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Abstract

Persuasiondefined as the act of exploiting an informational advantageder to effect the decisions
of others, is ubiquitous. Indeed, persuasive communigdtas been estimated to account for almost a
third of all economic activity in the US. This paper examipessuasion through a computational lens,
focusing on what is perhaps the most basic and fundamentiiimothis space: the celebratBdyesian
persuasiommodel of Kamenica and Gentzkom34]. Here there are two payesenderand areceiver
The receiver must take one of a number of actions with a-puioknown payoff, and the sender has
access to additional information regarding the payoffeiefiarious actions for both players. The sender
can commit to revealing a noisy signal regarding the retidineof the payoffs of various actions, and
would like to do so as to maximize her own payoff in expectagassuming that the receiver rationally
acts to maximize his own payoff. When the payoffs of variocisoas follow a joint distribution (the
common prior), the sender’s problem is nontrivial, and tsnputational complexity depends on the
representation of this prior.

We examine the sender’s optimization task in three of thet matsiral input models for this problem,
and essentially pin down its computational complexity isleaWhen the payoff distributions of the
different actions are i.i.d. and given explicitly, we exih#opolynomial-time (exact) algorithmic solution,
and a “simple”(1 — 1/e)-approximation algorithm. Our optimal scheme for the i.gefting involves an
analogy to auction theory, and makes use of Border’s cheniaation of the space of reduced-forms for
single-item auctions. When action payoffs are indepenbleimion-identical with marginal distributions
given explicitly, we show that it is #P-hard to compute thémpl expected sender utility. In doing so,
we rule out ageneralized Border’s theorenas defined by Gopalan et E[SO], for this setting. Finally,
we consider a general (possibly correlated) joint distrdnuof action payoffs presented by a black box
sampling oracle, and exhibit a fully polynomial-time apgration scheme (FPTAS) with a bi-criteria
guarantee. Our FPTAS is based on Monte-Carlo sampling, targhalysis relies on the principle of
deferred decisions. Moreover, we show that this resultesbbst possible in the black-box model for
information-theoretic reasons.
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1 Introduction
“One quarter of the GDP is persuasion.”

This is both the title, and the thesis, of a 1995 paper by Mskdg and Klamer|E9]. Since then,
persuasion as a share of economic activity appears to bergyew a more recent estimate places the figure
at 30% Iﬂl]. As both papers make clear, persuasion is intrinsmost human endeavors. When the tools of
“persuasion” are tangible — say goods, services, or moneyis-ig the domain of traditionahechanism
design which steers the actions of one or many self-interestedtagewards a designer’s objective. What
[@, ] and much of the relevant literature refer to as pesisua however, are scenarios in which the power
to persuade derives from anformational advantagef some party over others. This is also the sense
in which we use the term. Such scenarios are increasinglyramomin the information economy, and it is
therefore unsurprising that persuasion has been the sabgtarge body of work in recent years, motivated
by domains as varied as auctioEls,@,Eh, 10], advert[@rﬁ’im], votin |ﬂZ], securityEvQéZhZ], multi-
armed banditsIEJL__iBS], medical research [35], and finame@ilation 9]. (For an empirical survey
of persuasion, we refer the readertd [21]). What is sumgishowever, is the lack of systematic study of
persuasion through a computational lens; this is what weagkrdmn in this paper.

In the large body of literature devoted to persuasion, peExtm model is more basic and fundamental
than theBayesian Persuasiomodel of Kamenica and Gentzkom34], generalizing an earfiedel by
Brocas and Carrilldﬂ4]. Here there are two players, who alethe senderand thereceiver The receiver
is faced with selecting one of a numberaaftions each of which is associated with an a-priori unknown
payoff to both players. Thetate of naturedescribing the payoff to the sender and receiver from eetitirg
is drawn from a prior distribution known to both players. Hawar, the sender possesses an informational
advantage, namely access to tealizedstate of nature prior to the receiver choosing his actiomrdter to
persuade the receiver to take a more favorable action fotleesender cacommitto a policy, often known
as aninformation structureor signaling schemeof releasing information about the realized state of reatioir
the receiver before the receiver makes his choice. Thisyatay be simple, say by always announcing the
payoffs of the various actions or always saying nothingt oray be intricate, involving partial information
and added noise. Crucially, the receiver is aware of thees&ndommitted policy, and moreover is rational
and Bayesian. We examine the sender’s algorithmic problempmementing the optimal signaling scheme
in this paper. A solution to this problem, i.e., a signalimgeme, is an algorithm which takes as input the
description of a state of nature and outputs a signal, patgnatilizing some internal randomness.

1.1 Two Examples

To illustrate the intricacy of Bayesian Persuasion, Kamee@ind Gentzkovm4] use a simple example in
which the sender is a prosecutor, the receiver is a judgeftendtate of nature is the guilt or innocence
of a defendant. The receiver (judge) has two actions, ctami@and acquittal, and wishes to maximize
the probability of rendering the correct verdict. On theesthand, the sender (prosecutor) is interested
in maximizing the probability of conviction. As they show,is easy to construct examples in which the
optimal signaling scheme for the sender releases noisiapmafiormation regarding the guilt or innocence
of the defendant. For example, if the defendant is guiltmvpirtobability%, the prosecutor’s best strategy
is to claim “guilt” whenever the defendant is guilty, andaatdaim “guilt” just under half the time when
the defendant is innocent. As a result, the defendant wiltdravicted whenever the prosecutor claims
“guilt” (happening with probability just unde?), assuming that the judge is fully aware of the prosecutor’s
signaling scheme. We note that it is not in the prosecutat&rést to always claim “guilt”, since a rational
judge aware of such a policy would ascribe no meaning to ssfpnal, and render his verdict based solely
on his prior belief — in this case, this would always lead tquittalEl

In other words, a signal is an abstract object with no inicinseaning, and is only imbued with meaning by virtue of hoig it
used. In particular, a signal has no meaning beyond thenparstiéstribution on states of nature it induces.



A somewhat less artificial example of persuasion is in theéexdrof providing financial advice. Here,
the receiver is an investor, actions correspond to stockbtte sender is a stockbroker or financial adviser
with access to stock return projections which are a-prioknown to the investor. When the adviser’s
commission or return is not aligned with the investor's meg, this is a nontrivial Bayesian persuasion
problem. In fact, interesting examples exist when stocirnst are independent from each other, or even
i.i.d. Consider the following simple example which fits irtee i.i.d. model considered in Sectibh 3: there
are two stocks, each of which is a-priori equally likely tangeate low (L), moderate (M), or high (H)
short-term returns to the investor (independently). Werred L/M/H as thetypesof a stock, and associate
them with short-term returns of 1 + ¢, and2 respectively. Suppose, also, that stocks of type L or H are
associated with poor long-term returnsipin the case of H, high short-term returns might be an indoat
of volatility or overvaluation, and hence poor long-terntfpemance. This leaves stocks of type M as the
only solid performers with long-term returns bf Now suppose that the investor is myopically interested in
maximizing short-term returns, whereas the forward-lngKinancial adviser is concerned with maximizing
long-term returns, perhaps due to reputational considesat Simple calculation shows that providing full
information to the myopic investor results in an expecteagierm reward of:, as does providing no
information. An optimal signaling scheme, which guarastd®at the investor chooses a stock with type
M whenever such a stock exists, is the following: when eyaatle of the stocks has type M recommend
that stock, and otherwise recommend a stock uniformly ataan A simple calculation using Bayes’ rule
shows that the investor prefers to follow the recommendatiaf this partially-informative scheme, and it
follows that the expected long-term returr*gis

1.2 Results and Techniques

Motivated by these intricacies, we study the computatiaoahplexity of optimal and near-optimal persua-
sion in the presence of multiple actions. We first observé dhienear program with a variable for each
(state-of-nature, action) pair computes a descriptiorhefdptimal signaling scheme. However, when ac-
tion payoffs are distributed according to a joint distribot— say exhibiting some degree of independence
across different actions — the number of states of nature lmeagxponential in the number of actions; in
such settings, both the number of variables and constrairisis linear program are exponential in the
number of actions. It is therefore unsurprising that the potational complexity of persuasion depends
on how the prior distribution on states of nature is preskateinput. We therefore consider three natural
input models in increasing order of generality, and mosttydown the complexity of optimal and near-
optimal persuasion in each. Our first model assumes thatnaptyoffs are drawn i.i.d. from an explicitly
described marginal distribution. Our second model comsidelependent yet non-identical actions, again
with explicitly-described marginals. Our third and moshgel model considers an arbitrary joint distribu-
tion of action payoffs presented by a black-box samplingleran proving our results, we draw connections
to techniques and concepts developed in the context of Bayesechanism design (BMD), exercising and
generalizing them along the way as needed to prove our sese mention some of these connections
briefly here, and elaborate on the similarities and diffeesnfrom the BMD literature in AppendixA.

We start with the i.i.d model, and show two results: a “sirfipgled polynomial—time%l—approximate
signaling scheme, and a polynomial-time implementatiothefoptimal scheme. Both results hinge on a
“symmetry characterization” of the optimal scheme in thd.isetting, closely related to the symmetrization
result from BMD by Eb] but with an important difference whigve discuss in AppendIx]JA. Our “simple”
scheme decouples the signaling problem for the differetidrae and signalindependentlyfor each. This
result implies that signaling in this setting can be “dmited” among multiple non-coordinating persuaders
without much loss. Our optimal scheme involves a connediioBorder’s characterization of the space
of feasible reduced-form auctiorﬁﬁ 12], as well as igoathmic propertiesmﬂ] 1]. This connection
involves proving a correspondence between “symmetricdialigg schemes and a subset of “symmetric”
single-item auctions; one in which actions in persuasianespond to bidders in an auction.



Next, we consider Bayesian persuasion with independeridentical actions. One might expect that
the partial correspondence between signaling schemesirgld-gem auctions in the i.i.d. model gen-
eralizes here, in which case Border’'s theorem — which exdadingle-item auctions with independent
non-identical bidders — would analogously lead to polyrartime algorithm for persuasion in this setting.
However, we surprisingly show that this analogy to singgeni auctions ceases to hold for non-identical
actions: we prove that there is generalized Border’s theorerin the sense of Gopalan et em[30], for per-
suasion with independent actions. Specifically, we showithe#P-hard to exactly compute the expected
sender utility for the optimal scheme, ruling out Bordehgorem-like approaches to this problem unless
the polynomial hierarchy collapses. Our proof starts fromitleas oﬂEO], but our reduction is much more
involved and goes through the membership problem for anidihpblytope which encodes a #P-hard prob-
lem — we elaborate on these differences in Appehdix A. We tiwtewhereas we do rule out computing an
explicit representation of the optimal scheme which pesmvaluating optimal sender utility, we do not rule
out other approaches which might sample the optimal scheméht fly” in the style of Myerson’s optimal
auction @1]— we leave the intriguing question of whethes th possible as an open problem.

