
ar
X

iv
:1

60
4.

00
84

5v
1

 [c
s.

D
S

]
4

A
pr

 2
01

6

Sparse Fourier Transform in Any Constant Dimension with
Nearly-Optimal Sample Complexity in Sublinear Time

Michael Kapralov
EPFL

June 20, 2018

Abstract

We consider the problem of computing ak-sparse approximation to the Fourier transform of a lengthN
signal. Our main result is a randomized algorithm for computing such an approximation (i.e. achieving the
ℓ2/ℓ2 sparse recovery guarantees using Fourier measurements) usingOd(k logN log logN) samples of the
signal in time domain that runs in timeOd(k log

d+3 N), whered ≥ 1 is the dimensionality of the Fourier
transform. The sample complexity matches the lower bound ofΩ(k log(N/k)) for non-adaptive algorithms
due to [DIPW10] for anyk ≤ N1−δ for a constantδ > 0 up to anO(log logN) factor. Prior to our work a
result with comparable sample complexityk logN logO(1) logN and sublinear runtime was known for the
Fourier transform on the line [IKP14], but for any dimensiond ≥ 2 previously known techniques either
suffered from a poly(logN) factor loss in sample complexity or requiredΩ(N) runtime.

http://arxiv.org/abs/1604.00845v1

Contents

1 Introduction 2

2 Preliminaries 5

3 The algorithm and proof overview 9

4 Organization 13

5 Analysis of LOCATE SIGNAL : main definitions and basic claims 13

6 Analysis of LOCATE SIGNAL : bounding ℓ1 norm of undiscovered elements 19
6.1 Bounding noise from heavy hitters 20
6.2 Bounding effect of tail noise 23
6.3 Putting it together 25

7 Analysis of REDUCEL1NORM and SPARSEFFT 26
7.1 Analysis of REDUCEL1NORM . 26
7.2 Analysis of SNR reduction loop in SPARSEFFT . 32
7.3 Analysis of SPARSEFFT . 35

8 ℓ∞/ℓ2 guarantees and constant SNR case 36
8.1 ℓ∞/ℓ2 guarantees .36
8.2 Recovery at constant SNR 38

9 Utilities 42
9.1 Properties of ESTIMATEVALUES . 42
9.2 Properties of HASHTOBINS . 43
9.3 Lemmas on quantiles and the median estimator 44

10 Semi-equispaced Fourier Transform 46

11 Acknowledgements 48

A Omitted proofs 50

1

1 Introduction

The Discrete Fourier Transform (DFT) is a fundamental mathematical concept that allows to represent a discrete
signal of lengthN as a linear combination ofN pure harmonics, or frequencies. The development of a fast
algorithm for Discrete Fourier Transform, known as FFT (Fast Fourier Transform) in 1965 revolutionized digital
signal processing, earning FFT a place in the top 10 most important algorithms of the twentieth century [Cip00].
Fast Fourier Transform (FFT) computes the DFT of a lengthN signal in timeO(N logN), and finding a faster
algorithm for DFT is a major open problem in theoretical computer science. While FFT applies to general
signals, many of the applications of FFT (e.g. image and video compression schemes such as JPEG and MPEG)
rely on the fact that the Fourier spectrum of signals that arise in practice can often be approximated very well by
only a few of the top Fourier coefficients, i.e. practical signals are often (approximately)sparsein the Fourier
basis.

Besides applications in signal processing, the Fourier sparsity property of real world signal plays and im-
portant role in medical imaging, where the cost ofmeasuring a signal, i.e. sample complexity, is often a major
bottleneck. For example, an MRI machine effectively measures the Fourier transform of a signalx represent-
ing the object being scanned, and the reconstruction problem is exactly the problem of inverting the Fourier
transformx̂ of x approximately given a set of measurements. Minimizing the sample complexity of acquiring a
signal using Fourier measurements thus translates directly to reduction in the time the patient spends in the MRI
machine [LDSP08] while a scan is being taken. In applications to Computed Tomography (CT) reduction in
measurement cost leads to reduction in the radiation dose that a patient receives [Sid11]. Because of this strong
practical motivation, the problem of computing a good approximation to the FFT of a Fourier sparse signal
fast and using few measurements in time domain has been the subject of much attention several communities.
In the area ofcompressive sensing[Don06, CT06], where one studies the task of recovering (approximately)
sparse signals from linear measurements, Fourier measurements have been one of the key settings of interest. In
particular, the seminal work of [CT06, RV08] has shown that lengthN signals with at mostk nonzero Fourier
coefficients can be recovered using onlyk logO(1)N samples in time domain. The recovery algorithms are
based on linear programming and run in time polynomial inN . A different line of research on theSparse
Fourier Transform(Sparse FFT), initiated in the fields of computational complexity and learning theory, has
been focused on developing algorithms whose sample complexity and running time scale with the sparsity as
opposed to the length of the input signal. Many such algorithms have been proposed in the literature, including
[GL89, KM91, Man92, GGI+02, AGS03, GMS05, Iwe10, Aka10, HIKP12b, HIKP12a, BCG+12, HAKI12,
PR13, HKPV13, IKP14]. These works show that, for a wide rangeof signals, both the time complexity and the
number of signal samples taken can be significantly sub-linear inN , often of the formk logO(1)N .

In this paper we consider the problem of computing a sparse approximation to a signalx ∈ CN given access
to its Fourier transform̂x ∈ CN .1 The best known results obtained in both compressive sensingliterature and
sparse FFT literature on this problem are summarized in Fig.1. We focus on algorithms that work for worst-
case signals and recoverk-sparse approximations satisfying the so-calledℓ2/ℓ2 approximation guarantee. In
this case, the goal of an algorithm is as follows: givenm samples of the Fourier transform̂x of a signalx, and
the sparsity parameterk, outputx′ satisfying

‖x− x′‖2 ≤ C min
k-sparsey

‖x− y‖2, (1)

The algorithms are randomized2 and succeed with at least constant probability.
Higher dimensional Fourier transform. While significant attention in the sublinear Sparse FFT literature

has been devoted to the basic case of Fourier transform on theline (i.e. one-dimensional signals), the spars-

1Note that the problem of reconstructing a signal from Fourier measurements is equivalent to the problem of computing theFourier
transform of a signalx whose spectrum is approximately sparse, as the DFT and its inverse are only different by a conjugation.

2Some of the algorithms [CT06, RV08, CGV12] can in fact be madedeterministic, but at the cost of satisfying a somewhat weaker
ℓ2/ℓ1 guarantee.

2

Reference Time Samples C Dimension
d > 1?

[CT06, RV08, CGV12]
[Bou14, HR16] N ×m linear program O(k log2(k) log(N)) O(1) yes

[CP10] N ×m linear program O(k logN) (logN)O(1) yes
[HIKP12a] O(k log(N) log(N/k)) O(k log(N) log(N/k)) any no

[IKP14] k log2(N) logO(1) logN k log(N) logO(1) logN any no
[IK14] N logO(1)N O(k logN) any yes

[DIPW10] Ω(k log(N/k)) O(1) lower bound

Figure 1: Bounds for the algorithms that recoverk-sparse Fourier approximations. All algorithms produce an
output satisfying Equation 1 with probability of success that is at least constant. The forth column specifies
constraints on approximation factorC. For example,C = O(1) means that the algorithm can only handle
constantC as opposed to anyC > 1. The last column specifies whether the sample complexity bounds are
unchanged, up to factors that depend on dimensiond only, for higher dimensional DFT.

est signals often occur in applications involving higher-dimensional DFTs. Although a reduction from DFT
on a two-dimensional gridwith relatively prime side lengthsp × q to a one-dimensional DFT of lengthpq
is possible [GMS05, Iwe12]), the reduction does not apply tothe most common case when the side lengths
of the grid are equal to the same powers of two. It turns out that most sublinear Sparse FFT techniques de-
veloped for the one-dimensional DFT do not extend well to thehigher dimensional setting, suffering from
at least a polylogaritmic loss in sample complexity. Specifically, the only prior sublinear time algorithm that
applies to generalm × m grids is due to to [GMS05], hasO(k logcN) sample and time complexity for a
rather large value ofc. If N is a power of2, a two-dimensional adaptation of the [HIKP12a] algorithm (out-
lined in [GHI+13]) has roughlyO(k log3N) time and sample complexity, and an adaptation of [IKP14] has
O(k log2 N(log logN)O(1)) sample complexity. In general dimensiond ≥ 1 both of these algorithms have
sample complexityΩ(k logd N).

Thus, none of the results obtained so far was able to guarantee sparse recovery from high dimensional (any
d ≥ 2) Fourier measurements without suffering at least a polylogarithmic loss in sample complexity, while at
the same time achieving sublinear runtime.

Our results. In this paper we give an algorithm that achieves theℓ2/ℓ2 sparse recovery guarantees (1) with
d-dimensional Fourier measurements that usesOd(k logN log logN) samples of the signal and has the running
time ofOd(k log

d+3 N). This is the first sublinear time algorithm that comes withina poly(log logN) factor
of the sample complexity lower bound ofΩ(k log(N/k)) due to [DIPW10] for any dimension higher than one.

Sparse Fourier Transform overview.The overall outline of our algorithm follows the framework of [GMS05,
HIKP12a, IKP14, IK14], which adapt the methods of [CCFC02, GLPS10] from arbitrary linear measurements
to Fourier measurements. The idea is to take, multiple times, a set ofB = O(k) linear measurements of the
form

ũj =
∑

i:h(i)=j

sixi

for random hash functionsh : [N] → [B] and random sign changessi with |si| = 1. This corresponds to
hashingto B buckets. With such ideal linear measurements,O(log(N/k)) hashes suffice for sparse recovery,
giving anO(k log(N/k)) sample complexity.

The sparse Fourier transform algorithms approximateũ using linear combinations of Fourier samples.
Specifically, the coefficients ofx are first permuted via a random affine permutation of the inputspace. Then the
coefficients are partitioned into buckets. This step uses the“filtering” process that approximately partitions the

3

range ofx into intervals (or, in higher dimension, squares, orℓ∞ balls) withN/B coefficients each, where each
interval corresponds to one bucket. Overall, this ensures that most of the large coefficients are “isolated”, i.e.,
are hashed to unique buckets, as well as that the contributions from the “tail” of the signalx to those buckets
is not much greater than the average (the tail of the signal defined asErrk(x) = mink−sparsey ||x− y||2). This
allows one to mimic the iterative recovery algorithm described for linear measurements above. However, there
are several difficulties in making this work using an optimalnumber of samples.

This enables the algorithm to identify the locations of the dominant coefficients and estimate their values,
producing a sparse estimateχ of x. To improve this estimate, we repeat the process onx − χ by subtracting
the influence ofχ during hashing, therebyrefining the approximation ofx constructed. After a few iterations
of this refinement process the algorithm obtains a good sparse approximationχ of x.

A major hurdle in implementing this strategy is that any filter that has been constructed in the literature so far
is imprecise in that coefficients contribute (“leak”’) to buckets other than the one they are technically mapped
into. This contribution, however, is limited and can be controlled by the quality of the filter. The details of
filter choice have played a crucial role in recent developments in Sparse FFT algorithms. For example, the
best known runtime for one-dimensional Sparse FFT, due to [HIKP12b], was obtained by constructing filters
that (almost) precisely mimic the ideal hash process, allowing for a very fast implementation of the process in
dimension one. The price to pay for the precision of the filter, however, is that each hashing becomes alogd N
factor more costly in terms of sample complexity and runtimethan in the idealized case. At the other extreme,
the algorithm of [GMS05] uses much less precise filters, which only lead to aCd loss of sample complexity
in higher dimensionsd, for a constantC > 0. Unfortunately, because of the imprecision of the filters the
iterative improvement process becomes quite noisy, requiring Ω(logN) iterations of the refinement process
above. As [GMS05] use fresh randomness for each such iteration, this results in anΩ(logN) factor loss in
sample complexity. The result of [IKP14] uses a hybrid strategy, effectively interpolating between [HIKP12b]
and [GMS05]. This gives the near optimalO(k logN logO(1) logN) sample complexity in dimension one (i.e.
Fourier transform on the line), but still suffers from alogd−1 N loss in dimensiond.

Techniques of [IK14]. The first algorithm to achieve optimal sample complexity wasrecently introduced
in [IK14]. The algorithms uses an approach inspired by [GMS05] (and hence uses ‘crude’ filters that do not
lose much in sample complexity), but introduces a key innovation enabling optimal sample complexity: the
algorithm doesnot use fresh hash functions in every repetition of the refinement process. Instead,O(logN)
hash functions are chosen at the beginning of the process, such that each large coefficient is isolated by most of
those functions with high probability. The same hash functions are then used throughout the execution of the
algorithm. As every hash function required a separate set ofsamples to construct the buckets, reusing the hash
functions makes sample complexityindependent of the number of iterations, leading to the optimal bound.

While a natural idea, reusing hash functions creates a majordifficulty: if the algorithm identified a non-
existent large coefficient (i.e. a false positive) by mistake and added it toχ, this coefficient would be present
in the difference vectorx − χ (i.e. residual signal) and would need to be corrected later.As the spurious
coefficient depends on the measurements, the ‘isolation’ properties required for recovery need not hold for it
as its position is determined by the hash functions themselves, and the algorithm might not be able to correct
the mistake. This hurdle was overcome in [IK14] by ensuring that no large coefficients are created spuriously
throughout the execution process. This is a nontrivial property to achieve, as the hashing process is quite
noisy due to use of the ‘crude’ filters to reduce the number of samples (because the filters are quite simple,
the bucketing process suffers from substantial leakage). The solution was to recover the large coefficients
in decreasing order of their magnitude. Specifically, in each step, the algorithm recovered coefficients with
magnitude that exceeded a specific threshold (that decreases at an exponential rate). With this approach the
ℓ∞ norm of the residual signal decreases by a constant factor inevery round, resulting in the even stronger
ℓ∞/ℓ2 sparse recovery guarantees in the end. The price to pay for this strong guarantee was the need for a very
strong primitive for locating dominant elements in the residual signal: a primitive was needed that would make
mistakes with at most inverse polynomial probability. Thiswas achieved by essentially brute-force decoding

4

over all potential elements in[N]: the algorithm loops over all elementsi ∈ [N] and for eachi tests, using the
O(logN) measurements taken, whetheri is a dominant element in the residual signal. This resulted in Ω(N)
runtime.

Our techniques. In this paper we show how to make the aforementioned algorithm run in sub-linear
time, at the price of a slightly increased sampling complexity of Od(k logN log logN). To achieve a sub-
linear runtime, we need to replace the loop over allN coefficients by a location primitive (similar to that in
prior works) that identifies the position of any large coefficient that is isolated in a bucket inlogO(1)N time
per bucket, i.e. without resorting to brute force enumeration over the domain of sizeN . Unfortunately, the
identification step alone increases the sampling complexity by O(logN) per hash function, so unlike [IK14],
here we cannot repeat this process usingO(logN) hash functions to ensure that each large coefficient is isolated
by one of those functions. Instead, we can only affordO(log logN) hash functions overall, which means that
1/ logO(1)N fraction of large coefficients will not be isolated in most hashings. This immediately precludes
the possibility of using the initial samples to achieveℓ∞ norm reduction as in [IK14]. Another problem,
however, is that the weaker location primitive that we use may generatespurious coefficientsat every step
of the recovery process. These spurious coefficients, together with the1/ logO(1)N fraction of non-isolated
elements, contaminate the recovery process and essentially render the original samples useless after a small
number of refinement steps. To overcome these hurdles, instead of theℓ∞ reduction process of [IK14] we
use a weaker invariant on the reduction of mass in the ‘heavy’elements of the signal throughout our iterative
process. Specifically, instead of reduction ofℓ∞ norm of the residual as in [IK14] we give a procedure for
reducing theℓ1 norm of the ‘head’ of the signal. To overcome the contamination coming from non-isolated as
well as spuriously created coefficients, we achieveℓ1 norm reduction by alternating two procedures. The first
procedure uses theO(log logN) hash functions to reduce theℓ1 norm of ‘well-hashed’ elements in the signal,
and the second uses a simple sparse recovery primitive to reduce theℓ∞ norm of offending coefficients when
the first procedure gets stuck. This can be viewed as a signal-to-noise ratio (SNR) reduction step similar in spirit
the one achieved in [IKP14]. The SNR reduction phase is insufficient for achieving theℓ2/ℓ2 sparse recovery
guarantee, and hence we need to run a cleanup phase at the end,when the signal to noise ratio is constant. It has
been observed before (in [IKP14]) that if the signal to noiseratio is constant, then recovery can be done using
standard techniques with optimal sample complexity. The crucial difference between [IKP14] and our setting
is, however, that we only have bounds onℓ1-SNR as opposed toℓ2-SNR In [IKP14]. It turns out, however, that
this is not a problem – we give a stronger analysis of the corresponding primitive from [IKP14], showing that
ℓ1-SNR bound is sufficient.

Related work on continuous Sparse FFT.Recently [BCG+12] and [PS15] gave algorithms for the related
problem of computing Sparse FFT in the continuous setting. These results are not directly comparable to ours,
and suffer from a polylogarithmic inefficiency in sample complexity bounds.

2 Preliminaries

For a positive even integera we will use the notation[a] = {−a
2 ,−a

2 + 1, . . . ,−1, 0, 1, . . . , a2 − 1}. We will
consider signals of lengthN = nd, wheren is a power of2 andd ≥ 1 is the dimension. We use the notation
ω = e2πi/n for the root of unity of ordern. Thed-dimensional forward and inverse Fourier transforms are
given by

x̂j =
1√
N

∑

i∈[n]d
ω−iT jxi and xj =

1√
N

∑

i∈[n]d
ωiT jx̂i (2)

respectively, wherej ∈ [n]d. We will denote the forward Fourier transform byF and Note that we use
the orthonormal version of the Fourier transform. We assumethat the input signal has entries of polynomial
precision and range. Thus, we have||x̂||2 = ||x||2 for all x ∈ CN (Parseval’s identity). Given access to samples

5

of x̂, we recover a signalz such that

||x− z||2 ≤ (1 + ǫ) min
k− sparsey

||x− y||2

We will use pseudorandom spectrum permutations, which we now define. We writeMd×d for the set of
d × d matrices overZn with odd determinant. ForΣ ∈ Md×d, q ∈ [n]d andi ∈ [n]d let πΣ,q(i) = Σ(i − q)
mod n. SinceΣ ∈ Md×d, this is a permutation. Our algorithm will useπ to hash heavy hitters intoB buckets,
where we will chooseB ≈ k. We will often omit the subscriptΣ, q and simply writeπ(i) whenΣ, q is fixed
or clear from context. Fori, j ∈ [n]d we letoi(j) = π(j) − (n/b)h(i) be the “offset” ofj ∈ [n]d relative to
i ∈ [n]d (note that this definition is different from the one in [IK14]). We will always haveB = bd, whereb is
a power of2.

Definition 2.1. Suppose thatΣ−1 existsmod n. For a, q ∈ [n]d we define the permutationPΣ,a,q by(PΣ,a,qx̂)i =

x̂ΣT (i−a)ω
iTΣq.

Lemma 2.2. F−1(PΣ,a,qx̂)πΣ,q(i) = xiω
aTΣi

The proof is given in [IK14] and we do not repeat it here. Define

Errk(x) = min
k−sparsey

||x− y||2 and µ2 = Err2k(x)/k. (3)

In this paper, we assume knowledge ofµ (a constant factor upper bound onµ suffices). We also assume that
the signal to noise ration is bounded by a polynomial, namelythatR∗ := ||x||∞/µ ≤ NO(1). We use the
notationB∞

r (x) to denote theℓ∞ ball of radiusr aroundx: B∞
r (x) = {y ∈ [n]d : ||x − y||∞ ≤ r}, where

||x− y||∞ = maxs∈d ||xs − ys||◦, and||xs − ys||◦ is the circular distance onZn. We will also use the notation
f . g to denotef = O(g). For a real numbera we write |a|+ to denote the positive part ofa, i.e. |a|+ = a if
a ≥ 0 and|a|+ = 0 otherwise.

We will use the filterG, Ĝ constructed in [IK14]. The filter is defined by a parameterF ≥ 1 that governs
its decay properties. The filter satisfiessupp Ĝ ⊆ [−F · b, F · b]d and

Lemma 2.3(Lemma 3.1 in [IK14]). One has(1) Gj ∈ [1
(2π)F ·d , 1] for all j ∈ [n]d such that||j||∞ ≤ n

2b and

(2) |Gj | ≤
(

2
1+(b/n)||j||∞

)F
for all j ∈ [n]d as long asb ≥ 3 and(3) Gj ∈ [0, 1] for all j as long asF is even.

Remark 2.4. Property (3) was not stated explicitly in Lemma 3.1 of [IK14], but followsdirectly from their
construction.

The properties above imply that most of the mass of the filter is concentrated in a square of sideO(n/b),
approximating the “ideal” filter (whose value would be equalto 1 for entries within the square and equal to
0 outside of it). Note that for eachi ∈ [n]d one has|Goi(i)| ≥ 1

(2π)d·F
. We refer to the parameterF as the

sharpnessof the filter. Our hash functions are not pairwise independent, but possess a property that still makes
hashing using our filters efficient:

Lemma 2.5(Lemma 3.2 in [IK14]). Let i, j ∈ [n]d. LetΣ be uniformly random with odd determinant. Then
for all t ≥ 0 one hasPr[||Σ(i − j)||∞ ≤ t] ≤ 2(2t/n)d.

Pseudorandom spectrum permutations combined with a filterG give us the ability to ‘hash’ the elements
of the input signal into a number of buckets (denoted byB). We formalize this using the notion of ahashing.
A hashing is a tuple consisting of a pseudorandom spectrum permutationπ, target number of bucketsB and a
sharpness parameterF of our filter, denoted byH = (π,B, F). Formally,H is a function that maps a signalx
toB signals, each corresponding to a hash bucket, allowing us tosolve thek-sparse recovery problem on input
x by reducing it to1-sparse recovery problems on the bucketed signals. We give the formal definition below.

6

Definition 2.6 (HashingH = (π,B, F)). For a permutationπ = (Σ, q), parametersb > 1, B = bd andF ,
a hashingH := (π,B, F) is a function mapping a signalx ∈ C[n]d to B signalsH(x) = (us)s∈[b]d , where

us ∈ C[n]d for eachs ∈ [b]d, such that for eachi ∈ [n]d

us,i =
∑

j∈[n]d
Gπ(j)−(n/b)·sxjω

iTΣj ∈ C,

whereG is a filter withB buckets and sharpnessF constructed in Lemma 2.3.

