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Abstract

We consider the problem of computing:asparse approximation to the Fourier transform of a ledgth
signal. Our main result is a randomized algorithm for corimmusuch an approximation (i.e. achieving the
{2 /€5 Sparse recovery guarantees using Fourier measuremeinigY gk log N log log N) samples of the
signal in time domain that runs in tin(éd(klogd+3 N), whered > 1 is the dimensionality of the Fourier
transform. The sample complexity matches the lower bours?l bflog(N/k)) for non-adaptive algorithms
due to [DIPW10] for any: < N'~° for a constan§ > 0 up to anO(log log V) factor. Prior to our work a
result with comparable sample complexitjog N 1Og0(1) log N and sublinear runtime was known for the
Fourier transform on the liné [IKP14], but for any dimensidér> 2 previously known techniques either
suffered from a polglog N) factor loss in sample complexity or requir@dN) runtime.
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1 Introduction

The Discrete Fourier Transform (DFT) is a fundamental nrathtéecal concept that allows to represent a discrete
signal of length/V as a linear combination oV pure harmonics, or frequencies. The development of a fast
algorithm for Discrete Fourier Transform, known as FFT (fFasurier Transform) in 1965 revolutionized digital
signal processing, earning FFT a place in the top 10 mostiitaupioalgorithms of the twentieth centufy [Cip00].
Fast Fourier Transform (FFT) computes the DFT of a lemgtkignal in timeO(N log N), and finding a faster
algorithm for DFT is a major open problem in theoretical corep science. While FFT applies to general
signals, many of the applications of FFT (e.g. image ando/@empression schemes such as JPEG and MPEG)
rely on the fact that the Fourier spectrum of signals thaesan practice can often be approximated very well by
only a few of the top Fourier coefficients, i.e. practicalrgily are often (approximatelgparsein the Fourier
basis.

Besides applications in signal processing, the Fouriersgiggoroperty of real world signal plays and im-
portant role in medical imaging, where the costrdasuring a signali.e. sample complexityis often a major
bottleneck. For example, an MRI machine effectively meastine Fourier transform of a signakrepresent-
ing the object being scanned, and the reconstruction proidesxactly the problem of inverting the Fourier
transformz of 2 approximately given a set of measurements. Minimizing #meme complexity of acquiring a
signal using Fourier measurements thus translates diteattduction in the time the patient spends in the MRI
machine [LDSP08] while a scan is being taken. In applicatitmComputed Tomography (CT) reduction in
measurement cost leads to reduction in the radiation dasa thatient receives [Sid11]. Because of this strong
practical motivation, the problem of computing a good agpnation to the FFT of a Fourier sparse signal
fast and using few measurements in time domain has beenbfersof much attention several communities.
In the area otompressive sensirf@on06, CT06], where one studies the task of recoveringr@pmately)
sparse signals from linear measurements, Fourier measatgimave been one of the key settings of interest. In
particular, the seminal work of [CT06, RV08] has shown tleaigth NV signals with at mosk nonzero Fourier
coefficients can be recovered using orkl}ogo(l) N samples in time domain. The recovery algorithms are
based on linear programming and run in time polynomialVin A different line of research on th8parse
Fourier Transform(Sparse FFT), initiated in the fields of computational camjpy and learning theory, has
been focused on developing algorithms whose sample coityplaxd running time scale with the sparsity as
opposed to the length of the input signal. Many such algmstihave been proposed in the literature, including
[GL89,[KM91,[Man92, GGI02,[AGS03| GMS05, Iwel0, AkalD, HIKP1Zb, HIKP12a, BCIZ,[HAKI1Z,
PR13/ HKPV13, IKP14]. These works show that, for a wide raofigggnals, both the time complexity and the
number of signal samples taken can be significantly suladiime/N, often of the formk log® M N

In this paper we consider the problem of computing a sparseajnation to a signat € CV given access
to its Fourier transforn € CN I The best known results obtained in both compressive setigngture and
sparse FFT literature on this problem are summarized inZigVe focus on algorithms that work for worst-
case signals and recovkfsparse approximations satisfying the so-calleds approximation guarantee. In
this case, the goal of an algorithm is as follows: giversamples of the Fourier transforinof a signalz, and
the sparsity parametér, outputz’ satisfying

lz =2’z <C min |[lz—yll, 1)
k-sparsey
The algorithms are randomizdnd succeed with at least constant probability.

Higher dimensional Fourier transform. While significant attention in the sublinear Sparse FFTaitare

has been devoted to the basic case of Fourier transform diméhé.e. one-dimensional signals), the spars-

INote that the problem of reconstructing a signal from Faurieasurements is equivalent to the problem of computing theier
transform of a signat whose spectrum is approximately sparse, as the DFT andi@ssimare only different by a conjugation.

2Some of the algorithm$§ [CT06. RV8. CGVI12] can in fact be méeterministic, but at the cost of satisfying a somewhat weak
{2 /€1 guarantee.



Reference Time Samples C Dimension
d>1?
[CT06,[RV08] CGV1D]
[Bould, HR16] N x m linear program | O(klog?(k)log(N)) O(1) yes
[CP10] N x m linear program O(klog N) (log N)°M) yes
[HIKP12z] O(klog(N)log(N/k)) | O(klog(N )log(N/k)) any no
[IKP14] klog?(N)log®Mlog N | klog(N)log®™M log N any no
[IK14] Nlog®M N O(klog N) any yes
[DIPW10] Q(klog(N/k)) 0(1) lower bound

Figure 1: Bounds for the algorithms that reco¥esparse Fourier approximations. All algorithms produce an
output satisfying Equatiopn] 1 with probability of succesattls at least constant. The forth column specifies
constraints on approximation fact6t. For exampleC' = O(1) means that the algorithm can only handle
constantC' as opposed to ang' > 1. The last column specifies whether the sample complexityhé®are
unchanged, up to factors that depend on dimengionly, for higher dimensional DFT.

est signals often occur in applications involving highanehsional DFTs. Although a reduction from DFT
on a two-dimensional grigvith relatively prime side lengthg x ¢ to a one-dimensional DFT of lengihy

is possible [GMSO05, Iwel2]), the reduction does not applthto most common case when the side lengths
of the grid are equal to the same powers of two. It turns outriast sublinear Sparse FFT techniques de-
veloped for the one-dimensional DFT do not extend well tohilgher dimensional setting, suffering from
at least a polylogaritmic loss in sample complexi§pecifically, the only prior sublinear time algorithm that
applies to generatn x m grids is due to to[[GMSO05], ha®(klog® N) sample and time complexity for a
rather large value of. If IV is a power of2, a two-dimensional adaptation of the [HIKP12a] algorithonitf
lined in [GHIT13]) has roughlyO(klog® N) time and sample complexity, and an adaptatior of [[KP14] has
O(klog? N(loglog N)O(l)) sample complexity. In general dimensign> 1 both of these algorithms have
sample complexitf2(k log? N).

Thus, none of the results obtained so far was able to guaraptase recovery from high dimensional (any
d > 2) Fourier measurements without suffering at least a pobylitigmic loss in sample complexity, while at
the same time achieving sublinear runtime.

Our results. In this paper we give an algorithm that achieves#h#, sparse recovery guarantegs (1) with
d-dimensional Fourier measurements that U3gs: log N log log V) samples of the signal and has the running
time of Od(klogd+3 N). This is the first sublinear time algorithm that comes withipoly(log log N) factor
of the sample complexity lower bound Qf k log(N/k)) due to [DIPW10] for any dimension higher than one.

Sparse Fourier Transform overview. The overall outline of our algorithm follows the framewof{GMS05,
HIKP12a,IKP14| IK14], which adapt the methods [of [CCFCO02RS10] from arbitrary linear measurements
to Fourier measurements. The idea is to take, multiple timeset ofB = O(k) linear measurements of the

form
> s

©:h(i)=j

for random hash functionsd : [N] — [B] and random sign changeas with |s;| = 1. This corresponds to
hashingto B buckets With such ideal linear measurement¥log(N/k)) hashes suffice for sparse recovery,
giving anO(k log(N/k)) sample complexity.

The sparse Fourier transform algorithms approximatesing linear combinations of Fourier samples.
Specifically, the coefficients afare first permuted via a random affine permutation of the ispate. Then the
coefficients are partitioned into buckets. This step useillering” process that approximately partitions the



range ofx into intervals (or, in higher dimension, squares{grballs) with N/ B coefficients each, where each
interval corresponds to one bucket. Overall, this ensurasrhost of the large coefficients are “isolated”, i.e.,
are hashed to unique buckets, as well as that the contnitsutrom the “tail” of the signalk: to those buckets

is not much greater than the average (the tail of the sigrfale@teaskrry,(x) = ming_sparsey ||z — y||2). This
allows one to mimic the iterative recovery algorithm ddsed for linear measurements above. However, there
are several difficulties in making this work using an optimamber of samples.

This enables the algorithm to identify the locations of tleenthant coefficients and estimate their values,
producing a sparse estimateof x. To improve this estimate, we repeat the process eny by subtracting
the influence ofy during hashing, therebrefining the approximation of constructed. After a few iterations
of this refinement process the algorithm obtains a good sgrgroximationy of x.

A major hurdle in implementing this strategy is that any fitteat has been constructed in the literature so far
is imprecise in that coefficients contribute (“leak™) todkets other than the one they are technically mapped
into. This contribution, however, is limited and can be coled by the quality of the filter. The details of
filter choice have played a crucial role in recent developsén Sparse FFT algorithms. For example, the
best known runtime for one-dimensional Sparse FFT, due lPH2K], was obtained by constructing filters
that (almost) precisely mimic the ideal hash process, atigWior a very fast implementation of the process in
dimension one. The price to pay for the precision of the filtewever, is that each hashing becomésgd N
factor more costly in terms of sample complexity and runtthen in the idealized case. At the other extreme,
the algorithm of [GMSO05] uses much less precise filters, tiioly lead to aC'? loss of sample complexity
in higher dimensiongl, for a constantC' > 0. Unfortunately, because of the imprecision of the filters th
iterative improvement process becomes quite noisy, riegui2(log N) iterations of the refinement process
above. As[[GMSO05] use fresh randomness for each such derédtiis results in afi2(log V) factor loss in
sample complexity. The result of [IKP14] uses a hybrid sggt effectively interpolating between [HIKP12b]
and [GMSO05]. This gives the near optirr(a[k:logNlogo(l) log N') sample complexity in dimension one (i.e.
Fourier transform on the line), but still suffers fromicg?~* NV loss in dimension.

Techniques of [IK14]. The first algorithm to achieve optimal sample complexity weently introduced
in [IK14]. The algorithms uses an approach inspired[by [GB]S@nd hence uses ‘crude’ filters that do not
lose much in sample complexity), but introduces a key intiomaenabling optimal sample complexity: the
algorithm doesiot use fresh hash functions in every repetition of the refingmescess. Instead)(log NV)
hash functions are chosen at the beginning of the procedstisat each large coefficient is isolated by most of
those functions with high probability. The same hash fumgiare then used throughout the execution of the
algorithm. As every hash function required a separate ssdmiples to construct the buckets, reusing the hash
functions makes sample complexitydependent of the number of iteratipfsading to the optimal bound.

While a natural idea, reusing hash functions creates a nddfarulty: if the algorithm identified a non-
existent large coefficient (i.e. a false positive) by mistakd added it tg, this coefficient would be present
in the difference vector — x (i.e. residual signal) and would need to be corrected later.the spurious
coefficient depends on the measurements, the ‘isolati@pesties required for recovery need not hold for it
as its position is determined by the hash functions therasglnd the algorithm might not be able to correct
the mistake. This hurdle was overcomelin [IK14] by ensurimat ho large coefficients are created spuriously
throughout the execution process. This is a nontrivial ergpto achieve, as the hashing process is quite
noisy due to use of the ‘crude’ filters to reduce the numberaofides (because the filters are quite simple,
the bucketing process suffers from substantial leakagdle sblution was to recover the large coefficients
in decreasing order of their magnitude. Specifically, inhesiep, the algorithm recovered coefficients with
magnitude that exceeded a specific threshold (that desr@hsen exponential rate). With this approach the
£+, norm of the residual signal decreases by a constant factewdry round, resulting in the even stronger
(~/¢2 Sparse recovery guarantees in the end. The price to payi$msttbng guarantee was the need for a very
strong primitive for locating dominant elements in the desil signal: a primitive was needed that would make
mistakes with at most inverse polynomial probability. Thigs achieved by essentially brute-force decoding



over all potential elements idV]: the algorithm loops over all elements [N] and for eachi tests, using the
O(log N) measurements taken, whettigs a dominant element in the residual signal. This resulted(iV)
runtime.

Our techniques. In this paper we show how to make the aforementioned algorithn in sub-linear
time, at the price of a slightly increased sampling compyerf O,(klog N loglog N). To achieve a sub-
linear runtime, we need to replace the loop overMltoefficients by a location primitive (similar to that in
prior works) that identifies the position of any large coedfint that is isolated in a bucket lbgo(l) N time
per bucket, i.e. without resorting to brute force enumerativer the domain of siz&/’. Unfortunately, the
identification step alone increases the sampling compléxitO (log V') per hash function, so unlike [IK14],
here we cannot repeat this process ushipg V') hash functions to ensure that each large coefficient istesbla
by one of those functions. Instead, we can only affor(dog log V) hash functions overall, which means that
1/logo(1) N fraction of large coefficients will not be isolated in mosshangs. This immediately precludes
the possibility of using the initial samples to achiefsg norm reduction as in_[IK14]. Another problem,
however, is that the weaker location primitive that we use m@neratespurious coefficientat every step
of the recovery process. These spurious coefficients, Hegetith thel/logo(l) N fraction of non-isolated
elements, contaminate the recovery process and esseméatier the original samples useless after a small
number of refinement steps. To overcome these hurdlesathstethel,, reduction process of [IK14] we
use a weaker invariant on the reduction of mass in the ‘healeyhents of the signal throughout our iterative
process. Specifically, instead of reductionfgf norm of the residual as in [IK14] we give a procedure for
reducing the/; norm of the ‘*head’ of the signal. To overcome the contamamatoming from non-isolated as
well as spuriously created coefficients, we achiévaorm reduction by alternating two procedures. The first
procedure uses th@(log log V) hash functions to reduce tlig norm of ‘well-hashed’ elements in the signal,
and the second uses a simple sparse recovery primitive teedtie/,, norm of offending coefficients when
the first procedure gets stuck. This can be viewed as a sigiradise ratio (SNR) reduction step similar in spirit
the one achieved in [IKP14]. The SNR reduction phase is fitsemt for achieving the, /¢, sparse recovery
guarantee, and hence we need to run a cleanup phase at thiehendhe signal to noise ratio is constant. It has
been observed before (in_ [IKP14]) that if the signal to noate is constant, then recovery can be done using
standard techniques with optimal sample complexity. Theiat difference between [IKP14] and our setting
is, however, that we only have boundsQrSNR as opposed t3-SNR In [IKP14]. It turns out, however, that
this is not a problem — we give a stronger analysis of the spmeding primitive from[[IKP14], showing that
£1-SNR bound is sufficient.

Related work on continuous Sparse FFTRecently [BCG 12] and [PS15] gave algorithms for the related
problem of computing Sparse FFT in the continuous settitgpse results are not directly comparable to ours,
and suffer from a polylogarithmic inefficiency in sample quexity bounds.

2 Preliminaries

For a positive even integerwe will use the notatiorja] = {—4,-% +1,...,-1,0,1,...,5 — 1}. We will
consider signals of lengtlv = n¢, wheren is a power o2 andd > 1 is the dimension. We use the notation
w = €2™/™ for the root of unity of ordem. The d-dimensional forward and inverse Fourier transforms are
given by

1
VN
respectively, wherg € [n]?. We will denote the forward Fourier transform B and Note that we use

the orthonormal version of the Fourier transform. We asstiraethe input signal has entries of polynomial
precision and range. Thus, we haj@|, = ||z||; for all z € CV (Parseval's identity). Given access to samples

&= W' g 2)

Z w_iTj:UZ- and x; = \/% Z

i€[n]d i€[n]d



of z, we recover a signal such that

lz—zlp <(1+€ min [z —yl}
k— sparsey

We will use pseudorandom spectrum permutations, which wedefine. We writeM ;.4 for the set of
d x d matrices ovefZ, with odd determinant. FQE € Mg x4, q € [n]? andi € [n]? let 7s 4(i) = 3(i — q)
mod n. SinceX € My.q4, this is a permutation. Our algorithm will ugeto hash heavy hitters int8 buckets,
where we will choos&3 ~ k. We will often omit the subscripE, ¢ and simply writerr (i) whenX, ¢ is fixed
or clear from context. Foi,j € [n]? we leto;(j) = 7(j) — (n/b)h(i) be the “offset” ofj € [n]¢ relative to
i € [n]¢ (note that this definition is different from the one in [IK)4We will always haveB = b?, whereb is
a power of2.

Definition 2.1. Suppose thaf ~! exists mod n. Fora, q € [n]? we define the permutatiaf- , , by (Px. , 43); =

- iTs
wZT(i_a)w q,

Lemma 2.2. F~Y(Py a.q)ry, (i) = ziw® >
The proof is given in[[IK14] and we do not repeat it here. Define

Errg(z) = min ||z —y||o and p? = Errs (z)/k. 3)
k—sparsey

In this paper, we assume knowledgerofa constant factor upper bound prsuffices). We also assume that
the signal to noise ration is bounded by a polynomial, narnttedy R* := ||z||o/p < N, We use the
notationB2° () to denote the,, ball of radiusr aroundz: BX(z) = {y € [n]¢ : ||z — y||eo < 7}, Where
l|z — y||oo = maxseq||zs — ys|lo, @nd||xzs — ysl|o is the circular distance d,,. We will also use the notation
f < g todenotef = O(g). For a real numbes we write |a| 1 to denote the positive part af i.e. |a|; = a if
a > 0 and|a|; = 0 otherwise.

