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Abstract

We consider the following natural generalization of Binary Search: in a given undirected,
positively weighted graph, one vertex is a target. The algorithm’s task is to identify the target
by adaptively querying vertices. In response to querying a node q, the algorithm learns either
that q is the target, or is given an edge out of q that lies on a shortest path from q to the target.
We study this problem in a general noisy model in which each query independently receives a
correct answer with probability p > 1

2 (a known constant), and an (adversarial) incorrect one
with probability 1− p.

Our main positive result is that when p = 1 (i.e., all answers are correct), log2 n queries are
always sufficient. For general p, we give an (almost information-theoretically optimal) algorithm

that uses, in expectation, no more than (1−δ) log2 n
1−H(p)+o(log n)+O(log2(1/δ)) queries, and identi-

fies the target correctly with probability at least 1−δ. Here, H(p) = −(p log p+(1−p) log(1−p))
denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-
median of the nodes not ruled out yet; the second bound by careful repeated invocations of a
multiplicative weights algorithm.

Even for p = 1, we show several hardness results for the problem of determining whether a
target can be found using K queries. Our upper bound of log2 n implies a quasipolynomial-time
algorithm for undirected connected graphs; we show that this is best-possible under the Strong
Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected
graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-
adaptive version, in which one may query r nodes each in k rounds, we show membership in
Σ2k−1 in the polynomial hierarchy, and hardness for Σ2k−5.
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1 Introduction

One way of thinking about the classical Binary Search algorithm is as follows: Given a path with a
target vertex t at an unknown position, an algorithm adaptively queries vertices, with the goal of
discovering t. In response to a query of q, the algorithm either learns that q is the target, or finds
out whether the target is to the left or right of q.

This view of Binary Search suggests a natural generalization to trees. The algorithm knows the
tree ahead of time, and is trying to find the target t in the tree. When a vertex q is queried which is
not the target, it reveals the subtree in which the target is located. As shown by Jordan [24], every
tree has a separator vertex with the property that each of its subtrees contains at most half of the
vertices. Thus, as pointed out by Onak and Parys [34], iteratively querying such a separator of
the current remaining subtree, then eliminating all subtrees known not to contain the target finds
a target in a tree of n vertices within at most log n queries.1 Since Binary Search is optimal for
the line, this bound is also tight in the worst case. For specific graphs, however, fewer queries may
be enough: for instance, only a single query suffices for a star. The algorithmic problem of finding
the optimal adaptive strategy for a tree has been solved by Onak and Parys [34], who present
a linear-time algorithm. This view of Binary Search in turn suggests a further generalization to
arbitrary undirected graphs: searching for a target by adaptively querying vertices of a connected
undirected graph and receiving directional information.

A sequence of papers [18, 25, 5] have studied a probabilistic version of Binary Search on a path,
where each answer to a query is correct only with probability p > 1

2 . The upshot of this line of
work is that a more careful variant of Binary Search uses O(log n) queries in expectation, with an
information-theoretically optimal constant depending on p. In our present work, we consider this
natural generalization to the noisy model for arbitrary graphs as well.

More formally, we study algorithms under the following general model: given an arbitrary
undirected (for some of our results, directed) graph G = (V,E) (with n = |V |,m = |E|) with
known positive edge weights2 ωe, an unknown target node t is to be located. When a vertex q
is queried, the algorithm receives a correct response with probability p > 1

2 , and an incorrect one
with probability 1− p.

• If the query is answered correctly, the response is that q is the target, or an edge e, incident on
q, which lies on a shortest q-t path. If there are multiple such edges e, then the one revealed
to the algorithm is arbitrary, i.e., it is a correct answer, but could be chosen adversarially
among correct answers.

• If the query is answered incorrectly, the response is completely arbitrary, and chosen by an
adversary. Of course, the adversary may choose to actually give a correct answer.

This model subsumes target search on a tree, where there is a unique path from q to t. Therefore,
algorithms for it can be seen as natural generalizations of the fundamental Binary Search algorithm
to arbitrary graphs (and hence finite metric spaces). As a first result, we show (in Section 2) that in
the absence of incorrect answers, the positive results from the line (and tree) generalize to arbitrary
weighted undirected graphs:

Theorem 1 For p = 1, in any connected undirected graph with positive edge weights, a target can
be found in at most log n queries in the worst case.

1Throughout this paper, unless noted otherwise, all logarithms are taken base 2.
2Thus, we can equivalently think of searching for a target in a finite metric space, defined by the shortest-path

metric. An extension to infinite metric spaces is discussed briefly in Section 5.
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In the noisy case as well, the positive results from the line extend to arbitrary weighted undi-
rected graphs, albeit with a more complex algorithm and analysis. In Section 3, we prove the
following theorem:

Theorem 2 For any p > 1
2 and any connected undirected graph with positive edge weights, a target

can be found with probability 1− δ in (1− δ) logn
1−H(p) +o(log n) +O(log2(1/δ)) queries in expectation.