For a hashingH = (π,B, F), π = (Σ, q) we sometimes writePH,a, a ∈ [n]d to denotePΣ,a,q. We will
consider hashings of the input signalx, as well as the residual signalx− χ, where

Definition 2.7 (Measurementm = m(x,H, a)). For a signalx ∈ C[n]d, a hashingH = (π,B, F) and a
parametera ∈ [n]d, a measurementm = m(x,H, a) ∈ C[b]d is theB-dimensional complex valued vector of
evaluations of a hashingH(x) at a ∈ C[n]d, i.e. lengthB, indexed by[b]d and given by evaluating the hashing
H at a ∈ [n]d, i.e. fors ∈ [b]d

ms =
∑

j∈[n]d
Gπ(j)−(n/b)·sxjω

aTΣj ,

whereG is a filter withB buckets and sharpnessF constructed in Lemma 2.3.

Definition 2.8. For anyx ∈ C[n]d and any hashingH = (π,B,G) define the vectorµ2
H,·(x) ∈ R[n]d by letting

for everyi ∈ [n]d

µ2
H,i(x) := |G−1

oi(i)
|

∑

j∈[n]d\{i}
|xj|2|Goi(j)|2.

We access the signalx in Fourier domain via the function HASHTOBINS(x̂, χ, (H, a)), which evaluates
the hashingH of residual signalx − χ at pointa ∈ [n]d, i.e. computes the measurementm(x,H, a) (the
computation is done with polynomial precision). One can view this function as “hashing”x into B bins by
convolving it with the filterG constructed above and subsampling appropriately. The pseudocode for this
function is given in section 9.2. In what follows we will use the following properties of HASHTOBINS:

Lemma 2.9. There exists a constantC > 0 such that for any dimensiond ≥ 1, any integerB ≥ 1, any
x, χ ∈ C[n]d, x′ := x−χ, if Σ ∈Md×d, a, q ∈ [n]d are selected uniformly at random, the following conditions
hold.

Let π = (Σ, q), H = (π,B,G), whereG is the filter withB buckets and sharpnessF constructed in
Lemma 2.3, and letu = HASHTOBINS(x̂, χ, (H, a)). Then ifF ≥ 2d, F = Θ(d), for anyi ∈ [n]d

(1) For any H one hasmaxa∈[n]d |G−1
oi(i)

ω−aTΣiuh(i) − x′i| ≤ G−1
oi(i)
· ∑j∈S\{i}Goi(j)|x′j|. Furthermore,

EH [G−1
oi(i)
·∑j∈S\{i}Goi(j)|x′j|] ≤ (2π)d·F · Cd||x′||1/B +N−Ω(c);

(2) EH [µ2
H,i(x

′)] ≤ (2π)2d·F · Cd‖x′‖22/B,

Furthermore,

(3) for any hashingH, if a is chosen uniformly at random from[n]d, one has

Ea[|G−1
oi(i)

ω−aTΣiuh(i) − x′i|2] ≤ µ2
H,i(x

′) +N−Ω(c).

Herec > 0 is an absolute constant that can be chosen arbitrarily largeat the expense of a factor ofcO(d) in
runtime.

7

The proof of Lemma 2.9 is given in Appendix A. We will need several definitions and lemmas from [IK14],
which we state here. We sometimes need slight modifications of the corresponding statements from [IK14],
in which case we provide proofs in Appendix A. Throughout this paper the main object of our analysis is a
properly defined setS ⊆ [n]d that contains the ’large’ coefficients of the input vectorx. Below we state our
definitions and auxiliary lemmas without specifying the identity of this set, and then use specific instantiations
of S to analyze outer primitives such as REDUCEL1NORM, REDUCEINFNORM and RECOVERATCONST-
SNR. This is convenient because the analysis of all of these primitives can then use the same basic claims
about estimation and location primitives. The definition ofS given in (4) above is the one we use for analyzing
REDUCEL1NORM and the SNR reduction loop. Analysis of REDUCEINFNORM (section 8.1) and RECOV-
ERATCONSTANTSNR (section 8.2) use different instantiations ofS, but these are local to the corresponding
sections, and hence the definition in (4) is the best one to have in mind for the rest of this section.

First, we need the definition of an elementi ∈ [n]d being isolated under a hashingH = (π,B, F). Intu-
itively, an elementi ∈ S is isolated under hashingH with respect to setS if not too many other elementsS are
hashed too close toi. Formally, we have

Definition 2.10 (Isolated element). LetH = (π,B, F), whereπ = (Σ, q), Σ ∈ Md×d, q ∈ [n]d. We say that
an elementi ∈ [n]d is isolatedunder hashingH at scalet if

|π(S \ {i}) ∩ B∞
(n/b)·h(i)((n/b) · 2t)| ≤ (2π)−d·F · αd/22(t+1)d · 2t.

We say thati is simplyisolatedunder hashingH if it is isolated underH at all scalest ≥ 0.

The following lemma shows that any elementi ∈ S is likely to be isolated under a random permutationπ:

Lemma 2.11. For any integerk ≥ 1 and anyS ⊆ [n]d, |S| ≤ 2k, if B ≥ (2π)4d·F ·k/αd for α ∈ (0, 1) smaller
than an absolute constant,F ≥ 2d, and a hashingH = (π,B, F) is chosen randomly (i.e.Σ ∈ Md×d, q ∈ [n]d

are chosen uniformly at random, andπ = (Σ, q)), then eachi ∈ [n]d is isolatedunder permutationπ with
probability at least1− 1

2

√
α.

The proof of the lemma is very similar to Lemma 5.4 in [IK14] (the only difference is that theℓ∞ ball is
centered at the point thati hashes to in Lemma 2.11, whereas it was centered atπ(i) in Lemma 5.4 of [IK14])
and is given in Appendix A for completeness.

As every elementi ∈ S is likely to be isolated under one random hashing, it is very likely to be isolated
under a large fraction of hashingsH1, . . . ,Hrmax :

Lemma 2.12. For any integerk ≥ 1, and anyS ⊆ [n]d, |S| ≤ 2k, if B ≥ (2π)4d·F · k/αd for α ∈ (0, 1)
smaller than an absolute constant,F ≥ 2d, Hr = (πr, B, F), r = 1, . . . , rmax a sequence of random hashings,
then everyi ∈ [n]d is isolated with respect toS under at least(1 − √α)rmax hashingsHr, r = 1, . . . , rmax

with probability at least1− 2−Ω(
√
αrmax).

Proof. Follows by an application of Chernoff bounds and Lemma 2.11.

It is convenient for our location primitive (LOCATESIGNAL , see Algorithm 1) to sample the signal at pairs
of locations chosen randomly (but in a correlated fashion).The two points are then combined into one in a
linear fashion. We now define notation for this common operation on pairs of numbers in[n]d. Note that we are
viewing pairs in[n]d× [n]d as vectors in dimension2, and the⋆ operation below is just the dot product over this
two dimensional space. However, since our input space is already endowed with a dot product (fori, j ∈ [n]d

we denote their dot product byiT j), having special notation here will help avoid confusion.

8

Operations on vectors in[n]d. For a pair of vectors(α1, β1), (α2, β2) ∈ [n]d× [n]d we let(α1, β1)⋆(α2, β2)
denote the vectorγ ∈ [n]d such that

γi = (α1)i · (α2)i + (β1)i · (β2)i for all i ∈ [d].

Note that for anya, b, c ∈ [n]d × [n]d one hasa ⋆ b + a ⋆ c = a ⋆ (b + c), where addition for elements of
[n]d × [n]d is componentwise. We write1 ∈ [n]d for the all ones vector in dimensiond, and0 ∈ [n]d for the
zero vector. For a setA ⊆ [n]d × [n]d and a vector(α, β) ∈ [n]d × [n]d we denote

A ⋆ (α, β) := {a ⋆ (α, β) : a ∈ A}.

Definition 2.13(Balanced set of points). For an integer∆ ≥ 2 we say that a (multi)setZ ⊆ [n]d is∆-balanced
in coordinates ∈ [1 : d] if for everyr = 1, . . . ,∆−1 at least49/100 fraction of elements in the set{ωr·zs

∆ }z∈Z
belong to the left halfplane{u ∈ C : Re(u) ≤ 0} in the complex plane, whereω∆ = e2πi/∆ is the∆-th root of
unity.

Note that if∆ dividesn, then for any fixed value ofr the pointωr·zs
∆ is uniformly distributed over the

∆′-th roots of unity for some∆′ between2 and∆ for everyr = 1, . . . ,∆ − 1 whenzs is uniformly random
in [n]. Thus forr 6= 0 we expect at least half the points to lie in the halfplane{u ∈ C : Re(u) ≤ 0}. A set
Z is balanced if it does not deviate from expected behavior toomuch. The following claim is immediate via
standard concentration bounds:

Claim 2.14. There exists a constantC > 0 such that for any∆ a power of two,∆ = logO(1) n, andn a power
of 2 the following holds if∆ < n. If elements of a (multi)setA ⊆ [n]d × [n]d of sizeC log logN are chosen
uniformly at random with replacement from[n]d × [n]d, then with probability at least1 − 1/ log4 N one has
that for everys ∈ [1 : d] the setA ⋆ (0, es) is ∆-balanced in coordinates.

Since we only use one value of∆ in the paper (see line 8 in Algorithm 1), we will usually say that a set is
simply ‘balanced’ to denote the∆-balanced property for this value of∆.

3 The algorithm and proof overview

In this section we state our algorithm and give an outline of the analysis. The formal proofs are then presented
in the rest of the paper (the organization of the rest of the paper is presented in section 4). Our algorithm
(Algorithm 2), at a high level, proceeds as follows.

Measuring x̂. The algorithms starts by taking measurements of the signal in lines 5-16. Note that the
algorithm selectsO(log logN) hashingsHr = (πr, B, F), r = 1, . . . , O(log logN), whereπr are selected
uniformly at random, and for eachr selects a setAr ⊆ [n]d×[n]d of sizeO(log logN) that determines locations
to access in frequency domain. The signalx̂ is accessed via the function HASHTOBINS (see Lemma 2.9 above
for its properties. The function HASHTOBINS accesses filtered versions ofx̂ shifted by elements of a randomly
selected set (the number of shifts isO(logN/ log logN)). These shifts are useful for locating ‘heavy’ elements
from the output of HASHTOBINS. Note that since each hashing takesO(B) = O(k) samples, the total sample
complexity of the measurement step isO(k logN log logN). This is the dominant contribution to sample
complexity, but it is not the only one. The other contribution ofO(k logN log logN) comes from invocations of
ESTIMATEVALUES from ourℓ1-SNR reduction loop (see below). The loop goes overO(logR∗) = O(logN)
iterations, and in each iteration ESTIMATEVALUES usesO(log logN) fresh hash functions to keep the number
of false positives and estimation error small.

The location algorithm is Algorithm 1. Our main tool for bounding performance of LOCATESIGNAL is
Theorem 3.1, stated below. Theorem 3.1 applies to the following setting. Fix a setS ⊆ [n]d and a set of
hashingsH1, . . . ,Hrmax that encode signal measurement patterns, and letS∗ ⊆ S denote the set of elements

9

of S that are not isolated with respect to most of these hashings.Theorem 3.1 shows that for any signalx and
partially recovered signalχ, if L denotes the output list of an invocation of LOCATESIGNAL on the pair(x, χ)
with measurements given byH1, . . . ,Hrmax and a set of random shifts, then theℓ1 norm of elements of the
residual(x − χ)S that are not discovered by LOCATESIGNAL can be bounded by a function of the amount of
ℓ1 mass of the residual that fell outside of the ‘good’ setS \S∗, plus the ‘noise level’µ ≥ ||x[n]d\S ||∞ timesk.

If we think of applying Theorem 3.1 iteratively, we intuitively get that the fixed set of measurements given
by hashingsH1, . . . ,Hr allows us to always reduce theℓ1 norm of the residualx′ = x − χ on the ‘good’
setS \ S∗ to about the amount of mass that is located outside of this good set(this is exactly how we use
LOCATESIGNAL in our signal to noise ratio reduction loop below). In section 6 we prove

Theorem 3.1. For any constantC ′ > 0 there exist absolute constantsC1, C2, C3 > 0 such that for anyx, χ ∈
CN , x′ = x−χ, any integerk ≥ 1 and anyS ⊆ [n]d such that||x[n]d\S ||∞ ≤ C ′µ, whereµ = ||x[n]d\[k]||2/

√
k,

the following conditions hold if||x′||∞/µ = NO(1).
Let πr = (Σr, qr), r = 1, . . . , rmax denote permutations, and letHr = (πr, B, F), F ≥ 2d, F = Θ(d),

whereB ≥ (2π)4d·F k/αd for α ∈ (0, 1) smaller than a constant. LetS∗ ⊆ S denote the set of elements
that are not isolated with respect to at least a

√
α fraction of hashings{Hr}. Then if additionally for every

s ∈ [1 : d] the setsAr ⋆ (1, es) are balanced in coordinates (as per Definition 2.13) for allr = 1, . . . , rmax,
andrmax, cmax ≥ (C1/

√
α) log logN , then

L :=
rmax⋃

r=1

LOCATESIGNAL
(
χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W

)

satisfies
||x′S\S∗\L||1 ≤ (C2α)

d/2||x′S ||1 + Cd2

3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

Reducing signal to noise ratio. Once the samples have been taken, the algorithm proceeds to the signal to
noise (SNR) reduction loop (lines 17-23). The objective of this loop is to reduce the mass of the top (aboutk)
elements in the residual signal to roughly the noise levelµ · k (once this is done, we run a ‘cleanup’ primitive,
referred to as RECOVERATCONSTANTSNR, to complete the recovery process – see below). Specifically, we
define the setS of ‘head elements’ in the original signalx as

S = {i ∈ [n]d : |xi| > µ}, (4)

whereµ2 = Err2k(x)/k is the average tail noise level. Note that we have|S| ≤ 2k. Indeed, if|S| > 2k, more
thank elements ofS belong to the tail, amounting to more thanµ2 · k = Err2k(x) tail mass. Ideally, we would
like this loop to construct and approximationχ(T) tox supported only onS such that||(x−χ(T))S ||1 = O(µk),
i.e. theℓ1-SNR of the residual signal on the setS of heavy elements is reduced to a constant. As some false
positives will unfortunately occur throughout the execution of our algorithm due to the weaker sublinear time
location and estimation primitives that we use, our SNR reduction loop is to construct an approximationχ(T)

to x with the somewhat weaker properties that

||(x− χ(T))S ||1 + ||χ(T)||[n]d\S = O(µk) and ||χ(T)||0 ≪ k. (5)

Thus, we reduce theℓ1-SNR on the setS of ‘head’ elements to a constant, and at the same time not introduce
too many spurious coefficients (i.e. false positives) outsideS, and these coefficients do not contribute much
ℓ1 mass. The SNR reduction loop itself consists of repeated alternating invocations of two primitives, namely
REDUCEL1NORM and REDUCEINFNORM. Of these two the former can be viewed as performing most of
the reduction, and REDUCEINFNORM is naturally viewed as performing a ‘cleanup’ phase to fix inefficiencies
of REDUCEL1NORM that are due to the small number of hash functions (onlyO(log logN) as opposed to

10

O(logN) in [IK14]) that we are allowed to use, as well as some mistakesthat our sublinear runtime location
and estimation primitives used in REDUCEL1NORM might make.

Algorithm 1 Location primitive: given a set of measurements corresponding to a single hash function, returns
a list of elements in[n]d, one per each hash bucket

1: procedure LOCATESIGNAL (χ,H, {m(x̂,H, a ⋆ (1,w)}a∈A,w∈W) ⊲ H = (π,B, F), B = bd

2: Let x′ := x− χ. Compute{m(x̂′,H, a ⋆ (1,w)}a∈A,w∈W using Corollary 10.2 and HASHTOBINS.
3: L← ∅
4: for j ∈ [b]d do ⊲ Loop over all hash buckets, indexed byj ∈ [b]d

5: f ← 0d

6: for s = 1 to d do ⊲ Recovering each ofd coordinates separately
7: ∆← 2⌊

1
2
log2 log2 n⌋

8: for g = 1 to log∆ n− 1 do
9: w← n∆−g · es ⊲ Note thatw ∈ W

10: If there exists a uniquer ∈ [0 : ∆− 1] such that

11:

∣∣∣∣ω
−r·βs

∆ · ω−(n·∆−gfs)·βs · mj(x̂′,H,a⋆(1,w))

mj(x̂′,H,a⋆(1,0))
− 1

∣∣∣∣ < 1/3 for at least3/5 fraction ofa =

(α, β) ∈ A
12: then f ← f +∆g−1 · r · es elsereturnFAIL
13: end for
14: end for
15: L← L ∪ {Σ−1f} ⊲ Add recovered element to output list
16: end for
17: return L
18: end procedure

REDUCEL1NORM is presented as Algorithm 3 below. The algorithm performsO(log logN) rounds of
the following process: first, run LOCATESIGNAL on the current residual signal, then estimate values of the
elements that belong to the listL output by LOCATESIGNAL , andonly keep those that are above a certain
threshold (see threshold 1

100002
−tν + 4µ in the call the ESTIMATEVALUES in line 9 of Algorithm 3). This

thresholding operation is crucial, and allows us to controlthe number of false positives. In fact, this is very
similar to the approach of [IK14] of recovering elements starting from the largest. The only difference is that(a)
our ‘reliability threshold’ is dictated by theℓ1 norm of the residual rather than theℓ∞ norm, as in [IK14], and(b)
some false positives can still occur due to our weaker estimation primitives. Our main tool for formally stating
the effect of REDUCEL1NORM is Lemma 3.2 below. Intuitively, the lemma shows that REDUCEL1NORM

reduces theℓ1 norm of the head elements of the input signalx − χ by a polylogarthmic factor, and does not
introduce too many new spurious elements (false positives)in the process. The introduced spurious elements,
if any, do not contribute muchℓ1 mass to the head of the signal. Formally, we show in section 7.1

Lemma 3.2. For anyx ∈ CN , any integerk ≥ 1, B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute
constant andF ≥ 2d, F = Θ(d) the following conditions hold for the setS := {i ∈ [n]d : |xi| > µ}, where
µ2 := ||x[n]d\[k]||22/k. Suppose that||x||∞/µ = NO(1).

For any sequence of hashingsHr = (πr, B, F), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashingsHr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d, x′ := x− χ, if ν ≥ (log4N)µ is a parameter such that

A ||(x− χ)S ||1 ≤ (ν + 20µ)k;

B ||χ[n]d\S ||0 ≤ 1
log19 N

k;

11

C ||(x− χ)S∗ ||1 + ||χ[n]d\S ||1 ≤ ν
log4 N

k,

the following conditions hold.
If parametersrmax, cmax are chosen to be at least(C1/

√
α) log logN , whereC1 is the constant from

Theorem 3.1 and measurements are taken as in Algorithm 2, then the outputχ′ of the call

REDUCEL1NORM(χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax
r=1,a∈Ar ,w∈W , 4µ(log4 n)T−t, µ)

satisfies

1. ||(x′ − χ′)S ||1 ≤ 1
log4 N

νk + 20µk (ℓ1 norm of head elements is reduced by≈ log4 N factor)

2. ||(χ+ χ′)[n]d\S ||0 ≤ ||χ[n]d\S ||0 + 1
log20 N

k (few spurious coefficients are introduced)

3. ||(x′ − χ′)S∗ ||1 + ||(χ + χ′)[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + 1
log20 N

νk (ℓ1 norm of spurious
coefficients does not grow fast)

with probability at least1− 1/ log2 N over the randomness used to take measurementsm and by calls toES-
TIMATE VALUES. The number of samples used is bounded by2O(d2)k(log logN)2, and the runtime is bounded
by2O(d2)k logd+2 N .

Equipped with Lemma 3.2 as well as its counterpart Lemma 8.1 that bounds the performance of REDU-
CEINFNORM (see section 8.1) we are able to prove that the SNR reduction loop indeed achieves its cause,
namely (5). Formally, we prove in section 7.2

Theorem 3.3. For anyx ∈ CN , any integerk ≥ 1, if µ2 = Err2k(x)/k andR∗ ≥ ||x||∞/µ = NO(1), the
following conditions hold for the setS := {i ∈ [n]d : |xi| > µ} ⊆ [n]d.

Then the SNR reduction loop of Algorithm 2 (lines 19-25) returnsχ(T) such that

||(x− χ(T))S ||1 . µ (ℓ1-SNR on head elements is constant)

||χ(T)

[n]d\S ||1 . µ (spurious elements contribute little inℓ1 norm)

||χ(T)

[n]d\S ||0 .
1

log19 N
k (small number of spurious elements have been introduced)

with probability at least1 − 1/ logN over the internal randomness used by Algorithm 2. The sample
complexity is2O(d2)k logN(log logN). The runtime is bounded by2O(d2)k logd+3N .

Recovery at constantℓ1-SNR. Once (5) has been achieved, we run the RECOVERATCONSTANTSNR
primitive (Algorithm 5) on the residual signal. Adding the correctionχ′ that it outputs to the outputχ(T) of the
SNR reduction loop gives the final output of the algorithm. Weprove in section 8.2

Lemma 3.4. For anyǫ > 0, x̂, χ ∈ CN , x′ = x− χ and any integerk ≥ 1 if ||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k)

and ||x′
[n]d\[2k]||22 ≤ ||x[n]d\[k]||22, the following conditions hold. If||x||∞/µ = NO(1), then the outputχ′ of

RECOVERATCONSTANTSNR(x̂, χ, 2k, ǫ) satisfies

||x′ − χ′||22 ≤ (1 +O(ǫ))||x[n]d\[k]||22

with at least99/100 probability over its internal randomness. The sample complexity is2O(d2) 1
ǫk logN , and

the runtime complexity is at most2O(d2) 1
ǫk log

d+1 N.

