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Abstract

Persuasion, defined as the act of exploiting an informational advantagein order to effect the decisions
of others, is ubiquitous. Indeed, persuasive communication has been estimated to account for almost a
third of all economic activity in the US. This paper examinespersuasion through a computational lens,
focusing on what is perhaps the most basic and fundamental model in this space: the celebratedBayesian
persuasionmodel of Kamenica and Gentzkow [34]. Here there are two players, asenderand areceiver.
The receiver must take one of a number of actions with a-priori unknown payoff, and the sender has
access to additional information regarding the payoffs of the various actions for both players. The sender
can commit to revealing a noisy signal regarding the realization of the payoffs of various actions, and
would like to do so as to maximize her own payoff in expectation assuming that the receiver rationally
acts to maximize his own payoff. When the payoffs of various actions follow a joint distribution (the
common prior), the sender’s problem is nontrivial, and its computational complexity depends on the
representation of this prior.

We examine the sender’s optimization task in three of the most natural input models for this problem,
and essentially pin down its computational complexity in each. When the payoff distributions of the
different actions are i.i.d. and given explicitly, we exhibit a polynomial-time (exact) algorithmic solution,
and a “simple”(1− 1/e)-approximation algorithm. Our optimal scheme for the i.i.d. setting involves an
analogy to auction theory, and makes use of Border’s characterization of the space of reduced-forms for
single-item auctions. When action payoffs are independentbut non-identical with marginal distributions
given explicitly, we show that it is #P-hard to compute the optimal expected sender utility. In doing so,
we rule out ageneralized Border’s theorem, as defined by Gopalan et al [30], for this setting. Finally,
we consider a general (possibly correlated) joint distribution of action payoffs presented by a black box
sampling oracle, and exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria
guarantee. Our FPTAS is based on Monte-Carlo sampling, and its analysis relies on the principle of
deferred decisions. Moreover, we show that this result is the best possible in the black-box model for
information-theoretic reasons.
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1 Introduction
“One quarter of the GDP is persuasion.”

This is both the title, and the thesis, of a 1995 paper by McCloskey and Klamer [39]. Since then,
persuasion as a share of economic activity appears to be growing — a more recent estimate places the figure
at 30% [4]. As both papers make clear, persuasion is intrinsic in most human endeavors. When the tools of
“persuasion” are tangible — say goods, services, or money — this is the domain of traditionalmechanism
design, which steers the actions of one or many self-interested agents towards a designer’s objective. What
[39, 4] and much of the relevant literature refer to as persuasion, however, are scenarios in which the power
to persuade derives from aninformational advantageof some party over others. This is also the sense
in which we use the term. Such scenarios are increasingly common in the information economy, and it is
therefore unsurprising that persuasion has been the subject of a large body of work in recent years, motivated
by domains as varied as auctions [9, 25, 24, 10], advertising[3, 33, 17], voting [2], security [46, 42], multi-
armed bandits [37, 38], medical research [35], and financialregulation [28, 29]. (For an empirical survey
of persuasion, we refer the reader to [21]). What is surprising, however, is the lack of systematic study of
persuasion through a computational lens; this is what we embark on in this paper.

In the large body of literature devoted to persuasion, perhaps no model is more basic and fundamental
than theBayesian Persuasionmodel of Kamenica and Gentzkow [34], generalizing an earlier model by
Brocas and Carrillo [14]. Here there are two players, who we call thesenderand thereceiver. The receiver
is faced with selecting one of a number ofactions, each of which is associated with an a-priori unknown
payoff to both players. Thestate of nature, describing the payoff to the sender and receiver from each action,
is drawn from a prior distribution known to both players. However, the sender possesses an informational
advantage, namely access to therealizedstate of nature prior to the receiver choosing his action. Inorder to
persuade the receiver to take a more favorable action for her, the sender cancommitto a policy, often known
as aninformation structureor signaling scheme, of releasing information about the realized state of nature to
the receiver before the receiver makes his choice. This policy may be simple, say by always announcing the
payoffs of the various actions or always saying nothing, or it may be intricate, involving partial information
and added noise. Crucially, the receiver is aware of the sender’s committed policy, and moreover is rational
and Bayesian. We examine the sender’s algorithmic problem of implementing the optimal signaling scheme
in this paper. A solution to this problem, i.e., a signaling scheme, is an algorithm which takes as input the
description of a state of nature and outputs a signal, potentially utilizing some internal randomness.

1.1 Two Examples

To illustrate the intricacy of Bayesian Persuasion, Kamenica and Gentzkow [34] use a simple example in
which the sender is a prosecutor, the receiver is a judge, andthe state of nature is the guilt or innocence
of a defendant. The receiver (judge) has two actions, conviction and acquittal, and wishes to maximize
the probability of rendering the correct verdict. On the other hand, the sender (prosecutor) is interested
in maximizing the probability of conviction. As they show, it is easy to construct examples in which the
optimal signaling scheme for the sender releases noisy partial information regarding the guilt or innocence
of the defendant. For example, if the defendant is guilty with probability 1

3 , the prosecutor’s best strategy
is to claim “guilt” whenever the defendant is guilty, and also claim “guilt” just under half the time when
the defendant is innocent. As a result, the defendant will beconvicted whenever the prosecutor claims
“guilt” (happening with probability just under23 ), assuming that the judge is fully aware of the prosecutor’s
signaling scheme. We note that it is not in the prosecutor’s interest to always claim “guilt”, since a rational
judge aware of such a policy would ascribe no meaning to such asignal, and render his verdict based solely
on his prior belief — in this case, this would always lead to acquittal.1

1In other words, a signal is an abstract object with no intrinsic meaning, and is only imbued with meaning by virtue of how itis
used. In particular, a signal has no meaning beyond the posterior distribution on states of nature it induces.
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A somewhat less artificial example of persuasion is in the context of providing financial advice. Here,
the receiver is an investor, actions correspond to stocks, and the sender is a stockbroker or financial adviser
with access to stock return projections which are a-priori unknown to the investor. When the adviser’s
commission or return is not aligned with the investor’s returns, this is a nontrivial Bayesian persuasion
problem. In fact, interesting examples exist when stock returns are independent from each other, or even
i.i.d. Consider the following simple example which fits intothe i.i.d. model considered in Section 3: there
are two stocks, each of which is a-priori equally likely to generate low (L), moderate (M), or high (H)
short-term returns to the investor (independently). We refer to L/M/H as thetypesof a stock, and associate
them with short-term returns of0, 1 + ǫ, and2 respectively. Suppose, also, that stocks of type L or H are
associated with poor long-term returns of0; in the case of H, high short-term returns might be an indication
of volatility or overvaluation, and hence poor long-term performance. This leaves stocks of type M as the
only solid performers with long-term returns of1. Now suppose that the investor is myopically interested in
maximizing short-term returns, whereas the forward-looking financial adviser is concerned with maximizing
long-term returns, perhaps due to reputational considerations. Simple calculation shows that providing full
information to the myopic investor results in an expected long-term reward of13 , as does providing no
information. An optimal signaling scheme, which guarantees that the investor chooses a stock with type
M whenever such a stock exists, is the following: when exactly one of the stocks has type M recommend
that stock, and otherwise recommend a stock uniformly at random. A simple calculation using Bayes’ rule
shows that the investor prefers to follow the recommendations of this partially-informative scheme, and it
follows that the expected long-term return is5

9 .

1.2 Results and Techniques

Motivated by these intricacies, we study the computationalcomplexity of optimal and near-optimal persua-
sion in the presence of multiple actions. We first observe that a linear program with a variable for each
(state-of-nature, action) pair computes a description of the optimal signaling scheme. However, when ac-
tion payoffs are distributed according to a joint distribution — say exhibiting some degree of independence
across different actions — the number of states of nature maybe exponential in the number of actions; in
such settings, both the number of variables and constraintsof this linear program are exponential in the
number of actions. It is therefore unsurprising that the computational complexity of persuasion depends
on how the prior distribution on states of nature is presented as input. We therefore consider three natural
input models in increasing order of generality, and mostly pin down the complexity of optimal and near-
optimal persuasion in each. Our first model assumes that action payoffs are drawn i.i.d. from an explicitly
described marginal distribution. Our second model considers independent yet non-identical actions, again
with explicitly-described marginals. Our third and most general model considers an arbitrary joint distribu-
tion of action payoffs presented by a black-box sampling oracle. In proving our results, we draw connections
to techniques and concepts developed in the context of Bayesian mechanism design (BMD), exercising and
generalizing them along the way as needed to prove our results. We mention some of these connections
briefly here, and elaborate on the similarities and differences from the BMD literature in Appendix A.

We start with the i.i.d model, and show two results: a “simple” and polynomial-timee−1
e

-approximate
signaling scheme, and a polynomial-time implementation ofthe optimal scheme. Both results hinge on a
“symmetry characterization” of the optimal scheme in the i.i.d. setting, closely related to the symmetrization
result from BMD by [20] but with an important difference which we discuss in Appendix A. Our “simple”
scheme decouples the signaling problem for the different actions and signalsindependentlyfor each. This
result implies that signaling in this setting can be “distributed” among multiple non-coordinating persuaders
without much loss. Our optimal scheme involves a connectionto Border’s characterization of the space
of feasible reduced-form auctions [13, 12], as well as its algorithmic properties [15, 1]. This connection
involves proving a correspondence between “symmetric” signaling schemes and a subset of “symmetric”
single-item auctions; one in which actions in persuasion correspond to bidders in an auction.
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Next, we consider Bayesian persuasion with independent non-identical actions. One might expect that
the partial correspondence between signaling schemes and single-item auctions in the i.i.d. model gen-
eralizes here, in which case Border’s theorem — which extends to single-item auctions with independent
non-identical bidders — would analogously lead to polynomial time algorithm for persuasion in this setting.
However, we surprisingly show that this analogy to single-item auctions ceases to hold for non-identical
actions: we prove that there is nogeneralized Border’s theorem, in the sense of Gopalan et al. [30], for per-
suasion with independent actions. Specifically, we show that it is #P-hard to exactly compute the expected
sender utility for the optimal scheme, ruling out Border’s-theorem-like approaches to this problem unless
the polynomial hierarchy collapses. Our proof starts from the ideas of [30], but our reduction is much more
involved and goes through the membership problem for an implicit polytope which encodes a #P-hard prob-
lem — we elaborate on these differences in Appendix A. We notethat whereas we do rule out computing an
explicit representation of the optimal scheme which permits evaluating optimal sender utility, we do not rule
out other approaches which might sample the optimal scheme “on the fly” in the style of Myerson’s optimal
auction [41]— we leave the intriguing question of whether this is possible as an open problem.

Finally, we consider the black-box model with general distributions, and prove essentially-matching pos-
itive and negative results. For our positive result, we exhibit fully polynomial-time approximation scheme
(FPTAS) with a bicriteria guarantee. Specifically, our scheme loses an additiveǫ in both expected sender
utility and incentive-compatibility (as defined in Section2), and runs in time polynomial in the number of
actions and1

ǫ
. Our negative results show that this is essentially the bestpossible for information-theoretic

reasons: any polynomial-time scheme in the black box model which comes close to optimality must signif-
icantly sacrifice incentive compatibility, and vice versa.We note that our scheme is related to some prior
work on BMD with black-box distributions [16, 45], but is significantly simpler and more efficient: instead
of using the ellipsoid method to optimize over “reduced forms”, our scheme simply solves a single linear
program on a sample from the prior distribution on states of nature. Such simplicity is possible in our setting
due to the different notion of incentive compatibility in persuasion, which reduces to incentive compatibility
on the sample using the principle of deferred decisions. We elaborate on this connection in Appendix A.

We remark that our results suggest that the differences between persuasion and auction design serve as
a double-edged sword. This is evidenced by our negative result for independent model and our “simple”
positive result for the black-box model.

1.3 Additional Discussion of Related Work

To our knowledge, Brocas and Carrillo [14] were the first to explicitly consider persuasion through informa-
tion control. They consider a sender with the ability to costlessly acquire information regarding the payoffs
of the receiver’s actions, with the stipulation that acquired information is available to both players. This
is technically equivalent to our (and Kamenica and Gentzkow’s [34]) informed sender who commits to a
signaling scheme. Brocas and Carrillo restrict attention to a particular setting with two states of nature and
three actions, and characterize optimal policies for the sender and their associated payoffs. Kamenica and
Gentzkow’s [34] Bayesian Persuasion model naturally generalizes [14] to finite (or infinite yet compact)
states of nature and action spaces. They establish a number of properties of optimal information structures
in this model; most notably, they characterize settings in which signaling strictly benefits the sender in terms
of the convexity/concavity of the sender’s payoff as a function of the receiver’s posterior belief.

Since [14] and [34], an explosion of interest in persuasion problems followed. The basic Bayesian
persuasion model underlies, or is closely related to, recent work in a number of different domains: price
discrimination by Bergemann et al. [10], advertising by Chakraborty and Harbaugh [17], security games
by Xu et al. [46] and Rabinovich et al. [42], multi-armed bandits by Kremer et al. [37] and Mansour et al.
[38], medical research by Kolotilin [35], and financial regulation by Gick and Pausch [28] and Goldstein
and Leitner [29]. Generalizations and variants of the Bayesian persuasion model have also been considered:
Gentzkow and Kamenica [26] consider multiple senders, Alonso and Câmara [2] consider multiple receivers
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in a voting setting, Gentzkow and Kamenica [27] consider costly information acquisition, Rayo and Segal
[43] consider an outside option for the receiver, and Kolotilin et al. [36] considers a receiver with private
side information.