We will use the filterG, G constructed in[[IK14]. The filter is defined by a paramefer> 1 that governs
its decay properties. The filter satisfiegpp G C [-F-b,F-b%and
Lemma 2.3(Lemma 3.1 in[[[K14]) One has(1) G; € [5==,1] for all j € [n]¢ such that]|j||~ < 2 and

(Qﬂ.)F»ah

F .
(2) 1G] < (W) forall j € [n]? as long as > 3 and(3) G, € [0, 1] for all j as long asF is even.

Remark 2.4. Property (3) was not stated explicitly in Lemma 3.1 of [IK14], but follodisectly from their
construction.

The properties above imply that most of the mass of the fift@oncentrated in a square of si@én/b),
approximating the “ideal” filter (whose value would be eqtal for entries within the square and equal to

0 outside of it). Note that for eache [n]? one hasG,,;)| > (% We refer to the parametéf as the

2m)
sharpnes®f the filter. Our hash functions are not pairwise indepetdaut possess a property that still makes

hashing using our filters efficient:

Lemma 2.5(Lemma 3.2 in[[[K14]) Leti,j € [n]¢. LetX be uniformly random with odd determinant. Then
for all t > 0 one hasPr[||X(i — 7)||o < t] < 2(2t/n)4.

Pseudorandom spectrum permutations combined with a fltgive us the ability to ‘hash’ the elements
of the input signal into a number of buckets (denotedd)y We formalize this using the notion ofteashing
A hashing is a tuple consisting of a pseudorandom spectrumytations, target number of bucket8 and a
sharpness parameterof our filter, denoted by7 = (7, B, F'). Formally, H is a function that maps a signal
to B signals, each corresponding to a hash bucket, allowing sslte thek-sparse recovery problem on input
x by reducing it tol-sparse recovery problems on the bucketed signals. Welgivimtmal definition below.

6



Definition 2.6 (HashingH = (r, B, F)). For a permutationr = (3, ¢), parameters$) > 1, B = b% and F,
a hashingH := (m, B, F') is a function mapping a signal € cl’ to B signals H (z) = (us)epe, Where
u, € CI"” for eachs € [b]?, such that for each € [n)

tsi= Y Ga(-umysts’ > €C,

j€[n])
whereG is a filter with B buckets and sharpnegsconstructed in Lemmnia 2.3.

For a hashingd = (7, B, F),7 = (%,q) we sometimes writé’y ,,a € [n]? to denotePs, , ,. We will
consider hashings of the input signalas well as the residual signal- x, where

Definition 2.7 (Measurementn = m(z, H,a)). For a signalz € C"’, a hashingd = (r, B, F) and a

parametera € [n]?, ameasuremenin = m(z, H,a) € Cl* is the B-dimensional complex valued vector of
evaluations of a hashing (z) ata € CI"’, i.e. lengthB, indexed byb]? and given by evaluating the hashing

H ata € [n)?, i.e. fors € [b]
T

a* Xj
ms = Z Gr(j)—(n/b)-sTjW" =7,

j€[n]d

whereG is a filter with B buckets and sharpneg&constructed in Lemmnia 2.3.

Definition 2.8. For anyz € CI"* and any hashingd = (r, B, G) define the vecton?; (z) € R by letting
for everyi € [n]?
wha@) =G > ([P 1Ge -
j€m\{i}
We access the signal in Fourier domain via the function ASHTOBINS(Z, x, (H, a)), which evaluates
the hashingH of residual signalz — x at pointa € [n]?, i.e. computes the measurementz, H,a) (the
computation is done with polynomial precision). One canwthis function as “hashing’ into B bins by

convolving it with the filterG constructed above and subsampling appropriately. Thedpsede for this
function is given in section 9.2. In what follows we will ugeetfollowing properties of ASHTOBINS:

Lemma 2.9. There exists a constaidf > 0 such that for any dimensio# > 1, any integerB > 1, any
z,x € CM" 2/ = 2 — x, if © € Myya, a,q € [n]¢ are selected uniformly at random, the following conditions
hold.

Letm = (X,¢9), H = (m, B,G), whereG is the filter with B buckets and sharpneds constructed in
Lemmd 2B, and let = HASHTOBINS(Z, x, (H, a)). Then ifF’ > 2d, F = ©(d), for anyi € [n]¢

(1) For any H one hasmax,/, IG;%i)w_“Tziuh(i) —zf| < Gl Yjes\iy Goylafl. Furthermore,
EnlG, ) Dies\py Goupljl] < (2m)*F - O[] /B + N~

(2) Enlugy,(a”)] < 2m)¢ " - O[3/ B,

Furthermore,

3) for any hashingH, if a is chosen uniformly at random from]?, one has
( y y

— —aTyi —Q(c
E.[G, = > Up (i) — i) < M%{,i(ﬂcl) + N,

(o7} (2

Herec > 0 is an absolute constant that can be chosen arbitrarily laagi¢he expense of a factor of (9 in
runtime.



The proof of Lemma2]9 is given in AppendiX A. We will need selelefinitions and lemmas from [IK14],
which we state here. We sometimes need slight modificatibtiseocorresponding statements from [IK14],
in which case we provide proofs in Appendix A. Throughousthaper the main object of our analysis is a
properly defined se§ C [n]? that contains the ’large’ coefficients of the input veciorBelow we state our
definitions and auxiliary lemmas without specifying thentiy of this set, and then use specific instantiations
of S to analyze outer primitives such aEBRUCEL1INORM, REDUCEINFNORM and RECOVERATCONST
SNR. This is convenient because the analysis of all of theseitiyes can then use the same basic claims
about estimation and location primitives. The definitiorSajiven in [4) above is the one we use for analyzing
ReEDUCEL1NORM and the SNR reduction loop. Analysis oERUCEINFNORM (section[8.11) and Rcov-
ERATCONSTANTSNR (sectiori_8]2) use different instantiationsShfbut these are local to the corresponding
sections, and hence the definition[ih (4) is the best one te imamind for the rest of this section.

First, we need the definition of an elemént [n]? being isolated under a hashidf = (r, B, F'). Intu-
itively, an element € S is isolated under hashinf with respect to se$ if not too many other elements are
hashed too close to Formally, we have

Definition 2.10 (Isolated element)Let H = (, B, F), wherer = (X,q), £ € Mgxa, q € [n]¢. We say that
an elementi € [n]¢ is isolatedunder hashingd at scalet if

[7(S\{i}) VB )0 ((0/0) - 2)| < (2m) 741 /20000 ot
We say that is simplyisolatedunder hashingd if it is isolated underH at all scalest > 0.
The following lemma shows that any elemeéra S is likely to be isolated under a random permutation

Lemma 2.11. For any integerk > 1 and anyS C [n]%,|S| < 2k, if B > (27)*F . k/ad for a € (0,1) smaller
than an absolute constarff, > 2d, and a hashingZ = (7, B, F) is chosen randomly (i.&2 € M4, q € [n]*
are chosen uniformly at random, and= (%, ¢)), then eachi € [n]¢ is isolatedunder permutationr with
probability at leastl — 1/a.

The proof of the lemma is very similar to Lemma 5.4[in [IK14j€tonly difference is that thé,, ball is
centered at the point thahashes to in Lemma 2.111, whereas it was centerediain Lemma 5.4 of([IK14])
and is given in Appendik]A for completeness.

As every element € S is likely to be isolated under one random hashing, it is véwly to be isolated
under a large fraction of hashings,, ..., H

’ Tmax "

Lemma 2.12. For any integerk > 1, and anyS C [n]¢,|S| < 2k, if B > (2n)%'F . k/a? for a € (0,1)
smaller than an absolute constadt,> 2d, H, = (m,, B, F),r = 1,...,rn. @ sequence of random hashings,
then evenyi € [n]? is isolated with respect t6' under at least1 — \/a)r,q, hashingsH,,r = 1,...,"mas
with probability at leastl — 2~ *(Vormaz)

Proof. Follows by an application of Chernoff bounds and Lenimal2.11. O

It is convenient for our location primitive (RCATESIGNAL, see Algorithnill) to sample the signal at pairs
of locations chosen randomly (but in a correlated fashidft)e two points are then combined into one in a
linear fashion. We now define notation for this common openadn pairs of numbers in]?. Note that we are
viewing pairs in[n]? x [n]? as vectors in dimensia® and thex operation below is just the dot product over this
two dimensional space. However, since our input spaceéadyrendowed with a dot product (farj € [n]¢
we denote their dot product bY j), having special notation here will help avoid confusion.



Operations on vectors in[n]¢. For a pair of vectorgay, 81), (a2, B2) € [n]? x [n]? we let(ay, B1) * (ao, B2)
denote the vectoy € [n]¢ such that

vi = (a1)i - (a2)i + (B1)i - (B2); forall i€ [d].

Note that for anya, b,c € [n]? x [n]? one hasa b + ax ¢ = a % (b + ¢), where addition for elements of
[n]¢ x [n]? is componentwise. We write € [n]¢ for the all ones vector in dimensiaf) and0 € [n]? for the
zero vector. For a sed C [n]? x [n]? and a vectoka, 8) € [n]? x [n]¢ we denote

Ax(a,8) :={ax*(a,8) :a € A}

Definition 2.13 (Balanced set of points)For an integerA > 2 we say that a (multi)sef C [n]? is A-balanced
in coordinates € [1 : d] if for everyr = 1,..., A—1atleast49/100 fraction of elements in the sé’\** }.cz
belong to the left halfplanéu € C : Rgu) < 0} in the complex plane, whetey = ¢>™/2 is the A-th root of
unity.

Note that if A dividesn, then for any fixed value of the pointw** is uniformly distributed over the
A’-th roots of unity for some\’ betweer2 and A for everyr = 1,..., A — 1 whenz, is uniformly random
in [n]. Thus forr # 0 we expect at least half the points to lie in the halfpldnec C : Re(u) < 0}. A set
Z is balanced if it does not deviate from expected behaviomoach. The following claim is immediate via
standard concentration bounds:

Claim 2.14. There exists a constant > 0 such that for anyA a power of two A = log®™") n, andn a power
of 2 the following holds ifA < n. If elements of a (multi)setl C [n]? x [n]¢ of sizeC loglog N are chosen
uniformly at random with replacement from|? x [n]¢, then with probability at least — 1/log* N one has
that for everys € [1 : d] the setd x (0, e;) is A-balanced in coordinate.

Since we only use one value of in the paper (see line 8 in Algorithm 1), we will usually sagptla set is
simply ‘balanced’ to denote tha-balanced property for this value &f.

3 The algorithm and proof overview

In this section we state our algorithm and give an outlinehefdnalysis. The formal proofs are then presented
in the rest of the paper (the organization of the rest of thgep#s presented in secti@m 4). Our algorithm
(Algorithm[2), at a high level, proceeds as follows.

Measuring . The algorithms starts by taking measurements of the signkihés 5-16. Note that the
algorithm select$)(log log N) hashingsH, = (w,,B,F),r = 1,...,0(loglog N), wherer, are selected
uniformly at random, and for eaetselects a setl, C [n]¢x [n]? of sizeO(log log N) that determines locations
to access in frequency domain. The sigha accessed via the functionAdHTOBINS (see Lemma 2]9 above
for its properties. The function AsHTOBINS accesses filtered versions$hifted by elements of a randomly
selected set (the number of shift€i$log N/ log log N)). These shifts are useful for locating ‘heavy’ elements
from the output of FASHTOBINS. Note that since each hashing takesB) = O(k) samples, the total sample
complexity of the measurement step(%k log N loglog N). This is the dominant contribution to sample
complexity, but it is not the only one. The other contribatwf O(k log N log log N') comes from invocations of
ESTIMATEVALUES from our/;-SNR reduction loop (see below). The loop goes @éibg R*) = O(log N)
iterations, and in each iteratiorsEIMATEVALUES usesO (log log N) fresh hash functions to keep the number
of false positives and estimation error small.

The location algorithm is Algorithrhl1. Our main tool for baling performance of bCATESIGNAL is
Theoreni 311, stated below. Theoréml3.1 applies to the folpwetting. Fix a se6 C [n]? and a set of
hashingsH,, ..., H, that encode signal measurement patterns, angi*let S denote the set of elements

9 Tmazx
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of S that are not isolated with respect to most of these hashifigsoreni 3.1l shows that for any signahnd
partially recovered signal, if L denotes the output list of an invocation cbEATESIGNAL on the pair(z, x)
with measurements given by, ..., H, .. and a set of random shifts, then thenorm of elements of the
residual(x — x)gs that are not discovered bydCATESIGNAL can be bounded by a function of the amount of
¢, mass of the residual that fell outside of the ‘good’ SetS™, plus the ‘noise leveljs > ||z () g || timesk.

If we think of applying Theorern 311 iteratively, we intuigily get that the fixed set of measurements given
by hashingsH, ..., H, allows us to always reduce th¢ norm of the residuak’ = = — x on the ‘good’
setS \ S* to about the amount of mass that is located outside of thisl get(this is exactly how we use

LOCATESIGNAL in our signal to noise ratio reduction loop below). In seclbwe prove

Theorem 3.1. For any constantC’ > 0 there exist absolute constarnis, C5, C5 > 0 such that for anyz, x €
CN, 2’ = z—x, anyintegerk > 1and anys C [n]? such thaf|z,ja\ 5|lec < C”p, Wheren = |z (,a\ |12/ VE,
the following conditions hold iz’ /1 = NOO).

Letm, = (X,,q-),7 = 1,...,Tme denote permutations, and &, = (7., B, F), F' > 2d, F = ©(d),
where B > (27)*fk/a? for a € (0,1) smaller than a constant. Let* C S denote the set of elements
that are not isolated with respect to at least ax fraction of hashing H,.}. Then if additionally for every
s € [1: d] the sets4, x (1, e,) are balanced in coordinate (as per Definitiod 2.13) for alt = 1,. .., rmaa,
andraz, Cmaz > (C1/v/@) loglog N, then

Tmazx

L:= | J LocATESIGNAL <X7 kAm(Z, Hyya % (1, w)) :Z‘ifaeAr,wew)

r=1
satisfies ,
12y g2l < (Caa)2[s |y + CF (Ixpars|lt + |25+ 111) + 4l S].

Reducing signal to noise ratio. Once the samples have been taken, the algorithm proceeks sighal to
noise (SNR) reduction loop (lines 17-23). The objectivehid toop is to reduce the mass of the top (abiout
elements in the residual signal to roughly the noise lgvet (once this is done, we run a ‘cleanup’ primitive,
referred to as RCOVERATCONSTANTSNR, to complete the recovery process — see below). Spdigifica
define the se$ of ‘head elements’ in the original signalas

S={ien: |zl > p}, (4)

whereu? = Err?(z)/k is the average tail noise level. Note that we hgve< 2k. Indeed, if|S| > 2k, more
thank elements ofS belong to the tail, amounting to more thah- k = Err;(z) tail mass. Ideally, we would

like this loop to construct and approximatigf’) to - supported only o such that|(z — x(™))s|| = O(uk),

i.e. the/1-SNR of the residual signal on the setof heavy elements is reduced to a constant. As some false
positives will unfortunately occur throughout the exeontof our algorithm due to the weaker sublinear time
location and estimation primitives that we use, our SNR e¢éidn loop is to construct an approximatig#’’

to = with the somewhat weaker properties that

1@ = xT)sllt + 11X [pavs = O(uk)  and [[xT]]o < . (5)

Thus, we reduce th&-SNR on the seb of ‘head’ elements to a constant, and at the same time notinte

too many spurious coefficients (i.e. false positives) al@t§, and these coefficients do not contribute much
¢1 mass. The SNR reduction loop itself consists of repeatednating invocations of two primitives, namely
REDUCEL1NORM and ReDucEINFNORM. Of these two the former can be viewed as performing most of
the reduction, and BDUCEINFNORM is naturally viewed as performing a ‘cleanup’ phase to fixfinencies

of REDUCEL1NORM that are due to the small number of hash functions (@{log log N) as opposed to
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O(log N) in [IK14]) that we are allowed to use, as well as some mistakasour sublinear runtime location
and estimation primitives used inERUCEL1NORM might make.

Algorithm 1 Location primitive: given a set of measurements correspgntd a single hash function, returns
a list of elements irin]?, one per each hash bucket

1: procedure LOCATESIGNAL (x, H,{m(Z, H,a * (1, W) }qc A,wew) >H = (n,B,F),B =b?

2: Leta’ :=x — . Compute{m(o?’, H,ax(1,w)}eeawew using Corollary 10.2 and KSHTOBINS.

3: L+ 0

4:  for j € [b]?do > Loop over all hash buckets, indexed py [b]¢

5: f « 04

6: for s=1toddo > Recovering each af coordinates separately

7: A «— 2[% log, logy 1|

8: for g =1tologan —1do

o: w < nA"9 e, > Note thatw €¢ W

10: If there exists a unique < [0 : A — 1] such that

11: Wi P (AT B % — 1| < 1/3 for at least3/5 fraction ofa =
(o, 8) € A

12: thenf « f + A9~ .r. e, elsereturnFAIL

13: end for

14: end for

15: L+ LU{X~'f} > Add recovered element to output list

16: end for
17 return L
18: end procedure

REDUCEL1INORM is presented as Algorithid 3 below. The algorithm perfo@{$og log N) rounds of
the following process: first, run @CATESIGNAL on the current residual signal, then estimate values of the
elements that belong to the listoutput by LOCATESIGNAL, andonly keep those that are above a certain
threshold (see thresholqﬁrtu + 4p in the call the BTIMATEVALUES in line 9 of Algorithm[3). This
thresholding operation is crucial, and allows us to continel number of false positives. In fact, this is very
similar to the approach df [IK14] of recovering elementstatg from the largest. The only difference is tlfaj
our ‘reliability threshold’ is dictated by th& norm of the residual rather than the norm, as in[[IK14], andb)
some false positives can still occur due to our weaker eitmarimitives. Our main tool for formally stating
the effect of REDUCELINORM is Lemma 3.2 below. Intuitively, the lemma shows tha&d®CEL1INORM
reduces the; norm of the head elements of the input sigmal x by a polylogarthmic factor, and does not
introduce too many new spurious elements (false positivetfle process. The introduced spurious elements,
if any, do not contribute much, mass to the head of the signal. Formally, we show in seEti@in 7.