12

We give the intuition behind the proof here, as the argument is somewhat more delicate than the analysis
of RECOVERATCONSTSNR in [IKP14], due to theℓ1-SNR, rather thanℓ2-SNR assumption. Specifically, if
instead of||(x − χ)[2k]||1 ≤ O(µk) we had||(x − χ)[2k]||22 ≤ O(µ2k), then it would be essentially sufficient
to note that after a single hashing into aboutk/(ǫα) buckets for a constantα ∈ (0, 1), every elementi ∈ [2k]
is recovered with probability at least1 − O(ǫα), say, as it is enough to (on average) recover all but about an
ǫ fraction of coefficients. This would not be sufficient here since we only have a bound on theℓ1 norm of the
residual, and hence some elements can contribute much moreℓ2 norm than others. However, we are able to
show that the probability that an element of the residual signalx′i is not recovered is bounded byO(αǫµ

2

|x′

i|2
+ αǫµ

|x′

i|
),

where the first term corresponds to contribution of tail noise and the second corresponds to the head elements.
This bound implies that the total expectedℓ22 mass in the elements that are not recovered is upper bounded by∑

i∈[2k] |x′i|2 ·O(αǫµ
2

|x′

i|2
+ αǫµ

|x′

i|
) ≤ O(ǫµ2k + ǫµ

∑
i∈[2k] |x′i|) = O(ǫµ2k), giving the result.

Finally, putting the results above together, we prove in section 7.3

Theorem 3.5. For any ǫ > 0, x ∈ C[n]d and any integerk ≥ 1, if R∗ ≥ ||x||∞/µ = NO(1), µ2 =
O(||x[n]d\[k]||22/k) and α > 0 is smaller than an absolute constant,SPARSEFFT(x̂, k, ǫ, R∗, µ) solves the

ℓ2/ℓ2 sparse recovery problem using2O(d2)(k logN log logN + 1
ǫk logN) samples and2O(d2) 1

ǫk log
d+3 N

time with at least98/100 success probability.

4 Organization

The rest of the paper is organized as follows. In section 5 we set up notation necessary for the analysis of
LOCATESIGNAL , and specifically for a proof of Theorem 3.1, as well as prove some basic claims. In section 6
we prove Theorem 3.1. In section 7 we prove performance guarantees for REDUCEL1NORM (Lemma 3.2),
then combine them with Lemma 8.1 to prove that the main loop inAlgorithm 2 reducesℓ1 norm of the head
elements. We then conclude with a proof of correctness for Algorithm 2. Section 8.1 is devoted to analyzing
the REDUCEINFNORM procedure, and section 8.2 is devoted to analyzing the RECOVERATCONSTANTSNR
procedure. Some useful lemmas are gathered in section 9, andsection 10 describes the algorithm for semieq-
uispaced Fourier transform that we use to update our sampleswith the residual signal. Appendix A contains
proofs omitted from the main body of the paper.

5 Analysis of LOCATE SIGNAL : main definitions and basic claims

In this section we state our main signal location primitive,LOCATESIGNAL (Algorithm 1). Given a sequence of
measurementsm(x̂,Hr, a ⋆ (1,w))}a∈Ar ,w∈W , r = 1, . . . , rmax a signalx̂ ∈ C[n]d and a partially recovered

signalχ ∈ C[n]d, LOCATESIGNAL outputs a list of locationsL ⊆ [n]d that, as we show below in Theorem 3.1
(see section 6), contains the elements ofx that contribute most of itsℓ1 mass. An important feature of LO-
CATESIGNAL is that it is an entirely deterministic procedure, giving recovery guarantees for any signalx and
any partially recovered signalχ. As Theorem 3.1 shows, however, these guarantees are strongest when most
of the mass of the residualx − χ resides on elements in[n]d that areisolated with respect to most hashings
H1, . . . ,Hrmax used for measurements. This flexibility is crucial for our analysis, and is exactly what allows
us to reuse measurements and thereby achieve near-optimal sample complexity.

In the rest of this section we first state Algorithm 1, and thenderive useful characterization of elementsi
of the input signal(x − χ)i that are successfully located by LOCATESIGNAL . The main result of this section
is Corollary 5.2. This comes down to bounding, for a given input signalx and partially recovered signalχ,
the expectedℓ1 norm of the noise contributed to the process of locating heavy hitters in a call to LOCATESIG-
NAL (x̂, χ,H, {m(x̂,H, a ⋆ (1,w))}a∈A,w∈W) by (a) the tail of the original signalx (tail noiseetail) and(b)

13

Algorithm 2 SPARSEFFT(x̂, k, ǫ, R∗, µ)
1: procedure SPARSEFFT(x̂, k, ǫ, R∗, µ)
2: χ(0) ← 0 ⊲ in Cn.
3: T ← log(log4 N)R

∗

4: F ← 2d
5: B ← (2π)4d·F · k/αd, α > 0 sufficiently small constant
6: rmax ← (C/

√
α) log logN, cmax ← (C/

√
α) log logN for a sufficiently large constantC > 0

7: W ← {0d}, ∆← 2⌊
1
2
log2 log2 n⌋ ⊲ 0d is the zero vector in dimensiond

8: for g = 1 to ⌈log∆ n⌉ do
9: W ←W ∪⋃d

s=1 n∆
−g · es ⊲ es is the unit vector in directions

10: end for
11: G← filter with B buckets and sharpnessF , as per Lemma 2.3
12: for r = 1 to rmax do ⊲ Samples that will be used for location
13: ChooseΣr ∈Md×d, qr ∈ [n]d uniformly at random, letπr := (Σr, qr) and letHr := (πr, B, F)
14: LetAr ← C log logN elements of[n]d × [n]d sampled uniformly at random with replacement
15: for w ∈ W do
16: m(x̂,Hr, a ⋆ (1,w))← HASHTOBINS(x̂, 0, (Hr, a ⋆ (1,w))) for all a ∈ Ar,w ∈ W
17: end for
18: end for
19: for t = 0, 1, . . . , T − 1 do
20: χ′ ← REDUCEL1NORM

(
χ(t), k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W , 4µ(log4 n)T−t, µ
)

21: ⊲ Reduceℓ1 norm of dominant elements in the residual signal
22: ν ′ ← (log4 N)(4µ(log4N)T−(t+1) + 20µ) ⊲ Threshold
23: χ′′ ← REDUCEINFNORM(x̂, χ(t) + χ′, 4k/(log4N), ν ′, ν ′)
24: ⊲ Reduceℓ∞ norm of spurious elements introduced by REDUCEL1NOM

25: χ(t+1) ← χ(t) + χ′ + χ′′

26: end for
27: χ′ ← RECOVERATCONSTANTSNR(x̂, χ(T), 2k, ǫ)
28: return χ(T) + χ′

29: end procedure

Algorithm 3 REDUCEL1NORM
(
x̂, χ, k, χ(t), k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W , ν, µ
)

1: procedure REDUCEL1NORM(x̂, χ, k, χ(t), k, {m(x̂,Hr, a ⋆ (1,w))}rmax
r=1,a∈Ar ,w∈W , ν, µ)

2: χ(0) ← 0 ⊲ in Cn

3: B ← (2π)4d·F · k/αd

4: for t = 0 to log2(log
4N) do

5: for r = 1 to rmax do
6: Lr ← LOCATESIGNAL

(
χ+ χ(t), k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W

)

7: end for
8: L← ⋃rmax

r=1 Lr

9: χ′ ← ESTIMATEVALUES(x̂, χ+ χ(t), L, 4k, 1, 1
1000ν2

−t + 4µ,C(log logN + d2 + log(B/k)))

10: χ(t+1) ← χ(t) + χ′

11: end for
12: return χ+ χ(T)

13: end procedure

14

the heavy hitters and false positives (heavy hitter noiseehead). It is useful to note that unlike in [IK14], we
cannot expect the tail of the signal to not change, but ratherneed to control this change.

In what follows we derive useful conditions under which an elementi ∈ [n]d is identified by LOCATES-
IGNAL . Let S ⊆ [n]d be any set of size at most2k, and letµ be such thatx[n]d\S ≤ µ. Note that this fits the
definition ofS given in (4) (but other instantiations are possible, and will be used later in section 8.2).

Consider a call to
LOCATESIGNAL (χ,H, {m(x̂,H, a ⋆ (1,w)}a∈A,w∈W).

For eacha ∈ A and fixedw ∈ W we letz := a ⋆ (1,w) ∈ [n]d to simplify notation. The measurement vectors
m := m(x̂′,H, z) computed in LOCATESIGNAL satisfy, for everyi ∈ S, (by Lemma 9.2)

mh(i) =
∑

j∈[n]d
Goi(j)x

′
jω

zTΣj +∆h(i),z,

where∆ corresponds to polynomially small estimation noise due to approximate computation of the Fourier
transform, and the filterGoi(j) is the filter corresponding to hashingH. In particular, for each hashingH and
parametera ∈ [n]d one has:

G−1
oi(i)

mh(i)ω
−zTΣi = x′i +G−1

oi(i)

∑

j∈[n]d\{i}
Goi(j)x

′
jω

zTΣ(j−i) +G−1
oi(i)

∆h(i),zω
−zTΣi

It is useful to represent the residual signalx as a sum of three terms:x′ = (x − χ)S − χ[n]d\S + x[n]d\S ,
where the first term is the residual signal coming from the ‘heavy’ elements inS, the second corresponds to
false positives, or spurious elements discovered and erroneously subtracted by the algorithm, and the third
corresponds to the tail of the signal. Similarly, we bound the noise contributed by the first two (head elements
and false positives) and the third (tail noise) parts of the residual signal to the location process separately. For
eachi ∈ S we write

G−1
oi(i)

mh(i)ω
−zTΣi = x′i

+G−1
oi(i)
·

 ∑

j∈S\{i}
Goi(j)x

′
jω

zTΣ(j−i) −
∑

j∈[n]d\S
Goi(j)χjω

zTΣ(j−i)

 (head elements and false positives)

+G−1
oi(i)
·

∑

j∈[n]d\S
Goi(j)xjω

zTΣ(j−i) (tail noise)

+G−1
oi(i)
·∆h(i)ω

−zTΣi.

(6)

Noise from heavy hitters. The first term in (6) corresponds to noise from(x − χ)S\{i} − χ[n]d\(S\{i}), i.e.
noise from heavy hitters and false positives. For everyi ∈ S, hashingH we let

eheadi (H,x, χ) := G−1
oi(i)
·

∑

j∈S\{i}
Goi(j)|yj|, wherey = (x− χ)S − χ[n]d\S . (7)

We thus get thateheadi (H,x, χ) upper bounds the absolute value of the first error term in (6).Note thatG ≥ 0 by
Lemma 2.3 as long asF is even, which is the setting that we are in. Ifeheadi (H,x, χ) is large, LOCATESIGNAL

may not be able to locatei using measurements of the residual signalx−χ taken with hashingH. However, the
noise in other hashings may be smaller, allowing recovery. In order to reflect this fact we define, for a sequence
of hashingsH1, . . . ,Hr and a signaly ∈ C[n]d

eheadi ({Hr}, x, χ) := quant1/5r eheadi (Hr, x, χ), (8)

15

where for a list of realsu1, . . . , us and a numberf ∈ (0, 1) we let quantf (u1, . . . , us) denote the⌈f · s⌉-th
largest element ofu1, . . . , us.

Tail noise. To capture the second term in (6) (corresponding to tail noise), we define, for anyi ∈ S, z ∈
[n]d,w ∈ W, permutationπ = (Σ, q) and hashingH = (π,B, F)

etaili (H, z, x) :=

∣∣∣∣∣∣
G−1

oi(i)
·

∑

j∈[n]d\S
Goi(j)xjω

zTΣ(j−i)

∣∣∣∣∣∣
. (9)

With this definition in placeetaili (H, z, x) upper bounds the second term in (6). As our algorithm uses
several values ofa ∈ Ar ⊆ [n]d × [n]d to perform location, a more robust version ofetaili (H, z) will be useful.
To that effect we let for anyZ ⊆ [n]d (we will later useZ = Ar ⋆ (1,w) for variousw ∈ W)

etaili (H,Z, x) := quant1/5z∈Z

∣∣∣∣∣∣
G−1

oi(i)
·

∑

j∈[n]d\S
Goi(j)xjω

zTΣ(j−i)

∣∣∣∣∣∣
. (10)

Note that the algorithm first selects setsAr ⊆ [n]d×[n]d, and then access the signal at locationsAr⋆(1,w),w ∈
W.

The definition ofetaili (H,A⋆(1,w), x) for a fixedw ∈ W allows us to capture the amount of noise that our
measurements that useH suffer from for locating a specific set of bits ofΣi. Since the algorithm requires all
w ∈ W to be not too noisy in order to succeed (see precondition 2 of Lemma 5.1), it is convenient to introduce
notation that captures this. We define

etaili (H,A, x) := 40µH,i(x) +
∑

w∈W

∣∣∣etaili (H,A ⋆ (1,w), x) − 40µH,i(x)
∣∣∣
+

(11)

where for anyη ∈ R one has|η|+ = η if η > 0 and|η|+ = 0 otherwise.
The following definition is useful for bounding the norm of elementsi ∈ S that are not discovered by

several calls to LOCATESIGNAL on a sequence of hashings{Hr}. For a sequence of measurement patterns
{Hr,Ar} we let

etaili ({Hr,Ar}, x) := quant1/5r etaili (Hr,Ar, x). (12)

Finally, for anyS ⊆ [n]d we let

eheadS (·) :=
∑

i∈S
eheadi (·) and etailS (·) :=

∑

i∈S
etaili (·),

where· stands for any set of parameters as above.
Equipped with the definitions above, we now prove the following lemma, which yields sufficient conditions

for recovery of elementsi ∈ S in LOCATESIGNAL in terms ofehead andetail.

Lemma 5.1. LetH = (π,B,R) be a hashing, and letA ⊆ [n]d × [n]d. Then for everyS ⊆ [n]d and for every
x, χ ∈ C[n]d andx′ = x− χ, the following conditions hold. LetL denote the output of

LOCATESIGNAL (χ,H, {m(x̂,H, a ⋆ (1,w))}a∈A,w∈W).

Then for anyi ∈ S such that|x′i| > N−Ω(c), if there existsr ∈ [1 : rmax] such that

1. eheadi (H,x′) < |x′i|/20;

16

2. etaili (H,A ⋆ (1,w), x′) < |x′i|/20 for all w ∈ W;

3. for everys ∈ [1 : d] the setA ⋆ (0, es) is balanced in coordinates (as per Definition 2.13),

theni ∈ L. The time taken by the invocation ofLOCATESIGNAL is O(B · logd+1N).

Proof. We show that each coordinates = 1, . . . , d of Σi is successfully recovered in LOCATESIGNAL . Let
q = Σi for convenience. Fixs ∈ [1 : d]. We show by induction ong = 0, . . . , log∆ n − 1 that after the
g-th iteration of lines 6-10 of Algorithm 1 we have thatfs coincides withqs on the bottomg · log2 ∆ bits, i.e.
fs − qs = 0 mod ∆g (note that we trivially havefs < ∆g after iterationg).

Thebaseof the induction is trivial and is provided byg = 0. We now show theinductive step. Assume
by the inductive hypothesis thatfs − qs = 0 mod ∆g−1, so thatqs = fs + ∆g−1(r0 + ∆r1 + ∆2r2 + . . .)
for some sequencer0, r1, . . ., 0 ≤ rj < ∆. Thus,(r0, r1, . . .) is the expansion of(qs − fs)/∆

g−1 base∆, and
r0 is the least significant digit. We now show thatr0 is the unique value ofr that satisfies the conditions of
lines 8-10 of Algorithm 1.

First, we have by (6) together with (7) and (9) one has for eacha ∈ A andw ∈ W
∣∣∣mh(i)(x̂′,H, a ⋆ (1,w))−Goi(i)x

′
iω

((a⋆(1,w))T q
∣∣∣ ≤ eheadi (H,x, χ) + etaili (H, a ⋆ (1,w), x) +N−Ω(c).

Since0 ∈ W, we also have for alla ∈ A
∣∣∣mh(i)(x̂′,H, a ⋆ (1,0)) −Goi(i)x

′
iω

(a⋆(1,0))T q
∣∣∣ ≤ eheadi (H,x, χ) + etaili (H, a ⋆ (1,0), x) +N−Ω(c),

where theN−Ω(c) terms correspond to polynomially small error from approximate computation of the Fourier
transform via Lemma 10.2.

Let j := h(i). We will show thati is recovered from bucketj. The bounds above imply that

mj(x̂′,H, a ⋆ (1,w))

mj(x̂′,H, a ⋆ (1,0))
=

x′iω
(a⋆(1,w))T q + E′

x′iω
(a⋆(1,0))T q + E′′ (13)

for someE′, E′′ satisfying|E′| ≤ eheadi (H,x, χ)+etaili (H, a⋆(1,w), x)+N−Ω(c) and|E′′| ≤ eheadi (H,x, χ)+
etaili (H, a ⋆ (1,0)) + N−Ω(c). For all but1/5 fraction ofa ∈ A we have by definition ofetail (see (10)) that
both

etaili (H, a ⋆ (1,w), x) ≤ etaili (H,A ⋆ (1,w), x) ≤ |x′i|/20 (14)

and
etaili (H, a ⋆ (1,0) ≤ etaili (H,A ⋆ (1,0), x) ≤ |x′i|/20. (15)

In particular, we can rewrite (13) as

mj(x̂′,H, a ⋆ (1,w))

mj(x̂′,H, a ⋆ (1,0))
=

x′iω
(a⋆(1,w))T q + E′

x′iω
(a⋆(1,0))T q + E′′

=
ω(a⋆(1,w))T q

ω(a⋆(1,0))T q
· ξ where ξ =

1 + ω−(a⋆(1,w))T qE′/x′i
1 + ω−(a⋆(1,0))T qE′′/x′i

= ω(a⋆(1,w))T q−(a⋆(1,0))T q · ξ
= ω(a⋆(0,w))T q · ξ.

(16)

LetA∗ ⊆ A denote the set of values ofa ∈ A that satisfy the bounds (14) and (15) above. We thus have
for a ∈ A∗, combining (16) with assumptions1-2of the lemma, that

|E′|/x′i ≤ (2/20) + 1/N−Ω(c) ≤ 1/8 and |E′′|/x′i ≤ (2/20) + 1/N−Ω(c) ≤ 1/8 (17)

17

for sufficiently largeN , whereO(c) is the word precision of our semi-equispaced Fourier transform computa-
tion. Note that we used the assumption that|x′i| ≥ N−Ω(c).

Writing a = (α, β) ∈ [n]d × [n]d, we have by (16) thatmj(x̂′,H,a⋆(1,w))

mj(x̂′,H,a⋆(1,0))
= ω((α,β)⋆(0,w))T q · ξ, and since

wTq = n∆−gqs whenw = n∆−ges (as in line 8 of Algorithm 1), we get

mj(x̂′,H, a ⋆ (1,w))

mj(x̂′,H, a ⋆ (1,0))
= ω(a⋆(0,w))T q · ξ = ωn∆−gβsqs · ξ = ωn∆−gβsqs + ωn∆−gβsqs(ξ − 1).

We analyze the first term now, and will show later that the second term is small. Sinceqs = fs +∆g−1(r0 +
∆r1 + ∆2r2 + . . .) by the inductive hypothesis, we have, substituting the firstterm above into the expression
in line 10 of Algorithm 1,

ω−r·βs

∆ · ω−n∆−gfs·βs · ωn∆−gβsqs = ω−r·βs

∆ · ωn∆−g(qs−fs)·βs

= ω−r·βs

∆ · ωn∆−g(∆g−1(r0+∆r1+∆2r2+...))·βs

= ω−r·βs

∆ · ω(n/∆)·(r0+∆r1+∆2r2+...)·βs

= ω−r·βs

∆ · ωr0·βs

∆

= ω
(−r+r0)·βs

∆ .

We used the fact thatωn/∆ = e2πi(n/∆)/n = e2πi/∆ = ω∆ and(ω∆)
∆ = 1. Thus, we have

ω−r·βs

∆ ω−(n2−gfs)·βs
mj(x̂′,H, a ⋆ (1,w))

mj(x̂′,H, a ⋆ (1,0))
= ω

(−r+r0)·βs

∆ + ω
(−r+r0)·βs

∆ (ξ − 1). (18)

We now consider two cases. First suppose thatr = r0. Thenω(−r+r0)·βs

∆ = 1, and it remains to note that

by (17) we have|ξ− 1| ≤ 1+1/8
1−1/8 − 1 ≤ 2/7 < 1/3. Thus everya ∈ A∗ passes the test in line 9 of Algorithm 1.

Since|A∗| ≥ (4/5)|A| > (3/5)|A| by the argument above, we have thatr0 passes the test in line 9. It remains
to show thatr0 is the unique element in0, . . . ,∆− 1 that passes this test.

Now suppose thatr 6= r0. Then by the assumption thatA⋆ (0, es) is balanced (assumption3 of the lemma)

at least49/100 fraction ofω(−r+r0)·βs

∆ have negative real part. This means that for at least49/100 of a ∈ A we
have using triangle inequality

∣∣∣
[
ω
(−r+r0)·βs

∆ + ω
(−r+r0)·βs

∆ (ξ − 1)
]
− 1

∣∣∣ ≥
∣∣∣ω(−r+r0)·βs

∆ − 1
∣∣∣−

∣∣∣ω(−r+r0)·βs

∆ (ξ − 1)
∣∣∣

≥ |i− 1| − 1/3

≥
√
2− 1/3 > 1/3,

and hence the condition in line 9 of Algorithm 1 is not satisfied for anyr 6= r0. This shows that location is
successful and completes the proof of correctness.

Runtime bounds follow by noting that LOCATESIGNAL recoversd coordinates withlog n bits per coordi-
nate. Coordinates are recovered in batches oflog∆ bits, and the time taken is bounded byB · d(log∆ n)∆ ≤
B(logN)3/2. Updating the measurements using semi-equispaced FFT takesB logd+1 N time.

We also get an immediate corollary of Lemma 5.1. The corollary is crucial to our proof of Theorem 3.1
(the main result about efficiency of LOCATESIGNAL) in the next section.

Corollary 5.2. For any integerrmax ≥ 1, for any sequence ofrmax hashingsHr = (πr, B,R), r ∈ [1 : rmax]

and evaluation pointsAr ⊆ [n]d×[n]d, for everyS ⊆ [n]d and for everyx, χ ∈ C[n]d, x′ := x−χ, the following

18

conditions hold. If for eachr ∈ [1 : rmax]Lr ⊆ [n]d denotes the output ofLOCATESIGNAL (x̂, χ,Hr, {m(x̂,Hr, a⋆
(1,w))}a∈Ar ,w∈W), L =

⋃rmax
r=1 Lr, and the setsAr ⋆ (0,w) are balanced for allw ∈ W andr ∈ [1 : rmax],

then
||x′S\L||1 ≤ 20||eheadS ({Hr}, x, χ)||1 + 20||etailS ({Hr,Ar}, x)||1 + |S| ·N−Ω(c). (*)

Furthermore, every elementi ∈ S such that

|x′i| > 20(eheadi ({Hr}, x, χ) + etaili ({Hr,Ar}, x)) +N−Ω(c) (**)

belongs toL.