(H(p) = −p log p− (1− p) log(1− p) is the entropy.)

The bound in Theorem 1 is tight even for the line. Notice also that randomization cannot help:
it is easy to see that finding a target selected uniformly at random from the line takes Ω(log n)
queries in expectation, and Yao’s Minimax Principle therefore implies the same lower bound for
any randomized algorithm. Moreover, as pointed out by Ben-Or and Hasidim [5], the bound in
Theorem 2 is tight up to the o(log n) +O(log2(1/δ)) term even for the line.

Hardness Results

A natural optimization version of the problem is to ask, given an instance, what is the minimum
number of queries necessary in the worst case to find a target; or, as a decision problem, whether
— given a graph and target number K of queries — an unknown target can be found within K
queries. For trees, a sequence of papers discussed in detail below [22, 41, 34] establishes that this
problem can be solved in linear time.

For general graphs, even in the special case p = 1, the complexity of the problem and some of its
variants is quite intriguing. The upper bound from Theorem 1 implies a simple O(mlogn ·n2 log n)-
time algorithm using exhaustive search, thus making it unlikely that the problem is NP-hard. (The
reason is that the exhaustive search tree’s height will be no more than log n.) However, we show
in Section 4 that the given quasipolynomial time is essentially the limit for the running time:
an O(mo(logn))-time algorithm would contradict the Exponential-Time Hypothesis (ETH), and an
O(m(1−ε) logn)-time algorithm for any constant ε > 0 would contradict the Strong Exponential-Time
Hypothesis (SETH).

A natural further generalization is to make the queries semi-adaptive: in each of k rounds, the
algorithm gets to query r nodes. We consider this model with p = 1. It is immediate that for k = 1,
the problem is NP-complete. For constant k > 2, we show (in Section 4) that the decision problem
is in Σ2k−1, the (2k − 1)th level of the polynomial hierarchy. We give a nearly matching lower
bound, by showing that it is also Σ2k−5-hard. Thus, semi-adaptive Binary Search on undirected
graphs defines a natural class of problems tracing out the polynomial hierarchy.

Even the fully adaptive version with p = 1 can easily become computationally intractable with
small modifications. Specifically, we show in Section 4 that the problem is PSPACE-complete for
directed graphs3 and also for undirected graphs in which nodes may have non-uniform query costs,
and the target is to be identified within a given budget. All the hardness proofs are similar to each
other, and they are presented together.

Edge Queries on Trees

In Appendix D, we turn our attention to a more frequently studied variant of the problem on trees,
in which queries are posed to edges instead of vertices. The algorithm can query an edge e = (u, v),
and the response reveals whether the target is in the subtree rooted at u or at v. (We assume

3Note that for a directed cycle, n−1 queries are necessary in the worst case, as answers to a query to a non-target
node reveal nothing about the target.
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here that p = 1.) This provides less information than querying one of the two vertices, and the
difference can be significant when vertices have high degrees.

The edge query variant is considered in several recent papers, which have focused on the algo-
rithmic question of finding the optimal adaptive strategy which minimizes the worst-case number
of queries [4, 34, 31]. Upper and lower bounds on the maximum number of queries required in trees
of maximum degree ∆ had been shown by Ben-Asher and Farchi to be log∆/(∆−1)(n) ∈ Θ(∆ log n)

and ∆−1
log ∆ log n, respectively [3]. While the authors call these bounds “matching,” there is a gap

of Θ(log ∆) between them. In Appendix D, we present an improved algorithm for the problem,
which uses at most 1 + ∆−1

log(∆+1)−1 log n queries in the worst case, thus practically matching the

lower bound of [3].

Related Work

The algorithmic problem of identifying a target by edge queries in DAGs was initiated by Linial
and Saks [30], who studied it for several specific classes of graphs. In general, the problem is known
to be NP-hard [11, 15]. As a result, several papers have studied it specifically on trees.

On trees, both the vertex and the edge query questions (when p = 1) are equivalent to the
respective vertex and edge ranking problems (see, e.g., [22, 41, 29]). The vertex ranking problem
requires that each vertex be assigned a label `v such that if two vertices u, v have the same label `,
then there is some vertex w on the u-v path with strictly larger label. The labels can be interpreted
as the order in which vertices will be queried (decreasingly). For the vertex ranking problem, Iyer,
Ratliff, and Vijayan [22] gave an O(n log n) algorithm, which was improved to linear time by Schäffer
[41]. Similarly, the edge ranking problem was solved for trees in linear time by Lam and Yue [29].
Lam and Yue [28] also established that for general graphs, the problem is NP-hard.

