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Abstract. If we are given n random points in the hypercube [0, 1]d, then the

minimum length of a Traveling Salesperson Tour through the points, the min-
imum length of a spanning tree, and the minimum length of a matching, etc.,

are known to be asymptotically βn
d−1
d a.s., where β is an absolute constant

in each case. We prove separation results for these constants. In particular,
concerning the constants βd

TSP, βd
MST, βd

MM, and βd
TF from the asymptotic

formulas for the minimum length TSP, spanning tree, matching, and 2-factor,

respectively, we prove that βd
MST < βd

TSP, 2βd
MM < βd

TSP, and βd
TF < βd

TSP
for all d ≥ 2. Our results have some computational relevance, showing that a

certain natural class of simple algorithms cannot solve the random Euclidean

TSP efficiently.

1. Introduction

Beardwood, Halton, and Hammersley [3] studied the length of a Traveling Salesper-
son Tour through random points in Euclidean space. In particular, if x1, x2, . . . is a
random sequence of points in [0, 1]d and Xn = {x1, . . . , xn}, their results imply that
there is an absolute constant βdTSP such that the length TSP(Xn) of a minimum
length tour through Xn satisfies

(1) TSP(Xn) ∼ βdTSPn
d−1
d a.s.

This result has many extensions; for example, we know that identical asymp-
totic formulas hold for the the cases of the minimum length of a spanning tree
MST(Xn)[3], and the minimum length of a matching MM(Xn) [13]. Steele [14]
provided a general framework which enables fast assertion of identical asymptotic
formulas for these and other suitable problems. For example, we will see in Sec-
tion 2 that his results imply that the length TF(Xn) of a minimum length 2-factor
admits the same asymptotic characterization.

A major problem in this area remains to obtain analytic results regarding the
constants β in such formulas. In particular, the analytic bounds on such constants
are generally very weak, with the best known results given for d = 2 in Table 1.
On the other hand, there was some success as d grows large, as Bertsimas and Van
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lower upper

β2
TSP .62499 [3] .92037 [3]

β2
MST .60082 [2] 1√

2
≈ .707 [9]

2β2
MM .5 [6] .92037

Table 1. Bounds on constants for d = 2.

Ryzen [6] showed that, asymptotically in d,

(2) βdMST ∼ 2βdMM ∼
√

d

2πe
,

and conjectured that βdTSP ∼
√

d
2πe as well.

It seems that it has been overlooked that local geometric arguments are sufficient
to prove the separation of constants for many natural examples of Euclidean func-
tionals. In particular, in the present paper, we will show that βdMST < βdTSP,
βdTF < βdTSP, and 2βdMM < βdTSP for all d. These are the first asymptotic separa-
tions for Euclidean functionals where the Eulidean metric is playing an essential
role: the only previous separation was shown (by Bern [4]; see also [10]) for the
minimum length rectilinear Steiner tree vs. the minimum rectilinear length span-
ning tree, which is equivalent to asymptotically distinguishing Steiner trees from
trees in the L1 norm. (The rectilinear Steiner tree is also the only case where the
asymptotic worst-case length is known exactly [5]).

We begin by considering the degrees of vertices in the minimum spanning trees
among n random points. Steele, Shepp, and Eddy [16] showed that the number
Λk(Xn) of vertices of degree k satisfies

Λk(Xn) ∼ αk,dn
for constants αk,d, and proved that α(1, d) > 0. Note that we must have αk,d = 0
when k > τ(d), where τ(d) is the kissing number of d dimensional space (6 in the
case d = 2). Indeed, we must have αk,d = 0 whenever k > τ ′(d), where τ ′(d)
denotes a strict kissing number of d, which we define as the maximum K such
that there exists ε > 0 such that there is, in d dimensions, a configuration of K
disjoint spheres of radius 1 + ε each tangent to a common unit sphere. (Note that
τ ′(d) ≤ τ(d), and in particular, τ ′(2) = 5.) We prove:

Theorem 1.1. α(k, d) > 0 if k ≤ τ ′(d).

Considering Euclidean functionals MSTk(X) (with corresponding constants βdMSTk
)

defined as the minimum length of a spanning tree ofX whose vertices all have degree
≤ k, we will then get separation as follows:

Theorem 1.2. We have that

(3) βdTSP = βdMST2
> βdMST3

> · · · > βdMSTτ′(d)
= βdMST

for all d.
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Thus, the MSTk constants are as diverse as are allowed by the simple geometric
constraint of τ ′(d).

Still, there are only finitely many constants βdMSTk
for each d; while we can draw

trees with very large degrees, large degrees (relative to d) are not useful for minimum
spanning trees in Euclidean space. In contrast to this scenario, let us recall that
a 2-factor is a disjoint set of cycles covering a given set of points. We will see in
Section 2 that the length of the minimum 2-factor is indeed a subadditive Euclidean

functional, and thus this length satisfies TF(Xn) ∼ βdTFn
d−1
d for some constant βdTF.

Moreover, if TFg(X) is the minimum length of a 2-factor through X whose cycles all
have length ≥ g, then we will see that TFg is also a subadditive linear functional,

so that we have TFg(Xn) ∼ βdTFg
n
d−1
d . Naturally, we must have βdTF = βdTF3

≤
βdTF4

≤ βdTF5
≤ · · · . In analogy to the high-degree vertices in a tree, we can of

course draw 2-factors with small cycles, but it is not clear a priori whether small
cycles will be asymptotically essential to optimum 2-factors in random point sets.
The following theorem shows that they are:

Theorem 1.3. βTFg is a monotone increasing sequence βdTF3
< βdTF4

< βdTF5
<

· · · .

On the other hand, we prove that 2-factors with long (but constant) girth require-
ments produce close approximations to the TSP:

Theorem 1.4. lim
g→∞

βdTFg
= βdTSP.

With a bit more work, our method for proving Theorem 1.3 will also allow us to
deduce the following:

Theorem 1.5. 2βdMM < βdTSP.

We note in contrast to Theorem 1.3 that in the independent case where the edge

lengths Xe, e ∈
(

[n]
2

)
are independent uniform [0, 1] random variables, Frieze [8]

showed that that weight of the minimal 2-factor is asymptotically equivalent to the
minimum length tour, with probability 1− o(1).