Proof. Suppose thati ∈ S fails to be located in any of theR calls, and|x′i| ≥ N−Ω(c). By Lemma 5.1 and the
assumption thatAr ⋆ (0,w) is balanced for allw ∈ W andr ∈ [1 : rmax] this means that for at least one half
of valuesr ∈ [1 : rmax] either(A) eheadi (Hr, x, χ) ≥ |xi|/20 or (B) etaili (Hr,Ar ⋆ (1,w), x) > |xi|/20 for at
least onew ∈ W. We consider these two cases separately.

Case (A). In this case we haveeheadi (Hs, x, χ) ≥ |xi|/20 for at least one half ofr ∈ [1 : rmax], so in

particulareheadi ({Hr}, x, χ) ≥ quant1/5r eheadi (Hr, x, χ) ≥ |x′i|/20.

Case (B). Suppose thatetaili (Hr,Ar ⋆ (1,w), x) > |x′i|/20 for somew = w(r) ∈ W for at least one half of
r ∈ [1 : rmax] (denote this set byQ ⊆ [1 : rmax]). We then have

etaili ({Hr,Ar}, x) = quant1/5r∈[1:rmax]
etaili (Hr,Ar, x)

= quant1/5r∈[1:rmax]

[
40µHr ,i(x) +

∑

w∈W

∣∣∣etaili (Hr,Ar ⋆ (1,w), x) − 40µHr ,i(x)
∣∣∣
+

]

≥ min
r∈Q

[
40µHr ,i(x) +

∣∣∣etaili (Hr,Ar ⋆ (1,w(r)), x) − 40µHr ,i(x)
∣∣∣
+

]

≥ min
r∈Q

etaili (Hr,Ar ⋆ (1,w(r)), x)

≥ |x′i|/20

as required. This completes the proof of(*) as well as(**) .

6 Analysis of LOCATE SIGNAL : bounding ℓ1 norm of undiscovered elements

The main result of this section is Theorem 3.1, which is our main tool for showing efficiency of LOCATESIG-
NAL . Theorem 3.1 applies to the following setting. Fix a setS ⊆ [n]d and a set of hashingsH1, . . . ,Hrmax ,
and letS∗ ⊆ S denote the set of elements ofS that are not isolated with respect to most of these hashings
H1, . . . ,Hrmax . Theorem 3.1 shows that for any signalx and partially recovered signalχ, if L denotes the
output list of an invocation of LOCATESIGNAL on the pair(x, χ) with hashingsH1, . . . ,Hrmax , then theℓ1
norm of elements of the residual(x − χ)S that are not discovered by LOCATESIGNAL can be bounded by a
function of the amount ofℓ1 mass of the residual that fell outside of the ‘good’ setS \S∗, plus the ‘noise level’
µ ≥ ||x[n]d\S ||∞ timesk.

If we think of applying Theorem 3.1 iteratively, we intuitively get that the fixed set of measurements with
hashings{Hr} allows us to always reduce theℓ1 norm of the residualx′ = x − χ on the ‘good’ setS \ S∗ to
about the amount of mass that is located outside of this good set.
Theorem 3.1There exist absolute constantsC1, C2, C3 > 0 such that for anyx, χ ∈ CN and residual signal
x′ = x− χ the following conditions hold. LetS ⊆ [n]d, |S| ≤ 2k, be such that||x[n]d\S ||∞ ≤ µ. Suppose that

19

||x||∞/µ ≤ NO(1). LetB ≥ (2π)4d·F · k/αd. LetS∗ ⊆ S denote the set of elements that are not isolated with
respect to at least a

√
α fraction of hashings{Hr}rmax

r=1 . Suppose that for everys ∈ [1 : d] the setsAr ⋆ (0, es)
are balanced (as per Definition 2.13),r = 1, . . . , rmax, and the exponentF of the filterG is even and satisfies
F ≥ 2d. Let

L =

rmax⋃

r=1

LOCATESIGNAL (χ,Hr, {m(x̂,Hr, a ⋆ (1,w)}a∈Ar ,w∈Wr).

Then ifrmax, cmax ≥ (C1/
√
α) log logN , one has

||x′S\S∗\L||1 ≤ (C2α)
d/2||x′S ||1 + Cd2

3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

As we will show later, Theorem 3.1 can be used to show that (assuming perfect estimation) invoking LO-
CATESIGNAL repeatedly allows one to reduce toℓ1 norm of the head elements down to essentially

||x′S∗ ||1 + ||χ[n]d\S ||1,

i.e. theℓ1 norm of the elements that are not well isolated and the set of new elements created by the process
due to false positives in location. In what follows we derivebounds on||ehead||1 (in section 6.1) and||etail||1
(in section 6.2) that lead to a proof of Theorem 3.1.

6.1 Bounding noise from heavy hitters

We first derive bounds on noise from heavy hitters that a single hashingH results in, i.e.ehead(H,x), (see
Lemma 6.1), and then use these bounds to boundehead({H}, x) (see Lemma 6.3). These bounds, together with
upper bounds on contribution of tail noise from the next section, then lead to a proof of Theorem 3.1.

Lemma 6.1. Letx, χ ∈ CN , x′ = x− χ. LetS ⊆ [n]d, |S| ≤ 2k, be such that||x[n]d\S ||∞ ≤ µ. Suppose that

||x||∞/µ ≤ NO(1). LetB ≥ (2π)4d·F · k/αd. Letπ = (Σ, q) be a permutation, letH = (π,B, F), F ≥ 2d be
a hashing intoB buckets and filterG with sharpnessF . LetS∗

H ⊆ S denote the set of elementsi ∈ S that are
not isolated underH. Then one has, forehead defined with respect toS,

||eheadS\S∗

H
(H,x, χ)||1 ≤ 2O(d)αd/2||x′S\S∗

H
||1 + (2π)d·F · 2O(d)(||x′S∗ ||1 + ||χ[n]d\S ||1).

Furthermore, ifχ[n]d\S = 0 andS∗
H = ∅, then one has||eheadS (H,x, χ)||∞ ≤ 2O(d)αd/2||x′S ||∞.

Proof. By (7) for i ∈ S \ S∗
H

eheadi (H,x′) = |G−1
oi(i)
| ·

∑

j∈S\S∗

H\{i}
|Goi(j)|x′j | (isolated head elements)

+ |G−1
oi(i)
| ·

 ∑

j∈S∗

H

|Goi(j)|x′j|+
∑

j∈[n]d\S
|Goi(j)||χj |

 (non-isolated head elements and false positives)

= |G−1
oi(i)
| · (A1(i) +A2(i)).

(19)

LetA1 :=
∑

i∈S\S∗

H
A1(i), A2 :=

∑
i∈S\S∗

H
A2(i).

We boundA1 andA2 separately.

20

BoundingA1. We start with a convenient upper bound onA1:

A1 =
∑

i∈S\S∗

H

∑

j∈S\S∗

H\{i}
|Goi(j)||x′j | (recall thatoi(j) = π(j) − (n/b)h(i))

=
∑

t≥0

∑

i∈S\S∗

H

∑

j∈S\S∗

H\{i} s.t.
||π(j)−π(i)||∞∈(n/b)·[2t−1,2t+1−1)

|Goi(j)||x′j |, (consider all scalest ≥ 0)

≤
∑

t≥0

∑

i∈S\S∗

H

max
||π(j)−π(i)||∞≥(n/b)·(2t−1)

Goi(j) ·
∑

j∈S\S∗

H\{i} s.t.
||π(j)−π(i)||∞≤(n/b)·(2t+1−1)

|x′j |

=
∑

j∈S\S∗

H

|x′j | ·
∑

t≥0

max
||π(j)−π(i)||∞≥
(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗

H \ {j} s.t. ||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣ .

(20)

Note that in the first line we summed, over alli ∈ S \S∗
H (i.e. all isolatedi), the contributions of all otheri ∈ S

to the noise in their buckets. We need to bound the first line interms of||x′S\S∗

H
||1. For that, we first classified

all j ∈ S \ S∗
H according to theℓ∞ distance fromi to j (in the second line), then upper bounded the value of

the filterGoi(j) based on the distance||π(i) − π(j)||∞, and finally changed order of summation to ensure that
the outer summation is a weighted sum of absolute values ofx′j over all j ∈ S \ S∗

H
3. In order to upper bound

A1 it now suffices to upper bound all factors multiplyingx′j in the last line of the equation above. As we now
show, a strong bound follows from isolation properties ofi.

We start by upper boundingG using Lemma 2.3,(2). We first note that by triangle inequality

||π(j)−(n/b)h(i)||∞ ≥ ||π(j)−π(i)||∞−||π(i)−(n/b)h(i)||∞ ≥ (n/b)(2t−1)−(n/b) = (n/b)(2t−1−2).

The rhs is positive for allt ≥ 3 and for sucht satisfies2t−1 − 2 ≤ 2t−2. We hence get for allt ≥ 3

max
||π(j)−π(i)||∞≥(n/b)·(2t−1−1)

Goi(j) ≤
(

2

1 + ||π(j) − (n/b)h(i)||∞

)F

≤
(

2

1 + 2t−2

)F

≤ 2−(t−3)F . (21)

We also have the bound||G||∞ ≤ 1 from Lemma 2.3,(3). It remains to bound the last term on the rhs of the
last line in (20). We need the fact that for a pairi, j such that||π(j) − π(i)||∞ ≤ 2t+1 − 1 we have by triangle
inequality

||π(j)− (n/b)h(i)||∞ ≤ ||π(j)− π(i)||∞ + ||π(i)− (n/b)h(i)||∞ ≤ (n/b)(2t+1 − 1) + (n/b) = (n/b)2t+1.

Equipped with this bound, we now conclude that
∣∣{i ∈ S \ S∗

H \ {j} s.t. ||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣

= |π(S \ {i}) ∩ B∞
(n/b)h(i)((n/b) · 2t+1)| ≤ (2π)−d·F · αd/22(t+2)d+1 · 2t,

(22)

where we used the assumption thati ∈ S\S∗
H are isolated (see Definition 2.10). We thus get for anyj ∈ S\S∗

H

ηj :=
∑

t≥0

max
||π(j)−π(i)||∞≥
(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗

H \ {j} s.t. ||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣

≤
∑

t≥0

((2π)−d·F · αd/22(t+2)d+1 · 2t)min{1, 2−(t−3)F }

≤ (2π)−d·F · αd/222d+1
∑

t≥0

2t(d+1) ·min{1, 2−(t−3)F }

3We note here that we started by summing overi first and then overj, but switched the order of summation to the opposite in the
last line. This is because the quantityGoi(j), which determines contribution ofj ∈ S to the estimation error ofi ∈ S is not symmetric
in i andj. Indeed, even thoughG itself is symmetric around the origin, we haveoi(j) = π(j) − (n/b)h(i) 6= oj(i).

21

We now note that∑

t≥0

2t(d+1) ·min{1, 2−(t−3)F } = 1 + 22(d+1) + 23(d+1)
∑

t≥3

2(t−3)(d+1) ·min{1, 2−(t−3)F }

= 1 + 22(d+1) + 23(d+1)
∑

t≥3

2(t−3)(d+1−F) ≤ 1 + 22(d+1) + 23(d+1)+1 ≤ 24(d+1)+1,

sinceF ≥ 2d by assumption of the lemma, and hence for allj ∈ S \ S∗
H one hasηj ≤ (2π)−d·F · 2O(d)αd/2.

Combining the estimates above, we now get

A1 ≤
∑

j∈S\S∗

H

|x′j | · ηj ≤ ||x′S ||1(2π)−d·F · 2O(d)αd/2,

as required. Theℓ∞ bound for the case whenχ[n]d\S = 0 follows in a similar manner and is hence omitted.
We now turn to boundingA2. The bound that we get here is weaker sinceχ[n]d\S is an adversarially placed

signal and we do not have isolation properties with respect to it, resulting in a weaker bound on (the equivalent
of) ηj for j ∈ S∗

H than we had forj ∈ S \ S∗
H . We lety := x′S∗ − χ[n]d\S to simplify notation. We have, as

in (20),

A2 ≤
∑

j∈S\S∗

H

|x′j | · κj ,

where

κj =
∑

t≥0

max
||π(j)−π(i)||∞≥
(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗

H \ {j} s.t.||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣ .

The first term can be upper bounded as before. For the second term, we note that every pair of pointsi1, i2 ∈
S \ S∗

H by triangle inequality satisfy

(n/b)||π(i1)− π(i2)||∞ ≤ (n/b)||π(i1)− π(j)||∞ + ||π(j) − π(i2)||∞ ≤ (n/b) · (2t+2 − 2) ≤ (n/b) · 2t+2

Since bothi1 andi2 are isolated underπ, this means that
∣∣{i ∈ S \ S∗

H \ {j} s.t. ||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣ ≤ (2π)−d·F · αd/22(t+3)d · 2t+2 + 1,

where we used the bound from Definition 2.10 fori, but counted the pointi itself (this is what makes the bound
onκj weaker than the bound onηj). A similar calculation to the one above forA1 now gives

κj :=
∑

t≥0

max
||π(j)−π(i)||∞≥
(n/b)·(2t−1)

Goi(j) ·
∣∣{i ∈ S \ S∗

H \ {j} s.t.||π(j) − π(i)||∞ ≤ (n/b) · (2t+1 − 1)
}∣∣

≤
∑

t≥0

((2π)−d·F · αd/22(t+3)d · 2t+2 + 1)min{1, 2−(t−3)F }

≤ 2O(d)((2π)−d·F · αd/2 + 1) = 2O(d).

We thus have

A2 ≤
∑

j∈[n]d
|yj|κj ≤ 2O(d)||y||1.

Plugging our bounds onA1 andA2 into (19), we get

eheadi (H,x, χ) ≤ |G−1
oi(i)
| · (A1 +A2) ≤ |G−1

oi(i)
|(2O(d)(2π)−d·F · αd/2||x′S ||1 + 2O(d)||y||1)

≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||y||1
as required.

22

Remark 6.2. The second bound of this lemma will be useful later in section8.1 for analyzingREDUCE-
INFNORM.

We now bound the final error induced by head elements, i.e.ehead({Hr}, x, χ):

Lemma 6.3. Letx, χ ∈ [n]d, x′ = x− χ. LetS ⊆ [n]d, |S| ≤ 2k, be such that||x[n]d\S ||∞ ≤ µ. Suppose that

||x||∞/µ ≤ NO(1). LetB ≥ (2π)4d·F ·k/αd. Let{πr}rmax
r=1 be a set of permutations, letHr = (πr, B, F), F ≥

2d be a hashing intoB buckets and filterG with sharpnessF . LetS∗ denote the set of elementsi ∈ S that are
not isolated under at least

√
α fraction ofHr. Then, one has forehead defined with respect toS,

||eheadS\S∗({Hr}, x, χ)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1.

Furthermore, ifχ[n]d\S = 0, then||eheadS\S∗({Hr}, x, χ)||∞ ≤ 2d/2αd/2||x′S ||∞.

Proof. Recall that by (8) one has for eachi ∈ [n]d eheadi ({Hr}, x, χ) = quant1/5r∈[1:rmax]
eheadi (Hr, x, χ). This

means that for eachi ∈ S \ S∗ there exist at least(1/5 − √α)rmax values ofr such thateheadi (Hr, x, χ) >
eheadi ({Hr}, x, χ), and hence

||eheadS\S∗({Hr}, x, χ)||1 ≤
1

(1/5 −√α)rmax

rmax∑

r=1

||eheadS\S∗
r
(Hr, x, χ)||1.

By Lemma 6.1 one has

||eheadS\S∗

Hr
(Hr, x, χ)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1

for all r, implying that

||eheadS\S∗({Hr}, x, χ)||1 ≤
1

(1/5 −√α)(2
O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1)

≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1

as required.
The proof of the second bound follows analogously using theℓ∞ bound from Lemma 6.1.

Remark 6.4. The second bound of this lemma will be useful later in section8.1 for analyzingREDUCE-
INFNORM.

6.2 Bounding effect of tail noise

Lemma 6.5. For any constantC ′ > 0 there exists an absolute constantC > 0 such that for anyx ∈ C[n]d,
any integerk ≥ 1 andS ⊆ [n]d such that||x[n]d\S ||∞ ≤ C ′||x[n]d\[k]||2/

√
k, for any integerB ≥ 1 a power

of 2d the following conditions hold. If(H,A) are random measurements as in Algorithm 2,H = (π,B, F)
satisfiesF ≥ 2d and ||x[n]d\[k]||2 ≥ N−Ω(c), whereO(c) is the word precision of our semi-equispaced Fourier

transform computation, then for anyi ∈ [n]d one has, foretail defined with respect toS,

EH,A
[
etaili (H,A, x)

]
≤ (2π)d·F · Cd(40 + |W|2−Ω(|A|))||x[n]d\[k]||2/

√
B.

23

Proof. Recall that for anyH = (π,B,G), a,w one has(etail(H, a ⋆ (1,w), x[n]d\[k]))
2 = |ui|2, where

u = HASHTOBINS(x̂[n]d\S , 0, (H, a ⋆ (1,w))).

Since the elements ofA are selected uniformly at random, we have for anyH andw by Lemma 2.9,(3),
sincea ⋆ (1,w) is uniformly random in[n]d, that

Ea[(e
tail
i (H, a ⋆ (1,w), x))2] = Ea[|G−1

oi(i)
ω−(a⋆(1,w))TΣiuh(i) − xi|2] ≤ µ2

H,i(x) +N−Ω(c), (23)

where c > 0 is the large constant that governs the precision of our Fourier transform computations. By
Lemma 2.9,(2) applied to the pair(x̂[n]d\S , 0) there exists a constantC > 0 such that

EH [µ2
H,i] ≤ (2π)2d·F · Cd||x[n]d\S ||22/B

We would like to upper bound the rhs in terms of||x[n]d\[k]||22 (the tail energy), but this requires an argument
sinceS is not exactly the set of topk elements ofx. However, sinceS contains the large coefficients ofx, a
bound is easy to obtain. Indeed, denoting the set of topk coefficients ofx by [k] ⊆ [n]d as usual, we get

||x[n]d\S ||22 ≤ ||x[n]d\(S∪[k])||22 + ||x[k]\S||22 ≤ ||x[n]d\[k]||22 + k · ||x[k]\S||2∞ ≤ (C ′ + 1)||x[n]d\[k]||2.

Thus, we have
EH [µ2

H,i(x) +N−Ω(c)] ≤ (2π)2d·F · (C ′ + 2)Cd||x[n]d\[k]||22/B,

where we used the assumption that||x[n]d\k||2 ≥ N−Ω(c). We now get by Jensen’s inequality

EH [µH,i(x)] ≤ (2π)d·F · (C ′′)d||x[n]d\k||2/
√
B (24)

for a constantC ′′ > 0. Note that
By (23) for eachi ∈ [n]d, hashingH, evaluation pointa ∈ [n]d × [n]d and directionw we have

Ea[(e
tail
i (H, a⋆ (1,w), x))2] = (µH,i(x))

2. Applying Jensen’s inequality, we hence get for anyH andw ∈ W

Ea[e
tail
i (H, a ⋆ (1,w), x)] ≤ µH,i(x). (25)

Applying Lemma 9.5 withY = etaili (H, a ⋆ (1,w), x) andγ = 1/5 (recall that the definition ofetaili (H, z, x)
involves a1/5-quantile overA) and using the previous bound, we get, for any fixedH andw ∈ W

EA

[∣∣∣etaili (H,A ⋆ (1,w), x) − 40 · µH,i(x)
∣∣∣
+

]
≤ µH,i(x) · 2−Ω(|A|), (26)

and hence by a union bound over allw ∈ W we have

EA

[∑

w∈W

∣∣∣etaili (H,A ⋆ (1,w), x) − 40 · µH,i(x)
∣∣∣
+

]
≤ µH,i(x) · |W|2−Ω(|A|).

Putting this together with (24), we get

EH,A
[
etaili (H,A, x)

]

= EH

[
EA

[
40µH,i(x) +

∑

w∈W

∣∣∣etaili (H,A ⋆ (1,w), x) − 40 · µH,i(x)
∣∣∣
+

]]

≤ EH

[
µH,i(x)(40 + |W|2−Ω(|A|))

]

≤ (2π)d·F (C ′′)d(40 + |W|2−Ω(|A|))||x[n]d\k||2/
√
B

as required.

24

Lemma 6.6. For any constantC ′ > 0 there exists an absolute constantC > 0 such that for anyx ∈ C[n]d, any
integerk ≥ 1 andS ⊆ [n]d such that||x[n]d\S ||∞ ≤ C ′||x[n]d\[k]||/

√
k, if B ≥ 1, then the following conditions

hold , foretail defined with respect toS.
If hashingsHr = (πr, B, F), F ≥ 2d and setsAr, |Ar| ≥ cmax for r = 1, . . . , rmax are chosen at random,

then

(1) for everyi ∈ [n]d one has

E{(Hr ,Ar)}
[
etaili ({Hr,Ar}, x)

]
≤ (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/

√
B.

(2) for everyi ∈ [n]d one has

Pr{(Hr ,Ar)}
[
etaili ({Hr,Ar}, x) > (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/

√
B
]
= 2−Ω(rmax)

and

E{(Hr ,Ar)}

[∣∣∣etaili ({Hr,Ar}, x) − (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/
√
B
∣∣∣
+

]

= 2−Ω(rmax) · (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2/
√
B.

Proof. Follows by applying Lemma 9.5 withY = etaili (Hr,Ar, x).