Following the work of Schäffer [41] and Lam and Yue [29], linear-time algorithms for both
versions (the vertex and edge query models in trees) were rediscovered by Onak and Parys [34]
and Mozes, Onak, and Weimann [31]. The former paper gives an O(n3) algorithm for the edge
query model (improving on the O(n4 log3 n) algorithm of Ben-Asher, Farchi, and Newman [4]),
while also providing a linear-time algorithm for the vertex query model. The O(n3) algorithm was
subsequently improved to linear time in [31].

Edge ranking and vertex ranking elegantly encode querying strategies for trees; however, they
crucially exploit the fact that the different possible responses to a vertex or edge query identify
disjoint components. For general graphs, the resulting structures are not as simple. Indeed, it is
known that for general graphs, finding an optimal edge ranking is NP-hard [28]. More evidence of
the hardness is provided by our PSPACE-completeness result.

A natural generalization of the problem is to introduce non-uniform costs on the vertices or
edges. This problem is studied for lines and trees by Laber, Milidiú and Pessoa [27] and Cicalese et
al. [13], respectively (among others). In particular, Cicalese et al. [13] show that with edge query
costs, the problem is NP-hard when the diameter of the tree is at least 6 and the maximum degree
is at least 3. On the other hand, [13] presents a polynomial-time algorithm for the case where the
diameter of the given tree is at most 5.

An even more significant departure from the model we consider is to assume that a probability
distribution is given over target locations, instead of the worst-case assumption made here. The
goal then typically is to minimize the expected number (or total cost) of queries. This type of model
is studied in several papers, e.g., [27, 12]. The techniques and results are significantly different from
ours.

Noisy Binary Search is a special case of a classical question originally posed by Rényi [39],
and subsequently restated by Ulam [42] as a game between two parties: one party asks questions,
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and the other replies through a noisy channel (thus lying occasionally). Several models for noise
are examined in detail in [38]. Rivest et al. [40] study a model in which the number of queries
the adversary can answer incorrectly is a constant (or a function of n, but independent of the
total number of queries). When the adversary can answer at most a constant fraction r of queries
incorrectly, Dhagat et al. [16], proved the impossibility of finding the target for r ≥ 1

3 , and provided
an O(log n) algorithm when r < 1/3. Pedrotti [36] further improved the constant factors in this
bound. A modified version of this model, called the Prefix-Bounded Model, states that for every
i, at most an r fraction of the initial i query responses may be incorrect. In this model, Pelc [37]
(using different terminology) gives an O(log n) upper bound on the number of the queries for every
r < 1

3 . Borgstrom and Kosaraju [6] generalize this bound to any r < 1
2 . Aslam [2] also studies the

Prefix-Bounded Model and provides a reduction from the independent noise model to it.
The k-batch model, which is similar to our notion of semi-adaptive querying, is a different model

in which the questioner can ask multiple non-adaptive questions in a series of k batches. Cicalese
et al. [14] consider the 2-batch model, under the assumption that at most a given number of query
responses are incorrect.

The independent noise model (used in our paper) is analyzed by Feige et al. [18]. They use
additional queries to backtrack in a search tree; repeated queries to a vertex are used to obtain
improved error probabilities for queries. They obtain a Θ(log n) bound on the number of queries
with a large (non-optimal) constant depending on p. Karp and Kleinberg [25] consider the problem
to find, in an array of coins sorted by increasing probability of “heads,” the one maximizing the
probability of “heads” subject to not exceeding a given target. They show that this problem shares
a lot of similarities with noisy Binary Search4, and use similar techniques for positive results; they
also provide information-theoretic lower bounds. Their information theoretic lower bounds for
the problem are matched by Ben-Or and Hassidim [5], whose noise model is the same as ours.
Ben-Or and Hassidim further generalize their algorithm to achieve improved bounds on the query-
complexity of quantum Binary Search.

Horstein [20] provides another motivation for noisy Binary Search (on the continuous line): a
sender wants to share a (real) number with a receiver over a noisy binary channel with a perfect
feedback channel. That is, the receiver receives each bit incorrectly with probability p, but the
sender knows which bit was received. Horstein [20] analyzes noisy Binary Search as an algorithm
under this model with a prior on the number to be transmitted: the sender always sends the bit
corresponding to the comparison between the number and the median according to the posterior
distribution of the receiver. Jedynak et al. [23] show that this algorithm is optimal in the sense
of minimizing the entropy of the posterior distribution, while Waeber et al. [43] show that the
expected value of the distance between this algorithm’s outcome and the target point decreases
exponentially in the number of the queries.