Lemma 3.2. For anyz € CV, any integerk > 1, B > (2r)*F . k /o for o € (0, 1] smaller than an absolute
constant and?” > 2d, F = ©(d) the following conditions hold for the sét:= {i € [n]? : |z;| > u}, where
p? = |z |[3/k- Suppose thalfz||o /u = N0,

For any sequence of hashings. = (7., B, F'), r = 1,...,Tmaa, if S* C S denotes the set of elements of
S that are not isolated with respect to at least/a fraction of the hashingéf,.,» = 1, ..., r;u4., then for any
y € Cl o/ .= 2 — x, if v > (log? N)pu is a parameter such that

A [|[(z = x)sll < (v+20u)k;

B ||X[n]d\S||0 < log119 N_k;

11



C Iz = x)s+[lr + lIxparslh < rwks

the following conditions hold.
If parametersr,qz, ¢ma: are chosen to be at leagtC; /\/a)loglog N, whereC; is the constant from
Theoreni 311 and measurements are taken as in Algofithm 2 thieeoutputy’ of the call

REDUCELINORM(X; k, {m(&, Hr,a x (1, W)} e 4, wew: 4iallog" n) ™, )
satisfies
1|2 —x)slh < log+Nyk + 20uk (¢, norm of head elements is reduced-byog* N factor)

2. |I(x + XD mavsllo < [Ixmavsllo + 1 20 k  (few spurious coefficients are introduced)

3. (" = xsllt + (X + X Dpavsll < 2l + [xpasll + log%]vyk‘ (¢, norm of spurious
coefficients does not grow fast)

with probability at leastl — 1/log® N over the randomness used to take measuremeread by calls toEs-
TIMATEVALUES. The number of samples used is boundeﬂCWQ)k(log log V)2, and the runtime is bounded
by 20(@) ; 10g%+2 N.

Equipped with Lemm&_3l2 as well as its counterpart Lerhnmh &t hiounds the performance oERu-
CEINFNORM (see section 8l1) we are able to prove that the SNR reduatigm indeed achieves its cause,
namely [5). Formally, we prove in sectibn 7.2

Theorem 3.3. For anyx € CV, any integerk > 1, if u?> = Erri(2)/k and R* > ||2]|o/p = NOW), the
following conditions hold for the set := {i € [n]? : |z;| > p} C [n]%.
Then the SNR reduction loop of Algoritfiin 2 (lines 19-25)rretw (7 such that

Iz — x™)g|lh S p (¢1-SNR on head elements is constant)

HXEZ]L\SHl <u (spurious elements contribute little #n norm)

(T) 1

HX[n]d\SHO < Wk (small number of spurious elements have been introduced)
0og

with probability at leastl — 1/log N over the internal randomness used by Algorithm 2. The sample
complexity i2°(@) k log N (log log N). The runtime is bounded 1)k log®*3 N.

Recovery at constant/;-SNR. Once [%) has been achieved, we run theCRVERATCONSTANTSNR
primitive (Algorithm[8) on the residual signal. Adding thercectiony’ that it outputs to the output™) of the
SNR reduction loop gives the final output of the algorithm. pkeve in section 812

Lemma 3.4. For anye > 0, #,x € CV, 2’ = x — y and any intege& > 1 if Hxi%]ﬂl < O(Hx[n]d\[k]Hz\/E)
and [|zf,, 14 (5|3 < ||y /13, the following conditions hold. Ifiz[[oc /1 = NOW | then the outpuy’ of
RECOVERATCONSTANTSN R(z, x, 2k, €) satisfies

2" = XI5 < (14 O(e)||lzpar |3

with at least99,/100 probability over its internal randomness. The sample caxip} is2°(*) Lk log N, and
the runtime complexity is at maz?(?*) Lk log?** N.
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We give the intuition behind the proof here, as the argumesbmewhat more delicate than the analysis
of RECOVERATCONSTSNR in [IKP14], due to the;-SNR, rather tharf,-SNR assumption. Specifically, if
instead off|(z — x)ax|l1 < O(uk) we had||(z — x) i[5 < O(1*k), then it would be essentially sufficient
to note that after a single hashing into abbyte«) buckets for a constant € (0, 1), every element € [2k]
is recovered with probability at least— O(e«), say, as it is enough to (on average) recover all but about an
e fraction of coefficients. This would not be sufficient henecg we only have a bound on thenorm of the
residual, and hence some elements can contribute much o@mm than others. However, we are able to

show that the probability that an element of the residualalig is not recovered is bounded bg(?;‘fj + IO;L,H),

where the first term corresponds to contribution of tail a@sd the second corresponds to the head elements.
This bound implies that the total expectédmass in the elements that are not recovered is upper bouryded b

e 2 e -
Yicpon 757 - O(Shz + 7o) < O(enk + e Yoy |77]) = O(ep®k), giving the result.

||

Finally, putting the results above together, we prove inisefZ.3

Theorem 3.5. For anye > 0, z € C"* and any integerk > 1, if R* > ||z||o/p = NOW, p2 =
O(]\x[n]d\[k]ﬂ%/k) and a > 0 is smaller than an absolute constar8PARSEFFT(Z, k, ¢, R*, 1) solves the
05/t sparse recovery problem usir29(?") (klog N loglog N + 1klog N) samples an@®(@) Lk log?+3 N
time with at leasB8/100 success probability.

4 Organization

The rest of the paper is organized as follows. In sedtion 5etais notation necessary for the analysis of
LOCATESIGNAL, and specifically for a proof of Theordm B.1, as well as praraes basic claims. In section 6
we prove Theorern 3.1. In sectidh 7 we prove performance gtera for RDUCEL1INORM (Lemmal3.2),
then combine them with Lemnia 8.1 to prove that the main looflgorithm 2 reduces; norm of the head
elements. We then conclude with a proof of correctness fgo#thm[2. Sectioh 8]1 is devoted to analyzing
the REDUCEINFNORM procedure, and sectidn 8.2 is devoted to analyzing thed¥ERATCONSTANTSNR
procedure. Some useful lemmas are gathered in sédtion $eatid_1D describes the algorithm for semieg-
uispaced Fourier transform that we use to update our samjileghe residual signal. Appendix]A contains
proofs omitted from the main body of the paper.

5 Analysis of LOCATE SIGNAL : main definitions and basic claims

In this section we state our main signal location primitiveCATESIGNAL (Algorithm[1). Given a sequence of
measurementsy(z, Hy,a x (1,w)) }ac A, wew,” = 1,...,"mag @ Signalz € cl” and a partially recovered
signaly € CI"", LocATESIGNAL outputs a list of locationg C [n] that, as we show below in Theorém13.1
(see sectiof]6), contains the elements:dhat contribute most of it§; mass. An important feature ofd-
CATESIGNAL is that it is an entirely deterministic procedure, givingaeery guarantees for any signabnd
any partially recovered signal. As Theoreni_3]1 shows, however, these guarantees are esstamgen most
of the mass of the residual — x resides on elements jn]¢ that areisolated with respect to most hashings
Hy,... H, . used for measurements. This flexibility is crucial for oualgsis, and is exactly what allows
us to reuse measurements and thereby achieve near-opaimplescomplexity.

In the rest of this section we first state Algoritlitn 1, and thenive useful characterization of elements
of the input signalz — x), that are successfully located bypCATESIGNAL. The main result of this section
is Corollary[5.2. This comes down to bounding, for a giveruingignalz and partially recovered signal,
the expected; norm of the noise contributed to the process of locating héaters in a call to LOCATESIG-
NAL(Z, x, H, {m(Z, H,a x (1,w))}acawew) by () the tail of the original signat (tail noisee!®’) and (b)
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Algorithm 2 SPARSEFFT(z, k, e, R*, 1)

1: procedure SPARSEFFT(Z, k, ¢, R*, i)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

21:
22:
23:
24:
25:
26:
27:
28:

X0 0 >in C".
T + log(logz; N) R*

F+«2d

B <+ (2m)4F . k/ad, o > 0 sufficiently small constant

Tmaz < (C/v/a)loglog N, ez < (C/+/a)loglog N for a sufficiently large constardt > 0

W « {04}, A + 2lzloszlozzn] > 0y is the zero vector in dimensiah
for g =1to [loga n] do

W<+ Wu Ule nA™9 - e > e, is the unit vector in direction
end for
G + filter with B buckets and sharpness as per Lemma 213
for r = 1tor,,., do > Samples that will be used for location

ChooseX, € Mgxd, ¢- € [n]¢ uniformly at random, letr, := (., ¢,) and letH, := (., B, F)
Let A, < C'loglog N elements ofn]? x [n]? sampled uniformly at random with replacement
for w € Wdo

m(Z, Hy,a*x (1,w)) - HASHTOBINS(Z, 0, (H,,ax (1,w))) foralla € A,,w € W
end for

end for
fort=0,1,...,7 —1do
X' ¢ REDUCELINORM (X . {m(@, Hy,a % (1, w))} /25 0 g, e 408’ )", )

> Reduce/; norm of dominant elements in the residual signal
v < (log* N)(4p(log* N)T=(+1) 1 20.) > Threshold
X" < REDUCEINFNORM(#, x) + x/, 4k /(log? N), v/, /)
> Reduce’, norm of spurious elements introduced bgRICEL1INOM

X(t—i—l) i X(t) _|_X/ + X//

end for

X' < RECOVERATCONSTANTSNR(Z, x(©), 2k, ¢)

return () 4+ y/

29: end procedure

Algorithm 3 REDUCELlNORM(ﬁE,X, ko X W,k dm(@, Hyyax (L, w)}mae o Vs ,u)

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

procedure REDUCEL1INORM(Z, x, k, X, k, {m(Z, H,, a x (1, w))} ma= v, 1)

r=1,a€ A, , weW?
X0 0 >in C"
B+ (2m)4F /ol
for t = 0 tolog,(log* N) do
for r = 1to 7,4, do

L, + LOCATESIGNAL <X +x, k, {m(Z, H,,a* (1, W))}:Z%TaeAr,weW>
end for
L« 25" Ly
X' < ESTIMATEVALUES(Z, x + X\, L, 4k, 1, 1o55027 + 4p, C(loglog N + d? + log(B/k)))
X(t—l—l) V. X(t) _|_X/

end for

return y + x(©)

13: end procedure
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the heavy hitters and false positives (heavy hitter net§é?). It is useful to note that unlike in[_[[K14], we
cannot expect the tail of the signal to not change, but rateed to control this change.

In what follows we derive useful conditions under which aeneénti € [n]? is identified by LOCATES-
IGNAL. LetS C [n]d be any set of size at mo8k, and letu be such thaﬁ'[n]d\s < u. Note that this fits the
definition of S given in [4) (but other instantiations are possible, andilvélused later in sectidn 8.2).

Consider a call to

LOCATESIGNAL (x, H,{m(Z, H,a * (1, W) }ac A wew)-

For each: € A and fixedw € Wwe letz := ax (1, w) € [n]¢ to simplify notation. The measurement vectors
m :=m(a', H, z) computed in IOCATESIGNAL satisfy, for everyi € S, (by Lemmd.9.PR)

= 3 Gopaiw™ ¥ + Dy,

j€[n]d

whereA corresponds to polynomially small estimation noise duepforeximate computation of the Fourier
transform, and the filtef,, ; is the filter corresponding to hashirg. In particular, for each hashing and
parameter: € [n]¢ one has:

-1 —2T%4 W =i _ _.T
Goi(i)mh(i)w - x + Go () Z GOZ / b= + G i (@ )Ah( ),z
jEn]\{i}

It is useful to represent the residual signabs a sum of three terms’ = (z — X)s — Xjp)a\s + Z[pja\ s
where the first term is the residual signal coming from theaiye elements inS, the second corresponds to
false positives, or spurious elements discovered and eotsly subtracted by the algorithm, and the third
corresponds to the tail of the signal. Similarly, we boung ibise contributed by the first two (head elements
and false positives) and the third (tail noise) parts of g®dual signal to the location process separately. For
eachi € S we write

G, lymaiw ™ =
+G > G = ) G’ "X | (head elements and false positives)
jes\{d} J€[n]N\S
+G e Y Gopmiw” 1RG0 (tail noise)
JE[M]N\S

+ G;%z') g
(6)

Noise from heavy hitters. The first term in[(6) corresponds to noise frgm— X)s\{i} — X[n)d\(S\{i})» 1-€
noise from heavy hitters and false positives. For everyS, hashingH we let

ehead (BT o ) G (Z Z Goip)lyil, wherey = (z — x)s — Xnj\s- (7)
JjeS\{i}

We thus get that?ead(H, x, x) upper bounds the absolute value of the first error terin inN6je thatG > 0 by
Lemmd 2.3 as long aB is even, which is the setting that we are ine}f*(H, x, x) is large, LOCATESIGNAL
may not be able to locateusing measurements of the residual signaly taken with hashind?. However, the
noise in other hashings may be smaller, allowing recovergrdler to reflect this fact we define, for a sequence
of hashings1, . . ., H, and a signal € C")*

Lt ({ 1, 2. x) = quant el (H,. . ), ©
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where for a list of realsi, ..., us and a numbeyf € (0,1) we let quanf(uy, ..., u,) denote thef - s]-th
largest element a4, . . ., us.

Tail noise. To capture the second term inl (6) (corresponding to tail@)piwe define, for any € S,z €
[n]4, w € W, permutationt = (%, q) and hashing? = (r, B, F)

tazl(H z, 33‘ L(Z Z G W Ty (j—1) ) (9)
JEMINS

With this definition in placeel®(H, z,z) upper bounds the second term [ (6). As our algorithm uses
several values of € A, C [n]? x [n]? to perform location, a more robust versionedff'! (I, =) will be useful.
To that effect we let for anyg C [n]? (we will later useZ = A, « (1, w) for variousw € W)

ail o /5 -1
etl(H, 2, x) := quant’’, |G 0

7

> Gogrw” 7070 (10)

JEMINS

Note that the algorithm first selects sets C [n]? x [n]¢, and then access the signal at locatighs (1, w), w €
W.

The definition ofel®! (H, A% (1, w), x) for a fixedw € W allows us to capture the amount of noise that our
measurements that uge suffer from for locating a specific set of bits bfi. Since the algorithm requires all
w € W to be not too noisy in order to succeed (see precondition Z2ofrbd 5.11), it is convenient to introduce
notation that captures this. We define

egail(Ha .A,.Z') = 40,“]‘[,2('%) +

el H, Ax (1,w),z) — 40pup.(x) (12)
wew +

where for anyy € R one hagn|+ = nif n > 0 and|n|+ = 0 otherwise.

The following definition is useful for bounding the norm oeeilents; € S that are not discovered by
several calls to bCATESIGNAL on a sequence of hashingé/,.}. For a sequence of measurement patterns
{H,, A} we let

el ({H,, A}, z) := quanf/°el (H,, A,, z). (12)

Finally, for anyS C [n]? we let

head Z 6head and 6tazl Z 6tazl

€S €S

where- stands for any set of parameters as above.
Equipped with the definitions above, we now prove the follayiemma, which yields sufficient conditions
for recovery of elements< S in LOCATESIGNAL in terms ofe”%d ande!®,

Lemmab.1. Let H = (7, B, R) be a hashing, and letl C [n]¢ x [n]?. Then for evens C [n]¢ and for every
z,x € CM" andz’ = x — , the following conditions hold. L&t denote the output of

LOCATESIGNAL (x, H, {m(Z, H,ax (1,W)) }ac A wew)-
Then for anyi € S such thatiz}| > N~ if there exists' € [1 : 7,4, Such that

1. ehedd(H 2') < |2t]/20;
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2. el (H A% (1,w),2") < |2}]/20 for all w € W
3. for everys € [1 : d] the setA x (0, e;) is balanced in coordinate (as per Definitior 2.113),
theni € L. The time taken by the invocation bbCATESIGNAL is O(B - log?*! N).

Proof. We show that each coordinate= 1,...,d of Xi is successfully recovered inACATESIGNAL. Let
g = Xi for convenience. Fix € [1 : d]. We show by induction og = 0,...,logy n — 1 that after the
g-th iteration of lines 6-10 of Algorithrh]l1 we have thatcoincides withq, on the bottony - log, A bits, i.e.
f. — qs =0 mod AY (note that we trivially havé, < A9 after iterationg).

The baseof the induction is trivial and is provided by = 0. We now show thénductive step. Assume
by the inductive hypothesis thét — q; = 0 mod A9~!, so thatq, = f, + A9 (rg + Ary + A?ry +...)
for some sequence), ry,...,0 < r; < A. Thus,(ro,71,...) is the expansion ofqs — f5)/A9~! baseA, and
ro is the least significant digit. We now show thatis the unique value of that satisfies the conditions of
lines 8-10 of AlgorithnilL.