6.3 Putting it together

The bounds from the previous two sections yield a proof of Theorem 3.1, which we restate here for convenience
of the reader:

Theorem 3.1For any constantC ′ > 0 there exist absolute constantsC1, C2, C3 > 0 such that for any
x ∈ C[n]d, any integerk ≥ 1 and anyS ⊆ [n]d such that||x[n]d\S ||∞ ≤ C ′µ, whereµ = ||x[n]d\[k]||2/

√
k, the

following conditions hold.
Let πr = (Σr, qr), r = 1, . . . , rmax denote permutations, and letHr = (πr, B, F), F ≥ 2d, where

B ≥ (2π)4d·F k/αd for α ∈ (0, 1) smaller than a constant. LetS∗ ⊆ S denote the set of elements that are not
isolated with respect to at least a

√
α fraction of hashings{Hr}. Then ifrmax, cmax ≥ (C1/

√
α) log logN ,

then with probability at least1 − 1/ log2 N over the randomness of the measurements for allχ ∈ C[n]d such
thatx′ := x− χ satisifies||x′||∞/µ ≤ NO(1) one has

L :=

rmax⋃

r=1

LOCATESIGNAL
(
χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W

)

satisfies
||x′S\S∗\L||1 ≤ (C2α)

d/2||x′S ||1 + Cd2
3 (||χ[n]d\S ||1 + ||x′S∗ ||1) + 4µ|S|.

Proof. First note that with probability at least1− 1/(10 log2N) for everys ∈ [1 : d] the setsAr ⋆ (0, es) are
balanced (as per Definition 2.13) for allr = 1, . . . , rmax and allw ∈ W by Claim 2.14.

By Corollary 5.2 applied withS′ = S \ S∗ one has

||(x− χ)(S\S∗)\L||1 ≤ 20 · (||eheadS\S∗({Hr}, x′)||1 + ||etail({Hr,Ar}, x)||1) + ||x′||∞|S| ·N−Ω(c).

We also have

||eheadS\S∗({Hr}, x′)||1 ≤ 2O(d)αd/2||x′S ||1 + (2π)d·F · 2O(d)||χ[n]d\S ||1

25

by Lemma 6.3 and with probability at least1− 1/(10 log2N)

||etailS\S∗({Hr,Ar}, x)||1 ≤ (2π)d·FCd(40 + |W|2−Ω(cmax))||x[n]d\[k]||2|S|/
√
B

by Lemma 6.6. The rhs of the previous equation is bounded by|S|µ by the choice ofB as long asα is smaller
than a absolute constant, as required. Putting these boundstogether and using the fact that|W| ≤ logN (so that
|W| · (2−Ω(rmax) + 2−Ω(cmax)) ≤ 1), and taking a union bound over the failure events, we get theresult.

7 Analysis of REDUCEL1NORM and SPARSEFFT

In this section we first give a correctness proof and runtime analysis for REDUCEL1NORM (section 7.1), then
analyze the SNR reduction loop in SPARSEFFT(section 7.2) and finally prove correctness of SPARSEFFT and
provide runtime bounds in section 7.3.

7.1 Analysis of REDUCEL1NORM

The main result of this section is Lemma 3.2 (restated below). Intuitively, the lemma shows that REDU-
CEL1NORM reduces theℓ1 norm of the head elements of the input signalx−χ by a polylogarthmic factor, and
does not introduce too many new spurious elements (false positives) in the process. The introduced spurious
elements, if any, do not contribute muchℓ1 mass to the head of the signal. Formally, we show
Lemma 3.2(Restated) For anyx ∈ CN , any integerk ≥ 1, B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an
absolute constant andF ≥ 2d, F = Θ(d) the following conditions hold for the setS := {i ∈ [n]d : |xi| > µ},
whereµ2 ≥ ||x[n]d\[k]||22/k. Suppose that||x||∞/µ = NO(1).

For any sequence of hashingsHr = (πr, B, F), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashingsHr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d, x′ := x− χ, if ν ≥ (log4N)µ is a parameter such that

A ||(x− χ)S ||1 ≤ (ν + 20µ)k;

B ||χ[n]d\S ||0 ≤ 1
log19 N

k;

C ||(x− χ)S∗ ||1 + ||χ[n]d\S ||1 ≤ ν
log4 N

k,

the following conditions hold.
If parametersrmax, cmax are chosen to be at least(C1/

√
α) log logN , whereC1 is the constant from

Theorem 3.1 and measurements are taken as in Algorithm 2, then the outputχ′ of the call

REDUCEL1NORM(χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax
r=1,a∈Ar ,w∈W , 4µ(log4 n)T−t, µ)

satisfies

1. ||(x′ − χ′)S ||1 ≤ 1
log4 N

νk + 20µk (ℓ1 norm of head elements is reduced by≈ log4 N factor)

2. ||(χ+ χ′)[n]d\S ||0 ≤ ||χ[n]d\S ||0 + 1
log20 N

k (few spurious coefficients are introduced)

3. ||(x′ − χ′)S∗ ||1 + ||(χ + χ′)[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + 1
log20 N

νk (ℓ1 norm of spurious
coefficients does not grow fast)

with probability at least1− 1/ log2 N over the randomness used to take measurementsm and by calls toES-
TIMATE VALUES. The number of samples used is bounded by2O(d2)k(log logN)2, and the runtime is bounded
by2O(d2)k logd+2 N .

Before giving the proof of Lemma 3.2, we prove two simple supporting lemmas.

26

Lemma 7.1(Few spurious elements are introduced in REDUCEL1NORM). For anyx ∈ CN , any integerk ≥ 1,
B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute constant andF ≥ 2d, F = Θ(d) the following
conditions hold for the setS := {i ∈ [n]d : |xi| > µ}, whereµ2 ≥ ||x[n]d\[k]||22/k.

For any sequence of hashingsHr = (πr, B, F), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashingsHr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d, x′ := x− χ the following conditions hold.
Consider the call

REDUCEL1NORM(χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax
r=1,a∈Ar ,w∈W , 4µ(log4 n)T−t, µ),

where we assume that measurements ofx are taken as in Algorithm 2. Denote, for eacht = 0, . . . , log2(log
4 N),

the signal recovered by stept in this call byχ(t) (see Algorithm 3). There exists an absolute constantC > 0
such that if for a parameterν ≥ 2tµ at stept

A ||(x′ − χ(t))S ||1 ≤ (2−tν + 20µ)k;

B ||(χ+ χ(t))[n]d\S ||0 ≤ 2
log19 N

k,

C ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ 2ν
log4 N

k,

then with probability at least1− (logN)−3 over the randomness used inESTIMATEVALUES at stept one has

||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0 ≤
1

log21N
k.

Proof. Recall thatL′ ⊆ L is the list output by ESTIMATEVALUES. We let

L′′ =
{
i ∈ L : |χ′

i − x′i| > α1/2
(
2−tν + 20µ

)}

denote the set of elements inL′ that failed to be estimated to within an additiveα1/2
(
2−tν + 20µ

)
error term.

For any elementi ∈ L we consider two cases, depending on whetheri ∈ L′ \ L′′ or i ∈ L′′.

Case 1: First suppose thati ∈ L′ \ L′′, i.e. |x′i − χ′
i| < α1/2(2−tν + 20µ). Then ifα is smaller than an

absolute constant, we have

|x′i| >
1

1000
ν2−t + 4µ− (α1/2(2−tν + 20µ)) ≥ 2µ,

because only elementsi with |χ′
i| > 1

1000ν2
−t + 4µ are included in the setL′ in the call

χ′ ← ESTIMATEVALUES(x, χ(t), L, k, ǫ, C(log logN + d2 +O(log(B/k))),
1

1000
ν2−t + 4µ)

due to the pruning threshold of11000ν2
−t + 4µ passed to ESTIMATEVALUES in the last argument.

Since||x[n]d\S ||∞ ≤ µ by definition ofS, this means that eitheri ∈ S, or i ∈ suppχ(t). In both casesi

contributes at most0 to ||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0.

27

Case 2: Now suppose thati ∈ L′′, i.e. |(x′ − χ′)i| ≥ α1/2(2−tν + 20µ). In this casei may contribute1
to ||(χ + χ(t+1))[n]d\S ||0 − ||(χ + χ(t))[n]d\S ||0. However, the number of elements inL′′ is small. To show
this, we invoke Lemma 9.1 to obtain precision guarantees forthe call to ESTIMATEVALUES on the pairx, χ
and set of ‘head elements’S ∪ suppχ. Note that|S| ≤ 2k, as otherwise we would have||x[n]d\[k]||22 > µ · k,

a contradiction. Further, by assumptionB of the lemma we have||(χ + χ(t))[n]d\S ||0 ≤ k, so |S ∪ supp(χ +

χ(t))| ≤ 4k. Theℓ1 norm ofx′ − χ(t) onS ∪ supp(χ+ χ(t)) can be bounded as

||(x′ − χ(t))S ||1 + ||(x′ − χ(t))supp(χ+χ(t))\S ||1
4k

≤
||(x′ − χ(t))S ||1 + ||χ(t)

[n]d\S ||1 + ||x′[n]d\S ||∞ · | supp(χ+ χ(t))|
4k

≤
(2−tν + 20µ)k + 2ν

log4 N
k + µ · (4k)

2k
≤ 2−tν + 20µ,

For theℓ2 bound on the tail of the signal we have

||(x′ − χ(t))[n]d\(S∪supp(χ+χ(t)))||22
4k

≤
||x[n]d\S ||22

4k
≤ µ2.

We thus have by Lemma 9.1,(1) for every i ∈ L′ that the estimatewi returned by ESTIMATEVALUES

satisfies
Pr[|wi − x′i| > α1/2(2−tν + 20µ)] < 2−Ω(rmax).

Sincermax is chosen asrmax = C(log logN + d2 + log(B/k)) for a sufficiently large absolute constant
C > 0, we have

Pr[|wi − x′i| > α1/2(2−tν + 20µ)] < 2−Ω(rmax) ≤ (k/B) · (logN)−25.

This means that

E[|L′′|] ≤ |L| · (k/B) · (logN)−25 ≤ (B · rmax)(k/B) · (logN)−25 ≤ (logN)−23,

where the expectation is over the randomness used in ESTIMATEVALUES. We used the fact that|L′| ≤ |L| ≤
B · rmax and thatrmax to derive the upper bound above. An application of Markov’s inequality completes the
proof.

Lemma 7.2 (Spurious elements do not introduce significantℓ1 error). For anyx ∈ CN , any integerk ≥ 1,
B ≥ (2π)4d·F · k/αd for α ∈ (0, 1] smaller than an absolute constant andF ≥ 2d, F = Θ(d) the following
conditions hold for the setS := {i ∈ [n]d : |xi| > µ}, whereµ2 ≥ ||x[n]d\[k]||22/k.

For any sequence of hashingsHr = (πr, B, F), r = 1, . . . , rmax, if S∗ ⊆ S denotes the set of elements of
S that are not isolated with respect to at least a

√
α fraction of the hashingsHr, r = 1, . . . , rmax, then for any

χ ∈ C[n]d, x′ := x− χ the following conditions hold.
Consider the call

REDUCEL1NORM(χ, k, {m(x̂,Hr, a ⋆ (1,w))}rmax
r=1,a∈Ar ,w∈W , 4µ(log4 n)T−t, µ),

where we assume that measurements ofx are taken as in Algorithm 2. Denote, for eacht = 0, . . . , log2(log
4 N),

the signal recovered by stept in this call byχ(t) (see Algorithm 3). There exists an absolute constantC > 0
such that if for a parameterν ≥ 2tµ at stept

A ||(x′ − χ(t))S ||1 ≤ (2−tν + 20µ)k;

B ||(χ+ χ(t))[n]d\S ||0 ≤ 2
log19 N

k;

28

C ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ 2ν
log4 N

k,

then with probability at least1− (logN)−3 over the randomness used inESTIMATEVALUES at stept one has

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 − ||(x′ − χ(t))([n]d\S)∪S∗ ||1 ≤
1

log21N
k(ν + µ)

Proof. We letQ := ([n]d \ S) ∪ S∗ to simplify notation, and recall thatL′ ⊆ L is the list output by ESTIMAT-
EVALUES. We let

L′′ =
{
i ∈ L : |χ′

i − x′i| > α1/2
(
2−tν + 20µ

)}

denote the set of elements inL′ that failed to be estimated to within an additiveα1/2
(
2−tν + 20µ

)
error term.

We write

||(x− χ(t+1))Q||1 = ||(x− χ(t+1))Q\L′ ||1 + ||(x− χ(t+1))(Q∩L′)\L′′ ||1 + ||(x− χ(t+1))Q∩L′′ ||1 (27)

We first note thatχ(t+1)
i = χ

(t)
i for all i 6∈ L′, and hence||(x′ − χ(t+1))Q\L||1 = ||(x′ − χ(t))Q\L||1.

Second, fori ∈ (Q∩L′) \L′′ (second term) one has|x′i−χ
(t+1)
i | ≤ √α(ν2−t +4µ). Since only elements

i ∈ L with |χ′
i| > 1

1000ν2
−t + 4µ are reported by the threshold setting in ESTIMATEVALUES, so |x′i − χ′| ≤√

α(2−tν + 20µ) ≤ x′i as long asα is smaller than a constant. We thus get that||(x − χ(t+1))(Q∩L′)\L′′ ||1 ≤
||(x− χ(t))(Q∩L′)\L′′ ||1.

For the third term, we note that for eachi ∈ L the estimatewi computed in the call to ESTIMATEVALUES

satisfies
E
[∣∣|wi − x′i| −

√
α(2−tν + 20µ)

∣∣
+

]
≤ √α(2−tν + µ)k2−Ω(rmax) (28)

by Lemma 9.1,(2). Verification of the preconditions of the lemma is identicalto Lemma 7.1 (note that the
assumptions of this lemma and Lemma 7.1 are identical) and ishence omitted. Sincermax = C(log logN +
log(B/k)), the rhs of (28) is bounded by(logN)−25√α(2−tν+µ)k as long asC > 0 is larger than an absolute
constant. We thus have

||(x′ − χ(t+1))S∩L′′ ||1 ≤
∑

i∈S∩L′′

(√
α(2−tν + 20µ) +

∣∣|wi − x′i| −
√
α(2−tν + 20µ)

∣∣
+

)
.

Combining (28) with the fact that by by Lemma 9.1,(1), we have for everyi ∈ L

Pr
[
|wi − x′i| >

√
α(2−tν + 20µ)

]
≤ 2−Ω(rmax) ≤ (k/B) · (logN)−25

by our choice ofrmax, we get that

||(x′ − χ(t+1))S∩L′′ ||1 ≤ 2
√
α(2−tν + 20µ) · |L| · (k/B) · (logN)−25.

An application of Markov’s inequality then implies, ifα is smaller than an absolute constant, that

Pr[||(x′ − χ(t+1))S∩L′′ ||1 >
1

log21 N
(ν + µ)k] < 1/ log3N.

Substituting the bounds we just derived into (27), we get

||(x− χ(t+1))Q||1 ≤ ||(x− χ(t))Q||1 +
1

log21 N
(ν + µ)k

as required.

29

Equipped with the two lemmas above, we can now give a proof of Lemma 3.2:
Proof of Lemma 3.2: We prove the result by strong induction ont = 0, . . . , log2(log

4 N). Specifically, we
prove that there exist eventsEt, t = 0, . . . , log2(log

4N) such that(a) Et depends on the randomness used in the
call to ESTIMATEVALUES at stept, Et satisfiesPr[Et|E0∧ . . . Et−1] ≥ 1−3/ log2N and(b) for all t conditional
onE0 ∧ E1 ∧ . . . ∧ Et one has

(1) ||(x′ − χ(t))S\S∗ ||1 ≤ (2−tν + 20µ)k;

(2) ||(χ+ χ(t))[n]d\S ||0 ≤ ||χ[n]d\S ||0 + t
log21 N

k;

(3) ||(x′ − χ(t))S∗ ||1 + ||(χ+ χ(t))[n]d\S ||1 ≤ ||x′S∗ ||1 + ||χ[n]d\S ||1 + t
log21 N

νk

Thebaseis provided byt = 0 and is trivial sinceχ(0) = 0. We now give theinductive step.
We start by proving the inductive step for(2) and(3). We will use Lemma 7.1 and Lemma 7.2, and hence we

start by verifying that their preconditions (which are identical for the two lemmas) are satisfied. Precondition
A is satisfied directly by inductive hypothesis(1). PreconditionB is satisfied since

||(χ+ χ(t))[n]d\S ||0 ≤ ||χ[n]d\S ||0 +
t

log21 N
k ≤ 1

log19N
k +

log 2(log4 N)

log21 N
≤ 2

log19 N
k,

where we used assumptionB of this lemma and inductive hypothesis(2). PreconditionC is satisfied since

||(x′−χ(t))S∗ ||1+||(χ+χ(t))[n]d\S ||1 ≤ ||x′S∗ ||1+||χ[n]d\S ||1+
t

log21 N
νk ≤ ν

log4 N
k+

t

log21 N
νk ≤ 2ν

log4 N
k,

where we used assumption3 of this lemma, inductive assumption(3) and the fact thatt ≤ log2(log
4 N) ≤

logN for sufficiently largeN .

Proving (2). To prove the inductive step for(2), we use Lemma 7.1. Lemma 7.1 shows that with probability
at least1 − (logN)−2 over the randomness used in ESTIMATEVALUES (denote the success event byE1t) we
have

||(χ+ χ(t+1))[n]d\S ||0 − ||(χ+ χ(t))[n]d\S ||0 ≤
1

log21N
k,

so ||(χ+ χ(t+1))[n]d\S ||0 ≤ ||(χ+ χ(t))[n]d\S ||0 + 1
log21 N

k ≤ ||χ[n]d\S ||0 + t+1
log21 N

k as required.

Proving (3). At the same time we have by Lemma 7.2 that with probability at least1 − (logN)−2 (denote
the success event byE2t)

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 − ||(x′ − χ(t))([n]d\S)∪S∗ ||1 ≤
1

log21 N
kν,

so by combing this with assumption(3) of the lemma we get

||(x′ − χ(t+1))([n]d\S)∪S∗ ||1 ≤
1

log20 N
νk +

t+ 1

log21 N
νk

as required.

30

Proving (1). We letL′′ ⊆ L denote the set of elements inL that fail to be estimated to within a small additive
error. Specifically, we let

L′′ =
{
i ∈ L : |χ′

i − x′i| > α1/2
(
2−tν + 20µ

)}
,

whereχ′ is the output of ESTIMATEVALUES in iterationt. We bound||(x′ − χ(t+1))S\S∗ ||1 by splitting this
ℓ1 norm into three terms, depending on whether the corresponding elements were updated in iterationt and
whether they were well estimated. We have

||(x′ − χ(t+1))S\S∗ ||1 = ||(x′ − (χ(t) + χ′))S\S∗ ||1
≤ ||(x′ − (χ(t) + χ′))S\(S∗∪L)||1 + ||(x′ − (χ(t) + χ′))(S∩L)\L′\L′′ ||1 + ||(x′ − (χ(t) + χ′))(S∩L′)\L′′ ||1
+ ||(x′ − (χ(t) + χ′))L′′ ||1
= ||(x′ − χ(t))S\(S∗∪L)||1 + ||(x′ − (χ(t) + χ′))(S∩L)\L′\L′′ ||1 + ||(x′ − (χ(t) + χ′))(S∩L′)\L′′ ||1
+ ||(x′ − (χ(t) + χ′))(L∩S)∩L′′ ||1
=: S1 + S2 + S3 + S4,

(29)

where we used the fact thatχ′
S\L ≡ 0 to go from the second line to the third. We now bound the four terms.

The second term(i.e. S2) captures elements ofS that were estimated precisely (and hence they are not
in L′′), but were not included intoL′ as they did not pass the threshold test (being estimated as larger than
1

10002
−tν + 4µ) in ESTIMATEVALUES. One thus has

||(x− (χ(t) + χ′))(S∩L)\L′\L′′ ||1 ≤ α1/2(2−tν + 20µ) · |(S ∩ L′) \ L′′|+ (
1

1000
2−tν + 4µ) · |(S ∩ L′) \ L′′|

≤ ((
1

1000
+ α1/2)2−tν + (4 + 20α1/2)µ)2k

(30)

since|S| ≤ 2k by assumption of the lemma.
The third term (i.e. S3) captures elements ofS that were reported by ESTIMATEVALUES (hence do not

belong toL′) and were approximated well (hence belong toL′′). One has, by definition of the setL′′,

||(x− (χ(t) + χ′))(S∩L′)\L′′ ||1 = α1/2(2−tν + 20µ) · |(S ∩ L′) \ L′′|
≤ 2α1/2(2−tν + 20µ)k

(31)

since|S| ≤ 2k by assumption of the lemma.
For theforth term (i.e. S4) we have

||(x′ − (χ(t) + χ′))L′′ ||1 ≤ α1/2
(
2−tν + 20µ

)
· |L′′|+

∑

i∈S

∣∣∣|χ′
i − x′i| − α1/2

(
2−tν + 20µ

)∣∣∣
+
.

By Lemma 9.1,(1) (invoked on the setS ∪ supp(χ + χ(t) + χ′)) we haveE[|L′′|] ≤ B · 2−Ω(rmax) and by
Lemma 9.1,(2) for anyi one has

E
[∣∣∣|χ′

i − x′i| − α1/2
(
2−tν + 20µ

)∣∣∣
+

]
≤ |L| · α1/2

(
2−tν + 20µ

)
2−Ω(rmax).

Since the parameterrmax in ESTIMATEVALUES is chosen to be at leastC(log logN + d2 + log(B/k)) for a
sufficiently large constantC, and|L| = O(logN)B, we have

E
[
||(x′ − (χ(t) + χ′))L′′ ||1

]
≤ α1/2

(
2−tν + 20µ

)
|L|2−Ω(rmax) ≤ 1

log25 N

(
2−tν + 20µ

)
k

31

By Markov’s inequality we thus have

||(x′ − (χ(t) + χ′))L′′ ||1 ≤ α1/2
(
2−tν + 20µ

)
|L|2−Ω(rmax) ≤ 1

log22 N

(
2−tν + 20µ

)
k (32)

with probability at least1− 1/ log3N . Denote the success event byE0t .
Finally, in order to bound thefirst term (i.e. S1), we invoke Theorem 3.1 to analyze the call to LOCATESIG-

NAL in thet-th iteration. We note that sincermax, cmax ≥ (C1/
√
α) log logN (whereC1 is the constant from

Theorem 3.1) by assumption of the lemma, the preconditions of Theorem 3.1 are satisfied. By Theorem 3.1
together with(1) and(3) of the inductive hypothesis we have

||(x′ − χ(t))S\(S∗∪L)||1 ≤ (4C2α)
d/2||(x′ − χ(t))S\S∗ ||1 + (4C)d

2
(||(χ + χ(t))[n]d\S ||1 + ||(x′ − χ(t))S∗ ||1) + 4µ|S|

≤ O((4C2α)
d/2)(2−tν + 20µ)k + (4C)d

2
(

2

log20 N
νk) + 8µk

≤ 1

1000
(2−tν + 20µ)k + 8µk

(33)

if α is smaller than an absolute constant andN is sufficiently large.
Now substituting bounds onS1, S2, S3, S4 provided by (33), (30), (31) and (32) into (29) we get

||(x′ − χ(t+1))S\S∗ ||1 ≤ (
2

1000
+O(α1/2))2−tν + (16 +O(α1/2))µk

≤ 2−tν + 20µk

whenα is a sufficiently small constant, as required. This proves the inductive step for(1) and completes the
proof of the induction.