Noisy Binary Search has been a significant area of study in information theory and machine
learning, where it has often been rephrased as “Active Bayesian Learning.” Its uses can be traced
back to early work on parameter estimation in statistics, e.g., work by Farrell [17] and Burnashev
and Zigangirov [9]. It often takes the form of a search for the correct function in a function space
that maps a given instance space to an image space. The initial algorithm for the noisy version
with image space {−1,+1} was proposed by Nowak in [33]. Its running time is O(log |H|), where
H is the hypothesis/function space. A variation of the model was studied by Yan et al. [44].
Here, the instance space, image space and hypothesis space are, respectively, [0, 1], {0, 1} and
{fθ : [0, 1] → {0, 1} | θ ∈ [0, 1], fθ(x) = 1 if x ≥ θ, 0 otherwise}. They provide an O(k−c) error
bound, where k is the number of queries performed, and c is a constant determined by other

4In fact, this is a more general model than noisy Binary Search on a path.
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parameters defining the model. The goal is to approximate the correct value of θ, with the constraint
that the oracle might lie or abstain from providing an answer. Both abstentions and lies might
became more frequent as the query points get closer to the actual threshold. For general image
spaces, Naghshvar et al. in [32] also obtain an O(log |H|) bound, with improved constants for the
special case presented in [33].

Notation and Preliminaries

The algorithm is given a positively weighted connected undirected (or directed and strongly con-
nected) graph G = (V,E) with |V | = n and |E| = m. Edge weights are denoted by ωe > 0. The
distance d(u, v) between vertices u, v is the length of a shortest u-v path with respect to the ωe.
For undirected graphs, d(u, v) = d(v, u).

For a vertex u and edge e = (u, v) incident on u (out of u for directed graphs), we denote by
N(u, e) = {w ∈ V | d(u,w) = ωe + d(v, w)} the set of all vertices w for which e lies on a shortest
u-w path. Let t be the (unknown) target vertex. The guarantee made to the algorithm is that
when it queries a vertex q which is not the target, with probability p, it will be given an edge
e out of q such that t ∈ N(q, e). Since G is assumed (strongly) connected, such an answer will
always exist; we reiterate here that if multiple edges e exist such that t ∈ N(q, e), an arbitrary one
(possibly chosen adversarially) will be returned. If q is the target, then with probability p, this fact
is revealed to the algorithm. In both cases, with the remaining probability 1− p, the algorithm is
given an arbitrary (adversarial) answer, which includes the possibility of the correct answer.

2 Deterministic Model

We first analyze the case p = 1, i.e., when responses to queries are noise-free. We establish a tight
logarithmic upper bound on the number of queries required, which was previously known only for
trees [34].

Theorem 3 There exists an adaptive querying strategy with the following property: given any
undirected, connected and positively weighted graph G with an unknown target vertex t, the strategy
will find t using at most log n queries. (This bound is tight even when the graph is the line.)

Proof. In each iteration, based on the responses the algorithm has received so far, there will be
a set S ⊆ V of candidate nodes remaining one of which is the target. The strategy is to always
query a vertex q minimizing the sum of distances to vertices in S, i.e., a 1-median of S (with ties
broken arbitrarily). Notice that q itself may not lie in S.

More formally, for any set S ⊆ V and vertex u ∈ V , we define ΦS(u) =
∑

v∈S d(u, v). The
algorithm is given as Algorithm 1.

First, note that ΦS(q) and N(q, e) can be computed using Dijkstra’s algorithm, and q can be
found by exhaustive search in linear time, so the entire algorithm takes polynomial time. We
claim that it uses at most log n queries to find the target t. To see this, consider an iteration in
which t was not found; let e = (q, v) be the response to the query. We write S+ = S ∩ N(q, e),
and S− = S \ S+. By definition, the edge e lies on a shortest q-u path for all u ∈ S+, so that
d(v, u) = d(q, u) − ωe for all u ∈ S+. Furthermore, for all u ∈ S−, the shortest path from v to
u can be no longer than those going through q, so that d(v, u) ≤ d(q, u) + ωe for all u ∈ S−.
Thus, ΦS(v) ≤ ΦS(q)− ωe ·

(
|S+| − |S−|

)
. By minimality of ΦS(q), it follows that |S+| ≤ |S−|, so

|S+| ≤ |S|2 . Consequently, the algorithm takes at most log n queries.
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Algorithm 1 Target Search for Undirected Graphs

1: S ← V .

2: while |S| > 1 do

3: q ← a vertex minimizing ΦS(q).

4: if q is the target then

5: return q.

6: else

7: e = (q, v)← response to the query.

8: S ← S ∩N(q, e).

9: return the only vertex in S.