First, we have by((6) together withl(7) and| (9) one has for each4A andw € W

‘mh(i) («/,Hyax (1,w)) — Goz-(z')wi'w((“*(l’w”Tq( < el H, 2, x) + el (H,ax (1,w),z) + N~
Since0 € W, we also have for altk € A
i, Hax (1,0)) = Gy @O < clead (1, x) 4 el (H, 0  (1,0),2) + N~

where theN —(©) terms correspond to polynomially small error from approaiencomputation of the Fourier
transform via Lemma_10.2.
Letj := h(z). We will show thati is recovered from buckegt The bounds above imply that

mj(l’;’,H,a*(ljw)) - w;w(“*(l’w))TQ+E’

m; (¥, H,ax(1,0) zjw@@o)Ta g

(13)

for someFE’, E” satisfying| E'| < el (H, x, x)+e!% (H, ax(1,w), z)+N—4) and|E"| < efd(H, z, x)+
et (H,a % (1,0)) + N~%). For all but1/5 fraction ofa € .A we have by definition oé'* (see [(ID)) that
both

e (Hyax (1, w),2) < e (H, Ax (1,w), ) < |z}]/20 (14)

and
el (H a0+ (1,0) < el (H, A= (1,0),2) < |z}|/20. (15)

In particular, we can rewritel (13) as

mj(a?’,H,a*(l,w)) B $;w(a*(lvw))Tq+E’

m(@, Hoax(1,0)  ww@L0)Ta B

(ax(1,w))"'q —(ax(1,w)Tars /.t
—wi-f Where§:1+w ; E'/x;
1 + w—(ax(1,0)) qE///x;

= L@ (1.0)7q (16)
_ aw)Ta-(@x(10)7a ¢

= (axOw)Ta ¢

Let A* C A denote the set of values afe A that satisfy the bound§_(114) arid {15) above. We thus have
for a € A*, combining [(16) with assumptioris2 of the lemma, that

|E'|/a} < (2/20) +1/N~%©) < 1/8 and |E"|/x} < (2/20) +1/N~%) < 1/8 (17)
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for sufficiently largeN, whereO(c¢) is the word precision of our semi-equispaced Fourier t@nsicomputa-
tion. Note that we used the assumption that > N (),

Writing @ = (o, 8) € [n]? x [n]%, we have by[(I6) th fiﬂi’;fjf*<(11’§)>)> — w((@B)xOw) a . ¢ and since
mj(z’, H,ax(1,
wlq = nA"9q, whenw = nA ¢, (as in line 8 of Algorithnil), we get
mj(x', H,a* (1, w))

mj(x', H,a* (1,0))

— w(a*(()?W))Tq . 5 _ wnAfgﬁsqs . 6 — wnAfgﬁsqs + wnA*gﬁsqs (g _ 1)

We analyze the first term now, and will show later that the sdderm is small. Since, = f, + A9~ (rg +
Ary + A%ry + ...) by the inductive hypothesis, we have, substituting the tiish above into the expression
in line 10 of Algorithm[1,

—rBs —nA—9If.. - —r-Bs —9(qq—£.)-
WAT Bs | AT Bs | nATIBsas AT Bs | ynAT(as—fs)-Bs
—rBs  nATI(AIT (ro+Ar1+A2%r3+...))-Bs
A W
—rBs w(n/A)-(TO+AT1+A27"2+...)-6S
A

—r-Bs ro-Bs
A WA

We used the fact that™/ & = 2mi(n/2)/n — 2m/A — )\ and(wa)® = 1. Thus, we have

—r- - j A/>H7 * 17 — . — .
WAT Bs = (n279) Bs my(ﬂi ax(1,w)) _ W(A 7+70)Bs + W(A 7+70) Bs € —1). (18)
mj(x', H,a* (1,0))
We now consider two cases. First suppose that r. Thenw(A_r+T°)'BS = 1, and it remains to note that

by (I7) we haves —1| < ifi?g —1<2/7<1/3. Thus every, € A* passes the test in line 9 of AlgoritHrh 1.
Since|A*| > (4/5)|.A] > (3/5)|.A| by the argument above, we have thgpasses the test in line 9. It remains
to show that- is the unique element it ..., A — 1 that passes this test.

Now suppose that # . Then by the assumption thdtx (0, e;) is balanced (assumpticdhof the lemma)
at least19/100 fraction ofw(A_T+T°)'B * have negative real part. This means that for at léast00 of a € A we
have using triangle inequality

‘ [W(A—r—i-?"o)'ﬁs + w(A—T—H‘o)'Bs (€ - 1)] _ 1‘ > ‘W(A—r—i-ro)-ﬁs _ 1‘ _ ‘W(A—T'FTO)'ﬁs €—1)
>i—1]—1/3
>V2-1/3>1/3,

and hence the condition in line 9 of Algorithmh 1 is not sati$ffer anyr # ro. This shows that location is
successful and completes the proof of correctness.

Runtime bounds follow by noting thatdCATESIGNAL recoversd coordinates withHog n bits per coordi-
nate. Coordinates are recovered in batchds@®f\ bits, and the time taken is bounded By d(log n)A <
B(log N)3/2. Updating the measurements using semi-equispaced FFS Bakg?*! N time. O

We also get an immediate corollary of Lemmal5.1. The corplisrcrucial to our proof of Theorein 3.1
(the main result about efficiency ofldCATESIGNAL) in the next section.

Corollary 5.2. For any integerr,,,... > 1, for any sequence of,,,, hashingsH, = (7., B, R),7 € [1 : maz)
and evaluation pointst, C [n]%x [n]¢, for everyS C [n]¢ and for everyz, y € Cl"*, 2/ := z—, the following
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conditions hold. Iffor each € [1 : 7,4.] L C [n]¢ denotes the output dfOCATESIGNAL (Z, X, H,., {m(Z, H,, ax
(1, W) }aca, wew), L = U, 4" Ly, and the setsd, « (0, w) are balanced for alw € W andr € [1 : 7],
then '

1@ LIl < 20]|e& Y ({H, Y, 2,00l + 20]|e§” ({Hy, A}, @)l )1 + |S] - N~ *

Furthermore, every element S such that
|2f] > 20(ef " ({H, }, 2, X) + el ({H,, A}, x)) + N~ **)
belongs tal.

Proof. Suppose that € S fails to be located in any of th& calls, and| > N~%(). By Lemmd5.1 and the
assumption thatl, (0, w) is balanced for aliv € W andr € [1 : r,,4,] this means that for at least one half
of valuesr € [1 : ryqq] either(A) efad(H,., z, x) > |z;|/20 or (B) el®(H,, A, x (1, w),x) > |z;]/20 for at
least onew € W. We consider these two cases separately.

Case (A). In this case we havel“sd(H, z,y) > |z;|/20 for at least one half of € [1 : rp4.], SO N
particulare®©ad ({1, }, z, v) > quant/>ehead (I, . v) > |a}|/20.

Case (B). Suppose that!®(H,, A, x (1,w),x) > |z%|/20 for somew = w(r) € W for at least one half of
7 € [1: rimae| (denote this set bg) C [1 : 7,,4.]). We then have

egail({Hr,Ar}vm) = quan%/5 tail(HTv'AT’x)

Te[llrmaw]ei

=quan/}, | [4OMHT,Z-(w) + 3 |etl(H,y, A+ (1, w),2) —4ouHT,z-(x)(+]

wew

> min [40p5, ;
> min { O, i(z) +

el (H,, Ay % (1, w(r)), z) — 40,UH,.,Z‘(I')‘+:|

> min el (H,., A, x (1, w(r)), z)
reQ

> |2]/20

as required. This completes the proof(t)f as well ag**) . O

6 Analysis of LOCATE SIGNAL : bounding ¢; norm of undiscovered elements

The main result of this section is Theoréml|3.1, which is oumnt@ol for showing efficiency of DCATESIG-

NAL. Theoreni 3]l applies to the following setting. Fix a SeC [n]? and a set of hashingH, ..., H,, .,

and letS* C S denote the set of elements Sfthat are not isolated with respect to most of these hashings
Hy, ... H, Theoren{ 311 shows that for any signabnd patrtially recovered signal, if L denotes the

) Tmaz*

output list of an invocation of bCATESIGNAL on the pair(z, x) with hashingsHy, ..., H,, ., then the/;
norm of elements of the residu@t — x)s that are not discovered bydCATESIGNAL can be bounded by a
function of the amount of; mass of the residual that fell outside of the ‘good’ S&tS*, plus the ‘noise level’
nw > "w[n}d\sHoo timesk.

If we think of applying Theorerh 3|1 iteratively, we intuiéily get that the fixed set of measurements with
hashings{ H,.} allows us to always reduce tii¢ norm of the residuat’ = x — x on the ‘good’ setS \ S* to
about the amount of mass that is located outside of this gebd s
Theorem[3.1 There exist absolute constarn®, Cy, C3 > 0 such that for any:, x € CV and residual signal

x' = 2 — x the following conditions hold. Le§ C [n]?,|S| < 2k, be such that|z e\ s/lec < p. Suppose that
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|12] oo /10 < NOW), Let B > (27)%F . k/a?. LetS* C S denote the set of elements that are not isolated with
respect to at least g/« fraction of hashingd H, }'™4". Suppose that for everye [1 : d] the setsA, x (0, ;)

are balanced (as per Definitidn Z113)~= 1, ..., 42, and the exponent’ of the filterG is even and satisfies
F > 2d. Let

Tmazx

L = |_J LOCATESIGNAL (x, Hy, {m(Z, Hy,a x (1, W) }acA,.wew,)-
r=1

Then ifr 4z, Cmaze > (C1/+/@) loglog N, one has

#s\smzlln < (C2a)* 2|5l + CF (Ix(maslln + @5 11) + 4p1S].

As we will show later, Theoreiin 3.1 can be used to show thatiaisgy perfect estimation) invokingd-
CATESIGNAL repeatedly allows one to reduce#tonorm of the head elements down to essentially

2111+ |[Xnjars]l1,

i.e. the/; norm of the elements that are not well isolated and the seewfelements created by the process
due to false positives in location. In what follows we dera@inds orj|e<*¢||; (in sectior(6.1L) and| e’ ||,
(in sectior 6.P) that lead to a proof of Theorem 3.1.

6.1 Bounding noise from heavy hitters

We first derive bounds on noise from heavy hitters that a sihgishingd results in, i.e.e**(H, z), (see
Lemma6.1), and then use these bounds to belfff ({ H}, z) (see LemmAa®]3). These bounds, together with
upper bounds on contribution of tail noise from the nextisacthen lead to a proof of Theordm B.1.

Lemma6.1. Letz,x € CV, 2’ =z — x. LetS C [n]%,|S] < 2k, be such that|z(,ja\ 5|/ < 1. Suppose that
l|2|]oo/p < NOW) Let B > (2m)*F . /o, Letm = (X, q) be a permutation, leHl = (7, B, F), F > 2d be
a hashing intaB buckets and filte with sharpnesd”. LetS}; C S denote the set of elemerits S that are
not isolated unde#. Then one has, far"?? defined with respect t8,

Hege\%% (H,z, )| <200 d/QHUCS\s* 1+ (2m) T 209 (||

1+ X sl
Furthermore, ify (a5 = 0 and Sj; = (), then one hagle’(H, z, x)||oc < 29 a?||2||o

Proof. By (7)) fori € S'\ S};

ehead (B 1) = G ol Z |Go: ) |25 (isolated head elements)
FeS\SE\{i}

+ 1G] S Gl + D 1Gapllxsl|  (non-isolated head elements and false positives)
JE€SH JEn]NS
|GO () | (A1(3) + Aa(i)).
(19)

We boundA1 andA2 separately
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Bounding A;. We start with a convenient upper bound 4qn:

DD S e | A (recall thato; (j) = 7(j) — (n/b)h(i))
1€S\ Sy, 7eS\S3 \ {4}
=> > > Goi(l|7],  (consider all scales> 0)

t>0 i€S\ S5, 7€S\SH\{i} st.

||7r(j)_7r(2)||oo€(n/b) [2t 1 2t+1_1)

< max Go- N . ZE/-
Z Z [|7(5)=7(3)]|oc>(n/b)- (2t —1) i(7) Z | j|

t>0 iS5\ S%, 7€S\SH\{i} s.t.

[[70(5) =7 (8)]loo < (n/b)- (28T —1)
= Z \]\ Z

o Gy | (€ S\SH G} stlln(i) - w(i)lloe < (n/8) - (24 = 1)}
€S\ =20 (rf/w (2-1)
(20)
Note that in the first line we summed, overatt S\ Sj, (i.e. all isolated:), the contributions of all othere S
to the noise in their buckets. We need to bound the first lirterims Owa/S\s;IHl- For that, we first classified

all j € S\ Sj; according to the, distance fromi to j (in the second line), then upper bounded the value of
the filterG,,, ;) based on the distan¢r(i) — 7(j)||~, and finally changed order of summation to ensure that
the outer summation is a weighted sum of absolute value§ oferallj € S\ SHE In order to upper bound
Ay it now suffices to upper bound all factors multlplylmg in the last line of the equation above. As we now
show, a strong bound follows from isolation properties.of

We start by upper bounding using Lemma 2J3(2). We first note that by triangle inequality

[17(5) = (0/B) (D)oo > [17(5) =7 (0)] |0 — |Im(8) = (/D) (i)l |00 > (/D) (2" 1) = (n/b) = (n/b)(2""" ~2).
The rhs is positive for alt > 3 and for sucht satisfie2!~! — 2 < 2¢=2. We hence get for all > 3

2 F < >F -
max Go(j) < . . < |y ) <27F (21)
) ~m(Dlloe > (n/b)-20-1-1) ) (1 +Iw() - (n/b)h(Z)Hoo> 14202

We also have the boundlZ7|| < 1 from Lemmd2.B(3). It remains to bound the last term on the rhs of the
last line in [20). We need the fact that for a paij such that|r(j) — 7(i)||s < 271 — 1 we have by triangle
inequality
17(5) = (n/D)h(D)leo < [17() = 7(D)lloe + [17(0) = (n/0)h(D)lloe < (n/0)(2FF = 1) + (n/b) = (n/b)2".
Equipped with this bound, we now conclude that

[{i € S\ 55\ {5} stlin(j) — 7(i)llse < (n/b) - (21 — 1)}

= [w(S\ {i}) N B jpyugey (/) - 271)] < (2m) =47 - /220420 ot
where we used the assumption that S\ S;; are isolated (see Definition 2]10). We thus get for amy.S\ S},

=0 max  Gogy-[{i €S\ S\ i} stlin() - w(i)lle < (n/b) - (2~ 1)}
7 () =7 (i)l |oo>
20 (/b)-(26-1)

< Z((Qﬂ_)—d-F . ad/22(t+2)d+1 . 2t) min{l, 2—(t—3)F}
t>0

S (27T)_dF . ad/222d+1 Z 2t(d+1) . min{l, 2—(t—3)F}
t>0

(22)

3We note here that we started by summing avirst and then ovey, but switched the order of summation to the opposite in the
last line. This is because the quantdty, (;,, which determines contribution gfc S to the estimation error of € .S is not symmetric
in : andj. Indeed, even thoug® itself is symmetric around the origin, we hawgj) = 7 (j) — (n/b)h(i) # 0; ().

21



We now note that
Z 2t(d+1) i min{l, 2—(t—3)F} =14+ 22(d+1) 4 23(d+1) Z 2(t—3)(d+1) i min{l, 2—(t—3)F}
>0 >3
— 14 22(d+1) + 23(d+1) Z 2(t—3)(d+1—F) <1+ 22(d+1) + 23(d+1)+1 < 24(d+1)+1
t>3

9

sinceF’ > 2d by assumption of the lemma, and hence forjall S\ S3; one hasy; < (2r)~4F . 20 /2,
Combining the estimates above, we now get
A< Yl < el @m) Tt 20@ad?,
JES\Sy
as required. Thé, bound for the case wheg,,;«\ ¢ = 0 follows in a similar manner and is hence omitted.
We now turn to bounding!,. The bound that we get here is weaker siRgg 5 is an adversarially placed
signal and we do not have isolation properties with respeitt tesulting in a weaker bound on (the equivalent
of) n; for j € S}, than we had foj € S\ S};. We lety = z/y. — X[n)4\s to simplify notation. We have, as
in (20),
Ay < 0 fahl - sy,
FES\S}
where
wj= o omax  Gogy | {i €S\ Si\ ik stlnt) 7@l < (n/5) - (27 =D},
20 (/b)-(20-1)
The first term can be upper bounded as before. For the secondwe note that every pair of points, iy €
S\ S}, by triangle inequality satisfy
(n/b)l[m(i1) = w(iz)lloo < (n/B)l|m(i1) = 7(J)lloo + [[7(j) = 7(i2)llo < (/D) - (2% = 2) < (n/b) - 27
Since bothi; andi, are isolated undet, this means that
[{i € S\ Si\ {5} st||7(j) — 7(i)||oc < (n/b) - (2T = 1)}| < (2m) 4T . o¥/220F3)d . otF2 4

where we used the bound from Definition 2.10fobut counted the pomtltself (this is what makes the bound
on x; weaker than the bound ap). A similar calculation to the one above fd; now gives

Ky ::Zuﬂ(j)‘f%“ L Go) [{i € S\ S\ {j} st.||n(j) — 7(i)|lo < (n/b)- (27! = 1)}
120" (n/b)- (26 -1)

S Z((2ﬂ_)—d~F . ad/22(t+3)d . 2t+2 + 1) min{l, 2—(t—3)F}
t>0

<20 ((2m)~4F a2 4 1) = 200,
We thus have

A< 3 Jyjlig < 2°@ gy,
j€[n]?
Plugging our bounds oA; and A, into (19), we get
ef U (H,z,x) < |G (] - (A1 + A2) < |G, 129D 2m) =4 - a2 || |1 + 29Dy [ )
< 29D a2\ ||y + (2m) 4T 20Dy,
as required.
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Remark 6.2. The second bound of this lemma will be useful later in sed@idnhfor analyzingREDUCE-
INFNORM.

We now bound the final error induced by head elements¢t€?({H,},z, x):

Lemma6.3. Letxz, x € [n]¢, 2’ =z — x. LetS C [n],|S| < 2k, be such that|z )4\ s|[c < p. Suppose that
||z||oo/pt < NOW). LetB > (2r)*F - k/a?. Let{r,}'"s* be a set of permutations, |&, = (r,, B, F), F >
2d be a hashing intd3 buckets and filtet7 with sharpnesd. Let S* denote the set of elemerits S that are
not isolated under at leasy« fraction of H,.. Then, one has far**?¢ defined with respect t6,

et ((H, 32,0 1 < 29D |25l + (2m)*F - 299 |x sl
Furthermore, ifx (o5 = 0, then||e&S%l ({H, )}, 2, X)||oo < 2720 ||25] |0

Proof. Recall that by[(B) one has for ea¢ke [n]? efed({H,},z,x) = quani/‘r’ ehead(H, x,x). This

relrma] 7
means that for eache S\ S* there exist at leastl/5 — \/&)rmq. Values ofr such thate?ead(th’ X) >
ef*({H,},z,x), and hence

Tmax

1
head head
llests: ek 2 )R < ey, Zl les\s: (Hr 2, X1

By Lemmd6.1 one has
lel5ss, (Hroa.x)[l < 202|251 + (2m)4F - 29D x5l

for all r, implying that

ea 1
lle&tt ((HL Y 2, )| < W

< 20D 2|26 ||y + (2m) 4T - 29| xp a5

(2Dl 1y + 2m)*F - 27y s1ln)

as required.
The proof of the second bound follows analogously usingthéound from Lemma6]1. O

Remark 6.4. The second bound of this lemma will be useful later in sed@idhfor analyzingREDUCE-
INFNORM.