LetEt = E0t ∧E1t ∧E2t denote the success event for stept. We have by a union boundPr[Et] ≥ 1−3t/ log2 N
as required.

Sample complexity and runtime It remains to bound the sampling complexity and runtime. First note that
REDUCEL1NORM only takes fresh samples in the calls to ESTIMATEVALUES that it issues. By Lemma 9.1
each such call uses2O(d2)k(log logN) samples, amounting to2O(d2)k(log logN)2 samples overO(log logN)
iterations.

By Lemma 5.1 each call to LOCATESIGNAL takesO(B(logN)3/2) time. Updating the measurements
m(x̂,Hr, a ⋆ (1,w)),w ∈ W takes

|W|cmaxrmax · FO(d) · B logd+1 N log logN = 2O(d2) · k logd+2 N

time overall. The runtime complexity of the calls to ESTIMATEVALUES is 2O(d2) ·k logd+1 N(log logN)2 time
overall. Thus, the runtime is bounded by2O(d2)k logd+2 N .

7.2 Analysis of SNR reduction loop in SPARSEFFT

In this section we prove
Theorem 3.3For any x ∈ CN , any integerk ≥ 1, if µ2 ≥ Err2k(x)/k andR∗ ≥ ||x||∞/µ = NO(1), the
following conditions hold for the setS := {i ∈ [n]d : |xi| > µ} ⊆ [n]d.

Then the SNR reduction loop of Algorithm 2 (lines 19-25) returnsχ(T) such that

||(x− χ(T))S ||1 . µ (ℓ1-SNR on head elements is constant)

||χ(T)

[n]d\S ||1 . µ (spurious elements contribute little inℓ1 norm)

||χ(T)

[n]d\S ||0 .
1

log19 N
k (small number of spurious elements have been introduced)

32

with probability at least1 − 1/ logN over the internal randomness used by Algorithm 2. The sample
complexity is2O(d2)k logN(log logN). The runtime is bounded by2O(d2)k logd+3N .

Proof. We start with correctness. We prove by induction that after thet-th iteration one has

(1) ||(x− χ(t))S ||1 ≤ 4(log4 N)T−tµk + 20µk;

(2) ||x− χ(t)||∞ = O((log4N)T−(t−1)µ);

(3) ||χ(t)

[n]d\S ||0 ≤
t

log20 N
k.

The base is provided byt = 0, where all claims are trivially true by definition ofR∗. We now prove the
inductive step. The main tool here is Lemma 3.2, so we start byverifying that its preconditions are satisfied.
First note that

First, since|S∗| ≤ 2−Ω(rmax)|S| ≤ 2−Ω(rmax)k ≤ 1
log19 N

k with probability at least1 − 2−Ω(rmax) ≥
1− 1/ logN by Lemma 2.12 and choice ofrmax ≥ (C/

√
α) log logN for a sufficiently large constantC > 0.

Also, by Claim 2.14 we have that with probability at least1−1/ log2 N for everys ∈ [1 : d] the setsAr⋆(0, es)

are balanced (as per Definition 2.13 with∆ = 2⌊
1
2
log2 log2 n⌋, as needed for Algorithm 1). Also note that by(2)

of the inductive hypothesis one has||x− χ(t)||∞/µ = R∗ ·O(logN) = NO(1).
First, assuming the inductive hypothesis(1)-(3), we verify that the preconditions of Lemma 3.2 are sat-

isfied with ν = 4(log4N)T−tµk. First, for (A) one has||(x − χ(t))S ||1 ≤ 4(log4N)T−tµk. This satisfies
preconditionA of Lemma 3.2. We have

||(x− χ(t))S∗ ||1 + ||χ(t)

[n]d\S ||1 ≤ ||x− χ(t)||∞ · (||(x − χ(t))S∗ ||0 + ||χ(t)

[n]d\S ||0)

≤ O(log4 N) · ν ·
(

1

log19 N
k +

t

log20 N
k

)
≤ 16

log14 N
νk

(34)

for sufficiently largeN . Since the rhs is less than 1
log4 N

νk, precondition(C) of Lemma 3.2 is also sat-
isfied. Precondition(B) of Lemma 3.2 is satisfied by inductive hypothesis,(3) together with the fact that
T = o(logR∗) = o(logN).

Thus, all preconditions of Lemma 3.2 are satisfied. Then by Lemma 3.2 withν = 4(log4 N)T−tµ one has
with probability at least1− 1/ log2N

1. ||(x′ − χ(t) − χ′)S ||1 ≤ 1
log4 N

νk + 20µk;

2. ||(χ(t) + χ′)[n]d\S ||0 − ||χ(t)

[n]d\S ||0 ≤
1

log20 N
k;

3. ||(x′ − (χ(t) + χ′))S∗ ||1 + ||(χ(t) + χ′)[n]d\S ||1 ≤ ||(x′ − χ(t))S∗ ||1 + ||χ(t)

[n]d\S ||1 +
1

log20 N
νk.

Combining 1 above with (34) proves(1) of the inductive step:

||(x− χ(t+1))S ||1 = ||(x− χ(t) − χ′)S ||1 ≤
1

log4 N
νk + 20µk =

1

log4 N
4(log4N)T−tµk + 20µk

= 4(log4N)T−(t+1)µk + 20µk.

Also, combining 2 above with the fact that||χ(t)

[n]d\S ||0 ≤
t

log20 N
k yields ||χ(t+1)

[n]d\S ||0 ≤
t+1

log20 N
k as required.

In order to prove the inductive step is remains to analyze thecall to REDUCEINFNORM, for which we use
Lemma 8.1 with parameter̃k = 4k/ log4 N . We first verify that preconditions of the lemma are satisfied. Let
y := x− (χ+ χ(t) + χ′) to simplify notation. For that we need to verify that

||y[k̃]||1/k̃ ≤ 4(log4 N)T−(t+1)µ = (log4 N) · (1

log4N
ν + 20µ) (35)

33

and

||y[n]d\[k̃]||2/
√

k̃ ≤ (log4 N) · (1

log4 N
ν + 20µ), (36)

where we denotẽk := 4k/ log4 N for convenience. The first condition is easy to verify, as we now show.
Indeed, we have

||yk̃||1 ≤ ||yS ||1 + ||ysupp(χ(t)+χ′)\S ||1 + ||x[n]d\S ||∞ · k̃
≤ ||yS ||1 + ||(χ(t) + χ′)[n]d\S ||1 + ||xsupp(χ(t)+χ′)\S ||∞ · k̃ + ||x[n]d\S ||∞ · k̃

≤ 1

log4 N
νk + 20µk +

1

log4 N
νk + 2µk̃ ≤ 2

log4N
νk + 40µk,

where we used the triangle inequality to upper bound||ysupp(χ(t)+χ′)\S ||1 by ||(χ(t)+χ′)[n]d\S ||1+||xsupp(χ(t)+χ′)\S ||∞·
k̃ to go from the first line to the second. We thus have

||y[k̃]||1/k̃ ≤ (
2

log4 N
νk + 40µk)/(4k/ log4N) ≤ (log4 N) · (1

log4N
ν + 20µ)

as required. This establishes (35).
To verify the second condition, we first let̃S := S ∪ supp(χ+ χ(t) + χ′) to simplify notation. We have

||y[n]d\[k̃]||22 = ||yS̃\[k̃]||22 + ||y([n]d\S̃)\[k̃]||22 ≤ ||yS̃\[k̃]||22 + µ2k, (37)

where we used the fact thaty[n]d\S̃ = x[n]d\S̃ and hence||y([n]d\S̃)\[k̃]||22 ≤ µ2k. We now note that||yS̃\[k̃]||1 ≤
||yS̃ ||1 ≤ 2(1

log4 N
νk+20µk), and so it must be that||yS\[k̃]||∞ ≤ 2(1

log4 N
νk+20µk)(k/k̃), as otherwise the

top k̃ elements ofy[k̃] would contribute more than2(1
log4 N

νk + 20µk) to ||yS̃ ||1, a contradiction. With these

constraints||yS̃\[k̃]||22 is maximized when there arẽk elements inyS̃\[k̃], all equal to the maximum possible

value, i.e.||yS̃\[k̃]||22 ≤ 4(1
log4 N

νk+20µk)2(k/k̃)2k̃. Plugging this into (37), we get||y[n]d\[k̃]||22 ≤ ||yS̃\[k̃]||22+
µ2k ≤ 4(1

log4 N
νk + 20µk)2(k/k̃)2k̃ + µ2k. This implies that

||y[n]d\[k̃]||2/
√

k̃ ≤
√

4(
1

log4 N
νk + 20µk)2(k/k̃)2 + µ2(k/k̃) ≤ 2(k/k̃)

√
(

1

log4 N
νk + 20µk)2 + µ2

≤ 2((
1

log4N
νk + 20µk) + µ)(k/k̃) ≤ (log4 N)(

1

log4 N
νk + 20µk),

establishing (36).
Finally, also recall that||yS\[k̃]||∞ ≤ 2(1

log4 N
νk + 20µk)(k/k̃) ≤ (log4N) · (1

log4 N
νk + 20µk) and

||y[n]d\S̃ ||∞ = ||x[n]d\S ||∞ ≤ µ.

We thus have that all preconditions of Lemma 8.1 are satisfiedfor the set of top̃k elements ofy, and hence
its output satisfies

||x− (χ(t) − χ′ − χ′′)||∞ = O(log4N) · (1

log4N
νk + 20µk).

Putting these bounds together establishes(2), and completes the inductive step and the proof of correctness.
Finally, taking a union bound over all failure events (each call to ESTIMATEVALUES succeeds with prob-

ability at least1 − 1
log2 N

, and with probability at least1 − 1/ log2 N for all s ∈ [1 : d] the setAr ⋆ (0, es)

is balanced in coordinates) and using the fact thatlog T = o(logN) and each call to LOCATESIGNAL is
deterministic, we get that success probability of the SNR reduction look is lower bounded by1− 1/ logN .

34

Sample complexity and runtime The sample complexity is bounded by the the sample complexity of the
calls to REDUCEL1NORM and REDUCEINFNORM inside the loop timesO(logN/ log logN) for the num-
ber of iterations. The former is bounded by2O(d2)k(log logN)2 by Lemma 3.2, and the latter is bounded by
2O(d2)k/ logN by Lemma 8.1, amounting to at most2O(d2)k logN(log logN) samples overall. The run-
time complexity is at most2O(d2)k logd+3 N overall for the calls to REDUCEL1NORM and no more than
2O(d2)k logd+3N overall for the calls to REDUCEINFNORM.

7.3 Analysis of SPARSEFFT

Theorem 3.5For any ǫ > 0, x ∈ C[n]d and any integerk ≥ 1, if R∗ ≥ ||x||∞/µ = poly(N), µ2 ≥
||x[n]d\[k]||22/k,µ2 = O(||x[n]d\[k]||22/k) andα > 0 is smaller than an absolute constant,SPARSEFFT(x̂, k, ǫ, R∗, µ)

solves theℓ2/ℓ2 sparse recovery problem using2O(d2)(k logN log logN+1
ǫk logN) samples and2O(d2) 1

ǫk log
d+3 N

time with at least98/100 success probability.

Proof. By Theorem 3.3 the setS := {i ∈ [n]d : |xi| > µ} satisfies

||(x− χ(T))S ||1 . µk

and

||χ(T)

[n]d\S ||1 . µk

||χ(T)

[n]d\S ||0 .
1

log19N
k

with probability at least1− 1/ logN .
We now show that the signalx′ := x−χ(T) satisfies preconditions of Lemma 3.4 with parameterk. Indeed,

lettingQ ⊆ [n]d denote the top2k coefficients ofx′, we have

||x′Q||1 ≤ ||x′Q∩S||1 + ||χ(T)

(Q\S)∩suppχ(T) ||1 + |Q| · ||x[n]d\S ||1 ≤ O(µk)

Furthermore, sinceQ is the set of top2k elements ofx′, we have

||x′[n]d\Q||22 ≤ ||x′[n]d\(S∪suppχ(T))
||22 ≤ ||x[n]d\(S∪suppχ(T))||22 ≤ ||x[n]d\S ||22

≤ µ2|S|+ ||x[n]d\[k]||22 = O(µ2k)

as required.
Thus, with at least99/100 probability we have by Lemma 3.4 that

||x− χ(T) − χ′||2 ≤ (1 +O(ǫ)) Errk(x).

By a union bound over the1/ logN failure probability of the SNR reduction loop we have that SPARSEFFT is
correct with probability at least98/100, as required.

It remains to bound the sample and runtime complexity. The number of samples needed to compute

m(x̂,Hr, a ⋆ (1,w))← HASHTOBINS(x̂, 0, (Hr, a ⋆ (1,w)))

for all a ∈ Ar, w ∈ W is bounded by2O(d2)k logN(log logN) by our choice ofB = 2O(d2)k, rmax =
O(log logN), |W| = O(logN/ log logN) and |Ar| = O(log logN), together with Lemma 9.2. This is
asymptotically the same as the2O(d2)k logN(log logN) sample complexity of theℓ1 norm reduction loop by
Theorem 3.3. The sampling complexity of the call to RECOVERATCONSTANTSNR is at most2O(d2) 1

ǫk logN
by Lemma 3.4, yielding the claimed bound.

The runtime of the SNR reduction loop is bounded by2O(d2)k logd+3 N by Theorem 3.3, and the runtime
of RECOVERATCONSTANTSNR is at most2O(d2) 1

ǫ k log
d+2 N by Lemma 3.4.

35

8 ℓ∞/ℓ2 guarantees and constant SNR case

In this section we state and analyze our algorithm for obtaining ℓ∞/ℓ2 guarantees iñO(k) time, as well as a
procedure for recovery under the assumption of boundedℓ1 norm of heavy hitters (which is very similar to the
RECOVERATCONSTSNR procedure used in [IKP14]).

8.1 ℓ∞/ℓ2 guarantees

The algorithm is given as Algorithm 4.

Algorithm 4 REDUCEINFNORM(x̂, χ, k, ν,R∗, µ)
1: procedure REDUCEINFNORM(x̂, χ, k, ν,R∗, µ)
2: χ(0) ← 0 ⊲ in Cn

3: B ← (2π)4d·F · k/αd for a small constantα > 0
4: T ← log2 R

∗

5: rmax ← (C/
√
α) logN for sufficiently large constantC > 0

6: W ← {0d}, ∆← 2⌊
1
2
log2 log2 n⌋ ⊲ 0d is the zero vector in dimensiond

7: for g = 1 to ⌈log∆ n⌉ do
8: W ←W ∪⋃d

s=1{n∆−g · es} ⊲ es is the unit vector in directions
9: end for

10: G← filter with B buckets and sharpnessF , as per Lemma 2.3
11: for r = 1 to rmax do ⊲ Samples that will be used for location
12: ChooseΣr ∈Md×d, qr ∈ [n]d uniformly at random, letπr := (Σr, qr) and letHr := (πr, B, F)
13: LetAr ← C log logN elements of[n]d × [n]d sampled uniformly at random with replacement
14: for w ∈ W do
15: m(x̂,Hr, a ⋆ (1,w))← HASHTOBINS(x̂, 0, (Hr, a ⋆ (1,w))) for all a ∈ Ar,w ∈ W
16: end for
17: end for
18: for t = 0 to T − 1 do ⊲ Locating elements of the residual that pass a threshold test
19: for r = 1 to rmax do
20: Lr ← LOCATESIGNAL

(
χ(t), k, {m(x̂,Hr, a ⋆ (1,w))}rmax

r=1,a∈Ar ,w∈W

)

21: end for
22: L← ⋃rmax

r=1 Lr

23: χ′ ← ESTIMATEVALUES(x̂, χ(t), L, k, 1, O(log n), 5(ν2T−(t+1) + µ),∞)
24: χ(t+1) ← χ(t) + χ′

25: end for
26: return χ(T)

27: end procedure

Lemma 8.1. For any x, χ ∈ Cn, x′ = x − χ, any integerk ≥ 1, if parametersν and µ satisfy ν ≥
||x′[k]||1/k, µ2 ≥ ||x′

[n]d\[k]||22/k, then the following conditions hold. IfS ⊆ [n]d is the set of topk el-

ements ofx′ in terms of absolute value, and||x′
[n]d\S ||∞ ≤ ν, then the outputχ ∈ C[n]d of a call to

REDUCEINFNORM(x̂, χ, k, ν,R∗, µ) with probability at least1 −N−10 over the randomness used in the call
satisfies

||x′ − χ||∞ ≤ 8(ν + µ) +O(1/N c), (all elements inS have been reduced to aboutν + µ),

36

where theO(||x′||∞/N c) term corresponds to polynomially small error in our computation of the semiequi-
spaced Fourier transform. Furthermore, we haveχ[n]d\S ≡ 0. The number of samples used is bounded by

2O(d2)k log3N . The runtime is bounded by2O(d2)k logd+3 N .

Proof. We prove by induction ont that with probability at least1−N−10 one has for eacht = 0, . . . , T − 1

(1) ||(x′ − χ(t))S ||∞ ≤ 8(ν2T−t + µ)

(2) χ
(t)

[n]d\S ≡ 0

(3) |(x′i − χ(t))i| ≤ |x′i| for all i ∈ [n]d

for all sucht.
Thebaset = 0 holds trivially. We now prove theinductive step. First, sincer = C logN for a constant

C > 0, we have by Lemma 2.12 that eachi ∈ S is isolated under at least a1 − √α fraction of hashings
H1, . . . ,Hrmax with probability at least1 − 2−Ω(

√
αrmax) ≥ 1 − N−10 as long asC > 0 is sufficiently large.

This lets us invoke Lemma 6.3 withS∗ = ∅. We now use Lemma 6.3 to obtain bounds on functionsehead and
etail applied to our hashings{Hr} and vectorx′. Note thatehead andetail are defined in terms of a setS ⊆ [n]d

(this dependence is not made explicit to alleviate notation). We useS = [k̃], i.e. S is the topk elements ofx′.
The inductive hypothesis together with the second part of Lemma 6.3 gives for eachi ∈ S

||eheadS ({Hr}, x′, χ(t))||∞ ≤ (Cα)d/2||(x′ − χ(t))S ||∞.

To bound the effect of tail noise, we invoke the second part ofLemma 6.6, which states that ifrmax = C logN
for a sufficiently large constantC > 0 , we have||etailS ({Hr,Ar}, x′)||∞ = O(

√
αµ).

These two facts together imply by the second claim of Corollary 5.2 that eachi ∈ S such that

|(x′ − χ(t))i| ≥ 20
√
α||(x′ − χ(t))S ||∞ + 20

√
αµ

is located. In particular, by the inductive hypothesis thismeans that everyi ∈ S such that

|(x′ − χ(t))i| ≥ 20
√
α(ν2T−t + 2µ) + (4µ)

is located and reported in the listL . This means that

||(x′ − χ(t))[n]d\L||∞ ≤ 20
√
α(ν2T−t + 2µ) + (4µ),

and hence it remains to show that each such element inL is properly estimated in the call to ESTIMATEVALUES,
and that no elements outside ofS are updated.

We first bound estimation quality. First note that by part(3) of the inductive hypothesis together with
Lemma 9.1,(1) one has for eachi ∈ L

Pr[|χ′ − (x′ − χ(t))i| >
√
α · (ν + µ)] < 2−Ω(rmax) < N−10,

as long asrmax ≥ C logN for a sufficiently large constantC > 0. This means that all elements in the listL
are estimated up to an additive(ν + µ)/10 ≤ (ν2T−t + µ)/10 term as long asα is smaller than an absolute
constant. Putting the bounds above together proves part(1) of the inductive step.

To prove parts(2) and(3) of the inductive step, we recall that the only elementsi ∈ [n]d that are updated are
the ones that satisfy|χ′| ≥ 5(ν2T−(t+1) + µ). By the triangle inequality and the bound on additive estimation
error above that

|(x′ − χ(t))i| ≥ 5(ν2T−(t+1) + µ)− (ν + µ)/10 > 4(ν2T−(t+1) + µ) ≥ 4(ν + µ).

Since|(x′ − χ(t))i| ≤ |xi| by part(2) of the inductive hypothesis, we have that only elementsi ∈ [n]d with
|x′i| ≥ 4(ν + µ) are updated, but those belong toS since||x′

[n]d\S ||∞ ≤ ν by assumption of the lemma. This

proves part(3) of the inductive step. Part(2) of the inductive step follows since|(x′−χ(t)−χ′)i| ≤ (ν+µ)/10
by the additive error bounds above, and the fact that|(x′ − χ(t))i| > 4(ν + µ). This completes the proof of the
inductive step and the proof of correctness.

37

Sample complexity and runtime Since HASHTOBINS usesB · F d samples by Lemma 9.2, the sample
complexity of location is bounded by

B · F d · rmax · cmax · |W| = 2O(d2)k log3 N.

Each call to ESTIMATEVALUES usesB · F d · k · rmax samples, and there areO(logN) such calls overall,
resulting in sample complexity of

B · F d · rmax · logN = 2O(d2)k log2N.

Thus, the sample complexity is bounded by2O(d2)k log3 N . The runtime bound follows analogously.