We continue by mentioning a natural generalization of MM(Xn). Given a fixed
graph H on k vertices, an H-factor of a set of points S is a set of edges isomorphic
to b|X|/kc vertex disjoint copies of H. As a subadditive Euclidean functional, the
minimum length HF(Xn) of an H factor of Xn satisfies

HF(Xn) ∼ βdHn
d−1
d .

We pose the following conjecture:

Conjecture 1.6. Given H1, H2 and d ≥ 2, we have that βdH1
6= βdH2

unless H1

and H2 are each isomorphic to a disjoint union of copies of some graph H3. In
particular, βdH1

6= βdH2
if H1, H2 are connected and non-isomorphic.

We prove at least the following, showing diversity in the constants even for fixed
edge density:
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Theorem 1.7. For any fixed d ≥ 2 and rational r ≥ 1, there are infinitely many

distinct constants βdH over connected graphs H with edge density |E(G)|
|V (G)| = r.

Our separation results have implications for the practical problem of solving the
Euclidean TSP. Branch and bound algorithms are a standard approach to solving
NP-hard problems, in which a bounding estimate is used to prune an exhaustive
search of the solution space. There has been a great deal of success solving real-
world instances of the TSP with branch-and-bound augmented with sophisticated
techniques based on cutting planes for the TSP polytope (see, for example Apple-
gate, Bixby, Chvátal and Cook [1]).

One simple and natural lower bound for the TSP is the minimum length 2-factor,
and one might think that this bound would suffice to solve random instances of
the Euclidean TSP with branch and bound efficiently. However, the separation of
constants and the concentration of measure shows that this is not necessarily true,
even if one could use 2-factors of large girth (though finding the minimum length
2-factor of girth g ≥ 4 is known to become NP-hard for g ≥ 4). In particular,
in Section 5 we will define for absolute constants, C, δ, a (C, δ)-restricted branch
and bound algorithm. This class of algorithms includes many naturally occurring
variants, and we will prove:

Theorem 1.8. Suppose that we use the 2-factor problem, with an arbitrarily large
constant lower bound g on girth, to give us a lower bound for use in (C, δ)-restricted
branch and bound algorithm to solve the Euclidean TSP. Then the algorithm runs

in time nΩ(n(d−1)/d), a.s.

This gives a rigorous explanation for the observation (see [12], for example) that
branch-and-bound heuristics using the Assignment Problem as a bounding estimate
(even weaker than the 2-factor) perform poorly on random Euclidean instances.

2. Subadditive Euclidean Functionals

Steele defined a Euclidean functional as a real valued function L on finite subsets
of Rd which is invariant under translation, and scales as L(αX) = αL(X). It is
nearly monotone with respect to addition of points if

(4) L(X ∪ Y ) ≥ L(X)− o(n
d−1
d ) for n = |X|.

It has finite variance if, fixing n, we have

(5) Var(L(Xn)) <∞

(in particular, if it is bounded for fixed n) and it is subadditive if, for Yn a random
set of n points from [0, t]d, it satisfies

L(Yn) ≤
∑

α∈[m]d

L(Sα ∩ Yn) + Ctmd−1

for some absolute constant C, where here {Sα} (α ∈ [m]d) is a decomposition of
[0, t]d into md subcubes of side length u = t/m.
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Steele proved:

Theorem 2.1 (Steele [14]). If L is a subadditive Euclidean functional on Rd of
finite variance, x1, x2, . . . is a random sequence of points from [0, 1]d, and Xn =
{x1, x2, . . . , xn}, then there is an absolute constant βdL s.t.

L(Xn) ∼ βdLn
d−1
d a.s.

This can thus be used to easily give the existence of the simple asymptotic for-
mulas for the functionals TFg(X), MSTk(X), and HF(X) by showing that these
functionals are subadditive.

Proposition 2.2. TFg(X), MSTk(X), and HF(X) are subadditive Euclidean func-
tionals.

Before writing a proof, we note that for the definition of the 2-factor functionals
TFg(X), we can only require that the 2-factors whose length we minimize cover all
the points when there are at least max(g, 3) points. Similarly, the HF(X) functional
is required just to cover at least n− |H|+ 1 points.

Proof. We begin by noting that for each of these functionals, we can assert an upper

bound Cn
d−1
d for some constant C, even over worst-case arrangements of n points

in [0, 1]d. The analogous statement for the TSP was proved by Toth [17] and by
Few [7], and implies these bounds for the functionals considered here. Indeed, a
tour through n points itself gives a tree of max-degree 2 (after deleting one edge),
and is a 2-factor subject to any constant girth restriction. For H factors, a tour can
be divided into paths of length |H| (except for < |H| remaining vertices) which can
then be completed to instances of H ′ ⊇ H by adding edges. Each added edge has a
cost bounded by the length of the path it lies in and so this construction increases
the total cost by at most a factor equal to the number of edges in H.

Subadditivity of TFg(X), and HF(X) is now a consequence of the fact that a union
of 2-factors (subject to restrictions on the cycle length, perhaps) or H-factors is
again a 2-factor (subject to the same restrictions) or an H factor, respectively.
In particular, the subadditive error term for these functions comes just from the
fact that points may be uncovered in some of the subcubes Sα, for the exceptional
reasons noted above. Since there are at most (g − 1)md or |H|md such uncovered
points, however, the error is suitably bounded by the minimum cost factor on a
worst-case arrangement of the remaining points.

Subadditivity of MSTk(X) (k ≥ 2) is similar: after finding minimal spanning trees
of max-degree k in each subcube Sα, we must join together these trees into a single
tree. We choose 2 leaves of each subcube’s tree and denote one red and the other
blue. We let α1, α2, . . . , αmd denote a path through the decomposition {Sα}, so
that the subcubes Sαi and Sαi+1

are adjacent. For each i < md, we join the red
leaf of the tree in Sαi to the blue leaf in the tree of Sαi+1. The result is a spanning
tree of the whole set of points with the same maximum degree and with extra cost
at most 2

√
dumd = 2

√
dtmd−1. �
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3. Separating asymptotic constants

In the following we will use the simplest application of the Azuma-Hoeffding martin-
gale tail inequality: It is often referred to as McDiarmid’s inequality [11]. Suppose
that we have a random variable Z = Z(X1, X2, . . . , XN ) where X1, X2, . . . , XN are
independent. Further, suppose that changing one Xi can only change Z by at most
c in absolute value. Then for any t > 0,

(6) Pr(|Z −EZ| ≥ t) ≤ 2 exp

{
− t2

c2N

}
.