Optimal persuasion is a special case ofinformation structure designin games, also known assignal-
ing. The space of information structures, and their induced equilibria, are characterized by Bergemann and
Morris [8]. Recent work in the CS community has also examinedthe design of information structures algo-
rithmically. Work by Emek et al. [24], Miltersen and Sheffet[40], Guo and Deligkas [32], and Dughmi et al.
[23], examine optimal signaling in a variety of auction settings, and presents polynomial-time algorithms
and hardness results. Dughmi [22] exhibits hardness results for signaling in two-player zero-sum games, and
Cheng et al. [18] present an algorithmic framework and applyit to a number of different signaling problems.

Also related to the Bayesian persuasion model is the extensive literature oncheap talkstarting with
Crawford and Sobel [19]. Cheap talk can be viewed as the analogue of persuasion when the sender cannot
commit to an information revelation policy. Nevertheless,the commitment assumption in persuasion has
been justified on the grounds that it arises organically in repeated cheap talk interactions with a long horizon
— in particular when the sender must balance his short term payoffs with long-term credibility. We refer
the reader to the discussion of this phenomenon in [43]. Alsoto this point, Kamenica and Gentzkow [34]
mention that an earlier model of repeated 2-player games with asymmetric information by Aumann and
Maschler [5] is mathematically analogous to Bayesian persuasion.

Various recent models onselling informationin [6, 7, 11] are quite similar to Bayesian persuasion, with
the main difference being that the sender’s utility function is replaced with revenue. Whereas Babaioff et al.
[6] consider the algorithmic question of selling information when states of nature are explicitly given as
input, the analogous algorithmic questions to ours have notbeen considered in their model. We speculate
that some of our algorithmic techniques might be applicableto models for selling information when the
prior distribution on states of nature is represented succinctly.

As discussed previously, our results involve exercising and generalizing ideas from prior work in Bayesian
mechanism design. We view drawing these connections as one of the contributions of our paper. In Ap-
pendix A, we discuss these connections and differences at length.

2 Preliminaries
In a persuasion game, there are two players: asenderand areceiver. The receiver is faced with selecting
an action from[n] = {1, . . . , n}, with an a-priori-unknown payoff to each of the sender and receiver. We
assume payoffs are a function of an unknownstate of natureθ, drawn from an abstract setΘ of potential
realizations of nature. Specifically, the sender and receiver’s payoffs are functionss, r : Θ × [n] → R,
respectively. We user = r(θ) ∈ R

n to denote the receiver’s payoff vector as a function of the state
of nature, whereri(θ) is the receiver’s payoff if he takes actioni and the state of nature isθ. Similarly
s = s(θ) ∈ R

n denotes the sender’s payoff vector, andsi(θ) is the sender’s payoff if the receiver takes
actioni and the state isθ. Without loss of generality, we often conflate the abstract setΘ indexing states of
nature with the set of realizable payoff vector pairs(s, r) — i.e., we think ofΘ as a subset ofRn ×R

n. We
assume thatΘ is finite for notational convenience, though this is not needed for our results in Section 5.

In Bayesian persuasion, it is assumed that the state of nature is a-priori unknown to the receiver, and
drawn from a common-knowledge prior distributionλ supported onΘ. The sender, on the other hand, has
access to the realization ofθ, and can commit to a policy of partially revealing information regarding its
realization before the receiver selects his action. Specifically, the sender commits to asignaling schemeϕ,
mapping (possibly randomly) states of natureΘ to a family ofsignalsΣ. Forθ ∈ Θ, we useϕ(θ) to denote
the (possibly random) signal selected when the state of nature isθ. Moreover, we useϕ(θ, σ) to denote the
probability of selecting the signalσ given a state of natureθ. An algorithmimplementsa signaling scheme
ϕ if it takes as input a state of natureθ, and samples the random variableϕ(θ).

Given a signaling schemeϕ with signalsΣ, each signalσ ∈ Σ is realized with probabilityασ =
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∑
θ∈Θ λθϕ(θ, σ). Conditioned on the signalσ, the expected payoffs to the receiver of the various actions

are summarized by the vectorr(σ) = 1
ασ

∑
θ∈Θ λθϕ(θ, σ)r(θ). Similarly, the sender’s payoff as a function

of the receiver’s action are summarized bys(σ) = 1
ασ

∑
θ∈Θ λθϕ(θ, σ)s(θ). On receiving a signalσ, the

receiver performs a Bayesian update and selects an actioni∗(σ) ∈ argmaxi ri(σ) with expected receiver
utility maxi ri(σ). This induces utilitysi∗(σ)(σ) for the sender. In the event of ties when selectingi∗(σ),
we assume those ties are broken in favor of the sender.

We adopt the perspective of a sender looking to designϕ to maximize her expected utility
∑

σ ασsi∗(σ)(σ),
in which case we sayϕ is optimal. Whenϕ yields expected sender utility within an additive [multiplicative]
ǫ of the best possible, we say it isǫ-optimal [ǫ-approximate] in the additive [multiplicative] sense. A simple
revelation-principle style argument [34] shows that an optimal signaling scheme need not use more thann
signals, with onerecommendingeach action. Such adirect schemeϕ has signalsΣ = {σ1, . . . , σn}, and
satisfiesri(σi) ≥ rj(σi) for all i, j ∈ [n]. We think ofσi as a signal recommending actioni, and the require-
mentri(σi) ≥ maxj rj(σi) as anincentive-compatibility (IC)constraint on our signaling scheme. We can
now write the sender’s optimization problem as the following LP with variables{ϕ(θ, σi) : θ ∈ Θ, i ∈ [n]}.

maximize
∑

θ∈Θ

∑n
i=1 λθϕ(θ, σi)si(θ)

subject to
∑n

i=1 ϕ(θ, σi) = 1, for θ ∈ Θ.∑
θ∈Θ λθϕ(θ, σi)ri(θ) ≥

∑
θ∈Θ λθϕ(θ, σi)rj(θ), for i, j ∈ [n].

ϕ(θ, σi) ≥ 0, for θ ∈ Θ, i ∈ [n].

(1)

For our results in Section 5, we relax our incentive constraints by assuming that the receiver follows the
recommendation so long as it approximately maximizes his utility — for a parameterǫ > 0, we relax our re-
quirement tori(σi) ≥ maxj rj(σi)−ǫ, which translates to the relaxed IC constraints

∑
θ∈Θ λθϕ(θ, σi)ri(θ) ≥∑

θ∈Θ λθϕ(θ, σi)(rj(θ) − ǫ) in LP (1). We call such schemesǫ-incentive compatible (ǫ-IC). We judge the
suboptimality of anǫ-IC scheme relative to the best (absolutely) IC scheme; i.e., in a bi-criteria sense.

Finally, we note that expected utilities, incentive compatibility, and optimality are properties not only
of a signaling schemeϕ, but also of the distributionλ over its inputs. Whenλ is not clear from context
andϕ is supported on a superset ofλ, we often say that a signaling schemeϕ is IC [ǫ-IC] for λ, or optimal
[ǫ-optimal] forλ. We also useus(ϕ, λ) to denote the expected sender utility

∑
θ∈Θ

∑n
i=1 λθϕ(θ, σi)si(θ).

3 Persuasion with I.I.D. Actions
In this section, we assume the payoffs of different actions are independently and identically distributed (i.i.d.)
according to an explicitly-described marginal distribution. Specifically, each state of natureθ is a vector in
Θ = [m]n for a parameterm, whereθi ∈ [m] is thetypeof actioni. Associated with each typej ∈ [m] is
a pair(ξj , ρj) ∈ R

2, whereξj [ρj] is the payoff to the sender [receiver] when the receiver chooses an action
with typej. We are given a marginal distribution over types, describedby a vectorq = (q1, ..., qm) ∈ ∆m.
We assume each action’s type is drawn independently according toq; specifically, the prior distributionλ
on states of nature is given byλ(θ) =

∏
i∈[n] qθi . For convenience, we letξ = (ξ1, ..., ξm) ∈ R

m and
ρ = (ρ1, ..., ρm) ∈ R

m denote the type-indexed vectors of sender and receiver payoffs, respectively. We
assumeξ, ρ, andq — the parameters describing an i.i.d. persuasion instance —are given explicitly.

Note that the number of states of nature ismn, and therefore the natural representation of a signaling
scheme hasnmn variables. Moreover, the natural linear program for the persuasion problem in Section 2
has an exponential inn number of both variables and constraints. Nevertheless, asmentioned in Section 2
we seek only to implement an optimal or near-optimal schemeϕ as an oracle which takes as inputθ and
samples a signalσ ∼ ϕ(θ). Our algorithms will run in time polynomial inn andm, and will optimize over
a space of succinct “reduced forms” for signaling schemes which we termsignatures, to be described next.

For a state of natureθ, define the matrixMθ ∈ {0, 1}n×m so thatMθ
ij = 1 if and only if actioni has type

j in θ (i.e. θi = j). Given an i.i.d priorλ and a signaling schemeϕ with signalsΣ = {σ1, . . . , σn}, for each
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Mσi =
∑

θ λ(θ)ϕ(θ, σi)M
θ, for i = 1, . . . , n.∑n

i=1 ϕ(θ, σi) = 1, for θ ∈ Θ.
ϕ(θ, σi) ≥ 0, for θ ∈ Θ, i ∈ [n].

Figure 1: Realizable SignaturesP

max
∑n

i=1 ξ ·Mσi

i

s.t. ρ ·Mσi

i ≥ ρ ·Mσi

j , for i, j ∈ [n].

(Mσ1 , ...,Mσn ) ∈ P

Figure 2: Persuasion in Signature Space

i ∈ [n] let αi =
∑

θ λ(θ)ϕ(θ, σi) denote the probability of sendingσi, and letMσi =
∑

θ λ(θ)ϕ(θ, σi)M
θ.

Note thatMσi

jk is the joint probability that actionj has typek and the scheme outputsσi. Also note that each
row ofMσi sums toαi, and thejth row represents the un-normalized posterior type distribution of actionj
given signalσi. We callM = (Mσ1 , ...,Mσn) ∈ R

n×m×n thesignatureof ϕ. The sender’s objective and
receiver’s IC constraints can both be expressed in terms of the signature. In particular, usingMj to denote
the jth row of a matrixM , the IC constraints areρ · Mσi

i ≥ ρ · Mσi

j for all i, j ∈ [n], and the sender’s
expected utility assuming the receiver follows the scheme’s recommendations is

∑
i∈[n] ξ ·Mσi

i .
We sayM = (Mσ1 , ...,Mσn ) ∈ R

n×m×n is realizableif there exists a signaling schemeϕ with M as
its signature. Realizable signatures constitutes a polytopeP ⊆ R

n×m×n, which has an exponential-sized
extended formulation as shown Figure 1. Given this characterization, the sender’s optimization problem can
be written as a linear program in the space of signatures, shown in Figure 2:

3.1 Symmetry of the Optimal Signaling Scheme

We now show that there always exists a “symmetric” optimal scheme when actions are i.i.d. Given a signa-
tureM = (Mσ1 , ...,Mσn ), it will sometimes be convenient to think of it as the set of pairs {(Mσi , σi)}i∈[n].

Definition 3.1. A signaling schemeϕ with signature{(Mσi , σi)}i∈[n] is symmetricif there existx,y ∈ R
m

such thatMσi

i = x for all i ∈ [n] andMσi

j = y for all j 6= i. The pair(x,y) is thes-signatureofϕ.

In other words, a symmetric signaling scheme sends each signal with equal probability||x||1, and in-
duces only two different posterior type distributions for actions: x

||x||1
for the recommended action, andy||y||1

for the others. We call(x,y) realizableif there exists a signaling scheme with(x,y) as itss-signature. The
family of realizables-signatures constitutes a polytopePs, and has an extended formulation by adding the
variablesx,y ∈ R

m and constraintsMσi

i = x andMσi

j = y for all i, j ∈ [n] with i 6= j to the extended
formulation of (asymmetric) realizable signatures from Figure 1.

We make two simple observations regarding realizables-signatures. First,||x||1 = ||y||1 = 1
n

for
each(x,y) ∈ Ps, and this is because both||x||1 and||y||1 equal the probability of each of then signals.
Second, since the signature must be consistent with prior marginal distributionq, we havex+ (n− 1)y =∑n

i=1M
σi

1 = q. We show that restricting to symmetric signaling schemes iswithout loss of generality.

Theorem 3.2. When the action payoffs are i.i.d., there exists an optimal and incentive-compatible signaling
scheme which is symmetric.

Theorem 3.2 is proved in Appendix B.1. At a high level, we showthat optimal signaling schemes are
closed with respect to two operations:convex combinationandpermutation. Specifically, a convex combi-
nation of realizable signatures — viewed as vectors inR

n×m×n — is realized by the corresponding “random
mixture” of signaling schemes, and this operation preserves optimality. The proof of this fact follows easily
from the fact that linear program in Figure 2 has a convex family of optimal solutions. Moreover, given a
permutationπ ∈ Sn and an optimal signatureM = {(Mσi , σi)}i∈[n] realized by signaling schemeϕ, the
“permuted” signatureπ(M) = {(πMσi , σπ(i))}i∈[n] — where premultiplication of a matrix byπ denotes
permuting the rows of the matrix — is realized by the “permuted” schemeϕπ(θ) = π(ϕ(π−1(θ))), which
is also optimal. The proof of this fact follows from the “symmetry” of the (i.i.d.) prior distribution about the
different actions. Theorem 3.2 is then proved constructively as follows: given a realizable optimal signature
M, the “symmetrized” signatureM = 1

n!