8.2 Recovery at constant SNR

The algorithm is given by

Algorithm 5 RECOVERATCONSTANTSNR(̂x, χ, k, ǫ)
1: procedure RECOVERATCONSTANTSNR(̂x, χ, k, ǫ)
2: B ← (2π)4d·F · k/(ǫαd)
3: ChooseΣ ∈ Md×d, q ∈ [n]d uniformly at random, letπ := (Σ, q) and letHr := (πr, B, F)
4: LetA ← C log logN elements of[n]d × [n]d sampled uniformly at random with replacement
5: W ← {0d}, ∆← 2⌊

1
2
log2 log2 n⌋ ⊲ 0d is the zero vector in dimensiond

6: for g = 1 to ⌈log∆ n⌉ do
7: W ←W ∪⋃d

s=1 n∆
−g · es ⊲ es is the unit vector in directions

8: end for
9: for w ∈ W do

10: m(x̂,H, a ⋆ (1,w))← HASHTOBINS(x̂, 0, (H, a ⋆ (1,w))) for all a ∈ A,w ∈ W
11: end for
12: L← LOCATESIGNAL

(
χ(t), k, {m(x̂,H, a ⋆ (1,w))}a∈A,w∈W

)

13: χ′ ← ESTIMATEVALUES(x̂, χ, 2k, ǫ,O(logN), 0)
14: L′ ←top4k elements ofχ′

15: return χ+ χ′
L′

16: end procedure

Our analysis will use

Lemma 8.2(Lemma 9.1 from [IKP14]). Letx, z ∈ Cn andk ≤ n. LetS contain the largestk terms ofx, and
T contain the largest2k terms ofz. Then||x− zT ||22 ≤ ||x− xS||22 + 4||(x − z)S∪T ||22.

Lemma 3.4For any ǫ > 0, x̂, χ ∈ CN , x′ = x − χ and any integerk ≥ 1 if ||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k)

and ||x′
[n]d\[2k]||22 ≤ ||x[n]d\[k]||22, the following conditions hold. If||x||∞/µ = NO(1), then the outputχ′ of

RECOVERATCONSTANTSNR(x̂, χ, 2k, ǫ) satisfies

||x′ − χ′||22 ≤ (1 +O(ǫ))||x[n]d\[k]||22

with at least99/100 probability over its internal randomness. The sample complexity is2O(d2) 1
ǫk logN , and

the runtime complexity is at most2O(d2) 1
ǫk log

d+1 N.

Remark 8.3. We note that the error bound is in terms of thek-term approximation error ofx as opposed to the
2k-term approximation error ofx′ = x− χ.

38

Proof. Let S denote the top2k coefficients ofx′. We first derive bounds on the probability that an element
i ∈ S is not located. Recall that by Lemma 5.1 for anyi ∈ S if

1. eheadi (H,x′, 0) < |x′i|/20;

2. etaili (H,A ⋆ (1,w), x′) < |x′i|/20 for all w ∈ W;

3. for everys ∈ [1 : d] the setA ⋆ (0, es) is balanced (as per Definition 2.13),

theni ∈ L, i.e. i is successfully located in LOCATESIGNAL .
We now upper bound the probability that an elementi ∈ S is not located. We letµ2 := ||x[n]d\k||22/k to

simplify notation.

Contribution from head elements. We need to bound, fori ∈ S, the quantity

eheadi (H,x′, 0) = G−1
oi(i)
·

∑

j∈S\{i}
Goi(j)|x′j |.

Recall thatm(x̂,H, a ⋆ (1,w)) = HASHTOBINS(x̂, 0, (H, a ⋆ (1,w))), and letm := m(x̂,H, a ⋆ (1,w)) to
simplify notation. By Lemma 2.9,(1) one has

EH [max
a∈[n]d

|G−1
oi(i)

ω−aTΣimh(i) − (x′S)i|] ≤ (2π)d·F · Cd||x′S ||1/B + µ/N2 (38)

for a constantC > 0. This yields

EH [eheadi (H,x′, 0)] ≤ (2π)d·F · Cd||x′S ||1/B . (2π)d·F · Cdµk/B . αdCdǫµ.

by the choice ofB in RECOVERATCONSTANTSNR. Now by Markov’s inequality we have for eachi ∈ [n]d

PrH [eheadi (H,x′, 0) > |x′i|/20] . αdCdǫµ/|x′i| . αǫµ/|x′i| (39)

as long asα is smaller than a constant.

Contribution of tail elements We restate the definitions ofetail variables here for convenience of the reader
(see (9), (10), (11) and (12)).

We have

etaili (H, z, x) :=

∣∣∣∣∣∣
G−1

oi(i)
·

∑

j∈[n]d\S
Goi(j)xjω

zTΣ(j−i)

∣∣∣∣∣∣
.

For anyZ ⊆ [n]d we have

etaili (H,Z, x) := quant1/5z∈Z

∣∣∣∣∣∣
G−1

oi(i)
·

∑

j∈[n]d\S
Goi(j)xjω

zTΣ(j−i)

∣∣∣∣∣∣
.

Note that the algorithm first selects setsAr ⊆ [n]d × [n]d, and then accesses the signal at locations given by
Ar ⋆ (1,w),w ∈ W (after permuting input space).

The definition ofetaili (H,Ar, x
′) for permutationπ = (Σ, q) allows us to capture the amount of noise that

our measurements for locating a specific set of bits ofΣi suffer from. Since the algorithm requires allw ∈ W
to be not too noisy in order to succeed (see preconditions 2 and 3 of Lemma 5.1), we have

etaili (H,A, x′) = 40µH,i(x) +
∑

w∈W

∣∣∣etaili (H,A ⋆ (1,w), x′)− 40µH,i(x
′)
∣∣∣
+

39

where for anyη ∈ R one has|η|+ = η if η > 0 and|η|+ = 0 otherwise.
For eachi ∈ S we now define an error eventE∗i whose non-occurrence implies location of elementi, and

then show that for eachi ∈ S one has

PrH,A[E∗i] .
αǫµ2

|x′i|2
. (40)

Once we have (40), together with (39) it allows us to prove themain result of the lemma. In what follows we
concentrate on proving (40). Specifically, for eachi ∈ S define

E∗i = {(H,A) : ∃w ∈ W s.t.etaili (H,A ⋆ (1,w), x′) > |x′i|/20}.

Recall thatetaili (H, z, x′) = HASHTOBINS(x̂[n]d\S , χ[n]d\S , (H, z)) by definition of the measurementsm.
By Lemma 2.9,(3) one has, for a uniformly randomz ∈ [n]d, that Ez[|etaili (H, z, x′)|2|] = µ2

H,i(x
′). By

Lemma 2.9,(2), we have that

EH [µ2
H,i(x

′)] ≤ (2π)2d·F · Cd‖(x− χ)[n]d\S‖22/B + µ2/N2 ≤ αǫµ2. (41)

Thus by Markov’s inequality

Prz[etaili (H, z, x′)2 > (|x′i|/20)2] ≤ αǫ(µH,i(x
′))2/(|x′i|/20)2.

Combining this with Lemma 9.5, we get for allτ ≤ (1/20)(|x′i|/20) and allw ∈ W

PrA[quant1/5z∈A⋆(1,w)e
tail
i (H, z, x′) > |x′i|/20|µ2

H,i(x
′) = τ] < (4τ/(|x′i|/20))Ω(|A|). (42)

Equipped with the bounds above, we now boundPr[E∗i]. To that effect, for eachτ > 0 let the eventEi(τ)
be defined asEi(τ) = {µH,i(x

′) = τ}. Note that since we assume that we operate onO(log n) bit integers,
µH,i(x

′) takes on a finite number of values, and henceEi(τ) is well-defined. It is convenient to boundPr[E∗i]
as a sum of three terms:

PrH,A[E∗i] ≤ PrH,A

etaili (H,A, x′) > |x′i|/20

∣∣∣
⋃

τ≤√
αǫµ

Ei(τ)

+

∫ (1/8)(|x′

i|/20)

√
αǫµ

PrH,A
[
etaili (H,A, x′) > |x′i|/20 |Ei(τ)

]
Pr[Ei(τ)]dτ

+

∫ ∞

(1/8)(|x′

i|/20)
Pr[Ei(τ)]dτ

We now bound each of the three terms separately fori such that|x′i|/20 ≥ 2
√
αǫµH,i(x

′). This is sufficient
for our purposes, as other elements only contribute a small amount ofℓ22 mass.

1. By (42) and a union bound overW the first term is bounded by

|W| · (√αǫµ/(|x′i|/20))Ω(|A|) ≤ αǫµ2/|x′i|2 · |W| · 2−Ω(|A|) ≤ αǫµ2/|x′i|2. (43)

since|A| ≥ C log logN for a sufficiently large constantC > 0 in RECOVERATCONSTANTSNR.

2. The second term, again by a union bound overW and using (42), is bounded by

∫ (1/8)(|x′

i|/20)

√
αǫµ

|W| · (4τ/(|x′i|/20))Ω(|A|)Pr[Ei(τ)]dτ

≤
∫ (1/8)(|x′

i|/20)

√
αǫµ

|W| · (4τ/(|x′i|/20))Ω(|A|)(4τ/(|x′i|/20))2Pr[Ei(τ)]dτ
(44)

40

Since|A| ≥ C log logN for a sufficiently large constantC > 0 and (4τ/(|x′i|/20)) ≤ 1/2 over the
whole range ofτ by our assumption that|x′i|/20 ≥ 2

√
αǫµH,i(x

′), we have

|W| · (4τ/(|x′i|/20))Ω(|A|) ≤ |W| · (1/2)Ω(|A|) = o(1)

for eachτ ∈ [
√
αǫµ, (1/8)(|x′i|/20)]. Thus, (44) is upper bounded by

∫ (1/8)(|x′

i|/20)

√
αǫµ

(4τ/(|x′i|/20))2Pr[Ei(τ)]dτ

.
1

(|x′i|/20)2
∫ (1/8)(|x′

i|/20)

√
αǫµ

τ2Pr[Ei(τ)]dτ

≤ αǫµ2

(|x′i|/20)2

since ∫ (1/8)(|x′

i|/20)

√
αǫµ

τ2Pr[Ei(τ)]dτ ≤
∫ ∞

0
τ2Pr[Ei(τ)]dτ = EH [µ2

H,i(x
′)] = O(α)ǫµ2

by (41).

3. For the third term we have
∫ ∞

(1/8)(|x′

i|/20)
Pr[Ei(τ)]dτ = Pr[µH,i(x

′) > (1/8)(|x′i|/20)] .
αǫµ2

|x′i|2

by Markov’s inequality applied to (41).

Putting the three estimates together, we getPr[E∗i] = O(α)ǫµ2

|x′

i|2
. Together with (39) this yields fori ∈ S

Pr[i 6∈ L] .
αǫµ2

|x′i|2
+

αǫµ

|x′i|
.

In particular,

E

[∑

i∈S
|x′i|2 · 1i∈S\L

]
≤

∑

i∈S
|x′i|2Pr[i 6∈ L]

.
∑

i∈S
|x′i|2

(
αǫµ

|x′i|
+

αǫµ2

|x′i|2
)

. αǫµ2k,

where we used the assumption of the lemma that||x′[2k]||1 ≤ O(||x[n]d\[k]||2
√
k) and||x′

[n]d\[2k]||22 ≤ ||x[n]d\[k]||22
in the last line. By Markov’s inequality we thus havePr[||x′S\L||22 > ǫµ2k] < 1/10 as long asα is smaller than
a constant.

We now upper bound||x′−χ′||22. We apply Lemma 8.2 to vectorsx′ andχ′ with setsS andL′ respectively,
getting

||x′ − χ′
L′ ||22 ≤ ||x′ − x′S||22 + 4||(x′ − χ′)S∪L′ ||22

≤ ||x[n]d\[k]||22 + 4||(x′ − χ′)S\L||22 + 4||(x′ − χ′)S∩L||22
≤ ||x[n]d\[k]||22 + 4ǫµ2k + 4ǫµ2|S|
≤ ||x[n]d\[k]||22 +O(ǫµ2k),

where we used the fact that||(x′ − χ′)S∩L||∞ ≤
√
ǫµ with probability at least1 − 1/N over the randomness

used in ESTIMATEVALUES by Lemma 9.1,(3). This completes the proof of correctness.

41

Sample complexity and runtime The number of samples taken is bounded by2O(d2) 1
ǫk logN by Lemma 9.2,

the choice ofB. The sampling complexity of the call to ESTIMATEVALUES is at most2O(d2) 1
ǫk logN . The

runtime is bounded by2O(d2) 1
ǫ k log

d+1 N log logN for computing the measurementsm(x̂,H, a ⋆ (1,w)) and

2O(d2) 1
ǫk log

d+1 N for estimation.

9 Utilities

9.1 Properties of ESTIMATE VALUES

In this section we describe the procedure ESTIMATEVALUES (see Algorithm 6), which, given access to a signal
x in frequency domain (i.e. given̂x), a partially recovered signalχ and a target list of locationsL ⊆ [n]d,
estimates values of the elements inL, and outputs the elements that are above a thresholdν in absolute value.
The SNR reduction loop uses the thresholding function of ESTIMATEVALUES and passes a nonzero threshold,
while RECOVERATCONSTANTSNR usesν = 0.

Algorithm 6 ESTIMATEVALUES(x, χ, L, k, ǫ, ν, rmax)
1: procedure ESTIMATEVALUES(x, χ, L, k, ǫ, ν, rmax) ⊲ rmax controls estimate confidence
2: B ← (2π)4d·F · k/(ǫα2d)
3: for r = 0 to rmax do
4: ChooseΣr ∈Md×d, qr, zr ∈ [n]d uniformly at random
5: Let πr := (Σr, qr), Hr := (πr, B, F), F = 2d
6: ur ← HASHTOBINS(x̂, χ, χ, (Hr, zr))
7: ⊲ Using semi-equispaced Fourier transform (Corollary 10.2)
8: end for
9: L′ ← ∅ ⊲ Initialize output list to empty

10: for f ∈ L do
11: for r = 0 to rmax do
12: j ← hr(f)

13: wr
f ← vr,jG

−1
of (f)

ω−zTr Σrf ⊲ Estimatex′f from each measurement
14: end for
15: wf ← median{wr

f}rmax
r=1 ⊲ Median is taken coordinatewise

16: If |wf | > ν then L′ ← L′ ∪ {f}
17: end for
18: return wL′

19: end procedure

Lemma 9.1 (ℓ1/ℓ2 bounds on estimation quality). For any ǫ ∈ (0, 1], any x, χ ∈ Cn, x′ = x − χ, any
L ⊆ [n]d, any integerk and any setS ⊆ [n]d, |S| ≤ 2k the following conditions hold. Ifν ≥ ||(x − χ)S ||1/k
and µ2 ≥ ||(x − χ)[n]d\S ||22/k, then the outputw of ESTIMATEVALUES(x̂, χ, L, k, ǫ, ν, rmax) satisfies the
following bounds ifrmax is larger than an absolute constant.

For eachi ∈ L

(1) Pr[|wi − x′i| >
√
ǫα(ν + µ)] < 2−Ω(rmax);

(2) E
[
||wi − x′i| −

√
ǫα(ν + µ)|+

]
≤ √ǫα(ν + µ)2−Ω(rmax);

(3) E
[∣∣|wi − x′i|2 − ǫα(ν + µ)2

∣∣
+

]
≤ 2−Ω(rmax)ǫ(ν2 + µ2).

42

The sample complexity is bounded by1
ǫ2

O(d2)krmax. The runtime is bounded by2O(d2) 1
ǫk log

d+1 Nrmax.

Proof. We analyze the vectorur ← HASHTOBINS(x̂, χ, (Hr, zr)) using the approximate linearity of HASH-
TOBINS given by Lemma A.1 (see Appendix A). Writingx′ = x′S + x′

[n]d\S , we let

uheadr := HASHTOBINS(x̂S , χS , (Hr, zr)) and utailr := HASHTOBINS(x̂[n]d\S , χ[n]d\S , (Hr, zr))

we apply Lemma 2.9,(1) to the first vector, obtaining

EHr,zr [|G−1
oi(i)

ω−zTr Σiuheadh(i) − (x′S)i|] ≤ (2π)d·F · Cd||xS ||1/B + µ/N2 (45)

Similarly applying Lemma 2.9,(2) and(3) to theutail, we get

EHr ,zr [|G−1
oi(i)

ω−zTr Σiutailhr(i)
− (x′[n]d\S)i|2] ≤ (2π)2d·F · Cd‖x′[n]d\S‖22/B,

which by Jensen’s inequality implies

EHr,zr [|G−1
oi(i)

ω−aTr Σiutailh(i) − ((x− χ)[n]d\S)i|] ≤ (2π)d·F · Cd
√
‖x[n]d\S‖22/B

≤ (2π)d·F · Cdµ ·
√

k/B.
(46)

Putting (45) and (46) together and using Lemma A.1, we get

EHr ,zr [|G−1
oi(i)

ω−zTr Σiuh(i) − (x− χ)i|] ≤ (2π)d·F · Cd(||xS ||1/B + µ ·
√

k/B). (47)

We hence get by Markov’s inequality together with the choiceB = (2π)4d·F · k/(ǫα2d) in ESTIMATEVALUES

(see Algorithm 6)

PrHr ,zr [|G−1
oi(i)

ω−zTr Σiuh(i) − (x− χ)i| >
1

2

√
ǫα(ν + µ)] ≤ (Cα)d/2. (48)

The rhs is smaller than1/10 as long asα is smaller than an absolute constant.
Sincewi is obtained by taking the median in real and imaginary components, we get by Lemma 9.4

|wi − x′i| ≤ 2median(|w1
i − x′i|, . . . , |wrmax

i − x′i|).

By (48) combined with Lemma 9.5 withγ = 1/10 we thus have

Pr{Hr ,zr}[|wi − x′i| >
√
ǫα(ν + µ)] < 2−Ω(rmax).

This establishes(1). (2) follows similarly by applying the first bound from Lemma 9.5 with γ = 1/2 to
random variablesXr = |wr

i − xi|, r = 1, . . . , rmax andY = |wi − xi|. The third claim of the lemma follows
analogously.

The sample and runtime bounds follow by Lemma 9.2 and Lemma 10.1 by the choice of parameters.

9.2 Properties of HASHTOBINS

Lemma 9.2. HASHTOBINS(x̂, χ, (H, a)) computesu such that for anyi ∈ [n],

uh(i) = ∆h(i) +
∑

j

Goi(j)(x− χ)jω
aTΣj

whereG is the filter defined in section 2, and∆2
h(i) ≤ ‖χ‖22/((R∗)2N11) is a negligible error term. It takes

O(BF d) samples, and if‖χ‖0 . B, it takesO(2O(d) · B logdN) time.

43

Algorithm 7 Hashing using Fourier samples (analyzed in Lemma 9.2)
1: procedure HASHTOBINS(x̂, χ, (H, a))
2: G← filter with B buckets,F = 2d ⊲ H = (π,B, F), π = (Σq)
3: Computey′ = Ĝ · PΣ,a,q(x̂− χ̂′), for someχ′ with ‖χ̂− χ̂′‖∞ < N−Ω(c) ⊲ c is a large constant
4: Computeuj =

√
NF−1(y′)(n/b)·j for j ∈ [b]d

5: return u
6: end procedure

Proof. Let S = supp(Ĝ), so|S| . (2F)d · B and in factS ⊂ B∞
F ·B1/d(0).

First, HASHTOBINS computes

y′ = Ĝ · PΣ,a,qx̂− χ′ = Ĝ · PΣ,a,qx̂− χ+ Ĝ · PΣ,a,qχ̂− χ′,

for an approximation̂χ′ to χ̂. This is efficient because one can compute(PΣ,a,qx̂)S with O(|S|) time and
samples, andPΣ,a,qχ̂

′
S is easily computed from̂χ′

T for T = {Σ(j − b) : j ∈ S}. SinceT is an image of an
ℓ∞ ball under a linear transformation andχ is B-sparse, by Corollary 10.2, an approximationχ̂′ to χ̂ can be
computed inO(2O(d) ·B logdN) time such that|χ̂i − χ̂′

i| < N−Ω(c) for all i ∈ T . Since‖Ĝ‖1 ≤
√
N‖Ĝ‖2 =√

N‖G‖2 ≤ N‖G‖∞ ≤ N andĜ is 0 outsideS, this implies that

‖Ĝ · PΣ,a,q(χ̂− χ′)‖2 ≤ ‖Ĝ‖1 max
i∈S
|(PΣ,a,q(χ̂− χ′))i| = ‖Ĝ‖1 max

i∈T
|(χ̂− χ′)i| ≤ N−Ω(c) (49)

as long asc is larger than an absolute constant. Define∆ by ∆̂ =
√
NĜ ·PΣ,a,q(χ̂− χ′). Then HASHTOBINS

computesu ∈ CB such that for alli,

uh(i) =
√
NF−1(y′)(n/b)·h(i) =

√
NF−1(y)(n/b)·h(i) +∆(n/b)·h(i),

for y = Ĝ · PΣ,a,qx̂− χ. This computation takesO(‖y′‖0 + B logB) . B log(N) time. We have by the
convolution theorem that

uh(i) =
√
NF−1(Ĝ · PΣ,a,q

̂(x− χ))(n/b)·h(i) +∆(n/b)·h(i)

= (G ∗ F(PΣ,a,q
̂(x− χ)))(n/b)·h(i) +∆(n/b)·h(i)

=
∑

π(j)∈[N]

G(n/b)·h(i)−π(j)F(PΣ,a,q
̂(x− χ))π(j) +∆(n/b)·h(i)

=
∑

i∈[N]

Goi(j)(x− χ)jω
aTΣj +∆(n/b)·h(i)

where the last step is the definition ofoi(j) and Lemma 2.2.
Finally, we note that

|∆(n/b)·h(i)| ≤ ‖∆‖2 = ‖∆̂‖2 =
√
N‖Ĝ · PΣ,a,q(χ̂− χ′)‖2 ≤ N−Ω(c),

where we used (49) in the last step. This completes the proof.

9.3 Lemmas on quantiles and the median estimator

In this section we prove several lemmas useful for analyzingthe concentration properties of the median estimate.
We will use

44

Theorem 9.3(Chernoff bound). LetX1, . . . ,Xn be independent0/1 Bernoulli random variables with
∑n

i=1 E[Xi] =
µ. Then for anyδ > 1 one hasPr[

∑n
i=1 Xi > (1 + δ)µ] < e−δµ/3.

Lemma 9.4(Error bounds for the median estimator). LetX1, . . . ,Xn ∈ C be independent random variables.
LetY := median(X1, . . . ,Xn), where the median is applied coordinatewise. Then for anya ∈ C one has

|Y − a| ≤2median(|X1 − a|, . . . , |Xn − a|)
=2

√
median(|X1 − a|2, . . . , |Xn − a|2).