Finally, we consider the black-box model with general disiions, and prove essentially-matching pos-
itive and negative results. For our positive result, we leixHully polynomial-time approximation scheme
(FPTAS) with a bicriteria guarantee. Specifically, our sukdoses an additive in both expected sender
utility and incentive-compatibility (as defined in Sect@) and runs in time polynomial in the number of
actions andi—. Our negative results show that this is essentially the jpessible for information-theoretic
reasons: any polynomial-time scheme in the black box motdawcomes close to optimality must signif-
icantly sacrifice incentive compatibility, and vice verd&le note that our scheme is related to some prior
work on BMD with black-box distributioné__[_iEhS], but is sidicantly simpler and more efficient: instead
of using the ellipsoid method to optimize over “reduced fefpour scheme simply solves a single linear
program on a sample from the prior distribution on statesatdire. Such simplicity is possible in our setting
due to the different notion of incentive compatibility inrpaasion, which reduces to incentive compatibility
on the sample using the principle of deferred decisions. Mlaoeate on this connection in Appendix A.

We remark that our results suggest that the differencesdaetywersuasion and auction design serve as
a double-edged sword. This is evidenced by our negativét esuindependent model and our “simple”
positive result for the black-box model.

1.3 Additional Discussion of Related Work

To our knowledge, Brocas and CarrilE[M] were the first tpliextly consider persuasion through informa-
tion control. They consider a sender with the ability to Essly acquire information regarding the payoffs
of the receiver’s actions, with the stipulation that acgdiinformation is available to both players. This
is technically equivalent to our (and Kamenica and Gentﬁxc@]) informed sender who commits to a
signaling scheme. Brocas and Carrillo restrict attentma particular setting with two states of nature and
three actions, and characterize optimal policies for tmelseand their associated payoffs. Kamenica and
Gentzkow's ] Bayesian Persuasion model naturally gdizes ] to finite (or infinite yet compact)
states of nature and action spaces. They establish a nurinpeperties of optimal information structures
in this model; most notably, they characterize settingshittvsignaling strictly benefits the sender in terms
of the convexity/concavity of the sender’s payoff as a fiorcbf the receiver’s posterior belief.

Since [L_lh] and@4], an explosion of interest in persuasicoblems followed. The basic Bayesian
persuasion model underlies, or is closely related to, tewenk in a number of different domains: price
discrimination by Bergemann et aﬂﬁz]l advertising by Khhorty and Harbau Iﬁh?], security games
by Xu et al. @3] and Rabinovich et al. [42], multi-armed basdby Kremer et al. [37] and Mansour et al.
[E’é], medical research by KoIotiIirEéS], and financial réagion by Gick and Pausch_[28] and Goldstein
and Leitner]. Generalizations and variants of the Bayegersuasion model have also been considered:
Gentzkow and KamenicﬁlZG] consider multiple senders, #damd Camara[Z] consider multiple receivers



in a voting setting, Gentzkow and Kameni[27] considetlgasformation acquisition, Rayo and Segal
[@] consider an outside option for the receiver, and Kbiott al. @] considers a receiver with private
side information.

Optimal persuasion is a special casdrdbrmation structure desigin games, also known asgnal-
ing. The space of information structures, and their inducedlibge, are characterized by Bergemann and
Morris E]. Recent work in the CS community has also examitieddesign of information structures algo-
rithmically. Work by Emek et allﬁ4], Miltersen and Sheﬂ@], Guo and DeIigkaﬂZ], and Dughmi et al.
], examine optimal signaling in a variety of auction e, and presents polynomial-time algorithms
and hardness results. Dughﬂ[ZZ] exhibits hardness sgfauilsignaling in two-player zero-sum games, and
Cheng et aI.|E8] present an algorithmic framework and ajpb/a number of different signaling problems.

Also related to the Bayesian persuasion model is the exeetisgrature oncheap talkstarting with
Crawford and SobeL_LiQ]. Cheap talk can be viewed as the gualof persuasion when the sender cannot
commit to an information revelation policy. Nevertheled®e commitment assumption in persuasion has
been justified on the grounds that it arises organically preated cheap talk interactions with a long horizon
— in particular when the sender must balance his short tegoffsawith long-term credibility. We refer
the reader to the discussion of this phenomenth [43]. Adgbis point, Kamenica and Gentzko[34]
mention that an earlier model of repeated 2-player games agiymmetric information by Aumann and
Maschler[ﬂS] is mathematically analogous to Bayesian [@sism.

Various recent models aselling informationin [@El ] are quite similar to Bayesian persuasion, with
the main difference being that the sender’s utility functi® replaced with revenue. Whereas Babaioff et al.
[@] consider the algorithmic question of selling infornmatiwhen states of nature are explicitly given as
input, the analogous algorithmic questions to ours havébeeh considered in their model. We speculate
that some of our algorithmic techniques might be applicablenodels for selling information when the
prior distribution on states of nature is represented swutyi

As discussed previously, our results involve exercisirgygeneralizing ideas from prior work in Bayesian
mechanism design. We view drawing these connections asfahe gontributions of our paper. In Ap-
pendix A, we discuss these connections and differencesgthe

2 Preliminaries

In a persuasion game, there are two playerserderand areceiver The receiver is faced with selecting
an action fromn] = {1,...,n}, with an a-priori-unknown payoff to each of the sender arcirer. \We
assume payoffs are a function of an unknostate of natured, drawn from an abstract sét of potential
realizations of nature. Specifically, the sender and recsipayoffs are functions,r : © x [n] — R,
respectively. We use = r(f) € R" to denote the receiver's payoff vector as a function of tlaest
of nature, where-;(6) is the receiver’s payoff if he takes actiorand the state of nature & Similarly

s = s(f) € R™ denotes the sender’s payoff vector, an(h) is the sender’s payoff if the receiver takes
actioni and the state i8. Without loss of generality, we often conflate the abstratBsindexing states of
nature with the set of realizable payoff vector paigsr) — i.e., we think of© as a subset d&k" x R". We
assume tha® is finite for notational convenience, though this is not reekfibr our results in Sectidd 5.

In Bayesian persuasion, it is assumed that the state ofenatwa-priori unknown to the receiver, and
drawn from a common-knowledge prior distributidrsupported or®. The sender, on the other hand, has
access to the realization 6f and can commit to a policy of partially revealing infornuatiregarding its
realization before the receiver selects his action. Spadlifi the sender commits tossgnaling scheme,
mapping (possibly randomly) states of naté@réo a family ofsignalsX. Forf € ©, we usep(f) to denote
the (possibly random) signal selected when the state ofenééd. Moreover, we use (6, o) to denote the
probability of selecting the signal given a state of natur@ An algorithmimplements signaling scheme
 if it takes as input a state of natufeand samples the random variahl@).

Given a signaling schemg with signalsY:, each signab € ¥ is realized with probabilitye,, =
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> vco Mow(8,0). Conditioned on the signat, the expected payoffs to the receiver of the various actions
are summarized by the vectefo) = a—la > oco Mow(8,0)r(0). Similarly, the sender’s payoff as a function
of the receiver’s action are summarized &y) = a—la Y oco Mow(0,0)s(). On receiving a signat, the
receiver performs a Bayesian update and selects an actieih € argmax; ;(c) with expected receiver
utility max; r;(o). This induces utilitys;- (o) for the sender. In the event of ties when selectifig),
we assume those ties are broken in favor of the sender.

We adopt the perspective of a sender looking to degignmaximize her expected utilify’ ; a.8;+(») (o),
in which case we say is optimal Whene yields expected sender utility within an additive [muligaitive]
e of the best possible, we say itdsoptimal [e-approximate] in the additive [multiplicative] sense. Angile
revelation-principle style argument [34] shows that arirogt signaling scheme need not use more than
signals, with oneecommendingach action. Such direct schemep has signal = {o04,...,0,}, and
satisfies;(0;) > r;(o;) forall i, j € [n]. We think ofo; as a signal recommending actigrand the require-
mentr;(0;) > max;r;j(o;) as anincentive-compatibility (ICronstraint on our signaling scheme. We can
now write the sender’s optimization problem as the follayitP with variables (0, 0;) : 0 € ©,i € [n]}.

maximize 3 .o > i Aw(0,04)si(6)

subjectto >, ¢(0,04) =1, foro € ©. )
Y oo Mw(0,0:)ri(0) > D gcq Mow(0,04)ri(0), fori,j e [n].
©(0,0:) > 0, for6 € ©,i € [n].

For our results in Sectidn 5, we relax our incentive constsaby assuming that the receiver follows the
recommendation so long as it approximately maximizes lilisyut— for a parametee > 0, we relax our re-
quirement to;(o;) > max; r;(0;)—¢, which translates to the relaxed IC constraits_q Ao (0, 0;)r: (0) >
> pco Aop(0,04)(r;(0) — €) in LP (). We call such schemesncentive compatiblec(IC). We judge the
suboptimality of are-IC scheme relative to the best (absolutely) IC schemejine bi-criteria sense.
Finally, we note that expected utilities, incentive conilmhty, and optimality are properties not only
of a signaling scheme, but also of the distributior over its inputs. Wher\ is not clear from context
andy is supported on a superset.afwe often say that a signaling schemeés IC [e-IC] for A, or optimal
[e-optimal] for . We also use,(¢, A) to denote the expected sender utility, o >-7" ; Ao (6, 03)si(6).

3 Persuasion with I.1.D. Actions

In this section, we assume the payoffs of different actisasralependently and identically distributed (i.i.d.)
according to an explicitly-described marginal distribati Specifically, each state of naturés a vector in
© = [m]™ for a parametern, where; € [m] is thetypeof actioni. Associated with each typge [m] is
apair(¢;, p;) € R?, whereg; [p;] is the payoff to the sender [receiver] when the receivesks an action
with type j. We are given a marginal distribution over types, descriiped vectorg = (q1, ..., ¢m) € An.
We assume each action’s type is drawn independently acgptdig; specifically, the prior distribution
on states of nature is given byf) = Hie[n} qe,- For convenience, we & = (&1,....&,) € R™ and

p = (p1,...,pm) € R denote the type-indexed vectors of sender and receivefffpayespectively. We
assume, p, andg — the parameters describing an i.i.d. persuasion instanege-given explicitly.

Note that the number of states of natureri8, and therefore the natural representation of a signaling
scheme haam™ variables. Moreover, the natural linear program for thespasion problem in Sectidn 2
has an exponential in number of both variables and constraints. Neverthelessieaioned in Sectionl 2
we seek only to implement an optimal or near-optimal schenas an oracle which takes as inguand
samples a signat ~ ¢(6). Our algorithms will run in time polynomial in. andm, and will optimize over
a space of succinct “reduced forms” for signaling schemdsiwive termsignaturesto be described next.

For a state of natur, define the matrix/? € {0,1}"*" so thathj = 1if and only if action: has type
jind(i.e.0; = j). Given an i.i.d prior\ and a signaling schemewith signals¥® = {04, ...,0,}, for each



M =3y NO)p(0,0;,)M?, fori=1,... n. max > ¢, &- M

Yo e0,04) =1, for 6 € ©. st. p- M >p- M7, fori,je[n]
w(0,0;) >0, forf € ©,i € [n]. (MY, .., M) e P
Figure 1. Realizable Signaturés Figure 2: Persuasion in Signature Space

i € [n]leta; =Yy M0) (8, ;) denote the probability of sending, and letM i = 3", A(0)p(6, 0;) M?.
Note that]\/[j‘.’,g is the joint probability that action has typek and the scheme outpuis. Also note that each
row of M7 sums tor;, and thejth row represents the un-normalized posterior type digiob of action;
given signalo;. We call M = (M7, ..., M) € R"*™*" the signatureof ¢. The sender’s objective and
receiver’s IC constraints can both be expressed in termseafignature. In particular, using; to denote
the jth row of a matrix)/, the IC constraints arp - M;* > p - M7 for all i, j € [n], and the sender’s
expected utility assuming the receiver follows the schemetommendations Eie[n] £- M.