We will also use the following inequality, applicable under the same conditions,
when EZ is not large enough.

(7) Pr(Z ≥ αEZ) ≤
( e
α

)αEZ/c

.

Our method to distinguish constants is based on achieving constant factor improve-
ments to the values of functions via local changes. Given ε,D ∈ R and a finite set
of points S ⊆ Rd and a universe X, we say that T ⊆ X is an (ε,D)-copy of S
if there is a bijection f between T and a point set S′ congruent to S such that
||x− f(x)|| < ε for all x ∈ T , and such that T is at distance > D from X \T . Here
we will further assume that ||x− y|| > ε for x 6= y ∈ S.

For our purposes, it will be convenient notationally to work with n random points
Yn from [0, t]d where t = n1/d, in place of n random points Xn from [0, 1]d. At
the end, we will scale our results by a factor n−1/d in order to get what is claimed
above.

Observation 3.1. Given any finite point set S, any ε > 0, and any D, Yn a.s
contains at least CSε,Dn (ε,D)-copies of S, for some constant CSε,D > 0.

Proof of Observation 3.1. Let Z denote the number of (ε,D)-copies of S in Yn.
We divide [0, t]d into n/(3D)d subcubes C1, C2, . . . , of side 3D. Then let C ′i ⊆ Ci
be a centrally placed subcube of side D. Now choose a set S′ congruent to S
somewhere inside C ′1 and let B1, B2, . . . , Bs, s = |S| be the collection of balls of
radius ε, centered at each point of S′. The with probability at least α = αε,D > 0,
each Bi contains exactly one point of Yn and there are no other points of Yn in
C1. Thus EZ ≥ βn where β = α/(3D)d. Now changing the position of one point
in Yn changes the number of (ε,D)-copies of S by at most two and so we can use
McDiarmid’s inequality [11] to show that Z ≥ 1

2 EZ a.s. �

To use this to prove Theorem 1.1, we will need just a bit more.

Observation 3.2. If Y ⊂ Rd and x lies in the interior of the convex hull of Y ,
then when D is sufficiently large, any point at distance > D is closer to some point
of Y than to x. �

If v0, v1, . . . , vk are vectors in Rd with pairwise negative dot-product, then v1, . . . , vk
lie in the half-space v0 ·x < 0, and the projections of v1, . . . , vk onto the hyperplane



SEPARATING SUBADDITIVE EUCLIDEAN FUNCTIONALS 7

v0·x = 0 have pairwise negative dot-products. This gives the following, by induction
on d:

Observation 3.3. If v1, . . . , vd+1 ∈ Rd are vectors with negative pairwise dot-
products, then 0 is a positive linear combination of the vi’s. �

This allows us to prove:

Lemma 3.4. If d + 1 ≤ k ≤ τ ′(d), then there exists a set of points S̄(k) ⊂ Rd
consisting of a single point at the origin, surrounded by a set S(k) of k points
on the unit sphere centered at the origin and separated pairwise by at least some
ε′ > 0 more than unit distance, such that S(k) does not lie in open half-space whose
boundary passes through the origin.

Proof. We first observe that the definition of τ ′ already gives us a set S(k) with
the desired properties, except that it may all lie in some open half-space through
the origin. In this case, however, we can delete a point and replace it with the
point xH on the unit sphere opposite the half-space H, and furthest away from the
halfspace. We do this repeatedly and note that because the above exchange of points
only happens when all points are on one side of a half-space H ′, xH remains as the
unique point which is in the open half-space opposite to H. Furthermore, doing
this repeatedly, we can achieve either a set S(k) with all the desired properties, or
can find after at most k steps a set S(k) of points on the sphere separated pairwise
by at least ε′ > 0 more than unit distance, and whose pairwise dot products as
vectors in Rd are all negative. But then Observation 3.3 and k ≥ d+ 1 implies that
the points cannot all lie in the interior of some half-space whose boundary passes
through the origin. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Given k ≥ 2, we choose any d′ ≤ d such that d′ + 1 ≤
k ≤ τ ′(d′).

We apply Lemma 3.4 with k, d′ to get a set S′
(k) ⊂ Rd. Observe first that the origin

must lie in the convex hull X of the set S′
(k)

given by Lemma 3.4; otherwise, there

would be a supporting half-space H of X not containing the origin, and S′
(k)

would
lie in the open half-space through the origin which is parallel to H, a contradiction.

Now we take S(k) = S′
(k) × {0}d−d′ , and the origin is still in the convex hull of

S(k).

Now, letting ∆d denote a unit simplex centered at the origin (with d + 1 points),
we let

U = S̄(k) ∪
⋃

p∈S(k)

{(1.5)p+ .1 ·∆d}.

So U is a set of 1 +k+ (d+ 1)k points. (Figure 1 shows U for the case d = 2, k = 2;
note that in this case, d′ = 1.)
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b bbb
b b b

b b

Figure 1. A configuration for forcing degree 2 in 2-dimensions.

We now let Uε,D denote an (ε,D) copy of U , for sufficiently small ε > 0 and

sufficiently large D. Observe that since the origin is in the convex hull of S(k), the
k small copies of the d-simplex in U ensure that the origin is in the interior of the
convex hall of U , and thus also in the interior of Uε,D for sufficiently small ε.

Observe that (for large D) the distance between any pair of points in an Uε,D is
less than the minimum distance between Uε,D and Yn \ Uε,D. In particular, if T
denotes the minimum length spanning tree on Yn, the subgraph T [Uε,D] induced
by the points in Uε,D must be connected (and so a tree), or we could exchange
a long edge for a short edge. Moreover, the minimum length spanning tree on T
must restrict to a minimum length spanning tree on Uε,D, and by construction, the
point of Uε,D corresponding to the origin point in U has degree k in the MST on
U . Finally, no points in Yn \Uε,D can be adjacent to the center of the star when D
is sufficiently large, by Observation 3.2. Thus Observation 3.1 gives that αk,d > 0
for d+ 1 ≤ k ≤ τ ′(d).