Notice that Theorem 3 implies a quasipolynomial time algorithm for finding an optimal adaptive
strategy for a given undirected graph. Because an optimal strategy can use at most logn queries,
an exhaustive search over all possible vertices q to query at each stage, and all possible edges that
could be given as responses (of which there are at most as many as the degree of q) will require
at most O(mlognn2 log n) time. In particular, the decision problem of determining whether, given
an undirected graph G and an integer K, there is an adaptive strategy using at most K queries,

cannot be NP-hard unless NP ⊆ O
(
nO(logn)

)
. We later show hardness results for this problem

based on two hypotheses: ETH and SETH.
A natural question is how much the logarithmic bound of Theorem 3 depends on our assump-

tions. In Appendix B, we generalize this theorem to strongly connected graphs which are almost
undirected in the following sense: each edge e with weight ωe belongs to a cycle of total weight at
most c · ωe, for a constant c.

3 Noisy Model

When 1
2 < p < 1, i.e., each response is incorrect independently with probability 1 − p, our goal is

to find the target with probability at least 1 − δ, for a given δ, minimizing the expected number
of queries in the worst case. (When p ≤ 1

2 , even for the path, it is impossible to get any useful
information about the target with any number of queries.5)

First, note that for the path (or more generally, trees), a simple idea leads to an algorithm
using c log n log logn queries (where c is a constant depending on p): simulate the deterministic
algorithm, but repeat each query c log log n times and use the majority outcome. A straightforward
analysis shows that with a sufficiently large c, this finds the target with high probability. For
general graphs, however, this idea fails. The reason is that if there are multiple correct answers
for the query, then there may be no majority among the answers, and the algorithm cannot infer
which answers are correct.

The c log n log log n bound for a path is not information-theoretically optimal. A sequence
of papers [18, 25, 5] improved the upper bound to O(log n) for simple paths. More specifically,
Ben-Or and Hassidim [5] give an algorithm that finds the target with probability 1 − δ, using
(1−δ) logn
C(p) + o(log n) +O(log(1/δ)) queries, where C(p) = 1−H(p) = 1 + p log p+ (1− p) log(1− p).

As pointed out in [5], this bound is information-theoretically optimal up to the o(log n)+O(log(1/δ))
term.

5Recall that an “incorrect” query response is adversarial; as the adversary may also respond correctly, an algorithm
cannot simply flip all answers.
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In this section, we extend this result to general connected undirected graphs. At a high level,
the idea of the algorithm is to keep track of each node’s likelihood of being the target, based on
the responses to queries so far. Generalizing the idea of iteratively querying a median node from
Section 2, we now iteratively query a weighted median, where the likelihoods are used as weights.
Intuitively, this should ensure that the total weight of non-target nodes decreases exponentially
faster than the target’s weight. In this sense, the algorithm shares a lot of commonalities with the
multiplicative weights update algorithm, an idea that is also prominent in [25, 5], for example.

The high-level idea runs into difficulty when there is one node that accumulates at least half of
the total weight. In this case, such a node will be the queried weighted median, and the algorithm
cannot ensure a sufficient decrease in the total weight. On the other hand, such a high-likelihood
node is an excellent candidate for the target. Therefore, our algorithm marks such nodes for
“subsequent closer inspection,” and then removes them from the multiplicative weights algorithm
by setting their weight to 0.

The key lemma shows that with high probability, within Θ(log n) rounds, the target node has
been marked. Therefore, the algorithm could now identify the target by querying each of the
O(log n) marked nodes Θ(log log n) times, and then keeping the node that was identified as the
target most frequently.

However, because there could be up to Θ(log n) marked nodes, this could still take Θ(log n log log n)
rounds. Instead, we run a second phase of the multiplicative weights algorithm, starting with
weights only on the nodes that had been previously marked. Akin to the first phase, we can show
that with high probability, the target is among the marked nodes in the first Θ(log log n) rounds
of the second phase. Among the at most Θ(log log n) resulting candidates, the target can now be
identified with high probability by querying each node sufficiently frequently. Because there are
only Θ(log log n) nodes remaining, this final round takes time only O((log log n)2).

Given a function µ : V → R≥0, for every vertex u, we define Φµ(u) =
∑

v∈V µ(v)d(u, v) as the
weighted sum of distances from u to other vertices. The weighted median is then argminu∈V Φµ(u)
(ties broken arbitrarily). For any S ⊆ V , let Γµ(S) =

∑
v∈S µ(v) be the sum of weights for the

vertices in S. The following lemma, proved by exactly the same arguments as we used in Section 2,
captures the key property of the weighted median.

Lemma 4 Let u be a weighted median with respect to µ and e = (u, v) an edge incident on u.
Then, Γµ(N(u, e)) ≤ Γµ(V )/2.

We now specify the algorithm formally. Algorithm 2 encapsulates the multiplicative weights
procedure, and Algorithm 3 shows how to combine the different pieces. Compared to the high-level
outline above, the target bounds of Θ(log n) and Θ(log log n) are modified somewhat in Algorithm 3,
mostly to account for the case when δ is very small.