We sayM = (M1, ..., M) € R"*™*" s realizableif there exists a signaling schermewith M as
its signature. Realizable signatures constitutes a podyid C R"*™*" which has an exponential-sized
extended formulation as shown Figlite 1. Given this charizeton, the sender’s optimization problem can
be written as a linear program in the space of signaturesyrsioFigure 2:

3.1 Symmetry of the Optimal Signaling Scheme

We now show that there always exists a “symmetric” optimakesee when actions are i.i.d. Given a signa-
ture M = (M, ..., M), it will sometimes be convenient to think of it as the set afp&(M 7, 0;) }ic ) -

Definition 3.1. A signaling scheme with signature{ (M, 0;) };c[,) is sSymmetricif there existe, y € R™
such thatM* = z for all i € [n] and M7* = y for all j # i. The pair(z, y) is thes-signatureof ¢.

In other words, a symmetric signaling scheme sends eachlsigth equal probabilityl|x||;, and in-
duces only two different posterior type distributions fotians: ﬁ for the recommended action, aﬁéHLl
for the others. We callz, y) realizableif there exists a signaling scheme with, y) as itss-signature. The
family of realizables-signatures constitutes a polytopg, and has an extended formulation by adding the
variablesz,y € R™ and constraints/* = x andM7* = y forall 4, j € [n] with i # j to the extended
formulation of (asymmetric) realizable signatures fromguFe].

We make two simple observations regarding realizabségnatures. First)|z|[; = [|y[l; = & for
each(z,y) € Ps, and this is because botfx||; and||y||; equal the probability of each of thesignals.
Second, since the signature must be consistent with pricginad distributiong, we haver + (n — 1)y =
>, M7 = q. We show that restricting to symmetric signaling schemestisout loss of generality.

Theorem 3.2. When the action payoffs are i.i.d., there exists an optimaliacentive-compatible signaling
scheme which is symmetric.

Theoren{ 3.2 is proved in Appendix B.1. At a high level, we shbat optimal signaling schemes are
closed with respect to two operatiornvex combinatioandpermutation Specifically, a convex combi-
nation of realizable signatures — viewed as vectoi®'in™*"™ — is realized by the corresponding “random
mixture” of signaling schemes, and this operation preseogimality. The proof of this fact follows easily
from the fact that linear program in Figure 2 has a convex lfaofi optimal solutions. Moreover, given a
permutationt € S,, and an optimal signaturét = {(M°?, 0;) };c|,) realized by signaling scheme the
“permuted” signaturer(M) = {(7 M, o)) }ic[n) — Where premultiplication of a matrix by denotes
permuting the rows of the matrix — is realized by the “perndtitechemeyp, (6) = 7 (p(7~1(6))), which
is also optimal. The proof of this fact follows from the “syratry” of the (i.i.d.) prior distribution about the
different actions. Theorem 3.2 is then proved construlstigs follows: given a realizable optimal signature
M, the “symmetrized” signaturé{ = % > res, (M) is realizable, optimal, and symmetric.
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3.2 Implementing the Optimal Signaling Scheme

We now exhibit a polynomial-time algorithm for persuasionthie i.i.d. model. Theorem 3.2 permits re-
writing the optimization problem in Figuté 2 as follows, Wwitariablese, y € R™.

maximize ng-x
subjectto p-x>p-y (2)
(z,y) €Ps

Problem[(2) cannot be solved directly, sirBgis defined by an extended formulation with exponentially
many variables and constraints, as described in SelctidnNelvertheless, we make use of a connection
between symmetric signaling schemes and single-itemamsctivith i.i.d. bidders to solvé}2) using the
Ellipsoid method. Specifically, we show a one-to-one cqoeslence between symmetric signatures and (a
subset of) symmetric reduced forms of single-item auctieitis i.i.d. bidders, defined as follows.

Definition 3.3 ([|E]). Consider a single-item auction setting withi.i.d. bidders andm types for each
bidder, where each bidder’s type is distributed accordiagyte A,,. Anallocation ruleis a randomized
function A mapping a type profilé € [m]" to a winnerA(f) € [n] U {*}, wherex denotes not allocating
the item. We say the allocation rule hegmmetric reduced form < [0, 1]™ if for each bidderi € [n] and
type;j € [m], 7; is the conditional probability of receiving the item given she has type

Whengq is clear from context, we say is realizableif there exists an allocation rule withas its symmetric
reduced form. We say an algoritimplementsn allocation ruled if it takes as input), and samples\(6).

Theorem 3.4. Consider the Bayesian Persuasion problem with.d. actions andn types, with parameters
q <€Ay, & €R™ andp € R™ given explicitly. An optimal and incentive-compatiblensiting scheme can
be implemented ipoly(m,n) time.

Theoreni 31 is a consequence of the following set of lemmas.
Lemma 3.5. Let (z,y) € [0,1]™ x [0,1]™, and definer = (2, ..., £=). The pair(z,y) is a realizable
s-signature if and only if (a)|z||; = % (b)x + (n — 1)y = q, and (c)7 is a realizable symmetric reduced
form of an allocation rule with i.i.d. bidders,m types, and type distributiog. Moreover, assuming and
y satisfy (a), (b) and (c), and given black-box access to ascation rule A with symmetric reduced form
T, a signaling scheme withsignature(x, y) can be implemented ipoly(n, m) time.

Lemma 3.6. An optimal realizables-signature, as described by L), is computable imoly(n,m) time.

Lemma 3.7. (See [LIEDl]) Consider a single-item auction setting withi.d. bidders andn types for each
bidder, where each bidder’s type is distributed accordiog t= A,,. Given a realizable symmetric reduced
form T € [0,1]™, an allocation rule with reduced form can be implemented ipoly(n, m) time.

The proofs of Lemmals_3.5 afd B.6 can be found in Appehdix Bf2e firoof of Lemma 315 builds
a correspondence betweersignatures of signaling schemes and certain reduced-&looation rules.
Specifically, actions correspond to bidders, action tymesespond to bidder types, and signalingcor-
responds to assigning the item to biddeThe expression of the reduced form in terms of the s-sigeatu
then follows from Bayes'’ rule. Lemnia 3.6 follows from Lemm&,3he ellipsoid method, and the fact that
symmetric reduced forms admit an efficient separation er@deﬂﬂ ﬂ 1).



Algorithm 1 Independent Signaling Scheme
Input: Sender payoff vect, receiver payoff vectop, prior distributiong

Input: State of naturd € [m|"
Output: An n-dimensional binary signat ¢ {HIGH, LOW }"
1: Compute an optimal solutiofx*, y*) linear program[(3). )
2: For each actiori independently, set component signato HIGH with probability Z% and toLOW
otherwise, wheré; is the type of actior in the input staté.
3: Returno = (o4, ..., 0p).

3.3 ASimple(1 — 1)-Approximate Scheme

Our next result is a “simple” signaling scheme which obtaifis— 1/e) multiplicative approximation when
payoffs are nonnegative. This algorithm has the distiectivoperty that it signalsxdependentlyfor each
action, and therefore implies that approximately optimailspasion can be parallelized among multiple
colluding senders, each of whom only has access to the typeeobr more of the actions.

Recall from Sectiofi 3]1 that an s-signatiue y) satisfies|z||; = ||y||; = 2 andz + (n — 1)y = q.
Our simple scheme, shown in Algoritirh 1, works with the faliog explicit linear programming relaxation
of optimization problem[{2).

maximize n&-x

subjectto p-x>p-y
z+(n—-1ly=gq (3)
lzlh = 3
xz,y >0

Algorithm 1 has a simple and instructive interpretationcdmputes the optimal solutiofx*, y*) to
the relaxed probleni]3), and uses this solution as a guidsidoalingindependenthfor each action. The
algorithm selects, independently for each acticmcomponent signa;, € {HIGH, LOW }. In particular,
eacho; is chosen so thdPr[o; = HIGH] = % and moreover the events = HIGH ando; = LOW
induce the posterior beliefsr* andny*, respectively, regarding the type of actibn

The signaling scheme implemented by Algorithin 1 approxaiyamatches the optimal value df] (3),
as shown in Theorein 3.8, assuming the receiver is ratiorthtterefore selects an action witlEEIGH
component signal if one exists. We note that the scheme dbrilgn 1, while not a direct scheme as
described, can easily be converted into one; specificallygbommending an action whose component sig-
nal isHIGH when one exists (breaking ties arbitrarily), and recomnrenen arbitrary action otherwise.
Theoreni 3B follows from the fact th&t*, y*) is an optimal solution to LH{3), the fact that the posterior
type distribution of an actionis nx* wheno; = HIGH andny* wheno; = LOW, and the fact that each
component signal is high independently with probabiﬁtyWe defer the formal proof to Appendix B.3.

Theorem 3.8. Algorithm[1 runs irpoly(m, n) time, and serves as@ — %)—approximate signaling scheme
for the Bayesian Persuasion problem with.i.d. actions,m types, and nonnegative payoffs.

Remark 3.9. Algorithm[1 signals independently for each action. Thisveys an interesting conceptual
message. That is, even though the optimal signaling schegi imduce posterior beliefs which correlate
different actions, it is nevertheless true that signaliogdach action independently yields an approximately
optimal signaling scheme. As a consequence, collaboratrsuasion by multiple parties (the senders),
each of whom observes the payoff of one or more actions, iskatlet can be parallelized, requiring no
coordination when actions are identical and independerd anly an approximate solution is sought. We



leave open the question of whether this is possible wheoraptyoffs are independently but not identically
distributed.

4 Complexity Barriers to Persuasion with Independent Actians

In this section, we consider optimal persuasion with indejeat action payoffs as in Sectiéh 3, albeit
with action-specific marginal distributions given explizi Specifically, for each actiom we are given

a distributiong’ € A,,, onm; types, and each typg € [m;] of actioni is associated with a sender
payoff g;‘. € R and a receiver payoﬁ§ € R. The positive results of Sectigh 3 draw a connection between
optimal persuasion in the special case of identically ilisted actions and Border’s characterization of
reduced-form single-item auctions with i.i.d. bidders.e@night expect this connection to generalize to the
independent non-identical persuasion setting, since @trtheorem extends to single-item auctions with
independent non-identical bidders. Surprisingly, we sti@tthis analogy to Border’s characterization fails
to generalize. We prove the following theorem.

Theorem 4.1. Consider the Bayesian Persuasion problem with independetitins, with action-specific
payoff distributions given explicitly. It i P-hard to compute the optimal expected sender utility.

Invoking the framework of Gopalan et a[[SO], this rules augeneralized Border’s theorefor our
setting, in the sense defined @[30], unless the polynoneaaichy collapses t&V . We view this result
as illustrating some of the important differences betwesnsymsion and mechanism design.