Finally, α1,d > 0 is an immediate consequence of α3,d > 0. �

Indeed, Theorem 1.2 follows immediately as well:

Proof of Theorem 1.2. Suppose 2 ≤ k < τ ′(d), and T is a minimum spanning tree
of Yn subject to the restriction that the maximum degree is ≤ k. By Observation
3.1 we have that there are Cn (ε,D) copies of the set U from the previous proof, for
some constant C, and from the argument above we see that each such copy Si will
induce a (connected subtree) T [Si], which will have maximum degree at most k in
an instance of MSTk. Replacing each T [Si] by the optimum (k + 1)-star produces
a spanning tree of maximum degree k + 1, whose length is less by at least some

constant C ′n. Rescaling by t gives that the length difference is at least C ′n
d−1
d . �

Remark 3.5. The same argument allows us to separate βdMST from βdSteiner where
the latter corresponds to the minimum length Steiner tree. We just need to use
(ε,D) copies of an equilateral triangle. We remark that adding the Steiner points
corresponding to the Fermat points of the copies will reduce the tree length. The
details can be left to the reader.

We turn our attention now to 2-factors. We begin with two very simple geometric
lemmas:

Lemma 3.6. Suppose that points p, q, r, s satisfy

||p− q||, ||r − s|| ≥ ∆ and ||r − s|| ≤ δ,
where ∆� δ i.e ∆ is sufficiently large with respect to δ.

Let θ(x; y, z) denote the angle between the line segments xy and xz. If

max {θ(p; q, s), θ(s; p, r)} ≥ ∆−1/3
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then

||p− s|| ≤ ||p− q||+ ||r − s||+ δ − ∆1/3

4
.

Proof. We have

||p− s|| ≤ ||p− q|| cos θ(p; q, s) + δ + ||r − s|| cos θ(s; p, r).

Now use cosx ≤ 1− x2/3 for x ≤ 1. �

Lemma 3.7. Suppose that points pi, qi, ri, si, i = 1, 2 satisfy

(8) ||pi − qi||, ||ri − si|| ≥ ∆ for i = 1, 2

and also that q1, r1, q2, r2 are contained in a ball of radius δ. Then there is a
matching on {p1, p2, s1, s2} whose total length is at most

(9) ||p1 − q1||+ ||r1 − s1||+ ||p2 − q2||+ ||r2 − s2||+ 4δ − 1
2∆.

Proof. Without loss of generality we let the qi, ri be within distance δ of the origin,
and then let θ(x, y) denote the angle between x and y via the origin that is less than
or equal to π. There are three possible pairings of the points P = {p1, p2, s1, s2},
and for at least one such pairing, θ(x, y) < 1

2π for one of the pairs.

Let us take {x, y} and {w, z} to be the pairs in such a pairing of P , with θ(x, y) ≤
1
2π. We let T denote the triangle with vertices x, y, 0, let a, b, c denote the side-
lengths, where a is length of the side opposite 0, and s denote the semi-perimeter
(a+ b+ c)/2. Now a ≤ (b2 + c2)1/2 and in fact

b+ c− a ≥ b+ c− (b2 + c2)1/2 = (b+ c)

(
1−

(
1− 2bc

(b+ c)2

))
≥ bc

b+ c
≥ 1

2
min {b, c} ≥ 1

2
∆.

Thus we find a pairing of P for which the total length is at most ||p1|| + ||p2|| +
||s1||+ ||s2|| − 1

2∆, and we will be done after applying the triangle inequality four
times and using the fact that ||qi||, ||ri|| ≤ δ for i = 1, 2. �

Proof of Theorem 1.3. Let Fg+1 be a minimum length 2-factor in Yn whose
cycles all have length ≥ g + 1. We let Uε,D ⊂ Yn denote any set of g points of
radius ε and at distance D from Yn \Uε,D. Note that Lemma 3.1 implies that there
are a linear number of copies of such sets. We now define Vε,D,F as a collection of
three instances U1, U2, U3 of Uε,D, centered at the vertices of an equilateral triangle
of sidelength 2D, and lying at distance ∆ from Yn \ Vε,D,∆; we will take D large
relative to ε and ∆ large relative to D.

We will begin by showing how to give a constant-factor shortening of Fg+1 to a
2-factor F , without being careful to avoid creating cycles of length shorter than g.
In particular, we prove the following lemma:

Lemma 3.8. There is an absolute constant δ such that for suitable choices of
ε� D � ∆, any instance of V = Vε,D,∆ allows a modification F of Fg+1 so that
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Figure 2. When not all pairs are nearly straight the old 2-factor
(left) can be shortened to a new one (right). (The dashed circle of
radius ε encloses g + 1 = 4 points.)

(1) F is a 2-factor;
(2) F has weight at least δ less than the length of Fg+1;
(3) Cycles of F lying entirely in V have length ≥ g;
(4) F is a local modification of Fg+1, in the sense that any edges of Fg+1 disjoint

from V are still present in F .

Again, Lemma 3.1 implies that there are a linear number of instances of Vε,D,∆ in
Yn. In particular, this lemma would be sufficient to argue that βTFg < βTFg+1

,
except that F may not have girth g.

Proof of Lemma 3.8. For Ui = Uε,D in V , there are (at least 2) edges in Fg+1 from
Yn \ Ui to Ui, since g + 1 > g = |Ui|. We can pair these edges so that each pair
lies on a common cycle of Fg+1, and so that the two edges in a pair are joined in
Fg+1 by a path through (possibly just 1 point of) Ui. Similarly, we can pair edges
between V and Yn \ V . (Some pairs for V may also be pairs for a Ui, others may
not.)

Now, by choosing D large relative to ε, we can assume that each pair of edges for
a Ui is nearly straight, in the sense that the angle between the endpoints of the
edges in Yn via any point in Uε,D is close to π; otherwise, we can modify Fg+1

by including all edges of some g-cycle through Ui, and shortcutting each pair of
edges between Yn \Ui and Ui with a single edge between the endpoints in Yn \Ui.
(Figure 2.) The result has length smaller by a constant δ = Ω(D1/3), see Lemma
3.6. To ensure condition (3) for F , we must now also shortcut all remaining pairs
of edges between V and Yn \ V , delete any edges in V \ Ui, and then add g-cycles
to the remaining Uj ’s. (This step adds length which can be made arbitrarily small
by decreasing ε.)