Proof. Let i, j ∈ [n] be such thatY = re(Xi) + i · im(Xj). Suppose that re(Xi) ≥ re(a) (the other case is
analogous). Then since re(Xi) is the median in the list(re(X1), . . . , re(Xn)) by definition ofY , we have that
at least half ofXs, s = 1, . . . , n satisfy|re(Xs)− re(a)| > |re(Xi)− re(a)|, and hence

|re(Xi)− re(a)| ≤ median(|re(X1)− re(a)|, . . . , |re(Xn)− re(a)|). (50)

Since squaring a list of numbers preserves the order, we alsohave

(re(Xi)− re(a))2 ≤ median((re(X1)− re(a))2, . . . , (re(Xn)− re(a))2). (51)

A similar argument holds for the imaginary part. Combining

|Y − a|2 = (re(a)− re(Xi))
2 + (im(a)− im(Xi))

2

with (50) gives

|Y − a|2 ≤median((re(X1)− re(a))2, . . . , (re(Xn)− re(a))2)

+ median((im(X1)− im(a))2, . . . , (im(Xn)− im(a))2)

Noting that

|Y − a| = ((re(a)− re(Xi))
2 + (im(a)− im(Xi))

2)1/2 ≤ |re(a)− re(Xi)|+ |im(a)− im(Xi)|

and using (51), we also get

|Y − a| ≤median(|re(X1)− re(a)|, . . . , |re(Xn)− re(a)|)
+ median(|im(X1)− im(a)|, . . . , |im(Xn)− im(a)|).

The results of the lemma follow by noting that|re(X)− re(a)| ≤ |X−a| and|im(X)− im(a)| ≤ |X−a|.

Lemma 9.5. LetX1, . . . ,Xn ≥ 0 be independent random variables withE[Xi] ≤ µ for eachi = 1, . . . , n.
Then for anyγ ∈ (0, 1) if Y ≤ quantγ(X1, . . . ,Xn), then

E[|Y − 4µ/γ|+] ≤ (µ/γ) · 2−Ω(n)

and
Pr[Y ≥ 4µ/γ] ≤ 2−Ω(n).

Proof. For anyt ≥ 1 by Markov’s inequalityPr[Xi > tµ/γ] ≤ γ/t. Define indicator random variablesZi by
lettingZi = 1 if Xi > tµ/γ andZi = 0 otherwise. Note thatE[Zi] ≤ γ/t for eachi. Then sinceY is bounded
above by theγn-th largest of{Xi}ni=1, we havePr[Y > tµ/γ] ≤ Pr[

∑n
i=1 Zi ≥ γn]. As E[Zi] ≤ γ/t, this

45

can only happen if the sum
∑n

i=1 Zi exceeds expectation by a factor of at leastt. We now apply Theorem 9.3
to the sequenceZi, i = 1, . . . , n. We have

Pr

[
n∑

i=1

Zi ≥ γn

]
≤ e−(t−1)γn/3 (52)

by Theorem 9.3 invoked withδ = t − 1. The assumptions of Theorem 9.3 are satisfied as long ast > 2. This
proves the second claim we havet = 4 in that case.

For the first claim we have

E[Y · 1Y≥4·µ/γ] ≤
∫ ∞

4
tµ · Pr[Y ≥ t · µ/γ]dt

≤
∫ ∞

4
tµe−(t−1)n/3dt (by (52))

≤ e−n/3

∫ ∞

4
tµe−(t−2)n/3dt

= O(µ · e−n/3)

as required.

10 Semi-equispaced Fourier Transform

In this section we give an algorithm for computing the semi-equispaced Fourier transform, prove its correctness
and give runtime bounds.

Algorithm 8 Semi-equispaced Fourier Transform in2O(d)k logdN time

1: procedure SEMIEQUISPACEDFFT(x, c) ⊲ x ∈ C[n]d is k-sparse
2: LetB ≥ 2dk, be a power of2d, b = B1/d

3: G, Ĝ′ ← d-th tensor powers of the flat window functions of [HIKP12a], see below
4: yi ← 1√

N
(x ∗G)i· n

2b
for i ∈ [2b]d.

5: ŷ ← FFT(y) ⊲ FFT on[2b]d

6: x̂′i ← ŷi for ||i||∞ ≤ b/2.
7: return x̂′

8: end procedure

We define filtersG, Ĝ′ asd-th tensor powers of the flat window functions of [HIKP12a], so thatGi = 0 for
all ||i||∞ & c(n/b) logN , ‖G−G′‖2 ≤ N−c,

Ĝ′
i =

{
1 if ||i||∞ ≤ b/2
0 if ||i||∞ > b

,

andĜ′
i ∈ [0, 1] everywhere.

The following is similar to results of [DR93, IKP14].

Lemma 10.1. Let n be a power of two,N = nd, c ≥ 2 a constant. Let integerB ≥ 1, be a power of2d,
b = B1/d. For anyx ∈ C[n]d Algorithm 8 computeŝx′i for all ||i||∞ ≤ b/2 such that

|x̂′i − x̂i| ≤ ‖x‖2/N c

in cO(d)||x||0 logdN + 2O(d)B logB time.

46

Proof. Define

z =
1√
N

x ∗G.

We have that̂zi = x̂iĜi for all i ∈ [n]d. Furthermore, because subsampling and aliasing are dual under the
Fourier transform, sinceyi = zi·(n/2b), i ∈ [2b]d is a subsampling ofz we have fori such that||i||∞ ≤ b/2 that

x̂′i = ŷi =
∑

j∈[n/(2b)]d
ẑi+2b·j

=
∑

j∈[n/(2b)]d
x̂i+2b·jĜi+2b·j

=
∑

j∈[n/(2b)]d
x̂i+2b·jĜ′

i+2b·j +
∑

j∈[n/(2b)]d
x̂i+2b·j(Ĝi+2b·j − Ĝ′

i+2b·j)

=
∑

j∈[n/(2b)]d
x̂i+2b·jĜ′

i+2b·j +
∑

j∈[n/(2b)]d
x̂i+2b·j(Ĝi+2b·j − Ĝ′

i+2b·j).

For the second term we have using Cauchy-Schwarz

∑

j∈[n/(2b)]d
x̂i+2b·j(Ĝi+2b·j − Ĝ′

i+2b·j) ≤ ||x||2||Ĝ − Ĝ′||2 ≤ ||x||2/N c.

For the first term we have ∑

j∈[n/(2b)]d
x̂i+2b·jĜ′

i+2b·j = x̂i · Ĝ′
i+2b·0 = x̂i

for all i ∈ [2b]d such that||i||∞ ≤ b, since for anyj 6= 0 the argument of̂G′
i+2b·j is larger thanb in ℓ∞ norm,

and hencêG′
i+2b·j = 0 for all j 6= 0.

Putting these bounds together we get that

|x̂′i − x̂i| ≤ ‖x̂‖2‖Ĝ− Ĝ′‖2 ≤ ‖x‖2N−c

as desired.
The time complexity of computing the FFT ofy is 2O(d)B logB. The vectory can be constructed in time

cO(d)||x||0 logd N . This is because the support ofGi is localized so that each nonzero coordinatei of x only
contributes tocO(d) logd N entries ofy.

We will need the following simple generalization:

Corollary 10.2. Let n be a power of two,N = nd, c ≥ 2 a constant, andΣ ∈ Md×d, q ∈ [n]d. Let integer
B ≥ 1 be a power of2d, b = B1/d. LetS = {Σ(i− q) : i ∈ Z, ||i||∞ ≤ b/2}. Then for anyx ∈ C[n]d we can
computêx′i for all i ∈ S time such that

|x̂′i − x̂i| ≤ ‖x‖2/N c

in cO(d)||x||0 logdN + 2O(d)B logB time.

47

Proof. Definex∗j = ωqjxΣ−T j. Then for alli ∈ [n],

x̂Σ(i−q) =
1√
N

∑

j∈[n]d
ω−jTΣ(i−q)xj

=
1√
N

∑

j∈[n]d
ω−jTΣiωjTΣqxj

=
1√
N

∑

j′=ΣT j∈[n]d
ω−(j′)T iω(j′)T qxΣ−T j′

=
1√
N

∑

j′=ΣT j∈[n]d
ω−(j′)T ix∗j′

= x̂∗i .

We can accesŝx∗i with O(d2) overhead, so by Lemma 10.1 we can approximatex̂Σ(i−q) = x̂∗i for ||i||∞ ≤ k in

cO(d)k logd N time.

11 Acknowledgements

The author would like to thank Piotr Indyk for many useful discussions at various stages of this work.

References

[AGS03] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding.FOCS,
44:146–159, 2003.

[Aka10] A. Akavia. Deterministic sparse Fourier approximation via fooling arithmetic progressions.COLT,
pages 381–393, 2010.

[BCG+12] P. Boufounos, V. Cevher, A. C. Gilbert, Y. Li, and M. J. Strauss. What’s the frequency, Kenneth?:
Sublinear Fourier sampling off the grid.RANDOM/APPROX, 2012.

[Bou14] J. Bourgain. An improved estimate in the restrictedisometry problem.GAFA, 2014.

[CCFC02] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.ICALP,
2002.

[CGV12] M. Cheraghchi, V. Guruswami, and A. Velingker. Restricted isometry of Fourier matrices and list
decodability of random linear codes.SODA, 2012.

[Cip00] B. A. Cipra. The Best of the 20th Century: Editors Name Top 10 Algorithms.SIAM News, 33,
2000.

[CP10] E. Candes and Y. Plan. A probabilistic and ripless theory of compressed sensing.IEEE Transac-
tions on Information Theory, 2010.

[CT06] E. Candes and T. Tao. Near optimal signal recovery from random projections: Universal encoding
strategies.IEEE Trans. on Info.Theory, 2006.

[DIPW10] K. Do Ba, P. Indyk, E. Price, and D. Woodruff. Lower Bounds for Sparse Recovery.SODA, 2010.

48

[Don06] D. Donoho. Compressed sensing.IEEE Transactions on Information Theory, 52(4):1289–1306,
2006.

[DR93] A. Dutt and V. Rokhlin. Fast fourier transforms for nonequispaced data.SIAM J. Sci. Comput.,
14(6):1368–1393, November 1993.

[GGI+02] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss. Near-optimal sparse Fourier
representations via sampling.STOC, 2002.

[GHI+13] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, andL. Shi. Sample-optimal average-case
sparse Fourier transform in two dimensions.Allerton, 2013.

[GL89] O. Goldreich and L. Levin. A hard-corepredicate for allone-way functions.STOC, pages 25–32,
1989.

[GLPS10] A. C. Gilbert, Y. Li, E. Porat, and M. J. Strauss. Approximate sparse recovery: optimizing time
and measurements. InSTOC, pages 475–484, 2010.

[GMS05] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal space
Fourier representations.SPIE Conference, Wavelets, 2005.

[HAKI12] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster GPS via the Sparse Fourier Transform.
MOBICOM, 2012.

[HIKP12a] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Near-optimal algorithm for sparse Fourier trans-
form. STOC, 2012.

[HIKP12b] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse Fourier
transform.SODA, 2012.

[HKPV13] S. Heider, S. Kunis, D. Potts, and M. Veit. A sparse Prony FFT.SAMPTA, 2013.

[HR16] I. Haviv and O. Regev. The restricted isometry property of subsampled fourier matrices.SODA,
2016.

[IK14] P. Indyk and M. Kapralov. Sample-optimal Fourier sampling in any fixed dimension.FOCS, 2014.

[IKP14] P. Indyk, M. Kapralov, and E. Price. (Nearly) sample-optimal sparse Fourier transform.SODA,
2014.

[Iwe10] M. A. Iwen. Combinatorial sublinear-time Fourier algorithms. Foundations of Computational
Mathematics, 10:303–338, 2010.

[Iwe12] M.A. Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms.Applied
And Computational Harmonic Analysis, 2012.

[KM91] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum.STOC, 1991.

[LDSP08] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Compressed sensing mri.Signal Processing
Magazine, IEEE, 25(2):72–82, 2008.

[LWC12] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time fourier algorithms.
arXiv:1207.6368, 2012.

[Man92] Y. Mansour. Randomized interpolation and approximation of sparse polynomials.ICALP, 1992.

49

http://arxiv.org/abs/1207.6368

[PR13] S. Pawar and K. Ramchandran. Computing ak-sparsen-length Discrete Fourier Transform using
at most4k samples andO(klogk) complexity. ISIT, 2013.

[PS15] E. Price and Z. Song. A robust sparse Fourier transform in the continuous setting.FOCS, 2015.

[RV08] M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and Gaussian measure-
ments.CPAM, 61(8):1025–1171, 2008.

[Sid11] Emil Sidky. What does compressive sensing mean for X-ray CT and comparisons with its MRI
application. InConference on Mathematics of Medical Imaging, 2011.

A Omitted proofs

Proof of Lemma 2.11:We start with

EΣ,q[|π(S \ {i}) ∩ B∞
(n/b)·h(i)((n/b) · 2t)|] =

∑

j∈S\{i}
PrΣ,q[π(j) ∈ B∞

(n/b)·h(i)((n/b) · 2t)] (53)

Recall that by definition ofh(i) one has||(n/b) · h(i) − π(i)||∞ ≤ (n/b), so by triangle inequality

||π(j) − π(i)||∞ ≤ ||π(j) − (n/b)h(i)||∞ + ||π(i) − (n/b)h(i)||∞,

so

EΣ,q[|π(S \ {i}) ∩ B∞
(n/b)·h(i)((n/b) · 2t)|] ≤

∑

j∈S\{i}
PrΣ,q[π(j) ∈ B∞

π(i)((n/b) · (2t + 1))]

≤
∑

j∈S\{i}
PrΣ,q[π(j) ∈ B∞

π(i)((n/b) · 2t+1)]
(54)

SinceπΣ,q(i) = Σ(i− q) for all i ∈ [n]d, we have

PrΣ,q[π(j) ∈ B∞
π(i)((n/b) · 2t+1)] = PrΣ,q[||Σ(j − i)||∞ ≤ (n/b) · 2t+1] ≤ 2(2t+2/b)d,

where we used the fact that by Lemma 2.5, for any fixedi, j 6= i and any radiusr ≥ 0,

PrΣ[‖Σ(i− j)‖∞ ≤ r] ≤ 2(2r/n)d (55)

with r = (n/b) · 2t+1.
Putting this together with (54), we get

EΣ,q[|π(S \ {i}) ∩ B∞
(n/b)·h(i)((n/b) · 2t)|] ≤ |S| · 2(2t+2/b)d ≤ (|S|/B) · 2(t+2)d+1

≤ 1

4
(2π)−d·F · 64−(d+F)αd2(t+2)d+1.

Now by Markov’s inequality we have thati fails to be isolated at scalet with probability at most

PrΣ,q

[
|π(S \ {i}) ∩ B∞

π(i)((n/b) · 2t)| > (2π)−d·F · 64−(d+F)αd/22(t+2)d+t+1
]
≤ 1

4
2−tαd/2.

Taking the union bound over allt ≥ 0, we get

PrΣ,q[i is not isolated] ≤
∑

t≥0

1

4
2−tαd/2 ≤ 1

2
αd/2 ≤ 1

2
α1/2

as required.

Before giving a proof of Lemma 2.9, we state the following lemma, which is immediate from Lemma 9.2:

50

Lemma A.1. Let x, x1, x2, χ, χ1, χ2 ∈ CN , x = x1 + x2, χ = χ1 + χ2. Let Σ ∈ Md×d, q, a ∈ [n]d,
B = bd, b ≥ 2 an integer. Let

u = HASHTOBINS(x̂, χ, (H, a))

u1 = HASHTOBINS(x̂1, χ1, (H, a))

u2 = HASHTOBINS(x̂2, χ2, (H, a)).

Then for eachj ∈ [b]d one has

|G−1
oi(i)

ujω
−aTΣi − (x− χ)i|p . |G−1

oi(i)
u1jω

−aTΣi − (x1 − χ1)i|p + |G−1
oi(i)

u2jω
−aTΣi − (x2 − χ2)i|p

+N−Ω(c)

for p ∈ {1, 2}, whereO(c) is the word precision of our semi-equispaced Fourier transform computations.

Proof of Lemma 2.9: By Lemma 2.5, for any fixedi andj and anyt ≥ 0,

PrΣ[‖Σ(i− j)‖∞ ≤ t] ≤ 2(2t/n)d.

Per Lemma 9.2, HASHTOBINS computes the vectoru ∈ CB given by

uh(i) −∆h(i) =
∑

j∈[n]d
Goi(j)x

′
jω

aTΣj (56)

for some∆ with ‖∆‖2∞ ≤ N−Ω(c). We define the vectorv ∈ Cn by vΣj = x′jGoi(j), so that

uh(i) −∆h(i) =
∑

j∈[n]d
ωaT jvj =

√
Nv̂a

so
uh(i) − ωaTΣiGoi(i)x

′
i −∆h(i) =

√
N(v̂{Σi})a.

We have by (56) and the fact that(X + Y)2 ≤ 2X2 + 2Y 2

|G−1
oi(i)

ω−aTΣiuh(i) − x′i|2 = G−2
oi(i)
|uh(i) − ωaTΣiGoi(i)x

′
i|2

≤ 2G−2
oi(i)
|uh(i) − ωaTΣiGoi(i)x

′
i −∆h(i)|2 + 2G−2

oi(i)
∆2

h(i)

= 2G−2
oi(i)
|
∑

j∈[n]d
Goi(j)x

′
jω

aTΣj |2 + 2G−2
oi(i)

∆2
h(i)

By Parseval’s theorem, therefore, we have

Ea[|G−1
oi(i)

ω−aTΣiuh(i) − x′i|2] ≤ 2G−2
oi(i)

Ea[|
∑

j∈[n]d
Goi(j)x

′
jω

aTΣj |2] + 2Ea[∆
2
h(i)]

= 2G−2
oi(i)

(‖v{Σi}‖
2
2 +∆2

h(i))

. N−Ω(c) +
∑

j∈[n]d\{i}
|x′jGoi(j)|2

. N−Ω(c) +
∑

j∈[n]d\{i}
|x′jGoi(j)|2

. N−Ω(c) + µ2
Σ,q(i).

(57)

51

We now prove(2). Recall that the filterG approximates an ideal filter, which would be1 insideB∞
0 (n/b)

and0 everywhere else. We use the bound onGoi(j) = Gπ(i)−π(j) in terms of||π(i)−π(j)||∞ from Lemma 2.3,
(2). In order to leverage the bound, we partition[n]d = B∞

(n/b)·h(i)(n/2) as

B∞
(n/b)·h(i)(n/2) = B∞

(n/b)·h(i)(n/b) ∪
log2(b/2)⋃

t=1

(
B∞
(n/b)·h(i)((n/b)2

t) \ B∞
(n/b)·h(i)((n/b)2

t−1)
)
.

For simplicity of notation, letX0 = B∞
(n/b)·h(i)(n/b) andXt = B∞

(n/b)·h(i)((n/b) · 2t) \B∞
(n/b)·h(i)((n/b) · 2t−1)

for t ≥ 1. For eacht ≥ 1 we have by Lemma 2.3, (2)

max
π(l)∈Xt

|Goi(l)| ≤ max
π(l)6∈B∞

(n/b)·h(i)
((n/b)2t−1)

|Goi(l)| ≤
(

2

1 + 2t−1

)F

.

Since the rhs is greater than1 for t ≤ 0, we can use this bound for allt ≤ log2(b/2). Further, by Lemma 2.5
we have for eachj 6= i andt ≥ 0

PrΣ,q[π(j) ∈ Xt] ≤ PrΣ,q[π(j) ∈ B∞
(n/b)·h(i)((n/b) · 2t)] ≤ 2(2t+1/b)d.

Putting these bounds together, we get

EΣ,q[µ
2
Σ,q(i)] = EΣ,q[

∑

j∈[n]d\{i}
|x′jGoi(j)|2]

≤
∑

j∈[n]d\{i}
|x′j |2 ·

log2(b/2)∑

t=0

PrΣ,q[π(j) ∈ Xt] · max
π(l)∈Xt

|Goi(l)|

≤
∑

j∈[n]d\{i}
|x′j |2 ·

log2(b/2)∑

t=0

(2t+1/b)d ·
(

2

1 + 2t−1

)F

≤ 2F

B

∑

j∈[n]d\{i}
|x′j |2

+∞∑

t=0

2(t+1)d−F (t−1)

≤ 2O(d) ‖x′‖22
B

as long asF ≥ 2d andF = Θ(d). Recalling thatG−1
oi(i)
≤ (2π)d·F completes the proof of(2).

The proof of(1) is similar. We have

EΣ,q[max
a∈[n]d

|
∑

j∈[n]d\{i}
x′jGoi(j)ω

aTΣj |] ≤ EΣ,q[
∑

j∈[n]d\{i}
|x′jGoi(j)|] + |∆h(i)|

≤ |∆h(i)|+
∑

j∈[n]d\{i}
|x′j | ·

log2(b/2)∑

t=0

PrΣ,q[π(j) ∈ Xt] · max
π(l)∈Xt

|Goi(l)|

≤ |∆h(i)|+
∑

j∈[n]d\{i}
|x′j | ·

log2(b/2)∑

t=0

(2t+1/b)d ·
(

2

1 + 2t−1

)F

≤ |∆h(i)|+
2F

B

∑

j∈[n]d\{i}
|x′j |

+∞∑

t=0

2(t+1)d−F (t−1)

≤ |∆h(i)|+ 2O(d) ‖x′‖1
B

,

(58)

52

where
∆h(i) . N−Ω(c).

Recalling thatG−1
oi(i)
≤ (2π)d·F andR∗ ≤ ||x||∞/µ completes the proof of(1).

53

	1 Introduction
	2 Preliminaries
	3 The algorithm and proof overview
	4 Organization
	5 Analysis of LocateSignal: main definitions and basic claims
	6 Analysis of LocateSignal: bounding 1 norm of undiscovered elements
	6.1 Bounding noise from heavy hitters
	6.2 Bounding effect of tail noise
	6.3 Putting it together

	7 Analysis of ReduceL1Norm and SparseFFT
	7.1 Analysis of ReduceL1Norm
	7.2 Analysis of SNR reduction loop in SparseFFT
	7.3 Analysis of SparseFFT

	8 /2 guarantees and constant SNR case
	8.1 /2 guarantees
	8.2 Recovery at constant SNR

	9 Utilities
	9.1 Properties of EstimateValues
	9.2 Properties of HashToBins
	9.3 Lemmas on quantiles and the median estimator

	10 Semi-equispaced Fourier Transform
	11 Acknowledgements
	A Omitted proofs