The proof of Theorern 411 is rather involved. We defer the fiudlof to AppendiX_C, and only present a
sketch here. Our proof starts from the ideas of Gopalan @Lwho show the #P-hardness for revenue or
welfare maximization in several mechanism design probldmsne caseJEO] reduce from teeP-hard
problem of computing th&hintchine constandf a vector. Our reduction also starts from this problem, but
is much more involved First, we exhibit a polytope which we term tidintchine polytopeand show that
computing the Khintchine constant reduces to linear ogition over the Khintchine polytope. Second,
we present a reduction from the membership problem for thiatkthine polytope to the computation of
optimal sender utility in a particularly-crafted instarafgpersuasion with independent actions. Invoking the
polynomial-time equivalence between membership checkimthoptimization (see, e.d]Bl]), we conclude
the #P-hardness of our problem. The main technical chalevey overcome is in the second step of our
proof: given a pointz which may or may not be in the Khintchine polytojige we construct a persuasion
instance and a thresholdso that points iriC encode signaling schemes, and the optimal sender utiléty is
leastT if and only if z € K and the scheme correspondingrtoesults in sender utility/".

Proof Sketch of Theorenl4.1L

The Khintchine problemshown to be #P-hard ilELBO], is to compute tKkintchine constant{(a) of a
given vectora € R", defined ask(a) = Eg{+11»[|0 - a|] whered is drawn uniformly at random from
{£1}". To relate the Khintchine problem to Bayesian persuasi@begin with a persuasion instance with
n i.i.d. actions and two action types, which we refer tdyge -landtype +1 The state of nature is a uniform
random draw from the sét-1}", with theith entry specifying the type of actian We call this instance the
Khintchine-likepersuasion setting. As in Sectioh 3, we still usegigmatureto capture the payoff-relevant
features of a signaling scheme, but we pay special attettisignaling schemes which use omlyo signals,

in which case we represent them usingva-signal signaturef the form(M*, M?) € R"*2 x R"*2, The
Khintchine polytopeC(n) is then defined as the (convex) family of edllizabletwo-signal signatures for
the Khintchine-like persuasion problem with an additiooahstraint: each signal is sent with probability
exactly%. We first prove that general linear optimization o¥&m) is #P-hard by encoding computation of

2In [@], Myerson'’s characterization is used to show thatropt mechanism design in a public project setting directigasgles
computation of the Khintchine constant. No analogous tlitennection seems to hold here.



the Khintchine constant as linear optimization o&&r). In this reduction, the optimal solution i6(n) is
the signature of the two-signal schem@) = sign(6 - a), which signalst and— each with probability%.

To reduce the membership problem for the Khintchine polytap optimal Bayesian persuasion, the
main challenges come from our restrictions/ofr ), namely to schemes with two signals which are equally
probable. Our reduction incorporates three key ideas.fif$tas to design a persuasion instance in which
the optimal signaling scheme uses only two signals. Tharirtst we define will have+ 1 actions. ActiorD
is special- it deterministically results in sender utility> 0 (small enough) and receiver utility The other
n actions areegular. Actioni > 0 independentlyesults in sender utility-a; and receiver utilitya; with
probability% (call this typel;), or sender utility—b; and receiver utilityb; with probability% (call this type
2,), for a; andb; to be set later. Note that the sender and receiver utilitegexo-sunfor both types. Since
the special action is deterministic and the probabilitytef(only) type isl in any signal, we can interpret
any (M*, M?) € K(n) as a two-signal signature for our persuasion instance (tecorresponding to the
special actiorD is implied). We show that restricting to two-signal scherizewithout loss of generality
in this persuasion instance. The proof tracks the followirtgition: due to the zero-sum nature of regular
actions, any additional information regarding regularaanrs would benefit the receiver and harm the sender.
Consequently, sender does not reveal any information wdigtinguishes between different regular actions.
Formally, we prove that there always exists an optimal diggacheme with only two signals: one signal
recommends the special action, and the other recommendsreguiar action.

We denote the signal that recommends the special abtiono . (indicating that the sender derives
positive utility €), and denote the other signal by (indicating that the sender derives negative utility, as
we show). Thesecondkey idea concerns choosing appropriate valueg ;" ,, {b;};_, for a given two-
signature(M*, M?) to be tested. We choose these values to satisfy the follotwingoroperties: (1) For
all regular actions, the signaling scheme implementimgt, M?) (if it exists) results in the same sender
utility —1 (thus receiver utilityl) conditioned onr_ and the same sender utilieyconditioned orv; (2)
themaximum possiblexpected sender utility from_, i.e., the sender utility conditioned en. multiplied
by the probability ofo_, is —3. As a result of Property (1), ifM*, M?) € K(n) then the corresponding
signaling schemev is IC and results in expected sender utility= %e — % (since each signal is sent with
probability %). Property (2) implies thap results in the maximum possible expected sender utilitjfso .

We now run into a challenge: the existence of a signalingreeheith expected sender utility = %e—%
does not necessarily imply th@t/*, M?) € K(n) if e is large. Outhird key idea is to set > 0 “sufficiently
small” so that any optimal signaling scheme must resultemtlaximum possible expected sender utHiit%'
from signalo_ (see Property (2) above). In other words, we must ma@small so that the sender prefers
to not sacrificeany of her payoff fromo_ in order to gain utility from the special action recommendgd
o+. We show that such anexists with polynomially many bits. We prove its existengedoguing that
the polytope of incentive-compatible two-signal signatuhas polynomial bit complexity, and therefore an
e > 0 that is smaller than the “bit complexity” of the vertices vdsuffice.

As a result of this choice of, if the optimal sender utility is precisely = e — % then we know that
signal o+ must be sent with probabilitgl since the expected sender utility from sigimal must be—%.
We show that this, together with the specifically constraidie }7_,, {b;}"_,, is sufficient to guarantee that
the optimal signaling scheme must implement the given tignagure(M*!, M?), i.e., (M, M?) € K(n).
When the optimal optimal sender utility is strictly greaﬂean%e — % the optimal signaling scheme does
not implement M, M?), but we show that it can be post-processed into one that does.

5 The General Persuasion Problem

We now turn our attention to the Bayesian Persuasion prolléen the payoffs of different actions are
arbitrarily correlated, and the joint distributionis presented as a black-box sampling oracle. We assume
that payoffs are normalized to lie in the bounded intervall arove essentially matching positive and
negative results. Our positive result is a fully polynortiade approximation scheme for optimal persuasion
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Algorithm 2 Signaling Scheme for a Black Box Distribution
Parameter: ¢ > 0

Parameter: Integerk >0
Input: Prior distribution)\ supported ori—1, 1]?", given by a sampling oracle
Input: State of naturé ¢ [—1,1]>"
Output: Signalo € X, whereX = {o1,...,0,}.
1: Draw integer/ uniformly at random from{1, ..., K}, and denoté, = 6.
2: Sampledy, ..., 0, 1,041 ...,0k independently from\, and let the multiset = {61,...,0k} denote
the empirical distribution augmented with the input state 6,.
3: Solve linear prograni{4) to obtain the signaling scheqfine\~ — A(X).
4: Output a sample frony(0) = ¢(6y).

maximize Sp, S0 L &0y, 03)s:(0x)
subjectto > | &(Ok,0i) =1, for k € [K].
S it 2Ok, 0i)ri(0k) > S py £ 30k, 03)(r5(0k) —€), fori,j € [n].
POk, 04) = 0, for k € [K],i € [n].

(4)

Relaxed Empirical Optimal Signaling Problem

with a bi-criteria guarantee; specifically, we achieve agpnate optimality and approximate incentive
compatibility in the additive sense described in Sedilo®2r negative results show that such a bi-criteria
loss is inevitable in the black box model for informatiorednetic reasons.

5.1 A Bicriteria FPTAS

Theorem 5.1. Consider the Bayesian Persuasion problem in the black-bagi® model withm actions and
payoffs in[—1, 1], and lete > 0 be a parameter. Ag-optimal ande-incentive compatible signaling scheme
can be implemented ipoly(n, ) time.

To prove Theoreri 511, we show that a simple Monte-Carlo @hlgorimplements an approximately
optimal and approximately incentive compatible schemeNotably, our algorithm does not compute a
representation of the entire signaling schemas in SectiofI3, but rather merely samples its ougp(ét)
on a given inpub). At a high level, when given as input a state of natfireur algorithm first takeg{ =
poly(n, %) samples from the prior distributioh which, intuitively, serve to place the true state of natfire
in context. Then the algorithm uses a linear program to caengne optimak-incentive compatible scheme
@ for the empirical distribution of samples augmented with ifputd. Finally, the algorithm signals as
suggested by for 6. Details are in Algorithni2, which we instantiate with> 0 and K = [%5—4"2 log(‘%‘ﬂ.

We note that relaxing incentive compatibility is necesdarnyconvergence to the optimal sender utility
— we prove this formally in Sectioh 3.2. This is why LB (4) feas relaxed incentive compatibility
constraints. Instantiating Algorithinh 2 with= 0 results in an exactly incentive compatible scheme which
could be far from the optimal sender utility for any finite nioen of sampled<, as reflected in Lemmia_5.4.

Theoren{ 5.1l follows from three lemmas pertaining to the sEhe implemented by Algorithri]2. Ap-
proximate incentive compatibility fok (Lemmal5.2) follows from the principle of deferred decisiptin-
earity of expectations, and the fact thais approximately incentive compatible for the augmentegienal
distribution A. A similar argument, also based on the principal of defedecisions and linearity of expec-
tations, shows that the expected sender utility from ouesehwher) ~ A equals the expected optimal
value of linear prograni{4), as stated in Lenimd 5.3. Finalf/show in Lemm&35]4 that the optimal value
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of LP (@) is close to the optimal sender utility farwith high probability, and hence also in expectation,
when K = poly(n, %) is chosen appropriately; the proof of this fact invokes d#ad tail bounds as well
as structural properties of linear progranh (4), and expltie fact that LP[{4) relaxes the incentive com-
patibility constraint. We prove all three lemmas in Appedidid. Even though our proof of Lemmab.4 is
self-contained, we note that it can be shown to follow fr, [#heorem 6] with some additional work.

Lemma 5.2. Algorithm[2 implements astincentive compatible signaling scheme for prior disttiba \.

Lemma 5.3. Assumé& ~ )\, and assume the receiver follows the recommendations ofifkim[2. The
expected sender utility equals the expected optimal vdltieedinear program(d)) solved in Step]3. Both
expectations are taken over the random infais well as internal randomness and Monte-Carlo sampling
performed by the algorithm.

Lemma 5.4. Let OPT denote the expected sender utility induced by the optinenitive compatible
signaling scheme for distributiok. When Algorithm 2 is instantiated witki > %5—4"2 log(%") and its input
6 is drawn from)\, the expected optimal value of the linear progr@solved in Stepl3 is at leatPT — e.
Expectation is over the random inpfis well as the Monte-Carlo sampling performed by the altaomit

5.2 Information-Theoretic Barriers

We now show that our bi-criteria FPTAS is close to the best aretwope for: there is no bounded-sample
signaling scheme in the black box model which guaranteesiive compatibility and-optimality for any
constant < 1, nor is there such an algorithm which guarantees optimalityc-incentive compatibility for
anyc < %. Formally, we consider algorithms which implement direghaling schemes. Such an algorithm
takes as input a black-box distributiorsupported ori—1, 1]>* and a state of natuec [—1,1]?", wheren

is the number of actions, and outputs a signa {o1,...,0,} recommending an action. We say such an
algorithm ise-incentive compatibleefoptimal] if for every distribution) the signaling schemé () is e-
incentive compatibleetoptimal] for A. We define thesample complexityC 4 (), #) as the expected number
of queries made by to the blackbox given inputd and#, where expectation is taken the randomness
inherent in the Monte-Carlo sampling frotnas well as any other internal coins df We show that the
worst-case sample complexity is not bounded by any funafonand the approximation parameters unless
we allow bi-criteria loss in both optimality and incentiverapatibility. More so, we show a stronger negative
result for exactly incentive compatible algorithms: themage sample complexity ovér~ X is also not
bounded by a function ofi and the suboptimality parameter. Whereas our results inialy we should
give up on exact incentive compatibility, we leave open thestion of whether an optimal ameincentive
compatible algorithm exists witholy(n, %) average case (but unbounded worst-case) sample complexity

Theorem 5.5. The following hold for every algorithial for Bayesian Persuasion in the black-box model:

(a) If Ais incentive compatible andtoptimal forc < 1, then for every integek there is a distribution
A = A(K) on 2 actions and 2 states of nature such tBgt.,[SC 4(\, 0)] > K.