6.2 Bounding effect of tail noise

Lemma 6.5. For any constantC’ > 0 there exists an absolute constarit> 0 such that for anyr € c,
any integerk > 1 and.S C [n]* such that]|z,ja\ s|lec < C’[[z(,ja\|l2/ vV, for any integerB > 1 a power

of 2¢ the following conditions hold. IfH,.4) are random measurements as in Algorithhi2,= (r, B, F)
satisfiesF’ > 2d and ||z,ja\ |2 > N %), whereO(c) is the word precision of our semi-equispaced Fourier
transform computation, then for arye [n]¢ one has, for!®" defined with respect 6,

Erra [l (H, A,x)| < @m)"F - 0140 + W2~ 0) [y 10,y |2/ VB
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Proof. Recall that for anyf = (rr, B, G), a, w one hage'! (H,a * (1, w), zj,ja\)))* = |ui|?, where
u = HASHTOBINS(Z [, i\, 0, (H, a % (1,w))).

Since the elements od are selected uniformly at random, we have for &hyndw by Lemmd 2.B(3),
sincea x (1, w) is uniformly random inn]¢, that

Eal (el (H, a x (1, w), 2))?] = Eg[|Gy L™ @0 Sty 0 P] < iy () + N7, (23)

wherec > 0 is the large constant that governs the precision of our Eouransform computations. By
Lemmd2.9(2) applied to the pai(aﬂd\\s, 0) there exists a constatt > 0 such that

Enluir] < (2m)* - CY|apasl13/B

We would like to upper bound the rhs in terms]pf[n]d\[k]ﬂ% (the tail energy), but this requires an argument
since S is not exactly the set of top elements of:. However, sinceS contains the large coefficients of a
bound is easy to obtain. Indeed, denoting the set oktopefficients ofz by [k] C [n]? as usual, we get

|zpasl 3 < Nz sopp 3 + zppsl3 < epamlls + - lzppsllZ < (€4 Dllzpa gl

Thus, we have
Enlugri(x) + N~ < 2m)4F (O + 2)C|wp 0|13/ B,

where we used the assumption that,,a\,|l> > N~%). We now get by Jensen’s inequality
Enlpmi(x)] < @m)*" - (C")apall2/VB (24)

for a constanC” > 0. Note that
By (23) for eachi € [n]?, hashingH, evaluation pointa € [n]¢ x [n]¢ and directionw we have
Eu[(el (H,a%(1,w),z))?] = (uu.(x))?. Applying Jensen’s inequality, we hence get for @hpndw € W

Ea[egail(H7a*(17W)7w)] < NHJ(‘T)' (25)

Applying Lemmd9.b withy” = €' (H, a « (1,w),x) andy = 1/5 (recall that the definition of!*!(H, z, x)
involves al /5-quantile overAd) and using the previous bound, we get, for any fixtdndw € W

Ex |

and hence by a union bound overalle YW we have

EA[Z

wew

el (H, A% (1, w),z) — 40 - MH,i(x)‘ } < ppri(x) - 27H0AD, (26)
+

L (H, Ax (1,w),2) = 40 - ()| ] < o) - W24,
+

Putting this together with (24), we get

Ema [ef“il(H, A, az)}

=Ey [EA [40%,@(3:) + Y

wew

el (H, Ax (1,w),z) — 40 - #H,z’(ﬂi)‘Jr”

< Eg [MH,i(w)(4O + ’W’TQ('AD)}
< (2m)*F(C")H(40 + |W|2_Q(IAI))||3«"[n}d\k||2/\/E

as required. O
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Lemma 6.6. For any constan’ > 0 there exists an absolute constafit> 0 such that for any: € cl, any
integerk > 1andS C [n]* such that|z(,a\ slloc < C’l|@pa\w||/VE, if B > 1, then the following conditions
hold , fore!* defined with respect t6.

If hashingsH, = (7., B, F),F > 2d and setsA,., | A,| > ¢paq fOrr =1,... rimq, are chosen at random,
then

(1) for everyi € [n]¢ one has
E((#,,4)} [ef““({HT,,AT},x) < (2m)HFCI(40 + (W2 Hema)) |20 gy ll2/ VB
(2) for everyi € [n]¢ one has

Pri(m, A [eﬁ‘”l({Hr,Ar},w) > (2m)4FC(40 + ywyz—Q@vW)wawHQ/x/E} = 27 Urmas)

and
Ef(m, 4} { et ({H,, Ar},x) — (2m) P C9(40 + |W|2_Q(cmaz))||$[n}d\[k}||2/\/E‘+:|
= 27 Ormas) . (2m)PFCI(40 + W2 X o)) 2 |2/ VB
Proof. Follows by applying Lemma9.5 with = e!*!(H,, A, z). O

6.3 Putting it together

The bounds from the previous two sections yield a proof ofoFée 3.1, which we restate here for convenience
of the reader:

Theorem[3:1 For any constantC’ > 0 there exist absolute constants, Cy, C5 > 0 such that for any
z € CI"I", any integerk > 1 and anysS C [n]? such that |z, g/lsc < O, Wherep = [z, e ll2/ V%, the
following conditions hold.

Letw, = (X,,¢-),7 = 1,...,7mq denote permutations, and léf, = (=, B,F), F > 2d, where
B > (2m)*Fk/a? for o € (0,1) smaller than a constant. Leét* C S denote the set of elements that are not
isolated with respect to at least @« fraction of hashingg H,.}. Then ifr,,4z, ¢mae > (C1/+/a)loglog N,
then with probability at least — 1/log? N over the randomness of the measurements fog al Cl"* such
thatz’ := = — y satisifies]|2’||o0 /1 < NV one has

Tmax

L:= | J LocATESIGNAL (X, ko Am(Z, Hyya % (1, w)) szaeA“wew)

r=1

satisfies ,
12y go\ 2l < (C20)2[|als|l1 + CF (Ixpmars|l + |25+ 111) + 4l S].

Proof. First note that with probability at least— 1/(10log? N) for everys € [1 : d] the setsA, « (0, e;) are
balanced (as per Definitidn 2]13) for al= 1, ..., 7,4, and allw € W by Claim[Z2.14.
By Corollary[5.2 applied witht” = S\ S* one has

1@ =) s\s nolh <20 (legst (He Y 2l + e ({H, Ark, 2)]1) + |2 ||oo| S| - N9,
We also have

llelstss ({Hr}, 2)[l < 2902l + (2m) - 299 s i
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by Lemmd6.B and with probability at leaist- 1/(101og? N)
et ((H, Ak, @)1y < (2m)*F (40 + ]2 Heme) g, g 101/ VB

by Lemmd 6.6. The rhs of the previous equation is boundeld hyby the choice o3 as long asv is smaller
than a absolute constant, as required. Putting these btegethier and using the fact tHaw| < log V (so that
W) - (27 (rmaz) 4 9=(emas)) < 1), and taking a union bound over the failure events, we getebelt. [

7 Analysis of REDUCEL1INORM and SPARSEFFT

In this section we first give a correctness proof and runtimayesis for RREDUCEL1NORM (sectior 7.1), then
analyze the SNR reduction loop irP&RsE-FT(sectiorl_7.2) and finally prove correctness BASSEFFT and
provide runtime bounds in sectign I7.3.

7.1 Analysis of REDUCEL1NORM

The main result of this section is Lemrhal3.2 (restated belolmjuitively, the lemma shows thatE®U-
CEL1NORM reduces thé; norm of the head elements of the input signal x by a polylogarthmic factor, and
does not introduce too many new spurious elements (falséves$ in the process. The introduced spurious
elements, if any, do not contribute muéhmass to the head of the signal. Formally, we show
Lemmal[3.ARestated) For any € CV, any integerk > 1, B > (27)*F . k/a? for o € (0, 1] smaller than an
absolute constant anl > 2d, F' = ©(d) the following conditions hold for the sét:= {i € [n]¢ : |z;| > u},
wherep? > ||z, | 13/k. Suppose thatz||o /pn = NOW.

For any sequence of hashings. = (7., B, F),r = 1,...,"maz, if S* C S denotes the set of elements of
S that are not isolated with respect to at least/a fraction of the hashingéf,.,r = 1,. .., 74z, then for any
y € Cl o/ .= 2 — x, if v > (log* N)u is a parameter such that

A l(z—x)slh < (v+20p)k;
B [[Xmja\sllo < log+9Nk;
C ||(:L' — X)S*Hl + ||X[n]d\S||1 < log+Nk7’

the following conditions hold.
If parametersr,qz, cma: are chosen to be at leagtC; /\/a)loglog N, whereC; is the constant from
Theoreni 311 and measurements are taken as in Algofithm 2 thieeoutputy’ of the call

REDUCELINORM(X; k, {m (%, Hy, a % (1, W) 1" c 4, wens 4n(log" n) "™, )
satisfies
L [|(2" = X)sll < vk +20uk (¢ norm of head elements is reduced-byog* N factor)

2. [|(x + XD marsllo < lxpasllo + log+ONk (few spurious coefficients are introduced)

312" = X)sellr + 10¢ + X)parsll < N[l + lIxmaslls + @k (6o norm of spurious
coefficients does not grow fast)

with probability at leastl — 1/log® N over the randomness used to take measuremeread by calls toEs-
TIMATEVALUES. The number of samples used is boundeﬂCWQ)k(log log V)2, and the runtime is bounded
by 20(@) ; 10g?+2 N.

Before giving the proof of Lemma 3.2, we prove two simple sarfipg lemmas.
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Lemma 7.1(Few spurious elements are introduced EDRCEL1NORM). For anyz € CV, any integerk > 1,
B > (2m)*F .k /o for a € (0,1] smaller than an absolute constant aft> 2d, F' = ©(d) the following
conditions hold for the sef := {i € [n]? : |x;| > p}, wherep? > ||z, a\ 113 /-

For any sequence of hashings. = (7., B, F),r = 1,...,"maz, if S* C S denotes the set of elements of
S that are not isolated with respect to at least/a fraction of the hashingéf,.,r = 1,. .., rna., then for any
y € Cl" 2/ .= x —  the following conditions hold.

Consider the call

REDUCELINORM(x, k, {m(Z, Hy,a * (1, w)) ;ZfﬁeAmweW? 4u(log4 n)T_t, ),

where we assume that measurementsase taken as in Algorithif 2. Denote, for eack: 0, . . ., log,(log? N),
the signal recovered by stegn this call by x(*) (see AlgorithniI3). There exists an absolute consnt 0
such that if for a parameter > 2¢1, at stept

A |l = xD)slli < (27t + 20p)k;

B II(x + x®)pyarsllo < bg%]\,k.

C I = x®) st + N0+ xpgarslh < ot 57k,

then with probability at least — (log N)~2 over the randomness usedESTIMATEVALUES at stept one has

1

——k.
log?' N

10¢+ X)) pgasllo = 110+ XD pyaysllo <
Proof. Recall thatL’ C L is the list output by BTIMATEVALUES. We let
1" ={ieLi|x; -l >l (27w + 20) }

denote the set of elements i that failed to be estimated to within an additiv&/2 (27w + 20) error term.
For any element € L we consider two cases, depending on whether’ \ L” ori € L".

Case 1: First suppose that € L'\ L”, i.e. |z} — x| < «'/?(27'v 4 20p). Then ifa is smaller than an
absolute constant, we have

1
2] > Toosv2 ™ + 4 — (@22 + 20m) > 20

because only elementwith |y}| > 152~ + 4y are included in the set’ in the call

\' ¢ ESTIMATEVALUES(z, X", L, ¢, C(loglog N + d® + O(log(B/k))), t0=-v2™" + 4p)

1
’ 1000
due to the pruning threshold %10—01/2‘t + 44 passed to ETIMATEVALUES in the last argument.

Since||z(,a\s/lo < 1 by definition of 5, this means that eitheére S, ori € supp x*). In both cases
contributes at most to [|(x + x“™V) e\ sllo — (¢ + X)) ey slo-
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Case 2: Now suppose that € L”, i.e. |(z/ — x')i| > o'/2(27'v + 20u). In this casei may contributel
to ||(x + X D) pgavsllo — 11(x + X)) e sllo. However, the number of elements i is small. To show
this, we invoke Lemm@a_91 to obtain precision guaranteeshi®rcall to ESTIMATEVALUES on the pairz, x
and set of ‘head elementS§’U supp x. Note that|S| < 2k, as otherwise we would ha\kéc[n]d\[k]ﬂg > p-k,

a contradiction. Further, by assumptiBrof the lemma we havé(y + x');jasllo < k. S0|S U supp(x +
x| < 4k. Thel; norm ofz’ — x® on S U supp(x + x*)) can be bounded as

[|(z" — X(t))s||1 + |[(2 — X(t))supqx.g_x(t))\SHl < H(x/ - X(t))SHl + HXEZ)]d\Sul + Hx/[n]d\guoo - |supp(x + X(t))‘

4k - 4k
(27t + 20p)k + ngfwk + 11 - (4k)

<
- 2k

< 27w 4+ 20y,

For the/, bound on the tail of the signal we have

(2" — X(t))[n]d\(SUSupp(X—i-X(t)))H% < ||33[n}d\s||% < 2
4k - 4k -0
We thus have by Lemma9.01) for everyi € L' that the estimatey; returned by BTIMATEVALUES

satisfies
PrH'U)Z — x;’ > a1/2(2—ty + 20/11)] < 2—Q(T’maw).

Sincer qz IS chosen as, .. = C(loglog N + d* + log(B/k)) for a sufficiently large absolute constant
C > 0, we have

Pr{jw; — x| > o227ty + 20p)] < 27 Hrmaz) < (k/B) - (log N)~2.
This means that
E[IL"]] <|L|- (k/B) - (log N)™* < (B - "mas)(k/B) - (log N)™*° < (log N) ™%,

where the expectation is over the randomness usedMMATEVALUES. We used the fact thal’/| < |L| <
B - rmq and thatr,,,.. to derive the upper bound above. An application of Markowéguality completes the
proof. O

Lemma 7.2 (Spurious elements do not introduce significanerror). For anyz € CY, any integerk > 1,
B > (2m)1F .k /o for a € (0,1] smaller than an absolute constant aRt> 2d, F' = ©(d) the following
conditions hold for the sef := {i € [n]? : |x;| > p}, wherep? > ||z, a\ 113 /-

For any sequence of hashings. = (7., B, F),r = 1,...,"maz, it S* C S denotes the set of elements of
S that are not isolated with respect to at least/a fraction of the hashingéf,.,r = 1,. .., rmna., then for any
y € Cl" 2/ .= x —  the following conditions hold.

Consider the call

REDUCELINORM(x, k, {m(Z, Hy,a * (1, w)) :ZfaeAmweW7 4u(log4 n)T_t, ),

where we assume that measuremenisare taken as in Algorithi 2. Denote, for eack 0, . . ., log,(log* N),
the signal recovered by stegn this call by x(*) (see Algorithni3). There exists an absolute constant 0
such that if for a parameter > 2¢/, at stept

A (2 = xD)s|l < (27t + 20p)k;

B [|(x + X pyasllo < ook
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C II(a’ = XO)se [l + 10x + XO)pgarslh < 2k,

then with probability at least — (log N)~2 over the randomness usedESTIMATEVALUES at stept one has

(t+1)

1
1@ = X)) gavsyus= Il = 1@ = XD) avsyus-llt < IOgTNk(V + 1)

Proof. We let@ := ([n]?\ S) U S* to simplify notation, and recall thdt’ C L is the list output by BTIMAT-
EVALUES. We let

L' = {z eL:|x,—x| >a'? (27 + 20u)}

denote the set of elements ir that failed to be estimated to within an additivé’? (2—% + 20;1) error term.
We write

Iz = X" Dgll = [l = xT™ ol + 1@ = X grrmrrll + 1@ = xEoar i (27)

We first note that "™ = v\ for all i ¢ L', and hence(z’ — X" Novrlh = (@ = xD)ovzlh-

Second, for € (Q L")\ L"” (second term) one hgs; — XZ(.H”] < /a(v2~t +4y). Since only elements
i € Lwith [} > ﬁu?t + 44 are reported by the threshold setting iIBTEMATEVALUES, so |z — x/| <
Va(27ly 4+ 20p) < 2} as long asy is smaller than a constant. We thus get that — x ")) o p)\ 1 <
(@ = XD @nenzrlh-
For the third term, we note that for eatke L the estimatev; computed in the call to ETIMATEVALUES
satisfies
E [[lw; — il = Va(2™'v +200)|, | < Va(@ v + p)k2 e (28)

by Lemmd9.11(2). Verification of the preconditions of the lemma is identitmlLemma7Z.1L (note that the
assumptions of this lemma and Lemimal 7.1 are identical) ahdrise omitted. Sincg,,., = C(loglog N +
log(B/k)), the rhs of[(2B) is bounded jog N)~2°\/a(2 v+ pu)k as long a$” > 0 is larger than an absolute
constant. We thus have

I =Xl < D0 (Va@ v +20m) + [l — al] Va2 v +200)] )
1€SNL"

Combining [28) with the fact that by by LemrnaB(1), we have for every € L

Pr [Jw; — 2| > Va(2~'v +20p)] < 27rmaes) < (k/B) - (log N) =%
by our choice of-,,,.., we get that

12" = X" )srn|l < 2v/a(27'v +20u) - L] - (k/B) - (log N) 2.