To analyze the performance of Algorithm 2, we keep track of the sum of the node weights and
show, by induction, that after i iterations, Γµ(V ) ≤ 2−i. Consider the ith iteration:

• If there exists a node whose weight is at least half of the total node weight, Multiplicative-Weights
sets its weight to 0. Therefore, in this case, the sum of node weights drops to at most half of
its previous value.

• If Multiplicative-Weights queries a median q, and is told that q is the target, then
q’s weight decreases by a factor of p, and the other nodes’ weights decrease by a factor of
1 − p. The new sum of node weights is pµ(q) + (1 − p)(Γµ(V ) − µ(q)) ≤ Γµ(V )/2, because
µ(q) ≤ Γµ(V )/2.
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Algorithm 2 Multiplicative-Weights (S ⊆ V,K)

1: µ(v)← 1/|S| for all vertices v ∈ S
and µ(v)← 0 for all v ∈ V \ S.

2: M ← ∅.
3: for K iterations do

4: Let q be a weighted median with respect to µ.

5: if µ(q) ≥ 1
2 · Γµ(V ) then

6: Mark q, by setting M ←M ∪ {q}.
7: µ(q)← 0.

8: else

9: Query node q.

10: for all nodes v ∈ S do

11: if v is consistent with the response then

12: µ(v)← p · µ(v).

13: else

14: µ(v)← (1− p) · µ(v).

15: return M

Algorithm 3 Probabilistic Binary Search (δ)

1: δ′ ← δ/3.

2: Fix λ1 = min(
√

1
log logn ,

C(p)
2 log(p/(1−p))).

3: K1 ← max{ logn
C(p)−λ1 log(p/(1−p)) + 1, ln(1/δ′)

2λ21
}.

4: S1 ←Multiplicative-Weights(V,K1).

5: Fix λ2 = C(p)
2 log(p/(1−p)) .

6: K2 ← max{ log |S1|
C(p)−λ2 log(p/(1−p)) + 1, ln(1/δ′)

2λ22
}.

7: S2 ←Multiplicative-Weights(S1,K2).

8: for all v ∈ S2 do

9: Query v repeatedly 2 ln(|S2|/δ′)
(2p−1)2

times.

10: if v is returned as the target for at least half of these queries then

11: return v.

12: return failure.

• If Multiplicative-Weights queries a median q, and the response is an edge e = (q, v), the
algorithm multiplies the weights of nodes in N(q, e) by p and the weights of all other nodes
by 1 − p. The new total weight is pΓµ(N(q, e)) + (1 − p)

(
Γµ(V ) − Γµ(N(q, e))

)
, which is at

most Γµ(V )/2, because Lemma 4 implies that Γµ(N(q, e)) ≤ Γµ(V )/2.

The key lemma for the analysis (Lemma 5) shows that with high probability, the target is in
the set returned by the Multiplicative Weights algorithm. Recall that C(p) is defined as 1−H(p) =
1 + p log p+ (1− p) log(1− p).

Lemma 5 Let S ⊆ V be a subset of vertices containing the target and 0 < λ < C(p)
log(p/(1−p)) . If

K ≥ ln(1/δ′)
2λ2

and K > log |S|
C(p)−λ log(p/(1−p)) , then with probability at least 1− δ′, the target is in the set
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returned by Multiplicative-Weights(S,K).

Proof. By a standard Hoeffding Bound [19], the probability that fewer than (p−λ)K queries are
answered correctly is at most e−2Kλ2 . By the first bound on K in Lemma 5, this probability is at
most δ′.

If we assume that the target is not marked by the end of the Multiplicative-Weights

algorithm, its final weight is at least µ(t) ≥
(
pp−λ(1−p)1−p+λ

)K
|S| , with probability at least 1− δ′. On

the other hand, we showed that the final sum of node weights is upper-bounded by Γ ≤ 2−K . Using
both bounds, we obtain that

log(µ(t)/Γ) ≥ K · log(2pp−λ(1− p)1−p+λ)− log |S|
= K · (1−H(p)− λ log(p/(1− p)))− log |S|
= K · (C(p)− λ log(p/(1− p)))− log |S| > 0,

where the final inequality follows from the second assumed bound on K in the lemma. This implies
that µ(t) > Γ, a contradiction.

The next lemma shows that the final phase of testing each node finds the target with high
probability.

Lemma 6 Assuming that the target is in S, if each node v ∈ S is queried at least K ≥ 2 ln(|S|/δ′)
(2p−1)2

times, then with probability at least 1−δ′, the true target is the unique node returned as the “target”
by at least half of the queries.