(b) If A is optimal andc-incentive compatible for < %, then for every integeK there is a distribution
A = A(K) on 3 actions and 3 states of nature, ahah the support of\, such thatSC 4 (A, 0) > K.

Our proof of each part of this theorem involves constructingpir of distributions\ and \’ which are
arbitrarily close in statistical distance, but with the peaty that any algorithm with the postulated guarantees
must distinguish betweekhand)\’. We defer the proof to AppendixD.2.
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A Additional Discussion of Connections to Bayesian Mechasm Design

Section 8, which considers persuasion with independeniderdically-distributed actions, relates to two
ideas from auction theory. First, our symmetrization reisuBectior] 3.11 is similar to that of Daskalakis and
Weinberg ], but involves an additional ingredient whislmecessary in our case: not only is the posterior
type distribution for a recommended action (the winningdeidin the auction analogy) independent of the
identity of the action, but so is the posterior type disttidm of an unrecommended action (losing bidder).
Second, our algorithm for computing the optimal scheme itti6e[3.2 involves a connection to Border’s
characterization of the space of feasible reduced-forgiesiitlem auctions{ﬂﬂZ], as well as its algorithmic
properties|l—1|5|:|1]. However, unlike in the case of singéritauctions, this connection hinges crucially on
the symmetries of the optimal scheme, and fails to gener&tizhe case of persuasion with independent
non-identical actions (analogous to independent nontickrbidders) as we show in Sectibh 4. We view
this as evidence that persuasion and auction design — wédleriy similarities and technical connections
— are importantly different.

Section[# shows that our Border’s theorem-based approa&8edtion[B can not be extended to in-
dependent non-identical actions. Our starting point aeeréisults of Gopalan et aﬂSO], who rule out
Border’'s-theorem like characterizations for a number othamism design settings by showing the #P-
hardness of computing the maximum expected revenue orneel@ur results similarly show that it is #P
hard to compute the maximum expected sender utility, butreduction is much more involved. Specifi-
cally, whereas we also reduce from the #P-hard problem opating the Khintchine constant of a vector,
unlike in @] our reduction must go through the membershigbfem of a polytope which we use to en-
code the Khintchine constant computation. This detour seenavoidable due to the different nature of
the incentive-compatibility constraints placed on a si'gglgaschem@ Specifically, we present an intricate
reduction from membership testing in this “Khintchine golye” to an optimal persuasion problem with
independent actions.

Our algorithmic result for the black box model in Sectidn &wis inspiration from, and is technically
related to, the work n{ﬂﬂ BEMS] on algorithmically eifint mechanisms for multi-dimensional settings.
Specifically, an alternative algorithm for our problem caderived using the framework afduced forms
andvirtual welfare of Cai et al. ] with significant additional wolk.For this, a different reduced form
is needed which allows for an unbounded “type space”, andhtaias the correlation information across
actions necessary for evaluating the persuasion notiomcehtive compatibility, which is importantly dif-
ferent from incentive compatibility in mechanism desigrucls a reduced form exists, and the resulting
algorithm is complex and invokes the ellipsoid algorithmaasibroutine. The algorithm we present here is
much simpler and more efficient both in terms of runtime andas from the distributior\ over states
of nature, with the main computational step being a singf#i&x linear program which solves for the op-
timal signaling scheme on a sampldrom A. The analysis of our algorithm is also more straightforward
This is possible in our setting due to our different notiorirmfentive compatibility, which permits reduc-
ing incentive compatibility or\ to incentive compatibility on the sampleusing the principle of deferred
decisions.

%In [@], Myerson'’s characterization is used to show thairopt mechanism design in a public project setting directigagles
computation of the Khintchine constant. No analogous tlitennection seems to hold here.
“We thank an anonymous reviewer for pointing out this corioact
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B Omissions from Section B

B.1 Symmetry of the Optimal Scheme (Theoreri 3]2)

To prove Theoremh 312, we need two closure properties of @btgignaling schemes — with respect to
permutations and convex combinations. We n$e denote a permutation @f], and letS,, denote the set of
all such permutations. We define the permutatigé) of a state of naturé € [m]" so that(w(0)); = 0.,
and similarly the permutation of a signalso thatr (0;) = o(;). Given a signaturét = {(M7%, 0;) }icin)
we define the permuted signatureM) = {(7 M, w(0;)) }ic[n), Wherer M denotes applying permutation
m to the rows of a matrix\/.

Lemma B.1. Assume the action payoffs are i.i.d., andtet S, be an arbitrary permutation. 1M is
the signature of a signaling scheme thenn (M) is the signature of the scheme defined by (6) =
m(p(7=1(0))). Moreover, ify is incentive compatible and optimal, then seis

Proof. Let M = {(M?,0)},.x, be the signature ap, as given in the statement of the lemma. We first
show thatr(M) = {(7M7,7(0))}, 5 IS realizable as the signature of the scheme By definition, it
suffices to show that_, A(0)¢ (0, w(o)) M? = wM? for an arbitrary signa (o).

D O AO) (0, 7(0) M =D AO)p(r(0), o) M (by definition of;)
6 0

=7 MO)e(r ' (0),0)(x ' M) (by linearity of permutation)
0cO

=7 MOl (6), )M )
0cO®

=7y AaH(0)p(n 7 (0),0) M@ (Since\ is i.i.d.)
0cO

=7y MO0, o) M” (by renamingr—(6) to ¢
0'€O

= nM° (by definition of M/7)

Now, assumingp is incentive compatible, we check that is incentive compatible by verifying the
relevant inequality for its signature.

P (TM7)r(sy = p - (TM7 )y = p- M7 = p- M >0
Moreover, we show that the sender’s utility is the samefand¢,, completing the proof.
- (M7 )y =& (M),
O

LemmaB.2. Lett € [0,1]. If A = (A, ..., A°")is the signature of schemey, andB = (B?,..., B")
is the signature of a schemss, then their convex combinatiah = (C?*, ..., C7) with C7 = tA% +
(1 —t)B° is the signature of the scherpe: which, on inpu®), outputsp 4 (0) with probabilityt and ¢z (6)
with probability 1 — ¢. Moreover, ifp 4 andpp are both optimal and incentive compatible, then s@ds

Proof. This follows almost immediately from the fact that the op#iation problem in Figurgl2 is a linear
program, with a convex feasible set and a convex family ohogitsolutions. We omit the straightforward
details. O
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Proof of Theorem[3.2

Given an optimal and incentive compatible signaling scheméth signature{ (M7, ;) };c[n), we show the
existence of a symmetric optimal and incentive-compasisleeme of the form in Definitidn 3.1. According
to LemmdB.1, forr € S, the signaturg(r M7, w(0;)) }ic[,) — €quivalently written ag(m M@, 0}
— corresponds to the optimal incentive compatible schemdnvoking LemmaB.R, the signature

(A%, 00 biep = 1o 3 M0, 00) iy
TESK
also corresponds to an optimal and incentive compatibleraehnamely the scheme which draws a permu-
tations uniformly at random, then signals according4s.
Observe that théth row of the matrixr M=~'@is thexr ! (4)th row of the matrixA/°~—' . Expressing
A7" as a sum over permutationse S,,, and grouping the sum by= 7~1(i), we can write

1

AT = 2 D Mo,
ﬂ'GSTL
0 =1
ol Z ()
ﬂ'GSTL
I~ o 1.
= HZMkk {reSn:m L) = k}
k=1

l w—
:mZMkk-(n—l)!
T k=1
1 & ,
=) MY,
k=1

which does not depend an Similarly, the jth row of the matrixr M~ is the 7~1(j)th row of the
matrix M°~'@) . Forj # i, expressingzl;.’i as a sum over permutationse S,,, and grouping the sum by

k= n~1(i) andl = 7~1(j), we can write
1

Aft=— 3 [rM 0]
'WES”
= MO
ol ZS: L))
TESH
1
= T ZMlUk . ‘{7‘( S Sn . 7-‘-—1(1‘) — k,ﬂ'_l(j) _ l}‘
nl
- vZMUk (n—2)!
k;él
= n — 1 ZMUk

k;ﬁl
which does not depend aror j. Let

1 n
x = — Y M*;

1 o
y = M7*.
n(n—l); !
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The signaturg (A%, 0;) }¢[,) therefore describes an optimal, incentive compatible,synaimetric scheme
with s-signature(x, y).

B.2 The Optimal Scheme
Proof of Lemmal3.5

For the “only if” direction, ||z||; = L andz + (n — 1)y = q were established in SectifnB.1. To show that
T is a realizable symmetric reduced form for an allocatioe rldty be a signaling scheme withsignature
(z,y). Recall from the definition of an-signature that, for each € [n], signalc; has probabilityl/n,
andne is the posterior distribution of actioi’s type conditioned on signal;. Now consider the following
allocation rule: Given a type profie € [m|" of then bidders, allocate the item to biddewith probability
©(0,0;) foranyi € [n]. By Bayes rule,

. B 0 Dt 0 . Pr|i gets iten
Pr[i gets itenk has typej] = Pr[i has typej|i gets itenh Prji has type)|
Un _z

=nx;j -
T g

Thereforer is indeed the reduced form of the described allocation rule.

For the “if” direction, letT, , andy be as in the statement of the lemma, and consider an allacatio
rule A with symmetric reduced formr. Observe thatd always allocates the item, since for each player
i € [n] we havePr[i gets the iteth= """ | ¢;7; = 370 = 1. We define the direct signaling scheme
pa by 0a(0) = 0a9). LM = (M°*,..., M) be the signature ap4. Recall that, ford ~ A\ and
arbitrary: € [n] andj € [m)], Mg is the probability thatp 4 (6) = o; andf; = j; by definition, this equals
the probability thatA allocates the item to playérand her type ig, which is7;q; = x;. As a result, the
signatureM of p4 satisfiesM" = x for every actioni. If ¢4 were symmetric, we would conclude that
its s-signature iz, y) since everys-signature(x,y’) must satisfyz + (n — 1)y’ = g (see Sectioh 3]1).
However, this is not guaranteed when the allocation Aixhibits some asymmetry. Neverthelegg, can
be “symmetrized” into a signaling scherpg which first draws a random permutatianc S,,, and signals
m(pa(r1(0))). Thaty', hass-signature(z,y) follows a similar argument to that used in the proof of
Theoreni 3.2, and we therefore omit the details here.

Finally, observe that the description @f, above is constructive assuming black-box access, twith
runtime overhead that is polynomial inandm.