An application of Markov’s inequality then implies,dfis smaller than an absolute constant, that

1
Pr{l|(z’ — x"™)snprll1 > —r (v +pk] < 1/1log® N.
log“* N

Substituting the bounds we just derived irital(27), we get

1z = x"*all < (@ = x)all + (v + p)k

1
log?' N

as required.
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Equipped with the two lemmas above, we can now give a prookafind 3.2:
Proof of Lemmal[3.2: We prove the result by strong induction on= 0, ... log,(log* N). Specifically, we
prove that there exist evenfs t = 0, . .. ,log,(log* N) such tha(a) £ depends on the randomness used in the
call to ESTIMATEVALUES at stept, & satisfiesPr[€y|EoA. .. & 1] > 1—3/log? N and(b) for all  conditional
onEg ANEL N ... NE one has

@) [I(2" = xD)g\sll1 < 27 + 20p)k;

@ 11+ XD parsllo < lxpgasllo + o ks

og?!
3) 11" = x®) s/l + 10 + X pars Il < sl + [xpaysll + gy vk

Thebaseis provided byt = 0 and is trivial sincex(?) = 0. We now give thénductive step.

We start by proving the inductive step f@) and(3). We will use Lemma7]1 and Lemrnalr.2, and hence we
start by verifying that their preconditions (which are itieal for the two lemmas) are satisfied. Precondition
A is satisfied directly by inductive hypothegis). PreconditiorB is satisfied since

4
t b < 1 i log 2(log™ N) < 2
log! N~ log® N log?! N~ log® N

10 + XD pavsllo < [xpaysllo + k,

where we used assumpti@of this lemma and inductive hypothegB). PreconditionC is satisfied since

2v
"X g 1+ (x+x? < ||l |l + UL T W S k
[[(z"—=x") s [[1 4+ (x+x )[n}d\SHl < [lzs-Ih ||X[n]d\5||1 logleV > 10g4N logleV > 10g4N )

where we used assumpti@of this lemma, inductive assumptid8) and the fact that < log,(log? N) <
log N for sufficiently largeN.

Proving (2). To prove the inductive step f@R), we use Lemmpa7.1. LemrhaT.1 shows that with probability
at leastl — (log N)~2 over the randomness used IS EMATEVALUES (denote the success event &) we

have
1

— K
log?! N

10¢ + X)) pgasllo = 110+ XD pgaysllo <

so|(x + X" parsllo < [10¢+ XD paysllo + bgﬁk < |[Xpya\sllo + b;%ljvk as required.

Proving (3). At the same time we have by Leminal7.2 that with probabilityeastl — (log N)~2 (denote
the success event I8f)

1
1
1@ = x" ) uavsyus= Il = 1@ = XD pgavsyus-Ih < logTNkV’
so by combing this with assumpti@8) of the lemma we get
1 t+1
t+1
12" =X syl < o N o Nt

as required.
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Proving (1). We letL” C L denote the set of elementsinthat fail to be estimated to within a small additive
error. Specifically, we let

L' = {z eL:|x—xl| > al? (2_tu+20u)},

wherey’ is the output of BTIMATEVALUES in iterationt. We bound||(z' — x("1)) g\ s.||1 by splitting this
/1 norm into three terms, depending on whether the correspgrelements were updated in iteratiband
whether they were well estimated. We have

(2" = X D) gvs: |11 = (1@ = (XD +X))s\s+

< x’ — (X(t) + X,))S\(S*UL)Hl + H(ﬂcl - (X(t) + X/))(SOL)\L’\L”Hl + H(wl - (X(t) + X/))(SOL’)\L”Hl

+ 1@ = 6+ X))ol
\ (95/ - X(t))S\(S*UL)Hl + H(ﬂcl - (X(t) + X/))(SOL)\L’\L”Hl + H(wl - (X(t) + X/))(SOL’)\L”Hl
+11@ = (X + X)) wnsynee h

=: 51+ S2 + 53+ Sy,

(29)

where we used the fact thﬁg ;, = 0to go from the second line to the third. We now bound the formse
The second term(i.e. 52) captures elements ¢ that were estimated precisely (and hence they are not
in L"), but were not included intd.’ as they did not pass the threshold test (being estimatedgesr khan
10002 v + 4u) in ESTIMATEVALUES. One thus has
1
1z = (" + X)) snopeneelh < @227 +20u) - (SN L)\ L] + (m2 v+4p) - [(SNL)\ L
+ o227t + (4 4 200/2) )2k

= (om0
(30)

since|S| < 2k by assumption of the lemma.

Thethird term (i.e. S3) captures elements ¢f that were reported by &IMATEVALUES (hence do not

belong toL’) and were approximated well (hence belond.t9. One has, by definition of the séf’,
1@ = (X + X)) snepeells = o227 v+ 20p) - [(SN L)\ L

(31)
< 2012270 + 20p) ke

since|S| < 2k by assumption of the lemma.
For theforth term (i.e. S) we have

@’ = (O + XDl < a2 (27 +200) < L' + 3 |IxG = at] — a2 (27w + 20p)|
+
ies
By Lemmal9.1,(1) (invoked on the sef U supp(x + x) + x')) we haveE[|L"|] < B - 2=%('mez) and by
Lemmd9.1(2) for anyi one has
E “ X — 2| — alf2 (27t + 204) ‘ ] < |L|-a'/? (270 + 20p) 27 Hrmes),
+

Since the parameter,,,, in ESTIMATEVALUES is chosen to be at leaét(loglog N + d? + log(B/k)) for a
sufficiently large constant’, and|L| = O(log N)B, we have

E[l1@" = 9 + 3ol < @2 (27 + 20u) |Lj272rmes) < (270w + 200)

log® N
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By Markov’s inequality we thus have

1
1@ = (X + X))l < ? (27 v + 20p) [L[27O0mas) < 2 N (27"v +20u) k (32)
0g
with probability at least — 1/log® N. Denote the success event&f).
Finally, in order to bound thérstterm (i.e. S1), we invoke Theorern 3.1 to analyze the call todATESIG-
NAL in thet-th iteration. We note that Sin@¢,,., ¢maz > (C1/v/a)loglog N (whereC is the constant from

Theoren 3.1) by assumption of the lemma, the preconditiériheorem 3.1l are satisfied. By Theorém|3.1
together with(1) and(3) of the inductive hypothesis we have

12" = xD)s\s-umylh < (4C20) 2|2 = xD)sys-

< O((4C5)%2) (271w + 20p)k + (4C)™~ (lg%Nyk) + 8yuk
(0]

1+ @O (1 X sl + 112" = x@)s- 1) + 4ulS|

1
< - _t
< 1000(2 v+ 20p)k + 8uk
(33)
if o is smaller than an absolute constant &hds sufficiently large.
Now substituting bounds off;, S, S3, .Sy provided by [(3B),[(30)[(31) an@(B2) into (29) we get
2
(t+1) Ul < 1/2yy9—t 1 12y ke
s+l < (oo +O@!/2)27w + (16 + O *))u
<2 ' 4+ 20uk

whena is a sufficiently small constant, as required. This provesitiductive step fof1) and completes the
proof of the induction.

Let& = EXNELNE? denote the success event for stefe have by a union bourfer [£;] > 1—3t/log? N
as required.

1(@" = x

Sample complexity and runtime It remains to bound the sampling complexity and runtimestHiote that
ReEDUCEL1NORM only takes fresh samples in the calls tSTBMATEVALUES that it issues. By Lemma 3.1
each such call us&9(@) k(log log N) samples, amounting (4" k(log log N )2 samples ove©(log log N)
iterations.

By Lemmal5.1 each call to @CATESIGNAL takesO(B(log N)*/?) time. Updating the measurements
m(Z,H.,ax (1,w)),w € ) takes

IW|CmazTmaz - FOW) . Blog®™! Nloglog N = 20(d?) . klog?t? N

time overall. The runtime complexity of the calls tsEMATEVALUES is 20(@) . k log?*! N (log log N)? time
overall. Thus, the runtime is bounded 8¢ klog?2 N. O

7.2 Analysis of SNR reduction loop in $ARSEFFT

In this section we prove
Theorem[33For anyz € CV, any integerk > 1, if y? > Erri(x)/k and R* > ||z||s/u = NOW, the
following conditions hold for the set := {i € [n]? : |z;| > p} C [n]%.

Then the SNR reduction loop of Algoritfiin 2 (lines 19-25)rretw (7 such that

Iz — xT)s|li S p (¢1-SNR on head elements is constant)
||X$]21\s||1 <u (spurious elements contribute little f/n norm)

(7) <1 - :
||X[n]d\S||0 S 1ogh? Nlc (small number of spurious elements have been introduced)
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with probablllty at leastl — 1/log N over the internal randomness used by Algorithm 2. The sample
complexity i20(@) k log N (log log N). The runtime is bounded () k log®*+3 N.

Proof. We start with correctness. We prove by induction that aftetth iteration one has
@) [|(z — x)g|l1 < 4(og* N)T—tuk + 20pk;
@) llz = xP|oo = O((log* N)T==D) p);

@) IIx{iosllo < k-

The base is provided by = 0, where all claims are trivially true by definition dt*. We now prove the
inductive step. The main tool here is Lemmal 3.2, so we staxehifying that its preconditions are satisfied.
First note that

First, since|S*| < 2-rmaz)|§| < 2= Qrmas)f; < Fgll-fzvk with probability at leastl — 2~ (rmaz) >
1—1/log N by Lemmd2.1P and choice of,,. > (C/+/«)loglog N for a sufficiently large constarit > 0.
Also, by Clain{Z.T# we have that with probability at least1/log? N for everys € [1 : d] the sets4, x(0, e,)
are balanced (as per Definitibn 2. 13 with= 9lslogxlozanl a5 needed for Algorithinl 1). Also note that (&)
of the inductive hypothesis one hgg — x®||oo/p = R* - O(log N) = NOO),

First, assuming the inductive hypothegig-(3), we verify that the preconditions of Lemrmal3.2 are sat-
isfied with = 4(log* N)T~*uk. First, for (A) one has|(z — x®)s|l1 < 4(log* N)T~*uk. This satisfies
preconditionA of Lemma3.2. We have

1 = XD [l1 + X Gl < 12 = XOlloo - (1 = XD llo + l1xar 1lo)

1 t 16 (34)
4
< Ollog N} - v+ <log19Nk+ log® N > = fogin "

for sufficiently large N. Since the rhs is less thai@g—}wyk, precondition(C) of Lemmal[3.2 is also sat-
isfied. Precondition(B) of Lemmal3.2 is satisfied by inductive hypothegi3) together with the fact that
T = o(log R*) = o(log N).

Thus, all preconditions of Lemnia 3.2 are satisfied. Then byre[3.2 withv = 4(log* N)T~*x one has
with probability at least — 1/log? N

L[| =X = X)sllh < vk + 20uk;

2. [16€D + X yaysllo = [Ix{rjasllo < ks

3. (12" = 6@ + 3 Ds+ 1l + 100 + X pgarslh < N6 = xD)sell + Do sl + g v
Combining 1 above witH (34) prové$) of the inductive step:
(t)

1 1
— D = l(z — x® — < k+20uk = —4(log* N)Tt ik + 200k
[z = x"" sl = [l(x = x" = x)slh < N 1 1Og4N(0g ) 0

= 4(log? N)T=+D jk 4 20k

Also, combining 2 above with the fact thm( d\SHO < 2ONk; yields||x t?;lsuo <t tJ{OlNk as required.
In order to prove the inductive step is remalns to analyze:ﬂlieto REDUCEI NFNORM for which we use
Lemma 8.1 with parametdr = 4k/log® N. We first verify that preconditions of the lemma are satisfieet

y:=z— (x + x + x') to simplify notation. For that we need to verify that

_ B 1
[yl /& < 4Qtog™ NYT=F D = (log! N) - (-——v + 200) (35)
og” N
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and

g g2/ V& < (log? N) - (v + 200), (36)

1
log* N

where we denoté := 4k/log* N for convenience. The first condition is easy to verify, as wa rshow.
Indeed, we have

il < [lyslh + Ysuppe-xnslt + 1Egasloo - &
< lyslh + 1P +x) mj\s| 1+ |Zsupg® 1y n\slloo - &+ [[Zpaslloo - &

| |
k + 20k + ——vk + 2k <
NPT AN T A =g

2
vk 4+ 40uk,
log* AN a

where we used the triangle inequality to upper bolagho ) 1\ 51 by ||(x®+x s 1T supp 4y slloo
k to go from the first line to the second. We thus have

2 1
gl /& <( og? Vk+40uk:)/(4k/log4N) < (log* N) - (10 4N”+20’“‘)

as required. This establishés](35). .
To verify the second condition, we first 18t:= S U supp(x + x® + x') to simplify notation. We have

||y[n}d\[1;]||% = ||y§\[1;]||% + ||Z/([n]d\§)\[1;]||% = ||y§\[1;]||% + 1k, (37)

where we used the fact thgf ., 5 = z(,,j, g @nd hencély a3\ |3 < #*k. We now note thallys, i1 <

llygll < (10 4NVk+20“k) and so it must be thzﬂtys\ oo < 2(a 7 4Nuk+20ul<;)(/<;/k:) as otherwise the
top k elements ofy;, would contribute more thaﬁ(myk + 20pk) to ||yg||1, @ contradiction. With these
constraints||y§\[,~ﬂ||§ is maximized when there are elements inyg\[,%], all equal to the maximum possible

value, i.e.[lyg 3 < (ﬁuk+20uk)2(k/l?:)2l?:. Plugging this intol(37), we gely, |13 < vz 5+

WPk < Al vk + 20pk) (k/k)%k + p2k. This implies that
- - - 1
Y} ||2/\/E< Vk‘+20uk‘) (k/k)? + p2(k/k) < 2(k/k)y [ (o vk + 20uk)? + p?
[n]\ (k] log* N
1 - 1
<2 k + 201k k/k) < (log* N k + 20uk),
< ((log4NV + 20uk) + p)(k/k) < (log )(10g4NV + 20uk)

establishing [(36). .

Finally, also recall that|yg, jllec < 2(10g+Nuk + 20pk)(k/k) < (log? N) - (10;1
Y pgarslloe = [lZpmasllee < g ]

We thus have that all preconditions of Lemima 8.1 are satiéfietthe set of togk elements of;, and hence
its output satisfies

~vk + 20pk) and

1
||z — (X(t) X = XNloo = 0(10g4 N)- (lek‘ + 20pk).
log® N

Putting these bounds together establig2@sand completes the inductive step and the proof of correstne
Finally, taking a union bound over all failure events (eaal t ESTIMATEVALUES succeeds with prob-
ability at leastl — — 2N, and with probability at least — 1/1log? N for all s € [1 : d] the setA, x (0, e,)
is balanced in coordlnate) and using the fact thdbg 7" = o(log N) and each call to bCATESIGNAL is
deterministic, we get that success probability of the SNRic&on look is lower bounded by— 1/log N.
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Sample complexity and runtime The sample complexity is bounded by the the sample complexithe
calls to REbuceL1NorRM and REDUCEINFNORM inside the loop time®)(log N/ loglog N) for the num-
ber of iterations. The former is bounded W(‘p)k(log log N)? by Lemma 3.2, and the latter is bounded by
20k /1og N by Lemmal 8L, amounting to at mo2? @)k log N (log log N) samples overall. The run-
time complexity is at moseC(@)k log?* N overall for the calls to RDUCELINORM and no more than
20(d) k10g%+3 N overall for the calls to RDUCEINFNORM. O

7.3 Analysis of ARSEFFT
Theorem[B5For anye > 0, z € C* and any integerk > 1, if R* > [|#||oc/p = POlY(N), 2 >
2o\ l13/Fs 12 = O(|| 0\ |13/k) @nder > 0 is smaller than an absolute constaBRARSEFFT(z, k, €, R*, 1)

solves the, /¢, sparse recovery problem usii(*) (k log N log log N+Lk log N') samples and® (@) 1k log?3 N
time with at leasb8/100 success probability.

Proof. By Theoreni 3B the se&f := {i € [n]?: |z;| > u} satisfies

(@ — xTs|h S pk

and

T
X sl S #k
() .
||X[n]d\5||0 ~ loglgNk

with probability at least — 1/log N.
We now show that the signal := = — x(©) satisfies preconditions of Lemimal.4 with paramétendeed,
letting @ C [n]? denote the topk coefficients ofr’, we have

T
211 < llelgnslin + (g sysupp w0 11 + 1@ 1z maslls < O(uk)
Furthermore, sincé is the set of toRk elements ofe’, we have

Hx,[n]d\QH% < H‘T/[n}d\(SLjsupr(T))H% < Hx[n]d\(SUSuppx(T))H% < H‘T[n}d\SH%
< pP[S| + ||z l5 = O(1*k)

as required.
Thus, with at leas$9/100 probability we have by Lemnia 3.4 that

lz = xT) = X||l2 < (1 4 O(e)) Errp ().

By a union bound over the/ log N failure probability of the SNR reduction loop we have thah8seFFT is
correct with probability at lea$i8/100, as required.
It remains to bound the sample and runtime complexity. Thebmar of samples needed to compute

m(Z,H.,a* (1,w)) < HASHTOBINS(Z,0, (H,,ax (1,w)))

foralla € A,, w € W is bounded by2C@)log N (loglog N) by our choice ofB = 20k, 1. =
O(loglog N), [IW| = O(log N/loglog N) and |A,| = O(loglog N), together with Lemm&39l2. This is
asymptotically the same as tBQ(d2)klog N(loglog N) sample complexity of thé, norm reduction loop by
Theoreni38. The sampling complexity of the call tad®VERATCONSTANTSNR is at mose®(®) Lk log N
by Lemmd_ 3.4, yielding the claimed bound.

The runtime of the SNR reduction loop is bounded5§?*) k log?t3 N by Theoreni 313, and the runtime
of RECOVERATCONSTANTSNR is at mose® (@) Lk log?+2 N by Lemmd 34, O
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8 [l /l> guarantees and constant SNR case

In this section we state and analyze our algorithm for obigid., /¢; guarantees inﬁ(k) time, as well as a
procedure for recovery under the assumption of bourfgeabrm of heavy hitters (which is very similar to the
RECOVERATCONSTSNR procedure used in [IKP14]).

8.1 /. /¢ guarantees

The algorithm is given as Algorithf 4.