We may also assume that each Ui has only a single pair of edges. Otherwise, if
there are two different pairs, we delete the edges in the two pairs, use Lemma 3.7
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bb
b

bb
b

bb
b

Figure 3. An instance of Vε,D,∆ (here for g = 2, d = 2). When
all pairs of edges entering/leaving Ui’s are nearly straight, we must
have at least 2 pairs of edges entering/leaving V , as shown here.

to find a pair of edges among the 4 outside endpoints of the pairs of total weight
which is less than the total weight of the pairs by a constant, shortcut all other
remaining pairs between V and Yn, delete all edges within V , and add g-cycles to
each Ui. For sufficiently small ε, we get a constant length improvement.

Thus we may assume that each Ui in V has a single pair, and that the pair for each
Ui in V is nearly straight. The crucial point is that this implies that there must
be at least two pairs of edges joining V to Yn \ V : since, e.g., edges joining U1 to
U2 and U1 to U3 would not be nearly straight. Therefore at least one of the Ui’s
has no edges to the other Ui’s. (See Figure 3.) We conclude, as in the previous
paragraph, by deleting the edges in the two pairs, using Lemma 3.7 to find a pair
of edges among the 4 outside endpoints of the pairs of total weight which is less
than the total weight of the pairs by a constant, shortcutting all other remaining
pairs between V and Yn, deleting all edges within V , and adding g-cycles to each
Ui. �

We must now address unintentional problems of girth (notice that, in shortcutting
edges, we may have left behind short cycles). To this end, we say that V = Vε,D,∆
is ε-surrounded if the set NV of points of Yn \ V within distance 3∆ of V has the
properties that: (1) each x ∈ NV lies within distance ε of the sphere S of radius 2∆
centered at the center of V , and (2) each x ∈ S lies within ε of NV . (Essentially, NV
is an approximation to an ε-net on S, which surrounds V ). Lemma 3.1 implies that
there are a linear number of ε-surrounded V ’s, and additionally, a linear number
of ε-surrounded sets V satisfying the requirements in the previous paragraph (each
Ui has a single-pair of edges to the rest of Yn, etc.).

We now show that if V is ε-surrounded, then there is an constant Cg,ε, which can
be made arbitrarily small by decreasing ε, such that there is a 2-factor F ′ such
that:

(A) F ′ has total weight w(F ′) ≤ w(Fg+1) + Cg,ε,
(B) every cycle in F ′ is still of length ≥ g + 1,
(C) All edges in F ′ incident with V either lie in V or intersect NV .
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To produce F ′ from Fg+1, we consider each edge e = {u, v} from V to Yn\(NV ∪V )
which does not intersect NV , and

(1) Locate a point x in NV within distance ε of a point w on the edge e. Let
C = (x = x1, x2, . . . xk, xk+1 = x1) be the cycle of Fg+1 that contains x. If
u = xi for some i, then we choose the cycle orientation so that v = xi−1.

(2) Add the edges {u, x1}, {xk, v} to the 2-factor and delete the edges e and
{x1, xk}.

This ensures (C) and the change in cost for this one substitution is

||x1 − u||+ ||xk − v|| − ||x1 − xk|| − ||v − w|| − ||u− w||
≤||x1 − u||+ ||x1 − w|| − ||u− w||
≤2||x1 − w||.

Thus dealing with all edges from Vε,D,∆ to Yn \Vε,D,∆ increases the cost by at most
12gε, since there are 3g points in V and hence at most 6g edges from Vε,D,∆ to
Yn \ Vε,D,∆.

After this, any cycle in F ′ but not in Fg+1 must contain an edge added in Step
(2). But either u, v /∈ {x1, . . . , xk}, in which case the length of this cycle is at least
k+2 ≥ g+3, or else u = xi, v = xi+1 and this cycle is x1, x2, . . . , xi−1xkxk−1 · · ·xix1

and so has length k ≥ g + 1.

We are now prepared to find a 2-factor Fg whose weight is smaller than Fg+1 by
a constant factor. For some small constant c, we have that there are at least cn
instances of ε-surrounded V = Vε,D,∆’s. We take these instances as V1, V2, . . . , in
any order, and beginning with F = Fg+1 and for each i = 1, 2, . . . , we

(i) Find F ′ for Vi as above (with weight increase Cg,ε which we make arbitrarily
small)

(ii) Apply Lemma 3.8 to shorten F ′ at Vi to F0 with a constant weight improve-
ment

(iii) At an arbitrarily small cost, modify F0 to a 2-factor F ′0 which has girth g,
by merging cycles intersecting the net NVi , and set F = F ′0 (explanation is
below).

In particular, to carry out Step (iii), note that any cycle C of length < g in F0

includes a point x of NV , and we can merge C with the cycle through a point
y within 2ε of x, at an additional cost of ≤ 2ε: We join x and y, delete edges
{x, x′} and {y, y′} incident with each in the previous 2-factor and replace them by
{x, y} , {x′, y′} at a cost of

||x− y||+ ||x′ − y′|| − ||x− x′|| − ||y − y′|| ≤ 2||x− y||.

After applying Steps (i)–(iii) for each V ∈ V, the result is a 2-factor Fg = F of
girth g, whose total weight is smaller than the total weight of Fg+1 by a constant
factor. �
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The proof of the counterpoint Theorem 1.4 will be given in Section 4. For now we
consider matchings:

Proof of Theorem 1.5. We define the Euclidean functional 2MM(X) as the
minimum length union of two matchings on X. Note that we make no requirement
of disjointness and that we trivially have that 2MM(X) = 2 ·MM(X) for all X.
On the other hand, a TSP through X can be viewed as a (near)-union of two
matchings (alternating edges around the tour, leaving one vertex unmatched if n
is odd). Our aim will be to give a constant factor improvement to the union of a
pair of matchings given by the TSP, to show that 2MM(Yn) is asymptotically less
than TSP(Yn). To this end, we let M1 and M2 denote a pair of matchings derived
from the minimum length TSP.

We let Uε,D denote a set of two points separated by distance at most ε and at
distance at least D from all other points of Yn, and let Vε,D,F denote a collection
of 5 instances U1, . . . , U5 of Uε,D, centered at the vertices of a regular pentagon of
sidelength 2D, such that all other points of Yn are at distance ≥ F from this set.
As before, Lemma 3.1 gives that there are a linear number of instances of Vε,D,F
for any fixed F, D, and ε > 0. Moreover, as before, if we have a linear number of
instances Uε,D in which a pair of edges of a matching leaves Uε,D and is not nearly
straight, then we can make a constant improvement to the matching, by joining
the two points of Uε,D and shortcutting the outside endpoints of the edges leaving
Uε,D with a single edge.