∑
π∈Sn

π(M) is realizable, optimal, and symmetric.
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3.2 Implementing the Optimal Signaling Scheme

We now exhibit a polynomial-time algorithm for persuasion in the i.i.d. model. Theorem 3.2 permits re-
writing the optimization problem in Figure 2 as follows, with variablesx,y ∈ R

m.

maximize nξ · x
subject to ρ · x ≥ ρ · y

(x,y) ∈ Ps

(2)

Problem (2) cannot be solved directly, sincePs is defined by an extended formulation with exponentially
many variables and constraints, as described in Section 3.1. Nevertheless, we make use of a connection
between symmetric signaling schemes and single-item auctions with i.i.d. bidders to solve (2) using the
Ellipsoid method. Specifically, we show a one-to-one correspondence between symmetric signatures and (a
subset of) symmetric reduced forms of single-item auctionswith i.i.d. bidders, defined as follows.

Definition 3.3 ([13]). Consider a single-item auction setting withn i.i.d. bidders andm types for each
bidder, where each bidder’s type is distributed according to q ∈ ∆m. An allocation ruleis a randomized
functionA mapping a type profileθ ∈ [m]n to a winnerA(θ) ∈ [n] ∪ {∗}, where∗ denotes not allocating
the item. We say the allocation rule hassymmetric reduced formτ ∈ [0, 1]m if for each bidderi ∈ [n] and
typej ∈ [m], τj is the conditional probability ofi receiving the item given she has typej.

Whenq is clear from context, we sayτ is realizableif there exists an allocation rule withτ as its symmetric
reduced form. We say an algorithmimplementsan allocation ruleA if it takes as inputθ, and samplesA(θ).

Theorem 3.4.Consider the Bayesian Persuasion problem withn i.i.d. actions andm types, with parameters
q ∈ ∆m, ξ ∈ R

m, andρ ∈ R
m given explicitly. An optimal and incentive-compatible signaling scheme can

be implemented inpoly(m,n) time.

Theorem 3.4 is a consequence of the following set of lemmas.

Lemma 3.5. Let (x,y) ∈ [0, 1]m × [0, 1]m, and defineτ = (x1
q1
, ..., xm

qm
). The pair(x,y) is a realizable

s-signature if and only if (a)||x||1 = 1
n

, (b)x+ (n− 1)y = q, and (c)τ is a realizable symmetric reduced
form of an allocation rule withn i.i.d. bidders,m types, and type distributionq. Moreover, assumingx and
y satisfy (a), (b) and (c), and given black-box access to an allocation ruleA with symmetric reduced form
τ , a signaling scheme withs-signature(x,y) can be implemented inpoly(n,m) time.

Lemma 3.6. An optimal realizables-signature, as described by LP(2), is computable inpoly(n,m) time.

Lemma 3.7. (See [15, 1]) Consider a single-item auction setting withn i.i.d. bidders andm types for each
bidder, where each bidder’s type is distributed according to q ∈ ∆m. Given a realizable symmetric reduced
formτ ∈ [0, 1]m, an allocation rule with reduced formτ can be implemented inpoly(n,m) time.

The proofs of Lemmas 3.5 and 3.6 can be found in Appendix B.2. The proof of Lemma 3.5 builds
a correspondence betweens-signatures of signaling schemes and certain reduced-formallocation rules.
Specifically, actions correspond to bidders, action types correspond to bidder types, and signalingσi cor-
responds to assigning the item to bidderi. The expression of the reduced form in terms of the s-signature
then follows from Bayes’ rule. Lemma 3.6 follows from Lemma 3.5, the ellipsoid method, and the fact that
symmetric reduced forms admit an efficient separation oracle (see [13, 12, 15, 1]).
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Algorithm 1 Independent Signaling Scheme
Input: Sender payoff vectorξ, receiver payoff vectorρ, prior distributionq

Input: State of natureθ ∈ [m]n

Output: An n-dimensional binary signalσ ∈ {HIGH,LOW}n

1: Compute an optimal solution(x∗,y∗) linear program (3).

2: For each actioni independently, set component signaloi to HIGH with probability
x∗
θi

qθi
and toLOW

otherwise, whereθi is the type of actioni in the input stateθ.

3: Returnσ = (o1, ..., on).

3.3 A Simple(1− 1
e
)-Approximate Scheme

Our next result is a “simple” signaling scheme which obtainsa(1−1/e) multiplicative approximation when
payoffs are nonnegative. This algorithm has the distinctive property that it signalsindependentlyfor each
action, and therefore implies that approximately optimal persuasion can be parallelized among multiple
colluding senders, each of whom only has access to the type ofone or more of the actions.

Recall from Section 3.1 that an s-signature(x,y) satisfies||x||1 = ||y||1 = 1
n

andx+ (n − 1)y = q.
Our simple scheme, shown in Algorithm 1, works with the following explicit linear programming relaxation
of optimization problem (2).

maximize nξ · x
subject to ρ · x ≥ ρ · y

x+ (n − 1)y = q

||x||1 =
1
n

x,y ≥ 0

(3)

Algorithm 1 has a simple and instructive interpretation. Itcomputes the optimal solution(x∗,y∗) to
the relaxed problem (3), and uses this solution as a guide forsignalingindependentlyfor each action. The
algorithm selects, independently for each actioni, a component signaloi ∈ {HIGH,LOW}. In particular,
eachoi is chosen so thatPr[oi = HIGH] = 1

n
, and moreover the eventsoi = HIGH andoi = LOW

induce the posterior beliefsnx∗ andny∗, respectively, regarding the type of actioni.
The signaling scheme implemented by Algorithm 1 approximately matches the optimal value of (3),

as shown in Theorem 3.8, assuming the receiver is rational and therefore selects an action with aHIGH

component signal if one exists. We note that the scheme of Algorithm 1, while not a direct scheme as
described, can easily be converted into one; specifically, by recommending an action whose component sig-
nal isHIGH when one exists (breaking ties arbitrarily), and recommending an arbitrary action otherwise.
Theorem 3.8 follows from the fact that(x∗,y∗) is an optimal solution to LP (3), the fact that the posterior
type distribution of an actioni is nx∗ whenoi = HIGH andny∗ whenoi = LOW, and the fact that each
component signal is high independently with probability1

n
. We defer the formal proof to Appendix B.3.

Theorem 3.8. Algorithm 1 runs inpoly(m,n) time, and serves as a(1− 1
e
)-approximate signaling scheme

for the Bayesian Persuasion problem withn i.i.d. actions,m types, and nonnegative payoffs.

Remark 3.9. Algorithm 1 signals independently for each action. This conveys an interesting conceptual
message. That is, even though the optimal signaling scheme might induce posterior beliefs which correlate
different actions, it is nevertheless true that signaling for each action independently yields an approximately
optimal signaling scheme. As a consequence, collaborativepersuasion by multiple parties (the senders),
each of whom observes the payoff of one or more actions, is a task that can be parallelized, requiring no
coordination when actions are identical and independent and only an approximate solution is sought. We
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leave open the question of whether this is possible when action payoffs are independently but not identically
distributed.

4 Complexity Barriers to Persuasion with Independent Actions
In this section, we consider optimal persuasion with independent action payoffs as in Section 3, albeit
with action-specific marginal distributions given explicitly. Specifically, for each actioni we are given
a distributionqi ∈ ∆mi

on mi types, and each typej ∈ [mi] of action i is associated with a sender
payoff ξij ∈ R and a receiver payoffρij ∈ R. The positive results of Section 3 draw a connection between
optimal persuasion in the special case of identically distributed actions and Border’s characterization of
reduced-form single-item auctions with i.i.d. bidders. One might expect this connection to generalize to the
independent non-identical persuasion setting, since Border’s theorem extends to single-item auctions with
independent non-identical bidders. Surprisingly, we showthat this analogy to Border’s characterization fails
to generalize. We prove the following theorem.

Theorem 4.1. Consider the Bayesian Persuasion problem with independentactions, with action-specific
payoff distributions given explicitly. It is#P -hard to compute the optimal expected sender utility.

Invoking the framework of Gopalan et al. [30], this rules outa generalized Border’s theoremfor our
setting, in the sense defined by [30], unless the polynomial hierarchy collapses toPNP . We view this result
as illustrating some of the important differences between persuasion and mechanism design.

The proof of Theorem 4.1 is rather involved. We defer the fullproof to Appendix C, and only present a
sketch here. Our proof starts from the ideas of Gopalan et al.[30], who show the #P-hardness for revenue or
welfare maximization in several mechanism design problems. In one case, [30] reduce from the#P -hard
problem of computing theKhintchine constantof a vector. Our reduction also starts from this problem, but
is much more involved:2 First, we exhibit a polytope which we term theKhintchine polytope, and show that
computing the Khintchine constant reduces to linear optimization over the Khintchine polytope. Second,
we present a reduction from the membership problem for the Khintchine polytope to the computation of
optimal sender utility in a particularly-crafted instanceof persuasion with independent actions. Invoking the
polynomial-time equivalence between membership checkingand optimization (see, e.g., [31]), we conclude
the #P-hardness of our problem. The main technical challenge we overcome is in the second step of our
proof: given a pointx which may or may not be in the Khintchine polytopeK, we construct a persuasion
instance and a thresholdT so that points inK encode signaling schemes, and the optimal sender utility isat
leastT if and only if x ∈ K and the scheme corresponding tox results in sender utilityT .

Proof Sketch of Theorem 4.1

The Khintchine problem, shown to be #P-hard in [30], is to compute theKhintchine constantK(a) of a
given vectora ∈ R

n, defined asK(a) = Eθ∼{±1}n [|θ · a|] whereθ is drawn uniformly at random from
{±1}n. To relate the Khintchine problem to Bayesian persuasion, we begin with a persuasion instance with
n i.i.d. actions and two action types, which we refer to astype -1andtype +1. The state of nature is a uniform
random draw from the set{±1}n, with theith entry specifying the type of actioni. We call this instance the
Khintchine-likepersuasion setting. As in Section 3, we still use thesignatureto capture the payoff-relevant
features of a signaling scheme, but we pay special attentionto signaling schemes which use onlytwosignals,
in which case we represent them using atwo-signal signatureof the form(M1,M2) ∈ R

n×2 × R
n×2. The

Khintchine polytopeK(n) is then defined as the (convex) family of allrealizabletwo-signal signatures for
the Khintchine-like persuasion problem with an additionalconstraint: each signal is sent with probability
exactly 1

2 . We first prove that general linear optimization overK(n) is #P-hard by encoding computation of

2In [30], Myerson’s characterization is used to show that optimal mechanism design in a public project setting directly encodes
computation of the Khintchine constant. No analogous direct connection seems to hold here.
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the Khintchine constant as linear optimization overK(n). In this reduction, the optimal solution inK(n) is
the signature of the two-signal schemeϕ(θ) = sign(θ · a), which signals+ and− each with probability12 .

To reduce the membership problem for the Khintchine polytope to optimal Bayesian persuasion, the
main challenges come from our restrictions onK(n), namely to schemes with two signals which are equally
probable. Our reduction incorporates three key ideas. Thefirst is to design a persuasion instance in which
the optimal signaling scheme uses only two signals. The instance we define will haven+1 actions. Action0
is special– it deterministically results in sender utilityǫ > 0 (small enough) and receiver utility0. The other
n actions areregular. Action i > 0 independentlyresults in sender utility−ai and receiver utilityai with
probability 1

2 (call this type1i), or sender utility−bi and receiver utilitybi with probability 1
2 (call this type

2i), for ai andbi to be set later. Note that the sender and receiver utilities arezero-sumfor both types. Since
the special action is deterministic and the probability of its (only) type is1 in any signal, we can interpret
any(M1,M2) ∈ K(n) as a two-signal signature for our persuasion instance (the row corresponding to the
special action0 is implied). We show that restricting to two-signal schemesis without loss of generality
in this persuasion instance. The proof tracks the followingintuition: due to the zero-sum nature of regular
actions, any additional information regarding regular actions would benefit the receiver and harm the sender.
Consequently, sender does not reveal any information whichdistinguishes between different regular actions.
Formally, we prove that there always exists an optimal signaling scheme with only two signals: one signal
recommends the special action, and the other recommends some regular action.

We denote the signal that recommends the special action0 by σ+ (indicating that the sender derives
positive utility ǫ), and denote the other signal byσ− (indicating that the sender derives negative utility, as
we show). Thesecondkey idea concerns choosing appropriate values for{ai}

n
i=1, {bi}

n
i=1 for a given two-

signature(M1,M2) to be tested. We choose these values to satisfy the followingtwo properties: (1) For
all regular actions, the signaling scheme implementing(M1,M2) (if it exists) results in the same sender
utility −1 (thus receiver utility1) conditioned onσ− and the same sender utility0 conditioned onσ+; (2)
themaximum possibleexpected sender utility fromσ−, i.e., the sender utility conditioned onσ− multiplied
by the probability ofσ−, is −1

2 . As a result of Property (1), if(M1,M2) ∈ K(n) then the corresponding
signaling schemeϕ is IC and results in expected sender utilityT = 1

2ǫ −
1
2 (since each signal is sent with

probability 1
2 ). Property (2) implies thatϕ results in the maximum possible expected sender utility from σ−.