Algorithm 4 REDUCEINFNORM(Z, x, k, v, R*, 1)
1: procedure REDUCEINFNORM(Z, x, k, v, R*, 1)

2 X9 «0 >in C"
3 B+ (2m)*F . k/af for a small constant > 0
4 T < logy R*
5: rmaz < (C/+/a)log N for sufficiently large constan® > 0
60 W< {04}, A« 2lzloszlosn] > 04 is the zero vector in dimensiah
7: for g = 1to [loga n] do
8: W WUl {nA=9 e} > e, is the unit vector in direction
9 end for
10: G + filter with B buckets and sharpness as per Lemma 213
11: for r = 1tor,,., do > Samples that will be used for location
12: ChooseX, € Mgxd, ¢- € [n]¢ uniformly at random, letr, := (., ¢,) and letH, := (., B, F)
13: Let A, + C'loglog N elements ofn]? x [n]? sampled uniformly at random with replacement
14: for w € Wdo
15: m(z, Hy,a* (1,w)) < HASHTOBINS(Z,0, (H,,ax (1,w))) foralla € A,,w €¢ W
16: end for
17: end for
18: fort=0toT —1do > Locating elements of the residual that pass a threshold test
19: for r = 110 rq: dO
20: L, + LOCATESIGNAL (X(t>, k,Am(z, H,,a (1>W))};Z{faeAr,wew)
21: end for
22: L+ \Jm® Ly,
23: X' < ESTIMATEVALUES (&, X, L, k, 1,0(log n), 5(v27=+D) 4 1), 00)
24: D — x O 4

25: end for
26:  return y(O)
27: end procedure

Lemma 8.1. For any z,x € C", 2/ = x — x, any integerk > 1, if parametersv and yp satisfyr >
|2yl /k 1? = Hac{n}d\[k]]\%/k, then the following conditions hold. § C [n]¢ is the set of topk el-

ements ofr’ in terms of absolute value, an|qh*{n]d\s||OO < v, then the outputy € CI" of a call to

REDUCEINFNORM(Z, , k, v, R*, ;1) with probability at leastl — N ~'° over the randomness used in the call
satisfies

[|z" = X||oo <8(v + p) +O(1/N°), (all elements inS have been reduced to abautt 1),
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where theO(||2/||oo/N¢) term corresponds to polynomially small error in our comgiaa of the semiequi-
spaced Fourier transform. Furthermore, we ha\{@]d\s = 0. The number of samples used is bounded by

0(d) k10g® N. The runtime is bounded B¢ (4*)k: 1og?*3 N.
Proof. We prove by induction onthat with probability at least — N~'° one has for each=0,...,7 — 1

(1) H(w —XD)slloc < 8127 + 1)

(3) [(z} = x)il < |af| for all i & [n)?

for all sucht.
Thebaset = 0 holds trivially. We now prove thénductive step. First, sincer = C'log N for a constant

C > 0, we have by Lemma 2.12 that eache S is isolated under at leastla— ./« fraction of hashings
Hi,..., H, . with probability at least — 2-(Varme) > 1 — N—10 a5 Jong ag” > 0 is sufficiently large.
This lets us invoke Lemnia 8.3 withi* = (). We now use Lemmia 8.3 to obtain bounds on functigiié¢? and

ete applied to our hashing§H, } and vector’. Note thaie"*?? ande!®! are defined in terms of a s6tC [n]¢
(this dependence is not made explicit to alleviate nottivve useS = [ ], i.e. S is the topk elements of’.
The inductive hypothesis together with the second part afihe[6.3 gives for eache S

lede* ({H,}, 2!, x D) loo < (Ca)?[[(2" = XM)s][oo-
To bound the effect of tail noise, we invoke the second pakenfima 6.6, which states thatrif,,, = Clog N
for a sufficiently large constart > 0, we havel | ({H,, A, }, 2')|| = O(Vap).
These two facts together imply by the second claim of Cornpliad that each < S such that
(2 = x);] = 20v/al|(2" = x“)slloo + 20Vap

is located. In particular, by the inductive hypothesis thisans that every< S such that

|(:L'/ _ X(t))z| > 20\/&(1/2T_t + 2:“) + (4,U)
is located and reported in the list. This means that

1@ = X plloo < 20v/@(v27 7 4 20) + (4p),
and hence it remains to show that each such elemdnisproperly estimated in the call tocsSEIMATEVALUES,
and that no elements outside $fare updated.
We first bound estimation quality. First note that by p@} of the inductive hypothesis together with
Lemmd9.1(1) one has for eache L

PrilY’ — (' — xO)i| > va - (v + p)] < 27 Hrmas) < N—10,

as long as,... > Clog N for a sufficiently large constarif > 0. This means that all elements in the Iist
are estimated up to an additive + 1)/10 < (27~ + 11)/10 term as long a& is smaller than an absolute
constant. Putting the bounds above together proveg et the inductive step.

To prove part$2) and(3) of the inductive step, we recall that the only elements[n]¢ that are updated are
the ones that satisfyy’| > 5(v27 ¢+ 4 1), By the triangle inequality and the bound on additive estioma
error above that

(@ = XO)i] = 527 ) — (v + 2)/10 > 427D 4 ) > 4w + p).

Since|(z’ — x®);| < |z;| by part(2) of the inductive hypothesis, we have that only eleménts [n]¢ with
|zi| > 4(v + p) are updated, but those belongScsmceHw d\sHOO < v by assumption of the lemma. This

proves par{3) of the inductive step. Paf2) of the inductive step follows sindéz’ — x® — x/);| < (v+p)/10
by the additive error bounds above, and the fact thdt— x(V));| > 4(v + ). This completes the proof of the
inductive step and the proof of correctness.
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Sample complexity and runtime Since HASHTOBINS usesB - F¢ samples by Lemma 9.2, the sample
complexity of location is bounded by

B-F e Cmas - (W] = 2@k 1og® N.

Each call to BTIMATEVALUES usesB - F? - k - r,., Samples, and there afe(log V) such calls overall,
resulting in sample complexity of

B-F%. rpas -log N = 200k 10g? N.

Thus, the sample complexity is boundedzﬁid2)k log® N. The runtime bound follows analogously. O

8.2 Recovery at constant SNR

The algorithm is given by

Algorithm 5 RECOVERATCONSTANTSNR(Z, x, k, €)
1. procedure RECOVERATCONSTANTSNR(Z, x, k, €)
2: B+ (2m)4F . k/(ead)

3. Choose: € Mgyq, q € [n]¢ uniformly at random, letr := (¥, ¢) and letH, := (n,, B, F)

4: Let A « C'loglog N elements ofn]? x [n]? sampled uniformly at random with replacement

5. W<« {04}, A« 2lzloszlosn] > 0y is the zero vector in dimensiah
6: for g = 1to [loga n] do

7: W<+ Wu Ule nA™9 - e > e, is the unit vector in direction
8: end for

9 for w € Wdo

10: m(Z, H,a* (1,w)) < HASHTOBINS(Z,0, (H,ax (1,w))) foralla € A,w € W

11: end for

12: L« LocATESIGNAL (XY, k, {m(Z, H,a* (1,w))}acawew)
13: X' < ESTIMATEVALUES(, X, 2k, €, O(log N),0)

14 L' +top 4k elements ofy’

15: return x + x’,

16: end procedure

Our analysis will use

Lemma 8.2(Lemma 9.1 from[[IKP14]) Letx, z € C™ andk < n. LetS contain the largesk terms ofx, and
T contain the largesek terms ofz. Then||z — 27||3 < ||z — 253 + 4]|(x — 2)sur||3-

Lemmal[3.4For anye > 0, #,x € CV, 2/ =  — x and any integek > 1 if Hx{%}!h < O(Hx[n]d\[k]Hz\/E)
and [|f,, 14, (5|3 < ||y s]13, the following conditions hold. Ifiz[[oc /1 = NOW | then the outpuy’ of
RECOVERATCONSTANTSNR(Z, ¥, 2k, €) satisfies

2" = X'[15 < (1 + O())|2pa\m 13

with at least99,/100 probability over its internal randomness. The sample caxip} is2°(*) Lk log N, and
the runtime complexity is at ma?(?*) Lk 1og?** N.

Remark 8.3. We note that the error bound is in terms of théerm approximation error of as opposed to the
2k-term approximation error of’ = x — .
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Proof. Let S denote the toRk coefficients ofz’. We first derive bounds on the probability that an element
1 € S'is not located. Recall that by Lemrab.1 for any S if

1. ehead(H 2/ 0) < |%]/20;
2. el (H A% (1,w),2') < |2}]/20 for all w € W;
3. for everys € [1 : d] the setA x (0, e;) is balanced (as per Definitign 2]13),

theni € L, i.e.iis successfully located incCATESIGNAL.
We now upper bound the probability that an elemest S is not located. We let? := Hx[n}d\k]\%/k to
simplify notation.

Contribution from head elements. We need to bound, fare S, the quantity
e?md(H, 7',0) = G;%i) . Z Goi(j)\x;\.
jeS\{i}

Recall thatm (z, H,a * (1,w)) = HASHTOBINS(z, 0, (H,a * (1,w))), and letm := m(Z, H,a * (1,w)) to
simplify notation. By Lemma 2]91) one has

aT's

Enlmax |G 4 0™ iy — (@o)l) < @) - CUlals|l1/B + u/N? (38)

a€ln]d
for a constantC' > 0. This yields
Enlel<d(H,',0)] < 2m)*F - CY|as|l1/B < (2m)F - Cluk/B < adCp.
by the choice of3 in RECOVERATCONSTANTSNR. Now by Markov’s inequality we have for eacke [n]?
Prilel<d(H,a',0) > |1]/20] < a?C%p/|l| < aep/|a] (39)

as long asy is smaller than a constant.

Contribution of tail elements We restate the definitions ef* variables here for convenience of the reader

(seel(),[(10) [(11) and (1.2)).

We have
el (H, 2z 1) = G;%i)- Z Goi(j)xjszz(j_i) )
J€M\S

For anyZ C [n]¢ we have

ai — 2T (i—i
el H, Z, 1) = quant/jz Oii) . Z G s () LW S(G—i)|
JEMNS

Note that the algorithm first selects sets C [n]¢ x [n]¢, and then accesses the signal at locations given by
A, x(1,w),w € W (after permuting input space).

The definition ofel®!(H, A, z") for permutationr = (3, q) allows us to capture the amount of noise that
our measurements for locating a specific set of bitso$uffer from. Since the algorithm requires alle W
to be not too noisy in order to succeed (see preconditionslBari Lemmd5.1), we have

egail(H, .A, CL'/) = 40,UH,2(5L') + Z ‘€§ail(H7A* (17W)7$/) - 40:“’H72($/) +
wew
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where for anyn € R one hagn|; = nif n > 0 and|n|+ = 0 otherwise.

For eachi € S we now define an error eveéif whose non-occurrence implies location of elemgrand
then show that for eache S one has
ae,u2
EAE
Once we have[(40), together wifh {39) it allows us to proventiaén result of the lemma. In what follows we
concentrate on proving_(#0). Specifically, for edch S define

Proal&] <

(40)

E ={(H,A) :3weWs.tel (H Ax(1,w),z') > |z}|/20}.

Recall thate{"! (H, z,12") = HASHTOBINS(Z{,ja\ s, X[nja\ s> (H, 2)) by definition of the measurements.
By Lemma[2.9,(3) one has, for a uniformly random € [n]?, thatE.[le}*!(H, z,2')[*|] = pF(2'). By
Lemmd 2.9(2), we have that

Enluii(2)] < 20)** T C|(@ — ) pyasll3/B + p?/N? < aep. (41)
Thus by Markov’s inequality
Pra[ef® (H, z,a")* > (|27]/20)%] < ae(uni(a")?/(2}1/20)*.
Combining this with LemmR9l5, we get for all< (1/20)(]«}|/20) and allw € W
Prafauant/’,, o ell(H, = a') > |x}]/20[i%(a') = 7] < (47 /(|arf|/20)) 24D, (42)

Equipped with the bounds above, we now bold€;]. To that effect, for each > 0 let the event;(7)
be defined ag;(7) = {1mi(z’) = 7}. Note that since we assume that we operat&¢iog ») bit integers,
pmi(2") takes on a finite number of values, and heéige) is well-defined. It is convenient to bourit[E;]
as a sum of three terms:

Pri1.l€] < Pria | e (H, A a') > [il/20] | &(7)

TV aep

(1/8)(1] /20 |
+f Pry el (H, A,a') > a1]/20 |€:(7)| PrlE:(m)]dr
Vaep

N / Pri&(r)]dr
(1/8)((x1/20)

We now bound each of the three terms separately $och thatz’| /20 > 2\/aep i(2'). This is sufficient
for our purposes, as other elements only contribute a smmalliat of¢2 mass.

1. By (42) and a union bound ové¥ the first term is bounded by
W (Vaen/ (|2} /20)204D < aep®/|2f[* - (W] - 274D < aep? /], (43)
since|A| > Cloglog N for a sufficiently large constardt > 0 in RECOVERATCONSTANTSNR.
2. The second term, again by a union bound a¥éand using[(4R), is bounded by
/<1/8><lr;|/2o> W] - (47 /(|| /20)) X4V Pr(€; (7)) dr
Vaep

(1/8)(1=51/20)
é/ W1 - (47/ (|25 /20) 204D (47 (|7] /20)*Pr(€i(7)]dr
Voep

(44)
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Since|A| > Cloglog N for a sufficiently large constar® > 0 and (47/(]z}|/20)) < 1/2 over the
whole range of- by our assumption that,| /20 > 2\/aep ;(z'), we have

W - (47 /(2] /20) 204D < (W] - (1/2)204D = o(1)
for eachr € [\/aep, (1/8)(|«}]/20)]. Thus, [(44) is upper bounded by
(1/8)(|;1/20)
/ (47 (|11 /20) P& ()] r

Vaep
. /<1/8><x;/2o> ——
NG T r i\ T T
(|251/20)2 J Jaep
< aep?
= (|z}]/20)?

since
(1/8)(|}|/20) o
/ 2PriE()]dr < / P2Pr(E ()]dr = Epljid(a)] = O(@)e?
Vep 0
by (41).
3. For the third term we have
> / / e
/ Pri&;(r)ldr = Priupmi(z") > (1/8)(|;1/20)] S —
(1/8) (| 1/20) |;]

by Markov's inequality applied td_(41).

Putting the three estimates together, weRJgE | = Ola)ep” Together with[(3P) this yields fare S

|2} ]2

2
Qe Qe
712 + e

Prii ¢ L] <

In particular,
: [z . Lw] <3 |elprfi ¢ 1)
€S €S

2
Z 2 [ Qep | acn 2
ieS v ¢

where we used the assumption of the Iemma\uh@tk]ul < O(Hw[n}d\[kmg\/%) and]\x{n]d\[%}\]% < |2 pya\ w13

in the last line. By Markov’s inequality we thus hake[||z, ;|13 > ex*k] < 1/10 as long as: is smaller than
a constant.

We now upper bounflz’ — x’||3. We apply Lemm&s8]2 to vectoss and’ with setsS and L’ respectively,
getting
2" = X3 < Mo’ — 5|3 + 42" = x)surlf3
< |z a3 + 412" = X)s\pll3 + 41" = X)snrll3
< [z |3 + 4ep®k + 4ep? (S|
< |Jzpap |3 + O(e®k),

where we used the fact thafz’ — x/)snrllo < /€ with probability at least — 1/N over the randomness
used in BTIMATEVALUES by Lemmd9.1L(3). This completes the proof of correctness.
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Sample complexity and runtime The number of samples taken is bounde@%ﬂfﬂ) %k log N by Lemmd9.P,
the choice ofB. The sampling complexity of the call tosEIMATEVALUES is at mos2®(@) Lk log N. The
runtime is bounded bg®(®) 1k log?*! N log log N for computing the measurements, H,a x (1, w)) and
20(@) L 10g@+1 N for estimation. O

9 Utilities
9.1 Properties of ESTIMATE VALUES

In this section we describe the procedurgTBMATEVALUES (see Algorithni ), which, given access to a signal
x in frequency domain (i.e. giveR), a partially recovered signal and a target list of locationg C [n]¢,
estimates values of the elementsl/inand outputs the elements that are above a threshmidbsolute value.
The SNR reduction loop uses the thresholding function ®fIRATEVALUES and passes a nonzero threshold,
while RECOVERATCONSTANTSNR uses’ = 0.

Algorithm 6 ESTIMATEVALUES(z, X, L, k, €, V, "maz )
1: procedure ESTIMATEVALUES(x, x, L, k, €, V, "maz) > rmaz CONtrols estimate confidence

2: B <+ (2m)4F . k/(ea??)

3: for r = 0t0 ;4. dO

4: ChooseX, € Mgxd, ¢r, 2 € [n]¢ uniformly at random

5: Letr, .= (%,,q,), H. := (7, B, F),F =2d

6: u, <— HASHTOBINS(Z, x, X, (Hy, 2))

7: > Using semi-equispaced Fourier transform (Corollary110.2)

8: end for

9 L'« 0 > Initialize output list to empty

10: for f € L do

11: for r = 010 74, dO

12: j < h.(f)

13: wh vao‘l(f)w—Zerf > Estimater’, from each measurement
!

14: end for

15: wy < mediar{w} }; > Median is taken coordinatewise

16: If Jws|>vthen L'« L'U{f}

17: end for
18: return wp,
19: end procedure

Lemma 9.1 (¢1/¢> bounds on estimation quality}or anye € (0,1], anyx,x € C" 2’ = x — x, any
L C [n)?, any integerk and any setS C [n]%,|S| < 2k the following conditions hold. i# > ||(x — x)s]||1/k
and p> > |[(z — X)pa\sl3/k, then the outputw of ESTIMATEVALUES(E, x, L, k, €, v, Tmas) Satisfies the
following bounds if-,,,,,. is larger than an absolute constant.