Since M1 and M2 are disjoint, the pigeonhole principle gives that for some s ∈ {1, 2}
and at least three of the Ui’s in any Vε,D,F , the pair of points in Ui is omitted from
Ms. In particular, we may assume without loss of generality that we have a linear
number of Vε,D,F ’s for which the set I of indices i for which the points in Ui are
unmatched in M1 has cardinality |I| ≥ 3. Moreover, from the previous paragraph,
there must be a linear number of such Vε,D,F ’s which also have the property that
the pair edges leaving the Ui, i ∈ I is nearly straight. In particular, as the point
sets Ui (i ∈ I) are not nearly collinear, we must have as in the previous proof that
there are (at least) 2 pairs of edges entering and leaving Vε,D,F . We conclude by
applying Lemma 3.7 (with 2ε, say) to get a constant factor improvement a linear
number of times. �

We close this section by considering H-factors.

3.1. Proof of Theorem 1.7. It suffices to show that for fixed r ≥ 1, there are
connected graphs H with r · |V (H)| edges for which the constant βdH is arbitrarily
large, which we show by demonstrating that βdT can be arbitrarily large even just
over trees T . To this end, we let Tk be the tree on k+1 vertices which has k leaves.

Given any large constant u = t/m for some integer m, we decompose the [0, t]d

cube with md subcubes of side u. Now the number of points in each subcube is
binomially distributed with mean ud. Let a point in Yn be good if the subcube
Sα that it lies in has at least (1 − ε)ud members of Yn and the total number of
points in the ≤ 3d subcubes that touch Sα contain at most (1 + ε)(3u)d members
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of Yn, where ε = 1
10k . Assuming that u is sufficiently large, the Chernoff bounds

imply that a member of Yn is good with probability at least 1 − ε/2. Thus the
expected number of good points in Yn is at least (1 − ε/2)n. Now the Chernoff
bounds can be used to show that the number of members of Yn in any subcube is
a.s. O(log n) and therefore, changing one point only changes the number of good
points by O(log n) a.s. A fairly simple modification of McDiarmid’s inequality now
implies that a.s. (1− ε)n of the members of Yn are good.

Since ≈ n/(k + 1) points must have degree k in a Tk factor of Yn, we have that
there are at least n/(2k) good points which have degree k. Now let k = 2(3u)d.

Then a.s. a Tk factor has length at least n
2k ·

(1−ε)k
2 · u > un

5 .

Rescaling the [0, t]d cube by a factor of t gives that the minimum Tk factor has

length at least 1
5un

d−1
d , and here u

5 is an arbitrarily large constant. �

4. The 2-factor limit

Here we prove Theorem 1.4: limg→∞ βdTFg
= βdTSP. We will continue to work with

Yn as above. We divide [0, t]d into md = n/Ld subcubes Sα, α ∈ [m]d of sidelength
L, for some sufficiently large constant L > 0.

With each cube Sα we associate the 2d quadrants Qα,j , j = 1, 2, . . . , 2d, whose
origin is the center sα of Sα. We call the quadrant Qa,j trivial if the quadrant
intersects [0, t]d in a unit cube (in which case Sα is one of the 2d corner cubes in the
decomposition). Then for a non-negative integer r, we let Qα,j,r denote the cubes
in Qα,j whose centers are at distance at most rL from sα; for convenience, we call
Qα,j,r trivial (resp. nontrivial) whenever Qα,j is, regardless of the choice of r.

If Qα,j,r ⊆ [0, t]d is nontrivial and Yα,j,r is the number of points of Yn that are in
Qα,j,r then Yα,j,r is a binomial random variable with mean

αdrL ≤ EYα,j,r ≤ βd(rL)d

for some constants αd, βd > 0. Note that, away from the boundary cubes of the
decomposition of [0, t]d we can use (rL)d in place of rL for the lower bound, but in
the worst-case, we have to reduce the exponent. We can therefore write

(10) Pr(Yα,j,r = 0) ≤ e−γdrL

for some γd > 0.

Next let νr denote the number of subcubes Sα for which there exists j, r such that
Qa,j is nontrivial, Qα,j,r ⊆ [0, t]d, and Yα,j,r = 0. Then

(11) E νr ≤ n2de−γdrL,

for some γd > 0. We deduce from the above that

(12) νr = 0 for r ≥ r0 =
2

L
(γ−1
d (log n+ d log 2).
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Now νr is determined by n independent choices for the points in Yn. Changing
one point changes νr by at most δdr

d for some δd > 0. Applying McDiarmid’s
inequality we see that if t > 0 and r < r0 then

(13) Pr(νr ≥ E νr + t) ≤ exp

{
− t2

nδ2
dr

2d

}
.

If E νr ≥ n2/3 then (11) implies that r ≤ logn+3d log 2
3γdL

≤ 1
10d log n for L sufficiently

large. It follows from (13) with t = E νr that

(14) νr ≤ 2E νr a.s. if E νr ≥ n2/3.

When EZ ≤ n2/3 we use (7) with α = n3/4/(E νr) and c = δdr
d = logO(1) n to

obtain

(15) νr ≤ n3/4 a.s. if E νr ≤ n2/3.

Now suppose that C1, C2, . . . , CM are the cycles of a minimum cost 2-factor, where
|Ci| ≥ g for i = 1, 2, . . . ,M . Suppose first there exist i, j such that there exist
Sp 3 x ∈ Ci and Sq 3 y ∈ Cj such that ||sp − sq|| ≤ L2. Suppose that (x, x′) is

an edge of Ci and that (y, y′) is an edge of Cj . Then ||x− y|| ≤ (L+ 2d1/2)L and
||x′ − y′|| ≤ ||x′ − x|| + ||x − y|| + ||y′ − y||. It follows that if we delete the edges
(x, x′), (y, y′) from Ci, Cj and add the edges (x, y), (x′, y′) then we create a single
cycle out of the vertices of Ci ∪ Cj at a cost of at most 2||x′ − y||. By repeating
this where possible, we obtain a new set of cycles C ′1, C

′
2, . . . , C

′
M ′ such that for two

distinct cycles C ′i, C
′
j the set of subcubes visited by C ′i have centers that are distance

at least L2 from the centers of the set of subcubes visited by C ′j . Furthermore, the
increase in cost associated with this merging is at most

(16)
2(L+ 2d1/2)L

g
n.