Proof. We prove Lemma 6 using standard tail bounds and a union bound. Let λ = p− 1
2 . As in

the proof of Lemma 5, for each queried node, a Hoeffding Bound establishes that the probability
that at most (p−λ)K = K

2 queries are correctly answered is at most e−2Kλ2 . Because of the lower
bound on K, this probability is upper-bounded by δ′/|S|. By a union bound, the probability that
any queried vertex has at least half of its queries answered incorrectly is at most δ′. Barring this
event, the target vertex is confirmed as such more than half the time, while none of the non-target
vertices are confirmed as target vertices at least half the time.

Combining these lemmas, we prove the following:

Lemma 7 Given δ > 0, Algorithm 3 finds the target with probability at least 1− δ, using no more
than logn

C(p) + o(log n) +O(log2(1/δ)) queries.

Proof. Because λ1 and K1, satisfy both bounds of Lemma 5 by definition, Lemma 5 can be
applied, implying that with probability at least 1− δ′, the set S1 contains the target. Note that the
maximum in the definition of K1 is taken over two terms. The first one is logn

C(p) + o(log n) because

λ1 = o(1). The second one is O(log log n · log(1/δ′)) = O((log log n)2) + O(log2(1/δ′)). Therefore,
|S1| is bounded by logn

C(p) + o(log n) +O(log2(1/δ′)).
For the second invocation of Multiplicative-Weights, the conditions of Lemma 5 are again

satisfied by definition, so S2 will contain the target with probability at least 1−2δ′. The maximum
in the definition of K2 is again taken over two terms. The first one is O(log log n + log log(1/δ′))
(by the bound on |S1|) and the second one is O(log(1/δ′)).

Finally, by Lemma 6, the target will be returned with probability at least 1− 3δ′ = 1− δ. The
final phase again only makes o(log n) + O(log2(1/δ)) queries, giving us the claimed bound on the
total number of queries.
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To obtain the bound (1 − δ) logn
C(p) + o(log n) + O(log2(1/δ)) from Theorem 2, we can reason as

follows:

• If δ < 1
logn , then logn

C(p) = (1−δ) logn
C(p) + δ logn

C(p) , and δ logn
C(p) = O(1) can be absorbed into the o(log n)

term.

• If δ ≥ 1/ log n, we can modify the algorithm using a simple trick from [5]: With probability
δ − 1

logn , the modified algorithm outputs an arbitrary node without any queries; otherwise,

it runs Algorithm 3 with error parameter δ̂ = 1
logn . The success probability is then (1− δ +

1
logn)(1− 1

logn) ≥ 1− δ, while the number of queries in expectation is

(1− δ +
1

log n
) ·
( log n

C(p) + o(log n) +O(log2(1/δ))
)

=

(1− δ) · log n

C(p) + o(log n) +O(log2(1/δ)).

Hence, we have proved our main theorem:

Theorem 8 There exists an algorithm with the following property: Given a connected undirected
graph and positive δ > 0, the algorithm finds the target with probability at least 1−δ, using no more
than (1− δ) logn

C(p) + o(log n) +O(log2(1/δ)) queries in expectation.

Notice that except for having O(log2(1/δ)) instead of O(log(1/δ)), this bound matches the one
obtained by Ben-Or and Hassidim [5] for the line.

4 Hardness Results

We next turn to the question of determining the optimal number of queries required to find a
target, or — equivalently — the decision problem of determining whether K queries are sufficient
in the worst case. All our hardness results apply already for the noise-free version, i.e., the special
case where p = 1; they are proved in Appendix A. For undirected graphs, the result from Sec-
tion 2 implies a quasipolynomial-time algorithm, which makes the problem unlikely to be NP-hard.
However, we show hardness results for this problem based on two well-known conjectures.

Conjecture [ETH]: The Exponential Time Hypothesis (ETH) [21] states that there exists a pos-
itive constant ŝ such that 3-CNF-SAT is not solvable in time 2sn · poly(n,m), for any constant
s < ŝ. Here, n and m are the number of variables and the number of clauses, respectively.

Conjecture [SETH]: The Strong Exponential Time Hypothesis (SETH) [21, 10] states that
CNF-SAT does not admit any algorithm with running time 2(1−ε)n · poly(n,m) for any constant
ε > 0.

Theorem 9 The problem of deciding, given a connected undirected graph G = (V,E) and integer
K, whether there is an adaptive strategy that finds the target in at most K queries

(1) does not admit any algorithm with mo(logn) running time unless the ETH is false.
(2) does not admit any algorithm with O(m(1−ε) logn) running time for any constant ε > 0 unless

the SETH is false.
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Our next hardness result is that the decision problem is PSPACE-complete for directed graphs.
In fact, we will show a more fine-grained characterization for the following “semi-adaptive” version
of the problem, even for undirected graphs:

Problem: Given a connected undirected or strongly connected directed graph G, and integers k
and r, the algorithm queries r vertices in each round 1, 2, . . . , k. In response to the r queries, prior
to the next round, it receives one edge out of each queried vertex, lying on a shortest path from that
vertex to the target. The decision problem TargetSearch(k, r) is to ascertain whether the target
can be found using k rounds of r queries each.