For eachi € L

(1) Prlw; — x| > ea(v + p)] < 27 rmaz);
(2) E[l[wi —2}| — Vea(v + p)|,] < Vea(v + p)27Rrmes);

(3) Ellwi — alf? - ea(v + p)?[ | < 279%0mee(v? + ).
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The sample complexity is bounded 48(#*) kr,,,,,.. The runtime is bounded B(*) 1k log®*! N,
Proof. We analyze the vectar, < HASHTOBINS(Z, x, (H,, 2)) using the approximate linearity of A$H-

ToBINs given by LemmaAll (see Appendix A). Writing = z'y + ml[n]d\S’ we let

ul®*d .= HASHTOBINS(Z3, x5, (Hy, 2)) and ul® := HASHTOBINS(Z[a\g, X[\ s> (Hr, 2))
we apply Lemma2191) to the first vector, obtaining

Enr, o, |G}y w ™™ Zaiiead — ()il < 2m)*F - O js||1/B + p/N? (45)
Similarly applying Lemm&2]92) and(3) to thewu!*, we get
Erry o, [1G; Ly Tty — (o )il < (@2m)2F - a0 5113/ B,

which by Jensen’s inequality implies

En,. - [1G,, w= Bl — (2 = ) s)ill < @) - C4 |z s113/B 46)
<@m)* .ol \/k/B.
Putting [45) and [(46) together and using Lenima A.1, we get
Ext, =, |G 0™ Py — (@ = 0il] < @0)* - C¥(|[as |1/ B+ - \/R/B). 47)

We hence get by Markov’s inequality together with the chdice- (27)%4 " - k/(ea??) in ESTIMATEVALUES
(see Algorithnib)

- —Zz. 21 1
PFHT,ZTHGO,L%Z-)W " up@) — (T = x)il > 5\/5(’/ + )] < (Ca)d/2- (48)

The rhs is smaller thah/10 as long asy is smaller than an absolute constant.
Sincew; is obtained by taking the median in real and imaginary corepts) we get by Lemma 9.4
lw; — 2} < 2mediar{jw; — z/|,..., [wime — zl]).

)

By (48) combined with Lemmia 9.5 with = 1/10 we thus have

Prr120) s — 1] > Ve + )] < 2720

This establishegl). (2) follows similarly by applying the first bound from Lemrha B.5tvy = 1/2 to
random variablesX, = |w] — x;|,7 = 1,...,7mnqe andY = |w; — x;|. The third claim of the lemma follows
analogously.

The sample and runtime bounds follow by Lenimd 9.2 and Lelnfay0the choice of parameters. [

9.2 Properties of H\SHTOBINS

Lemma 9.2. HASHTOBINS(Z, x, (H, a)) computes: such that for any € [n],

al'sj
Up(s) = Apgs) + Z Gy — X)jw" ™

whered is the filter defined in sectidd 2, amsih(z) < |IxlI3/((R*)2N11) is a negligible error term. It takes
O(BF®) samples, and ifix||o < B, it takesO(2°@ . Blog? N) time.
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Algorithm 7 Hashing using Fourier samples (analyzed in Lerhmh 9.2)
1: procedure HASHTOBINS(Z, x, (H, a))

2: G « filter with B buckets,F’ = 2d >H = (mB,F),m=(Xq)
3 Computey’ = G - Ps (2 — ¥'), for somey’ with || — X'[lec < N5 > cis a large constant
4:  Computeu; = VNF () m).; for j € [b]¢

5: return u

6: end procedure

Proof. Let S = supp(G), s0|S| < (2F)? - B and in facts ¢ BX 51/4(0).
First, HASHTOBINS computes

y—G Panx_X—G Panx X+G PanX X7

for an approximationy’ to x. This is efficient because one can comp(i; , ,z)s with O(|S]|) time and
samples, and; , ;X' is easily computed froy/, for ' = {X(j — b) : j € S}. SinceT is an image of an
!+, ball under a linear transformation andis B-sparse, by Corollary_10.2, an approximatighto ¥ can be
computed inD(2°@ . Blog? N) time such thaty; — 1| < N~ forall i € T Since||G||; < VN||G|l2 =
VN|G|l2 < N||G|lse < N and is 0 outsides, this implies that

IG Poagx = X2 < 11G1l max | (Peaq(x = x))il = [|Gllimax |(x = x)il < N7 (49)

as long ag is larger than an absolute constant. Defiaby A = VNG - Ps o 4(x — X'). Then HASHTOBINS
computes: € C? such that for all,

untiy = VNF XY ) )iy = VNF @) o)) + Dinsoyhii) s

fory = G- Ps 447 — x- This computation take®(||y/|lo + Blog B) < Blog(N) time. We have by the
convolution theorem that

ungiy = VNF UG - Paq(® = X)) m/byni) + Dinoyhi
— (G # F(Psaq@ — x X)) (n/6)-h(i) + Dnsb)-hii)

= Z G (n/b)h(i) = (1) F (P5,0,0(T = X))n(j) + A(nyb)-hii)
m(j)€[N]

=" Gop(@ =)0 + Apmyne)
1€[N]

where the last step is the definition®f;j) and Lemma2]2.
Finally, we note that

Asmyn] < 1A = 18]z = VNG - Poag(x = X)2 < N~

where we used (49) in the last step. This completes the proof. O

9.3 Lemmas on quantiles and the median estimator

In this section we prove several lemmas useful for analythiegoncentration properties of the median estimate.
We will use
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Theorem 9.3(Chernoff bound) Let X1, . . . , X,, be independerit/1 Bernoulli random variables with ", E[X;] =
p1. Then for anys > 1 one hasPr[3-1 | X; > (1+ 6)u] < e oW/3,

Lemma 9.4 (Error bounds for the median estimatoblet X1, ..., X,, € C be independent random variables.
LetY := medianX;, ..., X, ), where the median is applied coordinatewise. Then foragyC one has
Y —a| <2mediar{| X; —al,...,|X, —a|)

=2¢/median{|X; — al?,...,|X, — a|?).

Proof. Leti,j € [n]| be such that” = re(X;) +i-im(X;). Suppose that (&) > re(a) (the other case is
analogous). Then since(t¥;) is the median in the lisfre(X), ..., re(X,)) by definition of Y, we have that

at least half ofX, s = 1,..., n satisfy|re(X;) — re(a)| > |re(X;) — re(a)|, and hence
Ire(X;) —re(a)] < mediarfre(X;) — re(a)|,. .., [re(X,,) — re(a)]). (50)
Since squaring a list of numbers preserves the order, wehals®
(re(X;) — re(a))? < mediar{(re(Xy) —re(a))?, ..., (re(X,) — re(a))?). (51)

A similar argument holds for the imaginary part. Combining
Y —al? = (re(a) — re(X;))? + (im(a) — im(X;))?
with (50) gives

Y — af? <mediar{(re(X1) — re(a))?, ..., (re(X,) — re(a))?)
+ mediar{(im(X) — im(a))?,..., (im(X,) — im(a))?)

Noting that
IV — a| = ((re(a) — re(X;))? + (im(a) — im(X;))*)"/? < |re(a) — re(X;)| + [im(a) — im(X;)]
and using [(51), we also get

Y — a] <mediar{|re(X1) —re(a)l, ..., |re(X,) — re(a)|)
+ mediar{[im(X;) — im(a)l,...,|im(X,) —im(a)|).

The results of the lemma follow by noting tHat(X) —re(a)| < |X —a| and|im(X) —im(a)| < |X —al. O

Lemma 9.5. Let X,..., X,, > 0 be independent random variables wHfX;|] < pn for eachi = 1,...,n.
Then for anyy € (0,1) if Y < quanf (X3, ..., X,), then

EY — 4p/7],] < (u/v) - 274

and
PriY > 4u/y] < 2790,

Proof. For anyt > 1 by Markov’s inequalityPr[X; > tu/~v] < ~/t. Define indicator random variablég by
letting Z; = 1if X; > tu/~y andZ; = 0 otherwise. Note thefE[Z;] < ~/t for eachi. Then sinc&’” is bounded
above by theyn-th largest of{ X;}?" |, we havePr[Y" > tu/+] < Pr[}_" | Z; > yn|. AsE[Z;] < ~v/t, this
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can only happen if the sufp’" , Z; exceeds expectation by a factor of at leastVe now apply Theorefn 9.3
to the sequencg;,i = 1,...,n. We have

Pr

>z > vn] < e (t=bm/3 (52)
i=1

by Theorent 9.8 invoked with = ¢ — 1. The assumptions of Theordm P.3 are satisfied as lomg-a8. This
proves the second claim we have- 4 in that case.
For the first claim we have

E[Y.1YZ4,W]g/ b PHY > - /Al
4

< / tue~EOmBqt (by (52))

4

< /3 /OO e (=23 gy
4

= O+ %)

as required. O

10 Semi-equispaced Fourier Transform

In this section we give an algorithm for computing the semquispaced Fourier transform, prove its correctness
and give runtime bounds.

Algorithm 8 Semi-equispaced Fourier Transform2iA(@ k log? N time

1: procedure SEMIEQUISPACEDFFT(z, ¢) >z € Cl*
22 LetB > 2%, be a power o2?, b = B/4
: G, G + d-th tensor powers of the flat window functions lof [HIKP12adedelow
Yi ﬁ(m *G);.n fori e [26].
y < FFT(y) > FFT on[2b]¢

3
4
5:
6: T <y, for ||i]|oc < b/2.
7
8:

is k-sparse

: return 7’
end procedure

We define filters>, G’ asd-th tensor powers of the flat window functions lof [HIKP12a],tkatG; = 0 for
all ||i]|oc 2 c(n/b)log N, |G — G'||2 < N™¢,

{1 il < b2
I
s {0 it il > b

andG’; € [0, 1] everywhere.
The following is similar to results of [DR93, IKP14].

Lemma 10.1. Let n be a power of twoN = n?, ¢ > 2 a constant. Let integeB > 1, be a power oR?,
b= B4, Foranyz e CI"l" Algorithm8 computes’, for all |i|», < b/2 such that

T — | < JJxfl2/N°

in c©@||z]]olog? N + 294 Blog B time.
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Proof. Define

z=——x*xG.

VN

We have thag; = z;G; for all i € [n]¢. Furthermore, because subsampling and aliasing are ddet time
Fourier transform, sincg; = z;.(,,/25), i € [2b]* is a subsampling of we have fori such thaf]i||., < b/2 that

~

/ ~ o~
T, =Y = § Zi42b-5

j€[n/(20)]

= Y ZinGismy

j€[n/(2b)]*

= Z Titop;Glivonj + Z Tivonj(Gizanj — Gitan)
j€[n/(20)] j€[n/(20)]

= > B Gamit Y. Fipi(Girans — Glisang).
j€[n/(2b)]* j€n/(2b)]*

For the second term we have using Cauchy-Schwarz

S T (Girang — Givang) < |lallal|G = Gl < |lalla/N°.
Jj€ln/(2b))¢

For the first term we have
Z ZitonjGliton = i - Gligopo = 5
JE[n/(2b)]d

for all i € [2b]¢ such thati||, < b, since for anyj # 0 the argument o@i+2b.j is larger tharb in /o, norm,

and henc@iJrgb.j = 0forall j # 0.
Putting these bounds together we get that

@ — 7| < |Z)2)|G — G2 < |lzf2N7°

as desired.

The time complexity of computing the FFT gfis 2°(9) Blog B. The vectory can be constructed in time
©@||z||o log? N. This is because the support 6f is localized so that each nonzero coordinaté z only
contributes ta°(@) log? N entries ofy. O

We will need the following simple generalization:

Corollary 10.2. Letn be a power of twoN = n?, ¢ > 2 a constant, an® € M4, q € [n]?. Let integer
B > 1be apower o2, b = B/, LetS = {S(i — q) : i € Z,||i]|sc < b/2}. Then for anyr € C"" we can
computez; for all ¢ € S time such that

|7} — | < ||z]l2/N°

in cO@||z||olog? N + 29 Blog B time.
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Proof. Definex’ = w%xzy—r;. Then for alli € [n],

~

Ty(i—q) =

j€[n]?
= — g w I EiI B
j€[n]?

_(sN\T; N\NT
Z w7, 07 Yoy T

j'=xTj€[n]?

— %‘H

_(aNNT;
w— G px

j/

== =

j'=xTj€[n]?
*
Z'.

8)

We can accesg; with O(d*) overhead, so by Lemnia10.1 we can approximiaig_,) = Z; for ||i||cc < kin
P DL log? N time. O
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A Omitted proofs

Proof of Lemmal2.11: We start with

Exsallm(S \ {3D) VB iy (/D) - 20 = 3 Prssgl(i) € By (/)20 (g
JeS\{i}

Recall that by definition of(i) one has|(n/b) - h(i) — 7(i)|| < (n/b), SO by triangle inequality
I7(7) = 7(Dlloo < [I7(5) = (n/0)A(D)] |00 + [I7 (i) = (n/b)A(D)]] o0,

S0
Exg[[m(S\ {i}) VB 4000 ((0/0) - 2] < 3 Pragln(s) € B, (n/b) - (28 +1))]
JeS\{z} (54)
< Y Pryglr(i) € B ((n/b) - 2]
jeS\{i}
Sincers, ,(i) = X(i — ¢) for all i € [n]?, we have
Prs o[m(j) € By ((n/b) - 2] = Prs o[|IZ( — i)lloo < (n/b) - 271 < 2(2772 /)7,
where we used the fact that by Lemmal 2.5, for any fiked# < and any radius > 0,
Pra[IIS(i — j)llee < 7] < 2(2r/n)? (55)

with 7 = (n/b) - 21+,
Putting this together with (54), we get

Exg[lm(S\ {i}) VB, a0 ((n/0) - 2)] < |S] - 2(2772/b)? < (IS]/B) - 24244

Now by Markov’s inequality we have thafails to be isolated at scatewith probability at most
PrEq |7T(S\{ }) mBoo ((’I’L/b) )| > (27T)—d-F . 64—(d+F) d/22(t+2)d+t+1] < i2—t d/2
Taking the union bound over &> 0, we get

adl?2 < 212

DO =

1
Pry 4[i is not |so|ate¢l<z Lyt a2 o < za

t>0

as required.
]
Before giving a proof of Lemmia 2.9, we state the following feeg which is immediate from Lemna 9.2:
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Lemma A.l. Letz, 2!, 22, x,x', x? € CN, oz = 2! + 22, x = x' + % LetY € Myxa,q,a € [n]4,
B = b b > 2 aninteger. Let

u = HASHTOBINS(Z, x, (H, a))
u! = HASHTOBINS(zL, X', (H, a))
u? = HASHTOBINS(22, X2, (H, a)).
Then for eacly € [b]¢ one has
Gty ™ ™ = (@ = xlP S |Gy uje™ P = (@ = X+ |G uge ™ P = (@ = x)P

+ N9
for p € {1, 2}, whereO(c) is the word precision of our semi-equispaced Fourier transf computations.

Proof of Lemmal2.9: By LemmdZ.5, for any fixedand; and anyt > 0,
Prsfl|S( — 5)lleo < #] < 2(2t/n)".
Per Lemm&29]2, WSHTOBINS computes the vectar € C? given by

Un(i) — = > G, (56)

j€[n]d

for someA with || A[|2, < N~¢). We define the vector € C" by vy;; = 2,G,,(;), SO that

Up(s) — Z W Jv = VN7,

ISk
S0
Upgiy — w0 Gy Th — Ay = VN (057
We have by[(56) and the fact thgX + Y)? < 2X?2 + 2Y?

’G—l' —aT>i /’2 _

Up(i) — Ly ‘2

—2 Tyq
01(2)‘uh(7’) B Goz 'l ’l
< 2G \uh(l —w? ZZG (i )w; — Ah(i)’ +2G (z)Ah(l)

aTxj5)2 2
) 2G0i(i)‘ Z[:}d GOi(j)x;w gt 2Go (Z)Ah(z)
J€E€n
By Parseval's theorem, therefore, we have

— —aTyi — w®
EallGy ™ Pungy — i) < 26,30 Eall D Goypyahe® ] + 2Eal A )

j€[n]d

= 2G, 1 (logsp 2 + Ah)

SN Y (75Go (57)
jeln)\{i}

SN+ N @G,
jelm)\{i}

SN 4 (0).
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We now prove(2). Recall that the filtet7 approximates an ideal filter, which would bensideB5°(n/b)
ando everywhere else. We use the bound@y) ;) = G(i)—r(;) in terms of| |7 (i) — 7(j)||c from Lemmd2.B,
(2). In order to leverage the bound, we partitjaif’ = B b)-h) (n/2) as

log,(b/2)

B iy (7/2) = By ny (/D) U (B(n/b o (/D)2 \ BES ) oy (/D)2 1)>
t=1
For simplicity of notation, letX, = (n/b) andX; = BF ;0 ((0/0) - 2\ By ) 1,0y ((0/0) - 2=1)
fort > 1. For eacht > 1 we have by Lemm .3, (2)
2 F
max |G, | < max Gyl < | ——— .
%, [Go) w(zxzﬂz:;/b).h(i)((n/b)%l)| ol <1 +2t‘1>

Since the rhs is greater tharfor ¢ < 0, we can use this bound for all< log,(b/2). Further, by LemmBa 25
we have for each # i andt > 0

Prsg[m(j) € Xe] < Prsg[n(j) € By, )50 ((n/) - 2)] < 2(21/b)°.
Putting these bounds together, we get

Exglid ()] =Esgl Y [2)Go [

jemi\i}
log, (b/2)
< > P Z Prs[n(j) € X/] - Jnax. e
jeln i} e
Lo (b/2) N
< Y ey <2t+1/b>d-(m)
jemh\i} t=0
oF =
< E Z ’1‘;’2 Z 2(t+1)d—F(t—1)
jemAGy =0

12
< 20@) 215

aslong ag’ > 2d andF' = O(d). Recalling thaG;_b.) < (2m)%F completes the proof qR).
The proof of(1) is similar. We have

aTxj
Esglmax | D @G P <Esgl Y [5G0+ Anw]

d
e jelmli\(i}
logy (5/2)
<|Appl+ D> Z Pregln(s) € Xil - max [Go,q)
je[n]d\{z} (ex:
logsy (5/2) N
< Ap@ |+ Z |27 - Z (2 /b)* - (W)
jem\(i} =0
2F =
< ‘Ah(z)‘ + E Z ‘x;‘ Z 2(t+1)d—F(t—1)
jemiGy =0

/
<AL o 17l
< [Ap@)l +2 B
(58)
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where
Apgy S N9,

Recalling thaG;%i) < (2m)*F andR* < ||7||o0 /1 completes the proof dft).
]
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