We now run into a challenge: the existence of a signaling scheme with expected sender utilityT = 1
2ǫ−

1
2

does not necessarily imply that(M1,M2) ∈ K(n) if ǫ is large. Ourthird key idea is to setǫ > 0 “sufficiently
small” so that any optimal signaling scheme must result in the maximum possible expected sender utility−1

2
from signalσ− (see Property (2) above). In other words, we must makeǫ so small so that the sender prefers
to not sacrificeanyof her payoff fromσ− in order to gain utility from the special action recommendedby
σ+. We show that such anǫ exists with polynomially many bits. We prove its existence by arguing that
the polytope of incentive-compatible two-signal signatures has polynomial bit complexity, and therefore an
ǫ > 0 that is smaller than the “bit complexity” of the vertices would suffice.

As a result of this choice ofǫ, if the optimal sender utility is preciselyT = 1
2ǫ −

1
2 then we know that

signalσ+ must be sent with probability12 since the expected sender utility from signalσ− must be−1
2 .

We show that this, together with the specifically constructed {ai}
n
i=1, {bi}

n
i=1, is sufficient to guarantee that

the optimal signaling scheme must implement the given two-signature(M1,M2), i.e.,(M1,M2) ∈ K(n).
When the optimal optimal sender utility is strictly greaterthan 1

2ǫ −
1
2 , the optimal signaling scheme does

not implement(M1,M2), but we show that it can be post-processed into one that does.

5 The General Persuasion Problem
We now turn our attention to the Bayesian Persuasion problemwhen the payoffs of different actions are
arbitrarily correlated, and the joint distributionλ is presented as a black-box sampling oracle. We assume
that payoffs are normalized to lie in the bounded interval, and prove essentially matching positive and
negative results. Our positive result is a fully polynomial-time approximation scheme for optimal persuasion
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Algorithm 2 Signaling Scheme for a Black Box Distribution
Parameter: ǫ ≥ 0

Parameter: IntegerK ≥ 0

Input: Prior distributionλ supported on[−1, 1]2n, given by a sampling oracle

Input: State of natureθ ∈ [−1, 1]2n

Output: Signalσ ∈ Σ, whereΣ = {σ1, . . . , σn}.

1: Draw integerℓ uniformly at random from{1, . . . ,K}, and denoteθℓ = θ.

2: Sampleθ1, . . . , θℓ−1, θℓ+1 . . . , θK independently fromλ, and let the multiset̃λ = {θ1, . . . , θK} denote

the empirical distribution augmented with the input stateθ = θℓ.

3: Solve linear program (4) to obtain the signaling schemeϕ̃ : λ̃ → ∆(Σ).

4: Output a sample from̃ϕ(θ) = ϕ̃(θℓ).

maximize
∑K

k=1

∑n
i=1

1
K
ϕ̃(θk, σi)si(θk)

subject to
∑n

i=1 ϕ̃(θk, σi) = 1, for k ∈ [K].∑K
k=1

1
K
ϕ̃(θk, σi)ri(θk) ≥

∑K
k=1

1
K
ϕ̃(θk, σi)(rj(θk)− ǫ), for i, j ∈ [n].

ϕ̃(θk, σi) ≥ 0, for k ∈ [K], i ∈ [n].

(4)

Relaxed Empirical Optimal Signaling Problem

with a bi-criteria guarantee; specifically, we achieve approximate optimality and approximate incentive
compatibility in the additive sense described in Section 2.Our negative results show that such a bi-criteria
loss is inevitable in the black box model for information-theoretic reasons.

5.1 A Bicriteria FPTAS

Theorem 5.1. Consider the Bayesian Persuasion problem in the black-box oracle model withn actions and
payoffs in[−1, 1], and letǫ > 0 be a parameter. Anǫ-optimal andǫ-incentive compatible signaling scheme
can be implemented inpoly(n, 1

ǫ
) time.

To prove Theorem 5.1, we show that a simple Monte-Carlo algorithm implements an approximately
optimal and approximately incentive compatible schemeϕ. Notably, our algorithm does not compute a
representation of the entire signaling schemeϕ as in Section 3, but rather merely samples its outputϕ(θ)
on a given inputθ. At a high level, when given as input a state of natureθ, our algorithm first takesK =
poly(n, 1

ǫ
) samples from the prior distributionλ which, intuitively, serve to place the true state of natureθ

in context. Then the algorithm uses a linear program to compute the optimalǫ-incentive compatible scheme
ϕ̃ for the empirical distribution of samples augmented with the inputθ. Finally, the algorithm signals as
suggested bỹϕ for θ. Details are in Algorithm 2, which we instantiate withǫ > 0 andK = ⌈256n

2

ǫ4
log(4n

ǫ
)⌉.

We note that relaxing incentive compatibility is necessaryfor convergence to the optimal sender utility
— we prove this formally in Section 5.2. This is why LP (4) features relaxed incentive compatibility
constraints. Instantiating Algorithm 2 withǫ = 0 results in an exactly incentive compatible scheme which
could be far from the optimal sender utility for any finite number of samplesK, as reflected in Lemma 5.4.

Theorem 5.1 follows from three lemmas pertaining to the schemeϕ implemented by Algorithm 2. Ap-
proximate incentive compatibility forλ (Lemma 5.2) follows from the principle of deferred decisions, lin-
earity of expectations, and the fact thatϕ̃ is approximately incentive compatible for the augmented empirical
distributionλ̃. A similar argument, also based on the principal of deferreddecisions and linearity of expec-
tations, shows that the expected sender utility from our scheme whenθ ∼ λ equals the expected optimal
value of linear program (4), as stated in Lemma 5.3. Finally,we show in Lemma 5.4 that the optimal value
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of LP (4) is close to the optimal sender utility forλ with high probability, and hence also in expectation,
whenK = poly(n, 1

ǫ
) is chosen appropriately; the proof of this fact invokes standard tail bounds as well

as structural properties of linear program (4), and exploits the fact that LP (4) relaxes the incentive com-
patibility constraint. We prove all three lemmas in Appendix D.1. Even though our proof of Lemma 5.4 is
self-contained, we note that it can be shown to follow from [45, Theorem 6] with some additional work.

Lemma 5.2. Algorithm 2 implements anǫ-incentive compatible signaling scheme for prior distribution λ.

Lemma 5.3. Assumeθ ∼ λ, and assume the receiver follows the recommendations of Algorithm 2. The
expected sender utility equals the expected optimal value of the linear program(4) solved in Step 3. Both
expectations are taken over the random inputθ as well as internal randomness and Monte-Carlo sampling
performed by the algorithm.

Lemma 5.4. Let OPT denote the expected sender utility induced by the optimal incentive compatible
signaling scheme for distributionλ. When Algorithm 2 is instantiated withK ≥ 256n2

ǫ4
log(4n

ǫ
) and its input

θ is drawn fromλ, the expected optimal value of the linear program(4) solved in Step 3 is at leastOPT − ǫ.
Expectation is over the random inputθ as well as the Monte-Carlo sampling performed by the algorithm.

5.2 Information-Theoretic Barriers

We now show that our bi-criteria FPTAS is close to the best we can hope for: there is no bounded-sample
signaling scheme in the black box model which guarantees incentive compatibility andc-optimality for any
constantc < 1, nor is there such an algorithm which guarantees optimalityandc-incentive compatibility for
anyc < 1

4 . Formally, we consider algorithms which implement direct signaling schemes. Such an algorithm
takes as input a black-box distributionλ supported on[−1, 1]2n and a state of natureθ ∈ [−1, 1]2n, wheren
is the number of actions, and outputs a signalσ ∈ {σ1, . . . , σn} recommending an action. We say such an
algorithm isǫ-incentive compatible [ǫ-optimal] if for every distributionλ the signaling schemeA(λ) is ǫ-
incentive compatible [ǫ-optimal] forλ. We define thesample complexitySCA(λ, θ) as the expected number
of queries made byA to the blackbox given inputsλ andθ, where expectation is taken the randomness
inherent in the Monte-Carlo sampling fromλ as well as any other internal coins ofA. We show that the
worst-case sample complexity is not bounded by any functionof n and the approximation parameters unless
we allow bi-criteria loss in both optimality and incentive compatibility. More so, we show a stronger negative
result for exactly incentive compatible algorithms: the average sample complexity overθ ∼ λ is also not
bounded by a function ofn and the suboptimality parameter. Whereas our results implythat we should
give up on exact incentive compatibility, we leave open the question of whether an optimal andǫ-incentive
compatible algorithm exists withpoly(n, 1

ǫ
) average case (but unbounded worst-case) sample complexity.

Theorem 5.5. The following hold for every algorithmA for Bayesian Persuasion in the black-box model:

(a) If A is incentive compatible andc-optimal forc < 1, then for every integerK there is a distribution
λ = λ(K) on 2 actions and 2 states of nature such thatEθ∼λ[SCA(λ, θ)] > K.

(b) If A is optimal andc-incentive compatible forc < 1
4 , then for every integerK there is a distribution

λ = λ(K) on 3 actions and 3 states of nature, andθ in the support ofλ, such thatSCA(λ, θ) > K.

Our proof of each part of this theorem involves constructinga pair of distributionsλ andλ′ which are
arbitrarily close in statistical distance, but with the property that any algorithm with the postulated guarantees
must distinguish betweenλ andλ′. We defer the proof to Appendix D.2.
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[2] R. Alonso and O. Câmara. Persuading voters. Working paper, 2014.

[3] S. P. Anderson and R. Renault. Advertising content.American Economic Review, 96(1):93–113, 2006.
doi: 10.1257/000282806776157632.

[4] G. Antioch. Persuasion is now 30 per cent of us gdp.Economic Roundup, (1):1–10, 2013.

[5] R. Aumann and M. Maschler.Repeated Games with Incomplete Information. MIT Press, 1995. ISBN
9780262011471.

[6] M. Babaioff, R. Kleinberg, and R. Paes Leme. Optimal mechanisms for selling information. In
Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, pages 92–109, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1415-2. doi: 10.1145/2229012.2229024.

[7] D. Bergemann and A. Bonatti. Selling cookies.American Economic Journal: Microeconomics, 7(3):
259–94, 2015. doi: 10.1257/mic.20140155.

[8] D. Bergemann and S. Morris. The comparison of information structures in games: Bayes correlated
equilibrium and individual sufficiency. Technical Report 1909R, Cowles Foundation for Research in
Economics, Yale University, 2014.

[9] D. Bergemann and M. Pesendorfer. Information structures in optimal auctions.Journal of Economic
Theory, 137(1):580 – 609, 2007. ISSN 0022-0531. doi: http://dx.doi.org/10.1016/j.jet.2007.02.001.

[10] D. Bergemann, B. Brooks, and S. Morris. The limits of price discrimination. Technical Report 1896RR,
Cowles Foundation for Research in Economics, Yale University, 2014.

[11] D. Bergemann, A. Bonatti, and A. Smolin. Designing and pricing information. 2015.

[12] K. Border. Reduced Form Auctions Revisited.Economic Theory, 31(1):167–181, April 2007.

[13] K. C. Border. Implementation of Reduced Form Auctions:A Geometric Approach.Econometrica, 59
(4), 1991. ISSN 00129682. doi: 10.2307/2938181.

[14] I. Brocas and J. D. Carrillo. Influence through ignorance. The RAND Journal of Economics, 38(4):
931–947, 2007. ISSN 1756-2171. doi: 10.1111/j.0741-6261.2007.00119.x.

[15] Y. Cai, C. Daskalakis, and S. M. Weinberg. An algorithmic characterization of multi-dimensional
mechanisms. InProceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 459–478, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1245-5. doi: 10.
1145/2213977.2214021.

[16] Y. Cai, C. Daskalakis, and S. M. Weinberg. Optimal multi-dimensional mechanism design: Reducing
revenue to welfare maximization. InFoundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 130–139. IEEE, 2012.

[17] A. Chakraborty and R. Harbaugh. Persuasive puffery. Technical Report 2012-05, Indiana University,
Kelley School of Business, Department of Business Economics and Public Policy, 2012.

13



[18] Y. Cheng, H. Y. Cheung, S. Dughmi, E. Emamjomeh-Zadeh, L. Han, and S.-H. Teng. Mixture selec-
tion, mechanism design, and signaling. 2015.

[19] V. P. Crawford and J. Sobel. Strategic information transmission.Econometrica: Journal of the Econo-
metric Society, pages 1431–1451, 1982.

[20] C. Daskalakis and S. M. Weinberg. Symmetries and optimal multi-dimensional mechanism design.
In Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, pages 370–387, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1415-2. doi: 10.1145/2229012.2229042.

[21] S. DellaVigna and M. Gentzkow. Persuasion: Empirical Evidence.Annual Review of Economics, (0),
2010. ISSN 1941-1383.

[22] S. Dughmi. On the hardness of signaling. InProceedings of the 55th Symposium on Foundations of
Computer Science, FOCS ’14. IEEE Computer Society, 2014.

[23] S. Dughmi, N. Immorlica, and A. Roth. Constrained signaling in auction design. InProceedings of the
Twenty-five Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14. Society for Industrial
and Applied Mathematics, 2014.