Proof of Lemmal3.6
By Lemmd3.b, we can re-write LP](2) as follows:

maximize ng-x
subjectto p-xz>p-y
T+ (n-1y=q (5)
|||y =

(2, ..., o=

|§3:IH

) is a realizable symmetric reduced form

From ,ESDl], we know that the family of all the realilmsymmetric reduced forms constitutes
a polytope, and moreover that this polytope admits an efficgeparation oracle. The runtime of this oracle
is polynomial inm andn, and as a result the above linear program can be solvedirin, m) time using
the Ellipsoid method.

19



B.3 ASimple(1 — 1/¢)-approximate Scheme

Proof of Theorem[3.8

Given a binary signat = (o1,...,0,) € {HIGH,LOW }", the posterior type distribution for an action
equalsnx* if the corresponding component signalHEHGH, and equalsiy* if the component signal is
LOW. This is simply a consequence of the independence of themattpes, the fact that the different
component signals are chosen independently, and Bayes’ itlhe constrainp - ** > p - y* implies
that the receiver prefers actiongor which o, = HIGH, any one of which induces an expected utility of
np - =* for the receiver ana£ - =* for the sender. The latter quantity matches the optimalevaflLP [3).
The constraint|z||; = 1 implies that each component signaHEGH with probability £, independently.
Therefore, the probability that at least one componentesigrtHIGH equalsl — (1 — %)" >1- % Since
payoffs are nonnegative, and since a rational receivectsebeeHIGH action when one is available, the
sender’s overall expected utility is at least & % fraction of the optimal value of LA13).
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C Proof of Theorem[4.1

This section is devoted to proving Theoréml4.1. Our proaftstom the ideas of Gopalan et dD[BO],
who show the #P-hardness for revenue or welfare maximizati@everal mechanism design problems. In
one case,@O] reduce from theP-hard problem of computing thi€hintchine constanbf a vector. Our
reduction also starts from this problem, but is much morelred: First, we exhibit a polytope which we
termKhintchine polytopeand show that computing the Khintchine constant reducésedar optimization
over the Khintchine polytope. Second, we present a reduftaom the membership problem for the Khint-
chine polytope to the computation of optimal sender utilitya particularly-crafted instance of persuasion
with independent actions. Invoking the polynomial-timauieglence between membership checking and
optimization (see, e.g.ﬂbl]), we conclude the #P-harslinéd®ur problem. The main technical challenge
we overcome is in the second step of our proof: given a peiwhich may or may not be in the Khint-
chine polytopéeC, we construct a persuasion instance and a threghsllthat points irkC encode signaling
schemes, and the optimal sender utility is at |§agtand only if x € K and the scheme correspondingrto
results in sender utility".

The Khintchine Polytope
We start by defining th&hintchine problemwhich is shown to be #P-hard iE[BO].

Definition C.1. (Khintchine Problem) Given a vectare R", compute th&hintchine constank (a) of a,
defined as follows:

K(a) [16- al],

= E
o~{£1}7
where# is drawnuniformly at random from{+1}".

To relate the Khintchine problem to Bayesian persuasionb@&gn with a persuasion instance with
i.i.d. actions. Moreover, there are only two action tygeshich we refer to asype -landtype +1 The
state of nature is a uniform random draw from the &et }", with the ith entry specifying the type of
actioni. It is easy to see that these actionsidré., with marginal probability% for each type. We call this
instance theKhintchine-likepersuasion setting. As in Sectibh 3, we still use shghatureto capture the
payoff-relevant features of a signaling scheme. A sigmatar the Khintchine-like persuasion problem is
of the formM = (M*, ..., M™) whereM? € R™*2 for anyi € [n]. We pay special attention to signaling
schemes which use ontwo signals, in which case we represent them usitg@signal signaturef the
form (MY, M?) € R™*2 x R"*2. Recall that such a signaturerisalizableif there is a signaling scheme
which uses only two signals, with the property th.t is the joint probability of theth signal and the event
that actionj has typet. We now define th&hintchine polytopeconsisting of a convex family of two-signal
signatures.

Definition C.2. TheKhintchine polytopds the familyC(n) of realizabletwo-signal signaturegi/!, M?2)

for the Khintchine-like persuasion setting which satisfy additional constraintMil,1 +Mil,2 =1Vie [n].

We sometimes usk to denote the Khintchine polytop€(n) when the dimension is clear from the

context. Note that the constraintg!, + M}, = 3, Vi € [n] state that the first signal should be sent with

probability% (hence also the second signal). We now show that optimizieg thhe Khintchine polytope is
# P-hard by reducing the Kintchine problem to Linear progréa (6

Lemma C.3. General linear optimization over the Khintchine polytopes # P-hard.

®Recall from Sectiofi]3 that each type is associated with a(gajr), where¢ [p] is the payoff to the sender [receiver] if the
receiver takes an action of that type.
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maximize 37, ai(MiJ,rJrl - MZF—O =My — M, y)

subjectto (M*,M~) € K(n) (6)

Linear program for computing the Khintchine consténta) for a € R"

Proof. For any givera € R", we reduce the computation &f(a) — the Khintchine constant for — to a
linear optimization problem over the Khintchine polytofe Since our reduction will use two signais.
ando_ which correspond to the sign 6f- a, we will use (M ™, M) to denote the two matrices in the
signature in lieu of M, M?). Moreover, we use the two action typed and—1 to index the columns of
each matrix. For example;!\/[;f_1 is the joint probability of signab,. and the event that thih action has
type —1.

We claim that the Kintchine constaht(a) equals the optimal objective value of the implicitly-delsed
linear program[(6). We denote this optimal objective valyeXPT (L P (6)). We first prove that<(a) <
OPT(LP (®)). Consider a signaling schemein the Kintchine-like persuasion setting which simply out-
PULST ;4 (0.q) fOr €ach state of natuec {£1}" (breaking tie uniformly at random &- a = 0). Sinced is
drawn uniformly from{+1}" andsign(6 - a) = —sign(—6 - a), this scheme outputs each of the signals
ando with probability%. Consequently, the two-signal signature-dt a point inkC. Moreover, evaluating
the objective function of LP[{6) on the two-signal signatuké™, M ) of ¢ yields K (a) = Ey[|0 - a|], as
shown below.

E[|0-al] = E[0- aloy] - Pr(oy) + E[-0-alo_] - Pr(o-)

= Zal E[0;|lo4] - Pr(oy) Zal [0ilo_] x Pr(o-)

i=1 =1

=> <ai[Pr(0i =1|oy) — Pr(; = —1joy)] .Pr(a+)>

i=1

-y (ai[Pr(Hi = 1o_) —Pr(6; = —1|o_)] -Pr(a_)>
i=1

= zn: (ai[Pr(Hi =1,04) — Pr(f; = —1,0+)]> -y <ai[Pr(9i =1,0_) - Pr(f; = —1,0_)]>

i=1 =1

n
= Zai[Mi—,’_—i-l B 2—1 Zaz B 2—1]
i=1

This concludes the proof th&f (a) < OPT(LP (@)).

Now we proveK (a) > OPT(LP (6)). Takeanysignaling scheme which uses only two signalsand
o_,and let(M*, M) be its two-signal signature. Notice, however, thatnow is only the “name” of the
signal, and does not imply thét a is positive. Nevertheless, it is still valid to reverse thewee derivation
until we reach

n

Z a;[M;" , — M; _1] Z ai[]%i’_Jrl — Mi,_—l] = %}[9 ~aloy] - Pr(oy) + E@)[—H ~alo_] - Pr(o_).
=1

Sincef - a and—6 - a are each no greater th#h- a|, we have
E[0-aloi]-Pr(oy) + E[-0-alo_] - Pr(o-) <E[#-a[[o4] - Pr(oy) +E[f -af | 0-] - Pr(o-)
= E[0-af) = K(a).
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That is, the objective value of LP](6) is upper boundediby:), as needed. O

Before we proceed to present the reduction from the memipepsbblem for/C to optimal persuasion,
we point out an interesting corollary of LemalC.3.

Corollary C.4. LetP be the polytope of realizable signatures for a persuasi@mbigm withn i.i.d. actions
andm types (see Sectidm 3). Linear optimization o®eis # P-hard, and this holds even whei = 2.

Proof. Consider the Khintchine-like persuasion setting. It isydassee that the Khintchine polytopé can
be obtained fronP by adding the constraints/?* = 0 for i > 3 and M’} + M5 = 1 for i € [n], followed
by a simple projection. Therefore, the membership probl@niCfcan be reduced in polynomial time to the
membership problem fdP, since the additional linear constraints can be expliatigcked in polynomial
time. By the polynomial-time equivalence between optitiimaand membership, it follows that general
linear optimization ove is # P-hard. O

Remark C.5. It is interesting to compare Corollafy 3.4 to single item @ians with i.i.d. bidders, where
the problem does admit a polynomial-time separation ordaiethe polytope of realizable signatures via
Border’s TheorerﬂﬂﬂZ] and its algorithmic properti[]ﬁ]. In contrast, the polytope of realizable sig-
natures for Bayesian persuasion#$-hard to optimize over. Nevertheless, in Sediion 3 we welesid able
to compute the optimal signaling scheme and sender uitiitpérsuasion with i.i.d. actions. Corollafy G.4
conveys that it was crucial for our algorithm to exploit theesial structure of the persuasion objective and
the symmetry of the optimal scheme, since optimizing a geokjective ovefP is #P-hard.

Reduction

We now present a reduction from the membership problem &Ktiintchine polytope to the computation of
optimal sender utility for persuasion with independentosns. As the output of our reduction, we construct a
persuasion instance of the following form. Thereare 1 actions. Actior) is special— it deterministically
results in sender utility and receiver utility). Here, we think ofe > 0 as being small enough for our
arguments to go through. The otheractions areaegular. Action ¢ > 0 independentlyresults in sender
utility —a; and receiver utilitya; with probability% (call this the typel;), or sender utility—b; and receiver
utility b; with probability% (call this the type2;). Note that the sender and receiver utilities ze€0-sum
for both types. Notice that, though each regular actiorpetglistribution is uniform over its two types, the
actions here araot identical because the associated payoffs — specified, laydb; for each action —

are different for different actions. Since the special@tis deterministic and the probability of its (only)
type is1 in any signal, we can interpret aiy/!, M?) € K(n) as a two-signal signature for our persuasion
instance (the row corresponding to the special adliimplied). For examplei,wi{2 is the joint probability

of the first signal and the event that actidmas type2;. Our goal is to reduce membership checkingkfigr)

to computing the optimal expected sender utility for a passan instance with carefully chosen parameters
{aitizy, {bi}izy, ande.

In relating optimal persuasion to the Khintchine polytothere are two main difficulties: (& consists
of two-signal signatures, so there should be an optimalrsehe our persuasion instance which uses only
two signals; (2) To be consistent with the definitionfgfsuch an optimal scheme should send each signal
with probability exactly%. We will design specifie, a;, b; to accomplish both goals.

For notational convenience, we will again use*, M) to denote a typical element i instead of
(M*, M?) because, as we will see later, the two constructed signdilmdice positive and negative sender
utilities, respectively. Notice that there are onlyegrees of freedom iV, M ~) € K. This is because
M™ + M~ is the all-% matrix in R”*2, corresponding to the prior distribution of states of nat(by the
definition of realizable signatures). Moreov@r[,j1 + M, = % for all i € [n] (by the definition ofK).

