)-PMD P with mean µ and covariance matrix Σ, there exists an algorithm which can produce
estimates µ̂ and Σ̂, such that with probability at least 19/20: |yT (µ̂ − µ)| ≤ ε

√
yTΣy and |yT (Σ̂ −

Σ)y| ≤ εyTΣy
√

1 + yT y
yT Σy

. The sample and time complexity are O(1/ε2).

Proof of Lemma A.1. The proof will follow by applying Lemma A.2 to k2 carefully chosen vectors
simultaneously using the union bound. Using the resulting guarantees, we show that the same
estimates hold for any direction, at a cost of rescaling ε by a factor of k. Let S be the set of k2

vectors {vi}, for 1 ≤ i ≤ k, and { 1√
λi+1

vi+
1√
λj
vj}, for each i 6= j, where the vi’s are an orthonormal

eigenbasis for Σ with eigenvalues λi. From Lemma A.2 and a union bound, with probability 9/10,
for all y ∈ S, we have

|yT (µ̂− µ)| ≤ (ε/k)
√
yTΣy ,

and

|yT (Σ̂− Σ)y| ≤ (ε/3k)(yTΣy)

√
1 +

yT y

yTΣy
.

We claim that the latter implies that:

|yT (Σ̂− Σ)y| ≤ (ε/3k)(yT (Σ + I)y) .

Note that if yTΣy = 0, we must have yT Σ̂y = 0, since then yTX is a constant for a PMD random
variable X. Otherwise,

(yTΣy)

√
1 +

yT y

yTΣy
=
√

(yTΣy)(yTΣy + yyy) =
√

(yTΣy)(yT (Σ + I)y) ≤ (yT (Σ + I)y) .

The claim about the accuracy of Σ̂ now follows from Lemma A.2.
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We now prove that the mean estimator µ̂ is accurate. Consider an arbitrary vector y, which
can be decomposed into a linear composition of the eigenvectors y =

∑
i αivi.

Then,

yT (µ̂− µ) =
∑
i

αiv
T
i (µ̂− µ) ≤ (ε/k)

∑
i

|αi|
√
λi + 1 ≤ (ε/k)

√
k

√
k
∑
i

α2
i (λi + 1) ,

but
∑

i α
2
i (λi + 1) = yT (Σ + I)y, so we have yT (µ̂− µ) ≤ ε

√
yT (Σ + I)y as required.

We are now ready to complete the proof of the desired lemma.

Lemma 3.4. With probability 19/20, we have that (µ̂− µ)T (Σ + I)−1(µ̂− µ) = O(1), 2(Σ + I) ≥
Σ̂ + I ≥ (Σ + I)/2.

Proof. We apply Lemma A.1 with ε := 1/2. For all y, we have |yT (Σ̂−Σ)y| ≤ εyT (Σ + I)y, that is

1

2
yT (Σ + I)y ≤ yT (Σ̂ + I)y ≤ 3

2
yT (Σ + I)y .

Thus, we have 1
2(Σ + I) ≤ Σ̂ + I ≤ 3

2(Σ + I) as required.
Note that since Σ+I is positive definite, it is non-singular. Setting y = 1

(µ̂−µ)T (Σ+I)−1(µ̂−µ)
(Σ+

I)−1(µ̂− µ), we have yT µ̂− µ) = 1 and yT (Σ + I)y = 1/(µ̂− µ)T (Σ + I)−1(µ̂− µ). So, Lemma A.1
gives us:

|yT (µ̂− µ)| ≤ 1

2

√
yT (Σ + I)y.

Substituting the above:

1 ≤ 1

2

√
1/(µ̂− µ)T (Σ + I)−1(µ̂− µ) .

Therefore, we have (µ̂− µ)T (Σ + I)−1(µ̂− µ) ≤ 1/4, as required.

66


	Introduction
	Background and Motivation
	Our Results
	Our Approach and Techniques
	Related and Prior Work
	Organization

	Preliminaries
	Efficiently Learning PMDs
	Main Learning Algorithm
	An Efficient Sampler for our Hypothesis
	Using our Learning Algorithm to Obtain a Cover

	Efficient Proper Covers and Nash Equilibria in Anonymous Games
	Low-Degree Parameter Moment Closeness Implies Closeness in Variation Distance
	Efficient Construction of a Proper Cover
	An EPTAS for Nash Equilibria in Anonymous Games
	Every PMD is close to a PMD with few distinct parameters
	Cover Size Lower Bound for PMDs
	Proof of Theorem 4.28.


	A Size–Free Central Limit Theorem for PMDs
	Proof of Lemma 3.4