[24] Y. Emek, M. Feldman, I. Gamzu, R. Paes Leme, and M. Tennenholtz. Signaling schemes for
revenue maximization. InProceedings of the 13th ACM Conference on Electronic Commerce,
EC ’12, pages 514–531, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1415-2. doi:
10.1145/2229012.2229051.

[25] P. Eso and B. Szentes. Optimal information disclosure in auctions and the handicap auction.The
Review of Economic Studies, 74(3):pp. 705–731, 2007.

[26] M. Gentzkow and E. Kamenica. Competition in persuasion. Working Paper 17436, National Bureau
of Economic Research, September 2011.

[27] M. Gentzkow and E. Kamenica. Costly persuasion.American Economic Review, 104(5):457–62, 2014.
doi: 10.1257/aer.104.5.457.

[28] W. Gick and T. Pausch.Persuasion by stress testing: Optimal disclosure of supervisory information in
the banking sector. Number 32/2012. Discussion Paper, Deutsche Bundesbank, 2012.

[29] I. Goldstein and Y. Leitner. Stress tests and information disclosure. 2013.

[30] P. Gopalan, N. Nisan, and T. Roughgarden. Public projects, boolean functions, and the borders of
border’s theorem. InProceedings of the Sixteenth ACM Conference on Economics and Computation,
EC ’15, pages 395–395, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3410-5.

[31] M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Combinatorial Optimization,
volume 2 ofAlgorithms and Combinatorics. Springer, 1988. ISBN 3-540-13624-X, 0-387-13624-X
(U.S.).

[32] M. Guo and A. Deligkas. Revenue maximization via hidingitem attributes.CoRR, abs/1302.5332,
2013.

[33] J. P. Johnson and D. P. Myatt. On the simple economics of advertising, marketing, and product design.
American Economic Review, 96(3):756–784, 2006. doi: 10.1257/aer.96.3.756.

14



[34] E. Kamenica and M. Gentzkow. Bayesian persuasion.American Economic Review, 101(6):2590–2615,
2011. doi: 10.1257/aer.101.6.2590.

[35] A. Kolotilin. Experimental design to persuade.UNSW Australian School of Business Research Paper,
(2013-17), 2013.

[36] A. Kolotilin, M. Li, T. Mylovanov, and A. Zapechelnyuk.Persuasion of a privately informed receiver.
Technical report, Working paper, 2015.

[37] I. Kremer, Y. Mansour, and M. Perry. Implementing the ”wisdom of the crowd”.Journal of Political
Economy, 122(5):988–1012, 2014.

[38] Y. Mansour, A. Slivkins, and V. Syrgkanis. Bayesian incentive-compatible bandit exploration.arXiv
preprint arXiv:1502.04147, 2015.

[39] D. McCloskey and A. Klamer. One quarter of gdp is persuasion. The American Economic Review, 85
(2):pp. 191–195, 1995. ISSN 00028282.

[40] P. B. Miltersen and O. Sheffet. Send mixed signals: earnmore, work less. In B. Faltings, K. Leyton-
Brown, and P. Ipeirotis, editors,ACM Conference on Electronic Commerce, pages 234–247. ACM,
2012. ISBN 978-1-4503-1415-2.

[41] R. Myerson. Optimal auction design.Mathematics of Operations Research, 6(1):58–73, 1981.

[42] Z. Rabinovich, A. X. Jiang, M. Jain, and H. Xu. Information disclosure as a means to security. In
Proceedings of the 14th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS),, 2015.

[43] L. Rayo and I. Segal. Optimal information disclosure.Journal of Political Economy, 118(5):pp. 949–
987, 2010. ISSN 00223808.

[44] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

[45] S. M. Weinberg.Algorithms for Strategic Agents. PhD thesis, Massachusetts Institute of Technology,
2014.

[46] H. Xu, Z. Rabinovich, S. Dughmi, and M. Tambe. Exploringinformation asymmetry in two-stage
security games. InAAAI Conference on Artificial Intelligence (AAAI), 2015.

15



A Additional Discussion of Connections to Bayesian Mechanism Design
Section 3, which considers persuasion with independent andidentically-distributed actions, relates to two
ideas from auction theory. First, our symmetrization result in Section 3.1 is similar to that of Daskalakis and
Weinberg [20], but involves an additional ingredient whichis necessary in our case: not only is the posterior
type distribution for a recommended action (the winning bidder in the auction analogy) independent of the
identity of the action, but so is the posterior type distribution of an unrecommended action (losing bidder).
Second, our algorithm for computing the optimal scheme in Section 3.2 involves a connection to Border’s
characterization of the space of feasible reduced-form single-item auctions [13, 12], as well as its algorithmic
properties [15, 1]. However, unlike in the case of single-item auctions, this connection hinges crucially on
the symmetries of the optimal scheme, and fails to generalize to the case of persuasion with independent
non-identical actions (analogous to independent non-identical bidders) as we show in Section 4. We view
this as evidence that persuasion and auction design — while bearing similarities and technical connections
— are importantly different.

Section 4 shows that our Border’s theorem-based approach inSection 3 can not be extended to in-
dependent non-identical actions. Our starting point are the results of Gopalan et al. [30], who rule out
Border’s-theorem like characterizations for a number of mechanism design settings by showing the #P-
hardness of computing the maximum expected revenue or welfare. Our results similarly show that it is #P
hard to compute the maximum expected sender utility, but ourreduction is much more involved. Specifi-
cally, whereas we also reduce from the #P-hard problem of computing the Khintchine constant of a vector,
unlike in [30] our reduction must go through the membership problem of a polytope which we use to en-
code the Khintchine constant computation. This detour seems unavoidable due to the different nature of
the incentive-compatibility constraints placed on a signaling scheme.3 Specifically, we present an intricate
reduction from membership testing in this “Khintchine polytope” to an optimal persuasion problem with
independent actions.

Our algorithmic result for the black box model in Section 5 draws inspiration from, and is technically
related to, the work in [15, 1, 16, 45] on algorithmically efficient mechanisms for multi-dimensional settings.
Specifically, an alternative algorithm for our problem can be derived using the framework ofreduced forms
andvirtual welfareof Cai et al. [16] with significant additional work.4 For this, a different reduced form
is needed which allows for an unbounded “type space”, and maintains the correlation information across
actions necessary for evaluating the persuasion notion of incentive compatibility, which is importantly dif-
ferent from incentive compatibility in mechanism design. Such a reduced form exists, and the resulting
algorithm is complex and invokes the ellipsoid algorithm asa subroutine. The algorithm we present here is
much simpler and more efficient both in terms of runtime and samples from the distributionλ over states
of nature, with the main computational step being a single explicit linear program which solves for the op-
timal signaling scheme on a sampleλ̃ from λ. The analysis of our algorithm is also more straightforward.
This is possible in our setting due to our different notion ofincentive compatibility, which permits reduc-
ing incentive compatibility onλ to incentive compatibility on the samplẽλ using the principle of deferred
decisions.

3In [30], Myerson’s characterization is used to show that optimal mechanism design in a public project setting directly encodes
computation of the Khintchine constant. No analogous direct connection seems to hold here.

4We thank an anonymous reviewer for pointing out this connection.
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B Omissions from Section 3

B.1 Symmetry of the Optimal Scheme (Theorem 3.2)

To prove Theorem 3.2, we need two closure properties of optimal signaling schemes — with respect to
permutations and convex combinations. We useπ to denote a permutation of[n], and letSn denote the set of
all such permutations. We define the permutationπ(θ) of a state of natureθ ∈ [m]n so that(π(θ))j = θπ(j),
and similarly the permutation of a signalσi so thatπ(σi) = σπ(i). Given a signatureM = {(Mσi , σi)}i∈[n],
we define the permuted signatureπ(M) = {(πMσi , π(σi))}i∈[n], whereπM denotes applying permutation
π to the rows of a matrixM .

Lemma B.1. Assume the action payoffs are i.i.d., and letπ ∈ Sn be an arbitrary permutation. IfM is
the signature of a signaling schemeϕ, thenπ(M) is the signature of the schemeϕπ defined byϕπ(θ) =
π(ϕ(π−1(θ))). Moreover, ifϕ is incentive compatible and optimal, then so isϕπ.

Proof. Let M = {(Mσ , σ)}σ∈Σ be the signature ofϕ, as given in the statement of the lemma. We first
show thatπ(M) = {(πMσ , π(σ))}σ∈Σ is realizable as the signature of the schemeϕπ. By definition, it
suffices to show that

∑
θ λ(θ)ϕπ(θ, π(σ))M

θ = πMσ for an arbitrary signalπ(σ).

∑

θ

λ(θ)ϕπ(θ, π(σ))M
θ =

∑

θ

λ(θ)ϕ(π−1(θ), σ)Mθ (by definition ofϕπ)

= π
∑

θ∈Θ

λ(θ)ϕ(π−1(θ), σ)(π−1Mθ) (by linearity of permutation)

= π
∑

θ∈Θ

λ(θ)ϕ(π−1(θ), σ)Mπ−1(θ)

= π
∑

θ∈Θ

λ(π−1(θ))ϕ(π−1(θ), σ)Mπ−1(θ) (Sinceλ is i.i.d.)

= π
∑

θ′∈Θ

λ(θ′)ϕ(θ′, σ)Mθ′ (by renamingπ−1(θ) to θ′)

= πMσ (by definition ofMσ)

Now, assumingϕ is incentive compatible, we check thatϕπ is incentive compatible by verifying the
relevant inequality for its signature.

ρ · (πMσi)π(i) − ρ · (πMσi)π(j) = ρ ·Mσi

i − ρ ·Mσi

j ≥ 0

Moreover, we show that the sender’s utility is the same forϕ andϕπ, completing the proof.

ξ · (πMσi)π(i) = ξ · (Mσi)i

Lemma B.2. Lett ∈ [0, 1]. If A = (Aσ1 , . . . , Aσn) is the signature of schemeϕA, andB = (Bσ1 , . . . , Bσn)
is the signature of a schemeϕB , then their convex combinationC = (Cσ1 , . . . , Cσn) with Cσi = tAσi +
(1− t)Bσi is the signature of the schemeϕC which, on inputθ, outputsϕA(θ) with probabilityt andϕB(θ)
with probability1− t. Moreover, ifϕA andϕB are both optimal and incentive compatible, then so isϕC .

Proof. This follows almost immediately from the fact that the optimization problem in Figure 2 is a linear
program, with a convex feasible set and a convex family of optimal solutions. We omit the straightforward
details.
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Proof of Theorem 3.2

Given an optimal and incentive compatible signaling schemeϕ with signature{(Mσi , σi)}i∈[n], we show the
existence of a symmetric optimal and incentive-compatiblescheme of the form in Definition 3.1. According
to Lemma B.1, forπ ∈ Sn the signature{(πMσi , π(σi))}i∈[n] — equivalently written as{(πMσ

π−1(i) , σi}i∈[n]
— corresponds to the optimal incentive compatible schemeϕπ. Invoking Lemma B.2, the signature

{(Aσi , σi)}i∈[n] = {(
1

n!

∑

π∈Sn

πM
σ
π−1(i) , σi)}i∈[n]

also corresponds to an optimal and incentive compatible scheme, namely the scheme which draws a permu-
tationπ uniformly at random, then signals according toϕπ.

Observe that theith row of the matrixπMσ
π−1(i) is theπ−1(i)th row of the matrixMσ

π−1(i) . Expressing
Aσi

i as a sum over permutationsπ ∈ Sn, and grouping the sum byk = π−1(i), we can write

Aσi

i =
1

n!

∑

π∈Sn

[πMσ
π−1(i) ]i

=
1

n!

∑

π∈Sn

M
σ
π−1(i)

π−1(i)

=
1

n!

n∑

k=1

Mσk

k ·
∣∣{π ∈ Sn : π−1(i) = k

}∣∣

=
1

n!

n∑

k=1

Mσk

k · (n− 1)!

=
1

n

n∑

k=1

Mσk

k ,

which does not depend oni. Similarly, thejth row of the matrixπMσ
π−1(i) is theπ−1(j)th row of the

matrixMσ
π−1(i) . For j 6= i, expressingAσi

j as a sum over permutationsπ ∈ Sn, and grouping the sum by
k = π−1(i) andl = π−1(j), we can write

Aσi

j =
1

n!

∑

π∈Sn

[πM
σ
π−1(i) ]j

=
1

n!

∑

π∈Sn

M
σ
π−1(i)

π−1(j)

=
1

n!

∑

k 6=l

Mσk

l ·
∣∣{π ∈ Sn : π−1(i) = k, π−1(j) = l

}∣∣

=
1

n!

∑

k 6=l

Mσk

l · (n− 2)!

=
1

n(n− 1)

∑

k 6=l

Mσk

l ,

which does not depend oni or j. Let

x =
1

n

n∑

k=1

Mσk

k ;

y =
1

n(n− 1)

∑

k 6=l

Mσk

l .
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The signature{(Aσi , σi)}i∈[n] therefore describes an optimal, incentive compatible, andsymmetric scheme
with s-signature(x,y).