We continue merging cycles. For r = L + 1 . . . , , r0 we try to merge cycles C,C ′

for which there is a subcube Si containing a point of C whose center is within rL
of the center of a subcube that contains a point of C ′. The cost of making these
merges can be bounded by

(17) 2

r0∑
r=L+1

n2drde−γdrL + n3/4r0r
d ≤ 3n(2L)de−γdL

2

for L sufficiently large.

This is because, when we merge two cycles via subcubes at distance rL we are using
one of at most νr subcubes. Further, for each such subcube there are at most rd

other subcubes at distance r.

We argue next that after all of these merges, there can be only one cycle. Suppose
that there are two cycles C,C ′ and let x ∈ C, x′ ∈ C ′ be as close as possible.
Suppose that x ∈ Sa and that x′ ∈ Sb where ||sa − sb|| > r0. If this happens then
we can find a Qa,j,r0 or a Qb,j,r0 that is empty, contradiction.
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It follows from this and (16), (17) that with L = g2/3, that after scaling to [0, 1]d

we find that for g sufficiently large,

βdMST ≤ βdTFg + g−1/4 + e−γdg
2/3/2

and this completes the proof of Theorem 1.3. �

5. Branch and Bound Algorithms

In this section we prove Theorem 1.8.

We begin by defining a branch and tree T . This is a rooted tree in which each
vertex v has a label Lv = (Iv, Ov, bv). Here Iv, Ov are disjoint subsets of the edges(

[n]
2

)
of the complete graph Kn and bv ∈ R. Vertex v of the tree represents the

problem of finding the shortest tour H through Xn given that H must use every
edge in Iv and none of the edges in Ov. Here the weight of an edge {i, j} is of
course the Euclidean length ||xi − xj || between the corresponding points. Let Ωv
denote the set of tours that satisfy these constraints. bv will be a lower estimate of
the length of H. Here bv will be the minimum length of a 2-factor F that satisfies
the edge constraints, and has girth at least g.

We will assume that the edges in Iv induce a collection of vertex disjoint paths.
Furthermore, if x is an interior point of one such path with path neighbors x1, x2,
then no tour in Ωv can use an edge {x, y} where y 6= x1, x2, and such edges are
not included in Ov. Moreover, for the root ρ we take Iρ = Oρ = ∅. Next, if vertex
p(v) denotes the parent of vertex v we must have Ip(v) ⊆ Iv and Op(v) ⊆ Ov. This
means that we can assume that bp(v) ≤ bv. In addition we require that the sets
Ωv, p(v) = w partition Ωw. If v is a leaf of T then Ωv = {Hv} i.e. it consists of a
unique Hamilton cycle of Kn. Each of the Hamilton cycles of Kn appears exactly
once as Hv.

At each stage of the algorithm, there will be a value B available. This will be an
upper bound on the length of the minimum tour. In practice, B should decrease as
the search progresses, if, in addition to branching, we simultaneously apply some
heuristic to find (suboptimal) tours. In the ensuing analysis, however, we will
simply assume that B is always the actual minimum tour length.

The branch-and-bound algorithm will search the tree T of instances for an optimum
tour. It does not search the whole tree. It prunes the tree by deleting subtrees
strictly below any vertex v for which bv ≥ B. This leaves the pruned tree T̂ and
then the number of vertices of T̂ is a lower bound on the size of the branch and
bound tree that is produced if we use 2-factors (with large girth) for lower bounds.
One sees immediately, that a smaller B always results in fewer nodes being explored.

We now introduce our restriction on the class of branch and bound trees. We assume
that there are absolute constants C, δ > 0 such that if |Iv| ≤ δn(d−1)/d, then |Ov| ≤
C|Iv|. We say that the algorithm is (C, δ)-restricted. This restriction includes
many natural branching strategies, including the following one: Having solved the
2-factor problem for an instance v, we choose a cycle C = (x1, x2, . . . , xk, x1) of the
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factor. We then create (k − 1) children of the current vertex w. For the ith child
vi we let

Ivi = Iw ∪ {{xj , xj+1} , 1 ≤ j ≤ i} and Ovi = Ow ∪ {{xi+1, xi+2}} .

Our goal is to show that T̂ is large by showing that a.s. bv < B whenever |Iv| +
|Ov| ≤ εn(d−1)/d for some sufficiently small ε > 0. We do not strive for the best
possible bounds; the following will suffice.

Lemma 5.1. There is an absolute constant c > 0 such that,

Pr(TF (Xn) ≥ ETF (Xn) + t) ≤

exp
{
− ct2

logn

}
d = 2,

exp
{
− ct2

n(d−2)/d

}
d ≥ 3.

In particular, putting t = αn(d−1)/d, we see that

(18) Pr(TF (Xn) ≥ ETF (Xn) + αn(d−1)/d) ≤

{
exp

{
− cα

2n
logn

}
d = 2,

e−cα
2n d ≥ 3.

Proof. We use a modification of the argument of Steele [15], Section 2.1. We write

di = E(TF (x1, x2, . . . , xi, . . . , xn)− TF (x1, x2, . . . , x̂i, . . . , xn | x1, . . . , xi)

where {x̂i} is a sequence with the same distribution as Xn, but independent of it.
We will prove that

(19) |di| ≤

{
Cd,g

(n−i+1)1/d
i ≤ n− 100g,

4d1/2 i > n− 100g,

for some constant Cd,g > 0.

We can then use the Azuma-Hoeffding inequality

Pr(TF ≥ ETF + t) ≤ exp

{
− t2

2
∑n
i=1 |di|2

}
.

This implies the lemma, since (19) implies that
∑
i |di|t = O(log n) for d = 2 and

O(n(d−2)/d) for d ≥ 3.