Therefore, we must have
1
Mt — M~ — Mt —
i1 — Mo — 5 T Mo —

N
s M.

5 B ’
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This implies that we can parametrize signatug@st, M/~) € K by a vectorz € [0, 2] WhereM;r1 =
M, = xz;and M, = M7, = 5 — x; for eachi € [n]. For anyz € [0, 3], let M(z) denote the signature
(M, M) defined byz as just described.

We can now restate the membership problemKtcms follows: givenx € ] determine whether
M(x) € K. When any of the entries af equals0 or 5 L this problem is '[I’IVI SO we assume without
loss of generality that < (0, %)". Moreover, whemi = }l for somei, it is easy to see that a signaling
scheme with signaturé1(x), if one exists, must choose its signal independently ofythe bf action:, and
thereforeM(x) € K(n) if and only if M(z_;) € K(n — 1). This allows us to assume without loss of
generality thatz; # % for all 4.

Givenx € (0, 2) with x; # % for all i, we construct specifie and a;, b; for all i such that we
can determine whethek1(xz) € K by simply looking at the optimal sender utility in the copeading
persuasion instance. We choose parameteandb; to satisfy the following two equations.

T;a; + (% —x;)b; =0 (1)
1 1
(5 —zi)a; + wib; = 5 (8)

We note that the above linear system always has a solution whe* %, which we assumed previously.
We make two observations about our choiceofndb;. First, theprior expected receiver utilit%(ai +b;)
equals% for all actions: (by simply adding Equatiori{7) andl (8)). Secongdandb; are both non-zero, and
this follows easily from our assumption that € (0, %).

Now we show how to determine wheth#&#(x) € K by only examining the optimal sender utility in
the constructed persuasion instance. We start by showatgehtricting to two-signal schemes is without
loss of generality in our instance.

Lemma C.6. There exists an optimal incentive-compatible signalifgesee which uses at mdsto signals:
one signal recommends the special action, and the othemewnds some regular action.

Proof. Recall that an optimal incentive-compatible scheme usge$ signals, with signat; recommending
actions for i = 0,1,...,n. Fix such a scheme, and lat denote the probability of signat;. Signalo;
induces posterior expected receiver utilityfc;) and sender utilitys;(c;) for each actiory. For a regular
actionj # 0, we haves;(o;) = —r;(o;) for all i due to the zero-sum nature of our construction. Notice
thatr; (o;) > 0 for all regular actions # 0, since otherwise the receiver would prefer actiaver action.
Consequently, for each signaj with 7 = 0, the receiver derives non-negative utility and the sendevels
non-positive utility.

We claim that merging signats,, o9, . . . , o, — i.€., modifying the signaling scheme to output the same
signals™* in lieu of each of them — would not decrease the sender’s ¢gpadility. Recall that incentive
compatibility implies that;(o;) = max;j_, r;(0;). Using Jensen’s inequality, we get

ZOAZ‘TZ'(O'Z') > I;lzig( [Z OtiTj(O'i)] . (9)
i=1 =1

If the maximum in the right hand side expression[df (9) isiagd at;* = 0, the receiver will choose
the special actio) when presented with the merged sigadl Recalling thats;(o;) is non-positive for

1 # 0, this can only improve the sender’s expected utility. Othee, the receiver chooses a regular action
J* # 0 when presented with*, resulting in a total contribution of ;" | «;r;-(0;) to the receiver’s expected

®If 2, is0 or % thenM(x) € Kifand only ifz; = i for all 5 # 4. This is because the corresponding signaling scheme must
choose its signal based solely on the type of action
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utility from the merged signal, down from the total conttibm of Y , a;r;(0;) by the original signals
o1,--.,0,. Recalling the zero-sum nature of our construction for la@gactions, the merged signat con-
tributesd " | ais;-(0:) = — > 1, ayrj«(o;) to the sender’s expected utility, up from a total contribnti
of > aisi(0) = — >oiy ayri(oq) by the original signals+, ... ., o,,. Therefore, the sender is not worse
off by merging the signals. Moreover, interpreting as a recommendation for actigh yields incentive
compatibility. O

Therefore, in characterizing the optimal solution to ounstoucted persuasion instance, it suffices to
analyze two-signal schemes of the the form guaranteed byMadf.6. For such a scheme, we denote
the signal that recommends the special actidoy o (indicating that the sender derives positive utility
€), and denote the other signal by (indicating that the sender derives negative utility, aswileshow).

For convenience, in the following discussion we use the esgon “payoff from a signal” to signify the
expected payoff of a player conditioned on that signal mliétdl by the probability of that signal. For
example, thesender’s expected payoff from sigral equals the sender’s expected payoff conditioned on
signalo_ multiplied by the overall probability that the scheme ot$pt_, assuming the receiver follows
the scheme’s (incentive compatible) recommendations. [g¢euse the expression “payoff from an action
in a signal” to signify the posterior expected payoff of ayglafor that action conditioned on the signal,
multiplied by the probability that the scheme outputs tigmal. For example, theeceiver’s expected payoff
from actioni in signalo equalswy - (o), wherer; (o) is the receiver’s posterior expected payoff from
actioni given signalos ., anda is the overall probability of signat, .

Lemma C.7. Fix an incentive-compatible scheme with signalsando, as described above. The sender’s
expected payoff from signal_ is at most—%. Moreover, if the sender’ expected payoff fremis exactly
—%, then for each regular actionthe expected payoff of both the sender and the receiver fationa in
signal o equals0.

Proof. Assume that signat, [o_] is sent with probabilityr, [«_] and induces posterior expected receiver
payoffr;(o4) [r;(o_)] for each action. Recall from our construction that tipgior expected payoff of each
regular action # 0 equalsfa; + $b; = 3. Since the prior expectation must equal the expected poister
expectation, it follows that, - (o) + a— -1ri(0-) = % whens is regular. The receiver’s reward from the
special action is deterministically, and therefore incentive compatibility implies thato.) < 0 for each
regular action. It follows thata_ - (o) = 1 — a - r;(04) > 3 for regular actions. In other words,
the receiver’s expected payoff from each regular actiongnad o _ is at Ieast%. By the zero-sum nature of
our construction, the sender’s expected payoff from eaghlae action in signab_ is at most—%. Since
o_ recommends a regular action, we conclude that the sendgestd payoff fronv_ is at most—%.

Now assume that the sender’s expected payoff fromis exactly—%. By the zero-sum property,
incentive compatibility, and the above-established faatd_ - r;(c_) > % for regular actiong, it follows
that the receiver's expected payoff from each regular adticsignalo _ is exactly%. Recalling that -
ri(oy) +a_ -rio-) = % wheni is regular, we conclude that the receiver’s expected pdyamfh a regular
action in signab, equalsd. By the zero-sum property for regular actions, the sameiesfor the sender.

O

The key to the remainder of our reduction is to choose a smaligh value for the parameter—
the sender’s utility from the special action — so that thamat signaling scheme satisfies the property
mentioned in LemmBA_Cl.7: The sender’s expected payoff frgnasi_ is exactly equal to its maximum
possible value of—%. In other words, we must makeso small so that the sender prefers to not sacrifice
any of her payoff fromo_ in order to gain utility from the special action recommendgdo, . Notice
that this upper bound o#% is indeed achievable: the uninformative signaling scherhelwrecommends
an arbitrary regular action has this property. We now shaat ¢h“small enough’e indeed exists. The
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key idea behind this existence proof is the following: Wetstath a signaling scheme which maximizes
the sender’s payoff fronor_ at —%, and moreover corresponds to a vertex of the polytope ohinee
compatible signatures. When> 0 is smaller than the “bit complexity” of the vertices of thislytope,
moving to a different vertex — one with lower sender payoffnfro_ — will result in more utility loss
from o_ than utility gain fromo,.. We show that > 0 with polynomially many bits suffices, and can be
computed in polynomial time.

Let P, be the family of allrealizabletwo-signal signatures (again, ignoring action It is easy to see
that P, is a polytope, and importantly, all entries of any vertexPofare integer multiples og%. This is
because every vertex % corresponds to a deterministic signaling scheme whiclitjosug the set of states
of nature, and every state of nature occurs with probahili/*. As a result, all vertices oP, haveO(n)
bit complexity.

To ease our discussion, we use a compact representatioroiftts pn P,. In particular, any point
in P, can be captured by + 1 variables: variablep denotes the probability of sending sigral, and
variabley; denotes the joint probability of signal, and the event that actionhas typel;. It follows
that joint probability of type2;, and signalo. is p — y;, and the probabilities associated with signal
are determined by the constraint thidt" + A/~ is the all4 matrix. With some abuse of notation, we use
M(p,y) = (M™, M~) to denote the signature i, corresponding to the probabilifyand n-dimensional
vectory. Now we consider the following two linear programs.

maximize pe +u
subjectto M(p,y) € P,

yia; + (p — yi)bi <0, fori=1,...,n. (10)
u<—[(3—y)ai+ @ —pty)b), fori=1,...,n.

maximize wu

subjectto M(p,y) € P 1)
yia; + (p — yi)bi <0, fori=1,...,n.

u < —[(% —yi)ai+(% —p+uy)bi], fori=1,... n.

Linear programs[(10) and (IL1) are identical except for tloe tlaat the objective of LA_(10) includes the
additional termpe. LP (I0) computes precisely the optimal expected sendéy iniour constructed persua-
sion instance: The first set of inequality constraints aedrikhentive-compatibility constraints for the signal
o4+ recommending actiol; The second set of inequality constraints state that thdes&snpayoff from
signalo_ is the minimum among all actions, as implied by the zero-satune of our construction; The
objective is the sum of the sender’s payoffs from sigmalsando_. Notice that the incentive-compatibility
constraints for signat_, namely(3 —y;)a; + (3 —p+y;)b; > 0 for alli # 0, are implicitly satisfied because
+a;+1b; = 1 by our construction antk —y;)a;+ (2 —p+y:)b; = $a;+1b;—[yia;+(p—y:)b;] > £—0 > 0.
On the other hand, LP_(1L1) maximizes the sender’s expectgnffdeom signalo_. Observe that the opti-
mal objective value of LFL{11) is precisely} because: < —[(3 — yi)a; + (3 — p+ y;)bs] < —1 for all
i # 0, and equality is attained, for example pat 0 andy = 0. -

Let P, be the set of all feasible:, M(p, y)) for LP (10) (and LP[(I11)). Obviously?, is a polytope. We
now argue that all vertices é?; have bit complexity polynomial in and the bit complexity o € (0, %)".

In particular, denote the bit complexity afby ¢. Sincea;, b; are computed by a two-variable two-equation
linear system involvingr; (Equations[{l7) and{8)), they each hav¢/) bit complexity. Consequently, all
the explicitly described facets 6%, haveO(¢) bit complexity. Moreover, since each vertex/df hasO(n)
bit complexity, each facet oP, then hasO(n?) bit complexity, i.e., the coefficients of inequalities that
determine the facets ha¥g(n?) bit complexity. This is due to the fact that facet complexfya rational
polytope is upper bounded bycabic polynomial of the vertex complexity andce versa(see, e.g.,@4]).
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To sum up, any facet of polytop@; has bit complexityO(n? + ¢), and therefore any vertex 5?; has
O(n”3) bit complexity.