B.2 The Optimal Scheme

Proof of Lemma 3.5

For the “only if” direction,||x||1 = 1
n

andx+ (n− 1)y = q were established in Section 3.1. To show that
τ is a realizable symmetric reduced form for an allocation rule, letϕ be a signaling scheme withs-signature
(x,y). Recall from the definition of ans-signature that, for eachi ∈ [n], signalσi has probability1/n,
andnx is the posterior distribution of actioni’s type conditioned on signalσi. Now consider the following
allocation rule: Given a type profileθ ∈ [m]n of then bidders, allocate the item to bidderi with probability
ϕ(θ, σi) for anyi ∈ [n]. By Bayes rule,

Pr[i gets item|i has typej] = Pr[i has typej|i gets item] ·
Pr[i gets item]
Pr[i has typej]

= nxj ·
1/n

qj
=

xj
qj

Thereforeτ is indeed the reduced form of the described allocation rule.
For the “if” direction, letτ , x, andy be as in the statement of the lemma, and consider an allocation

rule A with symmetric reduced formτ . Observe thatA always allocates the item, since for each player
i ∈ [n] we havePr[i gets the item] =

∑m
j=1 qjτj =

∑m
j=1 xj =

1
n

. We define the direct signaling scheme
ϕA by ϕA(θ) = σA(θ). Let M = (Mσ1 , . . . ,Mσn) be the signature ofϕA. Recall that, forθ ∼ λ and
arbitraryi ∈ [n] andj ∈ [m], Mσi

ij is the probability thatϕA(θ) = σi andθi = j; by definition, this equals
the probability thatA allocates the item to playeri and her type isj, which isτjqj = xj. As a result, the
signatureM of ϕA satisfiesMσi

i = x for every actioni. If ϕA were symmetric, we would conclude that
its s-signature is(x,y) since everys-signature(x,y′) must satisfyx + (n − 1)y′ = q (see Section 3.1).
However, this is not guaranteed when the allocation ruleA exhibits some asymmetry. Nevertheless,ϕA can
be “symmetrized” into a signaling schemeϕ′

A which first draws a random permutationπ ∈ Sn, and signals
π(ϕA(π

−1(θ))). Thatϕ′
A hass-signature(x,y) follows a similar argument to that used in the proof of

Theorem 3.2, and we therefore omit the details here.
Finally, observe that the description ofϕ′

A above is constructive assuming black-box access toA, with
runtime overhead that is polynomial inn andm.

Proof of Lemma 3.6

By Lemma 3.5, we can re-write LP (2) as follows:

maximize nξ · x
subject to ρ · x ≥ ρ · y

x+ (n− 1)y = q

||x||1 =
1
n

(x1
q1
, ...., xm

qm
) is a realizable symmetric reduced form

(5)

From [13, 12, 15, 1], we know that the family of all the realizable symmetric reduced forms constitutes
a polytope, and moreover that this polytope admits an efficient separation oracle. The runtime of this oracle
is polynomial inm andn, and as a result the above linear program can be solved inpoly(n,m) time using
the Ellipsoid method.
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B.3 A Simple(1− 1/e)-approximate Scheme

Proof of Theorem 3.8

Given a binary signalσ = (o1, . . . , on) ∈ {HIGH,LOW}n, the posterior type distribution for an action
equalsnx∗ if the corresponding component signal isHIGH, and equalsny∗ if the component signal is
LOW. This is simply a consequence of the independence of the action types, the fact that the different
component signals are chosen independently, and Bayes’ rule. The constraintρ · x∗ ≥ ρ · y∗ implies
that the receiver prefers actionsi for which oi = HIGH, any one of which induces an expected utility of
nρ · x∗ for the receiver andnξ · x∗ for the sender. The latter quantity matches the optimal value of LP (3).
The constraint||x||1 = 1

n
implies that each component signal isHIGH with probability 1

n
, independently.

Therefore, the probability that at least one component signal isHIGH equals1− (1− 1
n
)n ≥ 1− 1

e
. Since

payoffs are nonnegative, and since a rational receiver selects aHIGH action when one is available, the
sender’s overall expected utility is at least a1− 1

e
fraction of the optimal value of LP (3).
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C Proof of Theorem 4.1
This section is devoted to proving Theorem 4.1. Our proof starts from the ideas of Gopalan et al. [30],
who show the #P-hardness for revenue or welfare maximization in several mechanism design problems. In
one case, [30] reduce from the#P -hard problem of computing theKhintchine constantof a vector. Our
reduction also starts from this problem, but is much more involved: First, we exhibit a polytope which we
termKhintchine polytope, and show that computing the Khintchine constant reduces tolinear optimization
over the Khintchine polytope. Second, we present a reduction from the membership problem for the Khint-
chine polytope to the computation of optimal sender utilityin a particularly-crafted instance of persuasion
with independent actions. Invoking the polynomial-time equivalence between membership checking and
optimization (see, e.g., [31]), we conclude the #P-hardness of our problem. The main technical challenge
we overcome is in the second step of our proof: given a pointx which may or may not be in the Khint-
chine polytopeK, we construct a persuasion instance and a thresholdT so that points inK encode signaling
schemes, and the optimal sender utility is at leastT if and only if x ∈ K and the scheme corresponding tox
results in sender utilityT .

The Khintchine Polytope

We start by defining theKhintchine problem, which is shown to be #P-hard in [30].

Definition C.1. (Khintchine Problem) Given a vectora ∈ R
n, compute theKhintchine constantK(a) of a,

defined as follows:
K(a) = E

θ∼{±1}n
[|θ · a|],

whereθ is drawnuniformly at random from{±1}n.

To relate the Khintchine problem to Bayesian persuasion, webegin with a persuasion instance withn
i.i.d. actions. Moreover, there are only two action types,5 which we refer to astype -1and type +1. The
state of nature is a uniform random draw from the set{±1}n, with the ith entry specifying the type of
actioni. It is easy to see that these actions arei.i.d., with marginal probability12 for each type. We call this
instance theKhintchine-likepersuasion setting. As in Section 3, we still use thesignatureto capture the
payoff-relevant features of a signaling scheme. A signature for the Khintchine-like persuasion problem is
of the formM = (M1, ...,Mn) whereM i ∈ R

n×2 for any i ∈ [n]. We pay special attention to signaling
schemes which use onlytwo signals, in which case we represent them using atwo-signal signatureof the
form (M1,M2) ∈ R

n×2 × R
n×2. Recall that such a signature isrealizableif there is a signaling scheme

which uses only two signals, with the property thatM i
jt is the joint probability of theith signal and the event

that actionj has typet. We now define theKhintchine polytope, consisting of a convex family of two-signal
signatures.

Definition C.2. TheKhintchine polytopeis the familyK(n) of realizabletwo-signal signatures(M1,M2)
for the Khintchine-like persuasion setting which satisfy the additional constraintsM1

i,1+M1
i,2 =

1
2 ∀i ∈ [n].

We sometimes useK to denote the Khintchine polytopeK(n) when the dimensionn is clear from the
context. Note that the constraintsM1

i,1 + M1
i,2 = 1

2 , ∀i ∈ [n] state that the first signal should be sent with
probability 1

2 (hence also the second signal). We now show that optimizing over the Khintchine polytope is
#P -hard by reducing the Kintchine problem to Linear program (6).

Lemma C.3. General linear optimization over the Khintchine polytopeK is#P -hard.

5Recall from Section 3 that each type is associated with a pair(ξ, ρ), whereξ [ρ] is the payoff to the sender [receiver] if the
receiver takes an action of that type.
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maximize
∑n

i=1 ai(M
+
i,+1 −M+

i,−1)−
∑n

i=1 ai(M
−
i,+1 −M−

i,−1)

subject to (M+,M−) ∈ K(n)
(6)

Linear program for computing the Khintchine constantK(a) for a ∈ R
n

Proof. For any givena ∈ R
n, we reduce the computation ofK(a) – the Khintchine constant fora – to a

linear optimization problem over the Khintchine polytopeK. Since our reduction will use two signalsσ+
andσ− which correspond to the sign ofθ · a, we will use(M+,M−) to denote the two matrices in the
signature in lieu of(M1, M2). Moreover, we use the two action types+1 and−1 to index the columns of
each matrix. For example,M+

i,−1 is the joint probability of signalσ+ and the event that theith action has
type−1.

We claim that the Kintchine constantK(a) equals the optimal objective value of the implicitly-described
linear program (6). We denote this optimal objective value by OPT (LP (6)). We first prove thatK(a) ≤
OPT (LP (6)). Consider a signaling schemeϕ in the Kintchine-like persuasion setting which simply out-
putsσsign(θ·a) for each state of natureθ ∈ {±1}n (breaking tie uniformly at random ifθ · a = 0). Sinceθ is
drawn uniformly from{±1}n andsign(θ · a) = −sign(−θ · a), this scheme outputs each of the signalsσ−
andσ+ with probability 1

2 . Consequently, the two-signal signature ofϕ is a point inK. Moreover, evaluating
the objective function of LP (6) on the two-signal signature(M+,M−) of ϕ yieldsK(a) = Eθ[|θ · a|], as
shown below.

E
θ
[|θ · a|] = E

θ
[θ · a|σ+] ·Pr(σ+) +E

θ
[−θ · a|σ−] ·Pr(σ−)

=
n∑

i=1

ai E
θ
[θi|σ+] ·Pr(σ+)−

n∑

i=1

ai E
θ
[θi|σ−]×Pr(σ−)

=

n∑

i=1

(
ai[Pr(θi = 1|σ+)−Pr(θi = −1|σ+)] ·Pr(σ+)

)

−

n∑

i=1

(
ai[Pr(θi = 1|σ−)−Pr(θi = −1|σ−)] ·Pr(σ−)

)

=
n∑

i=1

(
ai[Pr(θi = 1, σ+)−Pr(θi = −1, σ+)]

)
−

n∑

i=1

(
ai[Pr(θi = 1, σ−)−Pr(θi = −1, σ−)]

)

=

n∑

i=1

ai[M
+
i,+1 −M+

i,−1]−

n∑

i=1

ai[M
−
i,+1 −M−

i,−1]

This concludes the proof thatK(a) ≤ OPT (LP (6)).
Now we proveK(a) ≥ OPT (LP (6)). Takeanysignaling scheme which uses only two signalsσ+ and

σ−, and let(M+,M−) be its two-signal signature. Notice, however, thatσ+ now is only the “name” of the
signal, and does not imply thatθ · a is positive. Nevertheless, it is still valid to reverse the above derivation
until we reach

n∑

i=1

ai[M
+
i,+1 −M+

i,−1]−

n∑

i=1

ai[M
−
i,+1 −M−

i,−1] = E
θ
[θ · a|σ+] ·Pr(σ+) +E

θ
[−θ · a|σ−] ·Pr(σ−).

Sinceθ · a and−θ · a are each no greater than|θ · a|, we have

E
θ
[θ · a|σ+] ·Pr(σ+) +E

θ
[−θ · a|σ−] ·Pr(σ−) ≤ E

θ
[|θ · a| | σ+] ·Pr(σ+) +E

θ
[|θ · a| | σ−] ·Pr(σ−)

= E
θ
[|θ · a|] = K(a).
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That is, the objective value of LP (6) is upper bounded byK(a), as needed.

Before we proceed to present the reduction from the membership problem forK to optimal persuasion,
we point out an interesting corollary of Lemma C.3.

Corollary C.4. LetP be the polytope of realizable signatures for a persuasion problem withn i.i.d. actions
andm types (see Section 3). Linear optimization overP is#P -hard, and this holds even whenm = 2.

Proof. Consider the Khintchine-like persuasion setting. It is easy to see that the Khintchine polytopeK can
be obtained fromP by adding the constraintsMσi = 0 for i ≥ 3 andMσ1

i,1 +Mσ1
i,2 = 1

2 for i ∈ [n], followed
by a simple projection. Therefore, the membership problem for K can be reduced in polynomial time to the
membership problem forP, since the additional linear constraints can be explicitlychecked in polynomial
time. By the polynomial-time equivalence between optimization and membership, it follows that general
linear optimization overP is#P -hard.

Remark C.5. It is interesting to compare Corollary C.4 to single item auctions with i.i.d. bidders, where
the problem does admit a polynomial-time separation oraclefor the polytope of realizable signatures via
Border’s Theorem [13, 12] and its algorithmic properties [15, 1]. In contrast, the polytope of realizable sig-
natures for Bayesian persuasion is#P-hard to optimize over. Nevertheless, in Section 3 we were indeed able
to compute the optimal signaling scheme and sender utility for persuasion with i.i.d. actions. Corollary C.4
conveys that it was crucial for our algorithm to exploit the special structure of the persuasion objective and
the symmetry of the optimal scheme, since optimizing a general objective overP is #P-hard.

Reduction

We now present a reduction from the membership problem for the Khintchine polytope to the computation of
optimal sender utility for persuasion with independent actions. As the output of our reduction, we construct a
persuasion instance of the following form. There aren+1 actions. Action0 is special– it deterministically
results in sender utilityǫ and receiver utility0. Here, we think ofǫ > 0 as being small enough for our
arguments to go through. The othern actions areregular. Action i > 0 independentlyresults in sender
utility −ai and receiver utilityai with probability 1

2 (call this the type1i), or sender utility−bi and receiver
utility bi with probability 1

2 (call this the type2i). Note that the sender and receiver utilities arezero-sum
for both types. Notice that, though each regular action’s type distribution is uniform over its two types, the
actions here arenot identical because the associated payoffs — specified byai andbi for each actioni —
are different for different actions. Since the special action is deterministic and the probability of its (only)
type is1 in any signal, we can interpret any(M1,M2) ∈ K(n) as a two-signal signature for our persuasion
instance (the row corresponding to the special action0 is implied). For example,M1

i,2 is the joint probability
of the first signal and the event that actioni has type2i. Our goal is to reduce membership checking forK(n)
to computing the optimal expected sender utility for a persuasion instance with carefully chosen parameters
{ai}

n
i=1, {bi}

n
i=1, andǫ.