Now fix x1, x2, . . . , xn, x̂i and let

∆ = |TF (x1, x2, . . . , xi, . . . , xn)− TF (x1, x2, . . . , x̂i, . . . , xn)|.
Let F be the optimal 2-factor for x1, x2, . . . , xn. Suppose that the neighbors of
x = xi on its cycle C in F are y, z. If |C| = g then we cannot simply delete x and
replace the path (y, x, z) by (y, z) as this will produce a 2-factor of girth g− 1. So,
let a be the closest point to x that is not on C and let b be a neighbor of a on the
cycle C ′ of F that contains a. The first thing we do now is to delete x and merge
the points in C ∪C ′ \ {x} into one cycle. We delete the edges {x, y} , {x, z} , {a, b}
and add the edges {y, a} , {z, b}. The change in cost is

|y − a|+ |z − b| − |x− y| − |x− z| − |a− b| ≤
(|x− y|+ |x− a|) + (|z − x|+ |x− a|+ |a− b|)− |x− y| − |x− z| − |a− b|

= 2|x− a|.



18 ALAN FRIEZE AND WESLEY PEGDEN

The new cycle has length at least 2g − 1 ≥ g. After this we can insert x̂ = x̂i into
the cycle D,say, that contains the point c of x1, . . . , xi−1, xi+1, . . . , xn closest to x̂.
Suppose that d is a neighbor of c on D. Then we remove the edge {c, d} and replace
it with the edges {x̂, c} , {x̂, d}. This will not decrease the girth of the factor. The
change in cost is

|x̂− c|+ |x̂− d| − |c− d| ≤ |x̂− c|+ (|x̂− c|+ |c− d|)− |c− d| = 2|x̂− c|.

Thus,

∆ ≤ 2 min
j /∈Ng(i)

|xi − xj |+ 2 min
j 6=i
|x̂− xj |,

where Ng(i) is the set of g points in x1, . . . , xi−1, xi+1, . . . , xn closest to xi.

Because the definition of di involves conditioning on x1, x2, . . . , xi we will replace
the above upper bound on ∆ by

(20) ∆ ≤ 2 min
i<j /∈Ng(i)

|xi − xj |+ 2 min
i<j
|x̂i − xj |.

Now if ρd denotes the volume of a ball of radius one in Rd and

2−dρdλ
d(n− i) ≥ 2g or λ ≥ λ0 = Ad,g(n− i)−1/d

for some constant Ad,g, then

Pr

(
min

i<j /∈Ng(i)
|xi − xj | ≥ λ

)
≤ Pr(Bin(n− i, 2−dρdλd) ≤ g)

≤ 2

(
n− i
g

)
(2−dρdλ

d)g exp
{
−(n− i− g)2−dρdλ

d
}
.

The 2−d factor accounts for the possibility that xi is close to a corner of [0, 1]d.
Also, in this probability estimate, xi is fixed and xj is chosen uniformly from [0, 1]d.
So, for some constant Bd,g and i ≤ n− 100g,

E min
i<j /∈Ng(i)

|xi − xj |

≤ Ad,g
(n− i)1/d

+Bd,g

∫ ∞
λ0

((n− i− g)λd)g exp
{
−(n− i− g)2−dρdλ

d
}
dλ

=
Ad,g

(n− i)1/d
+

Bd,g
d(n− i− g)1/d

∫ ∞
0

µge−2−dρdµdµ

≤ Kd,g

(n− i)1/d
.

Going back to (20) we see that this is good enough to prove the case n− i ≥ 100g
in (19). The case n− i ≤ 100g is trivial, because the diameter of [0, 1]d is d1/2. �

So, we fix v, Iv, Ov and estimate the probability that bv ≥ (β
(d)
TFg

+ ε)n(d−1)/d for a

small ε. Indeed we can bound bv by 2(|Iv|+ |Ov|)d1/2 plus the minimum cost of a
2-factor on the vertices that are not involved in edges defined by Iv, Ov. So,

(21) Pr(bv ≥ 2(|Iv|+ |Ov|)d1/2 + (βTF + ε)n(d−1)/d + t) ≤ RHS[(18)].

To cover all possible choices for Iv, Ov, we need only inflate the above probability
upper bound by

(
n

2(|Iv|+|Ov|)
)

= eo(n/ logn).
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Because βTSP > βTF we see that a.s. for ε sufficiently small,

(22) bv < B for all v such that |Iv|+ |Ov| ≤ εn(d−1)/d.

Now let L be the set of leaves of T̂ . We must have

(23)
(n− 1)!

2
=
∑
v∈L
|Ωv|

Suppose now that for some vertex v ∈ T the set of edges Iv induces av paths. Then
the number of Hamilton cycles in Kn that contain the edges of Iv is

2av−1(n− |Iv| − 1)! ≤ 2|Iv|−1(n− |Iv| − 1)!.

Going back to (23) we see that

(n− 1)!

2
≤
∑
v∈L

2|Iv|−1(n− |Iv| − 1)!

or

(24)
∑
v∈L

2|Iv|

(n− 1)|Iv|
≥ 1,

where (x)a = x(x− 1) · · · (x− a+ 1).

Now if v ∈ L then bv ≥ B and so we can assume from (18) and (21) that |Iv|+|Ov| >
εn(d−1)/d for all v ∈ T . Furthermore, if |Iv| ≤ δn(d−1)/d then the (C, δ) restriction
implies that δ(C + 1)|Iv| > εn(d−1)/d. So we have

v ∈ L implies that |Iv| > Λ = c1n
(d−1)/d

where c1 = min
{
δ, ε
δ(C+1)

}
.

It follows from (24) that

|L| ≥ (n− 1)Λ

2Λ
.

This completes the proof of Theorem 1.8. �

6. Final Remarks

Our results lead to many natural directions of inquiry, and here we mention just
a few. Apart from simply increasing the list of separated pairs of constants, the
following seems like a very good challenge:

1. What is the relationship between βdMST, βdTF, and 2βdMM?

In connection with Theorem 1.4:

2. The minimum length of covering of Xn by paths of lengths ≥ k is a Euclidean
functional; let βP,k denote the constant in its asymptotic formula. Is it true that
lim
k→∞

βP,k = βTSP?

Short of a full confirmation of Conjecture 1.6, one could warm up with some special
cases:
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3. Pick an integer k, and then prove or disprove that distinct unlabeled trees T on
k vertices have distinct asymptotic constants βdT .

Though the condition in Theorem 1.8 is not so restrictive, it would be nice to
remove it:

4. Does Theorem 1.8 remain true if we remove the (C, δ)-restriction?

Finally, we note that as our methods for separating constants give only very small
differences, we have not attempted to calculate lower bounds on, say, βdTSP − βdTF,
or optimize our techniques for this purpose, though this project could be pursued.
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