Let the polynomialB(n, ¢) = O(n"¢3) be an upper bound on the maximum bit complexity of vertices
of 7’;2 Now we are ready to set the value of LP (10) always has an optimal vertex solution which we

denote agu*, M*). Recall thatu < —3 for all points(u, M(p, y)) in P> andu = —1 is attainable at some

vertices. Since all vertices 6%, haveB(n, ¢) bit complexity, (u*, M*) must either satisfy either* = —%

oru* < —% — 278 Therefore, it suffices to set= 27509, which is a number with polynomial bit
complexity. As a result, any optimal vertex solution to [Binust satisfyu* = —%, since the loss incurred
by moving to any other vertex with < —% can never be compensated for by the other terma e.

With such a small value af, the sender’s goal is to send signal with probability as high as possible,
subject to the constraint that her utility froe_ is precisely—%. In other words, signay, must induce
expected receiver/sender utility preciséljor each regular action# 0 (see Lemm&aC]7). This character-
ization of the optimal scheme now allows us to determine dret1(x) € K by inspecting the sender’s
optimal expected utility. The following Lemma completes proof of Theoren_4]1.

Lemma C.8. Given the small enough value oflescribed above, the sender’s expected utility in the @btim
signaling scheme for our constructed persuasion instasia lieast} (¢ — 1) if and only if M(z) € K.

Proof. <: If M(x) € K, then by our choice aof;, b; (recall Equations{7) and](8)), the signaling scheme
implementingM () is incentive compatible, the sender’s payoff from signalis %e, and her payoff from
o_ is —%. Therefore, the optimal sender utility is at legst— 3.

=: Let M(p, y) be the signature of a vertex optimal signaling scheme inI0p. (By our choice ok
we know that the sender payoff from sigral must be exactly—%. Therefore, to achieve overall sender
utility at Ieast%e — % signalo must be sent with probability > % and the receiver’s payoff from each
regular actioni # 0 in signalo is exactly0. That is,y;a; + (p — y;)b; = 0. By construction, we also have
thatz;a; + (0.5 — z;)b; = 0 anday, b; # 0, which imply thatg—i = (ﬁ,);_ym and, furthermore, thaj; > x;
sincep > % Now let ¢ be a signaling scheme with the signatuvé(p, y). We can post-process so it
has signatureV(x) as follows: whenevep outputs the signat_, flip a biased random coin to outpat.
with probability‘)}T5 and outputr_ otherwise. By using the identity: = ==, it is easy to see that this

0.5—:21' !

adjusted signaling scheme has signatiéx). O
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D Omitted Proofs from Section3
D.1 A Bicriteria FPTAS

Proof of Lemmal5.2

Fix ¢, K, and\, and lety denote the resulting signaling scheme implemented by Algoid. Letd ~ X
denote the input tg, ando ~ ¢(#) denote its output. First, we condition on the empirical siemyp—=
{61, ...,0x} without conditioning on the index of the input state of nature, and show that-incentive
compatibility holds subject to this conditioning. The miple of deferred decisions implies that, subject to
this conditioning,f is uniformly distributed in\. By definition of linear prograni{4), the signaling scheme
¢ computed in Step|3 is-incentive compatible scheme for the empirical distribath. Sinces ~ (0)
and@ is conditionally distributed according t, this implies that alk-incentive compatibility constraints
conditionally hold; formally, the following holds for eaglair of actionsi andj:

E[ri(0)|o = 04, A > E[r;(0)|o = 03, \] — €

Removing the conditioning on and invoking linearity of expectations shows thatis e-incentive
compatible for\, completing the proof.

Proof of Lemmal5.3

As in the proof of LemmB&T5]2, we condition on the empirical pmﬁ = {6,,...,0x} and observe thdtis
uniformly distributed in\ after this conditioning. The conditional expectation afider utility then equals
Zszl Sy %&(Qk,ai)si(ek), where{ is the signaling scheme computed in Sfép 3 based.oSince
this is precisely the optimal value of the LIB (4) solved inpg8e removing the conditioning and invoking
linearity of expectations completes the proof.

Proof of Lemmal5.4

Recall that linear prograni(1) solves for the optimal ind@ntompatible scheme fox. It is easy to see
that the linear progranii4) solved in stelp 3 is simply theainsation of LP [(1) for the empirical distri-
bution A\ consisting of K samples from\. To prove the lemma, it would suffice to show that the optimal
incentive-compatible scheme' corresponding to LA 1) remairgncentive compatible ane-optimal for
the distribution)\, with high probability. Unfortunately, this approach faibecause polynomially-many
samples from\ are not sufficient to approximately preserve the incentivegatibility constraints cor-
responding to low-probability signals (i.e., signals whire output with probability smaller than inverse
polynomial inn). Nevertheless, we show in Cla[m ID.1 that there exists anmoxpately optimal solution
© to LP () with the property that every signal is eitherlarge, which we define as being output Bywith
probability at least. assumingd ~ A, or honestin that only states of natur@ with i € argmax; r;(0)
are mapped toit. It is easy to see that sampling preserveastiie-compatibility exactly for honest signals.
As for large signals, we employ tail bounds and the union ddorshow that polynomially many samples
suffice to approximately preserve incentive compatibil@aim[D.2).

Claim D.1. There is a signaling schemg which is incentive compatible fok, induces sender utility
us(@,\) > OPT — 5 on A, and such that every signal ¢fis either large or honest.

Proof. Let ¢* be the optimal incentive-compatible scheme Xo i.e. the optimal solution to LR{1). We
call a signalo smallif it is output by ¢* with probability less than:-, i.e. if 3 ;.o Ap*(0,0) < 4=, and
otherwise we call itarge. Let ¢ be the scheme which is defined as follows: on imft first samplesr ~
©*(0); if o is large thenp simply outputss, and otherwise it recommends an action maximizing receiver
utility in state of nature) —- i.e., outputss;s for i’ € argmax; r;(6). Itis easy to see that every signal®f

is either large or honest. Moreover, singéis incentive compatible and only replaces recommendations
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Rainy | Sunny
Walk | 1—6 1
Drive 1 0

Table 1: Receiver’s Payoffs in Rain and Shine Example

of ©* with “honest” recommendations, it is easy to check tha incentive compatible fok. Finally, since
the total probability of small signals ip* is at most<, and utilities are inM—1, 1], the sender’s expected
utility from & is no worse thar§ smaller than her expected utility fropt. O

Claim D.2. Let be the signaling scheme from Cldim D.1. With probabilityegsit1 — £ over the sample
X, @ is e-incentive compatible fok, and moreover (@, A) > us(3,\) — <.

Proof. Recall thatp is incentive compatible fok, and every signal is either large or honest. Sihéga set
of samples from, it is easy to see that incentive compatibility constrajsegtaining to the honest signals
continue to hold oveh. It remains to show that incentive compatibility consttaifor large signals, as well
as expected sender utility, are approximately preserveshwéplacingh with .

Recall that incentive-compatibility requires tH8[5(0, o;)(r;(8) — r;(#))] > 0 for eachi,j € [n].
Moreover, the sender’s expected utility can be writterEggy ;" | $(0,0;)si(0)]. The left hand side of
each incentive compatibility constraint evaluates theeetgtion of a fixed function of with range[—2, 2],
whereas the sender’s expected utility evaluates the eagpattof a function off with range in[—1,1].
Standard tail bounds and the union bound, coupled with ougfdlachoice of the number of samplés,
imply that replacing distribution\ with X approximately preserves each of thedet 1 quantities to within
an additive error of% with probability at leastl — 5. This bound on the additive loss translates-o
incentive compatibility for the large signals, and is lesartthe permitted decreasejpfor expected sender
utility. O

The above claims, coupled with the fact that sender payo#sbaunded in—1, 1], imply that the
expected optimal value of linear progralnh (4) is at |€a8tT" — ¢, as needed.

D.2 Information-Theoretic Barriers
Impossibility of Incentive Compatibility (Proof of Theore m5.3 (a))

Consider a setting with two states of nature, which we withamiently refer to asainy andsunny The
receiver, who we may think of as a daily commuter, has twaastiwalk anddrive. The receiver slightly
prefers driving on a rainy day, and strongly prefers walkimga sunny day. We summarize the receiver’s
payoff function, parametrized by > 0, in Table[1. The sender, who we will think of as a municipalitigh
black-box sample access to weather reports drawn from the déstribution as the state of nature, strongly
prefers that the receiver chooses walking regardless othehd is sunny or rainy: we let,, ;. = 1 and
sarive = 0 In both states of nature.

Let A\, be the point distribution on the rainy state of nature, and Jée such thaPr)_[rainy] = le
andPr)_[sunny = % It is easy to see that the unique direct incentive-comfetbheme fon,. always
recommends driving, and hence results in expected senitigr of 0. In contrast, a simple calculation
shows that always recommending walking is incentive coiblgafor \;, and results in expected sender
utility 1. If algorithm A is incentive compatible andoptimal for a constant < 1, then A()\,.) must never
recommend walking wherea4(\;) must recommend walking with constant probability at ledst- c)
overall (in expectation over the input state of natdre- \; as well as all other internal randomness).
Consequently, given a black box distributidhe {\,, \s}, evaluatingA(D, #) on a random draw ~ D
yields a tester which distinguishes betwegrand \; with constant probability — c.
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Pr[91] Pr[eg] PI‘[93]
Al 1-26 20 0
N 1-25 ) )

Table 2: Two Distributions on Three Actions

Since the total variation distance betwegnand ), is O(0), it is well known (and easy to check) that
any black-box algorithm which distinguishes between the distributions with2(1) success probability
must take()(%) samples in expectation when presented with one of thes@disbns. As a consequence,
the average-case sample complexitydadn either of\,. and\; is Q(%). Sinced > 0 can be made arbitrarily
small, this completes the proof.

Impossibility of Optimality (Proof of Theorem £.51(b))

Consider a setting with three actiofi$, 2,3} and three corresponding states of natiiréd-, 5. In each
statef;, the receiver derives utility from action: and utility 0 from the other actions. The sender, on the
other hand, derives utility from action3 and utility 0 from actions1 and2. For an arbitrary parameter
5 > 0, we define two distributiona and )\’ over states of nature with total variation distad¢dlustrated

in Table[2.

Assume algorithmd is optimal and:-incentive compatible for a constank % The optimal incentive-
compatible scheme foY results in expected sender utili®y by recommending actiohwhenever the state
of nature isf, or 63, and with probabilityﬁ when the state of nature #&§. Some calculation reveals
that in order to match this expected sender utility subjeat-incentive compatibility, signaling scheme
¢ = A(X) must satisfyy’ (03, 03) > pfor p = 1 — 4¢ > 0. In other words;y’ must recommend action
3 a constant fraction of the time when given stéteas input. In contrast, sinee< % it is easy to see that
¢ = A(\) can never recommend acti@nfor any signal, the posterior expected receiver rewaréétion3
is 0, whereas one of the other two actions must have posteri@céxg receiver reward at Iea?tlt follows
that givenD € {\, \'}, acall to A(D, 0,) yields a tester which distinguishes betweeand\’ with constant
probability 2. Since\ and\’ have statistical distaneg we conclude that the worst case sample complexity
of A on either of\ or \' is Q(%). Sinced > 0 can be made arbitrarily small, this completes the proof.
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