In relating optimal persuasion to the Khintchine polytope,there are two main difficulties: (1)K consists
of two-signal signatures, so there should be an optimal scheme to our persuasion instance which uses only
two signals; (2) To be consistent with the definition ofK, such an optimal scheme should send each signal
with probability exactly12 . We will design specificǫ, ai, bi to accomplish both goals.

For notational convenience, we will again use(M+,M−) to denote a typical element inK instead of
(M1,M2) because, as we will see later, the two constructed signals will induce positive and negative sender
utilities, respectively. Notice that there are onlyn degrees of freedom in(M+,M−) ∈ K. This is because
M+ + M− is the all-12 matrix in R

n×2, corresponding to the prior distribution of states of nature (by the
definition of realizable signatures). Moreover,M+

i,1 + M−
i,2 = 1

2 for all i ∈ [n] (by the definition ofK).
Therefore, we must have

M+
i,1 = M−

i,2 =
1

2
−M+

i,2 =
1

2
−M−

i,1.

23



This implies that we can parametrize signatures(M+,M−) ∈ K by a vectorx ∈ [0, 12 ]
n, whereM+

i,1 =

M−
i,2 = xi andM+

i,2 = M−
i,1 = 1

2 − xi for eachi ∈ [n]. For anyx ∈ [0, 12 ]
n, letM(x) denote the signature

(M+,M−) defined byx as just described.
We can now restate the membership problem forK as follows: givenx ∈ [0, 12 ]

n, determine whether
M(x) ∈ K. When any of the entries ofx equals0 or 1

2 this problem is trivial,6 so we assume without
loss of generality thatx ∈ (0, 12)

n. Moreover, whenxi = 1
4 for somei, it is easy to see that a signaling

scheme with signatureM(x), if one exists, must choose its signal independently of the type of actioni, and
thereforeM(x) ∈ K(n) if and only if M(x

−i) ∈ K(n − 1). This allows us to assume without loss of
generality thatxi 6= 1

4 for all i.
Given x ∈ (0, 12 )

n with xi 6= 1
4 for all i, we construct specificǫ and ai, bi for all i such that we

can determine whetherM(x) ∈ K by simply looking at the optimal sender utility in the corresponding
persuasion instance. We choose parametersai andbi to satisfy the following two equations.

xiai + (
1

2
− xi)bi = 0. (7)

(
1

2
− xi)ai + xibi =

1

2
. (8)

We note that the above linear system always has a solution when xi 6=
1
4 , which we assumed previously.

We make two observations about our choice ofai andbi. First, theprior expected receiver utility12 (ai+ bi)
equals12 for all actionsi (by simply adding Equation (7) and (8)). Second,ai andbi are both non-zero, and
this follows easily from our assumption thatxi ∈ (0, 12).

Now we show how to determine whetherM(x) ∈ K by only examining the optimal sender utility in
the constructed persuasion instance. We start by showing that restricting to two-signal schemes is without
loss of generality in our instance.

Lemma C.6. There exists an optimal incentive-compatible signaling scheme which uses at mosttwosignals:
one signal recommends the special action, and the other recommends some regular action.

Proof. Recall that an optimal incentive-compatible scheme usesn+1 signals, with signalσi recommending
action i for i = 0, 1, ..., n. Fix such a scheme, and letαi denote the probability of signalσi. Signalσi
induces posterior expected receiver utilityrj(σi) and sender utilitysj(σi) for each actionj. For a regular
actionj 6= 0, we havesj(σi) = −rj(σi) for all i due to the zero-sum nature of our construction. Notice
thatri(σi) ≥ 0 for all regular actionsi 6= 0, since otherwise the receiver would prefer action0 over actioni.
Consequently, for each signalσi with i 6= 0, the receiver derives non-negative utility and the sender derives
non-positive utility.

We claim that merging signalsσ1, σ2, . . . , σn — i.e., modifying the signaling scheme to output the same
signalσ∗ in lieu of each of them — would not decrease the sender’s expected utility. Recall that incentive
compatibility implies thatri(σi) = maxnj=0 rj(σi). Using Jensen’s inequality, we get

n∑

i=1

αiri(σi) ≥
n

max
j=0

[
n∑

i=1

αirj(σi)

]
. (9)

If the maximum in the right hand side expression of (9) is attained atj∗ = 0, the receiver will choose
the special action0 when presented with the merged signalσ∗. Recalling thatsi(σi) is non-positive for
i 6= 0, this can only improve the sender’s expected utility. Otherwise, the receiver chooses a regular action
j∗ 6= 0 when presented withσ∗, resulting in a total contribution of

∑n
i=1 αirj∗(σi) to the receiver’s expected

6If xi is 0 or 1
2
, thenM(x) ∈ K if and only if xj = 1

4
for all j 6= i. This is because the corresponding signaling scheme must

choose its signal based solely on the type of actioni.
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utility from the merged signal, down from the total contribution of
∑n

i=1 αiri(σi) by the original signals
σ1, . . . , σn. Recalling the zero-sum nature of our construction for regular actions, the merged signalσ∗ con-
tributes

∑n
i=1 αisj∗(σi) = −

∑n
i=1 αirj∗(σi) to the sender’s expected utility, up from a total contribution

of
∑n

i=1 αisi(σi) = −
∑n

i=1 αiri(σi) by the original signalsσ1, . . . , σn. Therefore, the sender is not worse
off by merging the signals. Moreover, interpretingσ∗ as a recommendation for actionj∗ yields incentive
compatibility.

Therefore, in characterizing the optimal solution to our constructed persuasion instance, it suffices to
analyze two-signal schemes of the the form guaranteed by Lemma C.6. For such a scheme, we denote
the signal that recommends the special action0 by σ+ (indicating that the sender derives positive utility
ǫ), and denote the other signal byσ− (indicating that the sender derives negative utility, as wewill show).
For convenience, in the following discussion we use the expression “payoff from a signal” to signify the
expected payoff of a player conditioned on that signal multiplied by the probability of that signal. For
example, thesender’s expected payoff from signalσ− equals the sender’s expected payoff conditioned on
signalσ− multiplied by the overall probability that the scheme outputs σ−, assuming the receiver follows
the scheme’s (incentive compatible) recommendations. We also use the expression “payoff from an action
in a signal” to signify the posterior expected payoff of a player for that action conditioned on the signal,
multiplied by the probability that the scheme outputs the signal. For example, thereceiver’s expected payoff
from actioni in signalσ+ equalsα+ · ri(σ+), whereri(σ+) is the receiver’s posterior expected payoff from
actioni given signalσ+, andα+ is the overall probability of signalσ+.

Lemma C.7. Fix an incentive-compatible scheme with signalsσ− andσ+ as described above. The sender’s
expected payoff from signalσ− is at most−1

2 . Moreover, if the sender’ expected payoff fromσ− is exactly
−1

2 , then for each regular actioni the expected payoff of both the sender and the receiver from action i in
signalσ+ equals0.

Proof. Assume that signalσ+ [σ−] is sent with probabilityα+ [α−] and induces posterior expected receiver
payoffri(σ+) [ri(σ−)] for each actioni. Recall from our construction that theprior expected payoff of each
regular actioni 6= 0 equals1

2ai +
1
2bi =

1
2 . Since the prior expectation must equal the expected posterior

expectation, it follows thatα+ · ri(σ+)+α− · ri(σ−) =
1
2 wheni is regular. The receiver’s reward from the

special action is deterministically0, and therefore incentive compatibility implies thatri(σ+) ≤ 0 for each
regular actioni. It follows thatα− · ri(σ−) =

1
2 − α+ · ri(σ+) ≥

1
2 for regular actionsi. In other words,

the receiver’s expected payoff from each regular action in signalσ− is at least12 . By the zero-sum nature of
our construction, the sender’s expected payoff from each regular action in signalσ− is at most−1

2 . Since
σ− recommends a regular action, we conclude that the sender’s expected payoff fromσ− is at most−1

2 .
Now assume that the sender’s expected payoff fromσ− is exactly−1

2 . By the zero-sum property,
incentive compatibility, and the above-established fact thatα− · ri(σ−) ≥

1
2 for regular actionsi, it follows

that the receiver’s expected payoff from each regular action in signalσ− is exactly 1
2 . Recalling thatα+ ·

ri(σ+) + α− · ri(σ−) =
1
2 wheni is regular, we conclude that the receiver’s expected payofffrom a regular

action in signalσ+ equals0. By the zero-sum property for regular actions, the same is true for the sender.

The key to the remainder of our reduction is to choose a small enough value for the parameterǫ —
the sender’s utility from the special action — so that the optimal signaling scheme satisfies the property
mentioned in Lemma C.7: The sender’s expected payoff from signalσ− is exactly equal to its maximum
possible value of−1

2 . In other words, we must makeǫ so small so that the sender prefers to not sacrifice
any of her payoff fromσ− in order to gain utility from the special action recommendedby σ+. Notice
that this upper bound of−1

2 is indeed achievable: the uninformative signaling scheme which recommends
an arbitrary regular action has this property. We now show that a “small enough”ǫ indeed exists. The
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key idea behind this existence proof is the following: We start with a signaling scheme which maximizes
the sender’s payoff fromσ− at −1

2 , and moreover corresponds to a vertex of the polytope of incentive-
compatible signatures. Whenǫ > 0 is smaller than the “bit complexity” of the vertices of this polytope,
moving to a different vertex — one with lower sender payoff from σ− — will result in more utility loss
from σ− than utility gain fromσ+. We show thatǫ > 0 with polynomially many bits suffices, and can be
computed in polynomial time.

Let P2 be the family of allrealizabletwo-signal signatures (again, ignoring action0). It is easy to see
thatP2 is a polytope, and importantly, all entries of any vertex ofP2 are integer multiples of12n . This is
because every vertex ofP2 corresponds to a deterministic signaling scheme which partitions the set of states
of nature, and every state of nature occurs with probability1/2n. As a result, all vertices ofP2 haveO(n)
bit complexity.

To ease our discussion, we use a compact representation for points in P2. In particular, any point
in P2 can be captured byn + 1 variables: variablep denotes the probability of sending signalσ+, and
variableyi denotes the joint probability of signalσ+ and the event that actioni has type1i. It follows
that joint probability of type2i and signalσ+ is p − yi, and the probabilities associated with signalσ−
are determined by the constraint thatM+ +M− is the all-12 matrix. With some abuse of notation, we use
M(p,y) = (M+,M−) to denote the signature inP2 corresponding to the probabilityp and n-dimensional
vectory. Now we consider the following two linear programs.

maximize pǫ+ u
subject to M(p,y) ∈ P2

yiai + (p− yi)bi ≤ 0, for i = 1, . . . , n.
u ≤ −[(12 − yi)ai + (12 − p+ yi)bi], for i = 1, . . . , n.

(10)

maximize u
subject to M(p,y) ∈ P2

yiai + (p− yi)bi ≤ 0, for i = 1, . . . , n.
u ≤ −[(12 − yi)ai + (12 − p+ yi)bi], for i = 1, . . . , n.

(11)

Linear programs (10) and (11) are identical except for the fact that the objective of LP (10) includes the
additional termpǫ. LP (10) computes precisely the optimal expected sender utility in our constructed persua-
sion instance: The first set of inequality constraints are the incentive-compatibility constraints for the signal
σ+ recommending action0; The second set of inequality constraints state that the sender’s payoff from
signalσ− is the minimum among all actions, as implied by the zero-sum nature of our construction; The
objective is the sum of the sender’s payoffs from signalsσ+ andσ−. Notice that the incentive-compatibility
constraints for signalσ−, namely(12−yi)ai+(12−p+yi)bi ≥ 0 for all i 6= 0, are implicitly satisfied because
1
2ai+

1
2bi =

1
2 by our construction and(12−yi)ai+(12−p+yi)bi =

1
2ai+

1
2bi−[yiai+(p−yi)bi] ≥

1
2−0 > 0.

On the other hand, LP (11) maximizes the sender’s expected payoff from signalσ−. Observe that the opti-
mal objective value of LP (11) is precisely−1

2 becauseu ≤ −[(12 − yi)ai + (12 − p + yi)bi] ≤ −1
2 for all

i 6= 0, and equality is attained, for example, atp = 0 andy = 0.
Let P̃2 be the set of all feasible(u,M(p,y)) for LP (10) (and LP (11)). Obviously,̃P2 is a polytope. We

now argue that all vertices of̃P2 have bit complexity polynomial inn and the bit complexity ofx ∈ (0, 12)
n.

In particular, denote the bit complexity ofx by ℓ. Sinceai, bi are computed by a two-variable two-equation
linear system involvingxi (Equations (7) and (8)), they each haveO(ℓ) bit complexity. Consequently, all
the explicitly described facets of̃P2 haveO(ℓ) bit complexity. Moreover, since each vertex ofP2 hasO(n)
bit complexity, each facet ofP2 then hasO(n3) bit complexity, i.e., the coefficients of inequalities that
determine the facets haveO(n3) bit complexity. This is due to the fact that facet complexityof a rational
polytope is upper bounded by acubicpolynomial of the vertex complexity andvice versa(see, e.g., [44]).
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To sum up, any facet of polytopẽP2 has bit complexityO(n3 + ℓ), and therefore any vertex of̃P2 has
O(n9ℓ3) bit complexity.

Let the polynomialB(n, ℓ) = O(n9ℓ3) be an upper bound on the maximum bit complexity of vertices
of P̃2. Now we are ready to set the value ofǫ. LP (10) always has an optimal vertex solution which we
denote as(u∗,M∗). Recall thatu ≤ −1

2 for all points(u,M(p,y)) in P̃2 andu = −1
2 is attainable at some

vertices. Since all vertices of̃P2 haveB(n, ℓ) bit complexity,(u∗,M∗) must either satisfy eitheru∗ = −1
2

or u∗ ≤ −1
2 − 2−B(n,ℓ). Therefore, it suffices to setǫ = 2−n·B(n,ℓ), which is a number with polynomial bit

complexity. As a result, any optimal vertex solution to LP (10) must satisfyu∗ = −1
2 , since the loss incurred

by moving to any other vertex withu < −1
2 can never be compensated for by the other termpǫ < ǫ.

With such a small value ofǫ, the sender’s goal is to send signalσ+ with probability as high as possible,
subject to the constraint that her utility fromσ− is precisely−1

2 . In other words, signalσ+ must induce
expected receiver/sender utility precisely0 for each regular actioni 6= 0 (see Lemma C.7). This character-
ization of the optimal scheme now allows us to determine whetherM(x) ∈ K by inspecting the sender’s
optimal expected utility. The following Lemma completes our proof of Theorem 4.1.

Lemma C.8. Given the small enough value ofǫ described above, the sender’s expected utility in the optimal
signaling scheme for our constructed persuasion instance is at least12(ǫ− 1) if and only if M(x) ∈ K.

Proof. ⇐: If M(x) ∈ K, then by our choice ofai, bi (recall Equations (7) and (8)), the signaling scheme
implementingM(x) is incentive compatible, the sender’s payoff from signalσ+ is 1

2ǫ, and her payoff from
σ− is−1

2 . Therefore, the optimal sender utility is at least1
2ǫ−

1
2 .

⇒: Let M(p,y) be the signature of a vertex optimal signaling scheme in LP (10). By our choice ofǫ
we know that the sender payoff from signalσ− must be exactly−1

2 . Therefore, to achieve overall sender
utility at least 12ǫ −

1
2 , signalσ+ must be sent with probabilityp ≥ 1

2 , and the receiver’s payoff from each
regular actioni 6= 0 in signalσ+ is exactly0. That is,yiai + (p− yi)bi = 0. By construction, we also have
thatxiai + (0.5 − xi)bi = 0 andai, bi 6= 0, which imply that yi

xi
= p−yi

0.5−xi
and, furthermore, thatyi ≥ xi

sincep ≥ 1
2 . Now letϕ be a signaling scheme with the signatureM(p,y). We can post-processϕ so it

has signatureM(x) as follows: wheneverϕ outputs the signalσ+, flip a biased random coin to outputσ+
with probability 0.5

p
and outputσ− otherwise. By using the identityyi

xi
= p−yi

0.5−xi
, it is easy to see that this

adjusted signaling scheme has signatureM(x).

27



D Omitted Proofs from Section 5

D.1 A Bicriteria FPTAS

Proof of Lemma 5.2

Fix ǫ, K, andλ, and letϕ denote the resulting signaling scheme implemented by Algorithm 2. Letθ ∼ λ
denote the input toϕ, andσ ∼ ϕ(θ) denote its output. First, we condition on the empirical sample λ̃ =
{θ1, . . . , θK} without conditioning on the indexℓ of the input state of natureθ, and show thatǫ-incentive
compatibility holds subject to this conditioning. The principle of deferred decisions implies that, subject to
this conditioning,θ is uniformly distributed iñλ. By definition of linear program (4), the signaling scheme
ϕ̃ computed in Step 3 isǫ-incentive compatible scheme for the empirical distribution λ̃. Sinceσ ∼ ϕ̃(θ)
andθ is conditionally distributed according tõλ, this implies that allǫ-incentive compatibility constraints
conditionally hold; formally, the following holds for eachpair of actionsi andj:

E[ri(θ)|σ = σi, λ̃] ≥ E[rj(θ)|σ = σi, λ̃]− ǫ

Removing the conditioning oñλ and invoking linearity of expectations shows thatϕ is ǫ-incentive
compatible forλ, completing the proof.

Proof of Lemma 5.3

As in the proof of Lemma 5.2, we condition on the empirical sample λ̃ = {θ1, . . . , θK} and observe thatθ is
uniformly distributed iñλ after this conditioning. The conditional expectation of sender utility then equals∑K

k=1

∑n
i=1

1
K
ϕ̃(θk, σi)si(θk), whereϕ̃ is the signaling scheme computed in Step 3 based onλ̃. Since

this is precisely the optimal value of the LP (4) solved in Step 3, removing the conditioning and invoking
linearity of expectations completes the proof.

Proof of Lemma 5.4

Recall that linear program (1) solves for the optimal incentive compatible scheme forλ. It is easy to see
that the linear program (4) solved in step 3 is simply the instantiation of LP (1) for the empirical distri-
bution λ̃ consisting ofK samples fromλ. To prove the lemma, it would suffice to show that the optimal
incentive-compatible schemeϕ∗ corresponding to LP (1) remainsǫ-incentive compatible andǫ-optimal for
the distributionλ̃, with high probability. Unfortunately, this approach fails because polynomially-many
samples fromλ are not sufficient to approximately preserve the incentive compatibility constraints cor-
responding to low-probability signals (i.e., signals which are output with probability smaller than inverse
polynomial inn). Nevertheless, we show in Claim D.1 that there exists an approximately optimal solution
ϕ̂ to LP (1) with the property that every signalσi is eitherlarge, which we define as being output bŷϕ with
probability at least ǫ4n assumingθ ∼ λ, or honestin that only states of natureθ with i ∈ argmaxj rj(θ)
are mapped to it. It is easy to see that sampling preserves incentive-compatibility exactly for honest signals.
As for large signals, we employ tail bounds and the union bound to show that polynomially many samples
suffice to approximately preserve incentive compatibility(Claim D.2).

Claim D.1. There is a signaling schemêϕ which is incentive compatible forλ, induces sender utility
us(ϕ̂, λ) ≥ OPT − ǫ

2 onλ, and such that every signal of̂ϕ is either large or honest.

Proof. Let ϕ∗ be the optimal incentive-compatible scheme forλ — i.e. the optimal solution to LP (1). We
call a signalσ small if it is output byϕ∗ with probability less thanǫ

4n , i.e. if
∑

θ∈Θ λθϕ
∗(θ, σ) < ǫ

4n , and
otherwise we call itlarge. Let ϕ̂ be the scheme which is defined as follows: on inputθ, it first samplesσ ∼
ϕ∗(θ); if σ is large thenϕ̂ simply outputsσ, and otherwise it recommends an action maximizing receiver
utility in state of natureθ —- i.e., outputsσi′ for i′ ∈ argmaxi ri(θ). It is easy to see that every signal ofϕ̂
is either large or honest. Moreover, sinceϕ∗ is incentive compatible and̂ϕ only replaces recommendations
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Rainy Sunny
Walk 1− δ 1
Drive 1 0

Table 1: Receiver’s Payoffs in Rain and Shine Example

of ϕ∗ with “honest” recommendations, it is easy to check thatϕ̂ is incentive compatible forλ. Finally, since
the total probability of small signals inϕ∗ is at mostǫ4 , and utilities are in[−1, 1], the sender’s expected
utility from ϕ̂ is no worse thanǫ2 smaller than her expected utility fromϕ∗.

Claim D.2. Let ϕ̂ be the signaling scheme from Claim D.1. With probability at least1− ǫ
8 over the sample

λ̃, ϕ̂ is ǫ-incentive compatible for̃λ, and moreoverus(ϕ̂, λ̃) ≥ us(ϕ̂, λ)−
ǫ
4 .

Proof. Recall thatϕ̂ is incentive compatible forλ, and every signal is either large or honest. Sinceλ̃ is a set
of samples fromλ, it is easy to see that incentive compatibility constraintspertaining to the honest signals
continue to hold over̃λ. It remains to show that incentive compatibility constraints for large signals, as well
as expected sender utility, are approximately preserved when replacingλ with λ̃.

Recall that incentive-compatibility requires thatEθ[ϕ̂(θ, σi)(ri(θ) − rj(θ))] ≥ 0 for eachi, j ∈ [n].
Moreover, the sender’s expected utility can be written asEθ[

∑n
i=1 ϕ̂(θ, σi)si(θ)]. The left hand side of

each incentive compatibility constraint evaluates the expectation of a fixed function ofθ with range[−2, 2],
whereas the sender’s expected utility evaluates the expectation of a function ofθ with range in[−1, 1].
Standard tail bounds and the union bound, coupled with our careful choice of the number of samplesK,
imply that replacing distributionλ with λ̃ approximately preserves each of thesen2 +1 quantities to within
an additive error ofǫ

2

4n with probability at least1 − ǫ
8 . This bound on the additive loss translates toǫ-

incentive compatibility for the large signals, and is less than the permitted decrease ofǫ
4 for expected sender

utility.

The above claims, coupled with the fact that sender payoffs are bounded in[−1, 1], imply that the
expected optimal value of linear program (4) is at leastOPT − ǫ, as needed.

D.2 Information-Theoretic Barriers

Impossibility of Incentive Compatibility (Proof of Theore m 5.5 (a))

Consider a setting with two states of nature, which we will conveniently refer to asrainy andsunny. The
receiver, who we may think of as a daily commuter, has two actions: walk anddrive. The receiver slightly
prefers driving on a rainy day, and strongly prefers walkingon a sunny day. We summarize the receiver’s
payoff function, parametrized byδ > 0, in Table 1. The sender, who we will think of as a municipalitywith
black-box sample access to weather reports drawn from the same distribution as the state of nature, strongly
prefers that the receiver chooses walking regardless of whether it is sunny or rainy: we letswalk = 1 and
sdrive = 0 in both states of nature.

Let λr be the point distribution on the rainy state of nature, and let λs be such thatPrλs
[rainy] = 1

1+2δ

andPrλs
[sunny] = 2δ

1+2δ . It is easy to see that the unique direct incentive-compatible scheme forλr always
recommends driving, and hence results in expected sender utility of 0. In contrast, a simple calculation
shows that always recommending walking is incentive compatible for λs, and results in expected sender
utility 1. If algorithmA is incentive compatible andc-optimal for a constantc < 1, thenA(λr) must never
recommend walking whereasA(λs) must recommend walking with constant probability at least(1 − c)
overall (in expectation over the input state of natureθ ∼ λs as well as all other internal randomness).
Consequently, given a black box distributionD ∈ {λr, λs}, evaluatingA(D, θ) on a random drawθ ∼ D
yields a tester which distinguishes betweenλr andλs with constant probability1− c.
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Pr[θ1] Pr[θ2] Pr[θ3]
λ 1− 2δ 2δ 0
λ′ 1− 2δ δ δ

Table 2: Two Distributions on Three Actions

Since the total variation distance betweenλr andλs is O(δ), it is well known (and easy to check) that
any black-box algorithm which distinguishes between the two distributions withΩ(1) success probability
must takeΩ(1

δ
) samples in expectation when presented with one of these distributions. As a consequence,

the average-case sample complexity ofA on either ofλr andλs isΩ(1
δ
). Sinceδ > 0 can be made arbitrarily

small, this completes the proof.

Impossibility of Optimality (Proof of Theorem 5.5 (b))

Consider a setting with three actions{1, 2, 3} and three corresponding states of natureθ1, θ2, θ3. In each
stateθi, the receiver derives utility1 from actioni and utility 0 from the other actions. The sender, on the
other hand, derives utility1 from action3 and utility 0 from actions1 and2. For an arbitrary parameter
δ > 0, we define two distributionsλ andλ′ over states of nature with total variation distanceδ, illustrated
in Table 2.

Assume algorithmA is optimal andc-incentive compatible for a constantc < 1
4 . The optimal incentive-

compatible scheme forλ′ results in expected sender utility3δ by recommending action3 whenever the state
of nature isθ2 or θ3, and with probability δ

1−2δ when the state of nature isθ1. Some calculation reveals
that in order to match this expected sender utility subject to c-incentive compatibility, signaling scheme
ϕ′ = A(λ′) must satisfyϕ′(θ2, σ3) ≥ µ for µ = 1 − 4c > 0. In other words,ϕ′ must recommend action
3 a constant fraction of the time when given stateθ2 as input. In contrast, sincec < 1

2 it is easy to see that
ϕ = A(λ) can never recommend action3: for any signal, the posterior expected receiver reward foraction3
is 0, whereas one of the other two actions must have posterior expected receiver reward at least1

2 . It follows
that givenD ∈ {λ, λ′}, a call toA(D, θ2) yields a tester which distinguishes betweenλ andλ′ with constant
probabilityµ. Sinceλ andλ′ have statistical distanceδ, we conclude that the worst case sample complexity
of A on either ofλ or λ′ isΩ(1

δ
). Sinceδ > 0 can be made arbitrarily small, this completes the proof.
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