When r = 1 and k is part of the input, we obtain the original problem. When k = 1 (i.e.,
under the non-adaptive query model), a straightforward reduction from Set Cover establishes
NP-hardness. Our complexity-theoretic results for TargetSearch(k, r) are the following:

Theorem 10 1. When the graph is directed and k is part of the input, TargetSearch(k, 1)
is PSPACE-complete.

2. When k ≥ 3 is a constant but r is part of the input, TargetSearch(k, r) is contained in
Σ2k−1 in the polynomial hierarchy, and Σ2k−5-hard. This holds even for undirected graphs.

The proof consists of a reduction from the Quantified Boolean Formulas (QBF) problem
and its variant with a constant depth of quantifier nesting.

The graphs constructed in the Σ2k−5-hardness proof are undirected, but the PSPACE-hardness
proof crucially relies on long directed cycles to build a threat of a large number of required queries,
while avoiding an exponential blowup in the reduction.6

If node queries can incur non-uniform cost, then the same effect can be obtained for undirected
graphs, giving us the following theorem

Theorem 11 It is PSPACE-complete to determine, given a connected and unweighted undirected
graph G = (V,E) with vertex cost function C : V → Z+ and an integer K, whether there is an
adaptive query strategy which always finds the target while paying a total cost of at most K. This
hardness holds even when G has diameter at most 13.

Notice that for any connected and unweighted undirected graph with diameter D, the target
can always be found using at most D−1 queries, as follows: start with an arbitrary node; whenever
the edge e = (q, v) is revealed in response to a query q, the next vertex to query is v. If the optimal
number of queries is upper-bounded by a constant, then the exhaustive search outlined in Section 2
needs only polynomial time to find an optimal querying strategy. Thus, Theorem 11 shows that
non-uniform costs significantly change the problem.

5 Conclusion and Open Problems

We proved that using vertex queries (which reveal either that the target is at the queried vertex,
or exhibit an edge on a shortest path to the target), a target can always be found in an undirected
positively weighted graph using at most log n queries. When queries give the correct answer only
with probability p > 1

2 , we obtain an (essentially information-theoretically optimal) algorithm which

6 Indeed, long cycles are the main obstacle to efficient Binary Search: in Appendix B, we show that the positive
result from Section 2 can be extended to strongly connected directed graphs which are almost undirected in the sense
that each edge appears in a short cycle.
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finds the target with probability at least 1−δ using (1−δ) log n/(1−H(p))+o(log n)+O(log2(1/δ))
queries in expectation. We also proved several hardness results for different variants, ranging from
hardness under the ETH and SETH to PSPACE-completeness.

Our work raises a number of immediate technical questions for future work, but also some
broader directions. Some of the more immediate directions are:

1. In light of our hardness results for finding the exact answer, how hard is it to find an approx-
imately optimal strategy? Can this be done in polynomial time?

2. For directed graphs which are almost undirected, close the gap (see Appendix B) between
the upper bound of c ln(2) · log n, and the lower bound of c−1

log c · log n on the number of queries
required. Clearly, if c ∈ ω(n/ log n), the upper bound cannot be tight, and we conjecture that
the lower bound may be asymptotically tight.

3. For undirected graphs, is the problem of deciding if an adaptive strategy using at most K
queries exists in NP? What about Co-NP?

4. For the semi-adaptive version, close the gap between the Σ2k−5-hardness and the membership
in Σ2k−1. We believe that a more involved hardness proof establishes Σ2k−3-hardness, which
still leaves a gap with the upper bound.

The semi-adaptive version of the problem raises a number of interesting questions. In pre-
liminary work, we have shown that for the D-dimensional hypercube (with n = 2D vertices), an
algorithm using 2 queries per round can use significantly fewer rounds than one using only a single
query per round (namely, logn

2 instead of log n). Surprisingly, moving from 2 to 3 or more queries
per round does not give any further significant improvement; the next improvement in the worst-
case number of rounds arises when the number of queries per round is r = Ω(logD). This fact is
based on a combinatorial result of Kleitman and Spencer [26]. This observation raises the question
how a larger number of queries per round affects the number of rounds required. In particular,
when the worst case over all connected undirected graphs is considered, will a larger number of
queries per round always guarantee a multiplicatively smaller number of rounds?

As discussed in the introduction, we can think of a positively edge-weighted graph as a finite
metric space. This naturally suggests a generalization to infinite metric spaces. For instance, we
may try to solve a puzzle such as: “Which major city in the United States lies straight East of San
Diego, and straight Southeast of Seattle?7” More generally, for an arbitrary metric space d, the
“direction” in which the target lies from the queried point q can be characterized by revealing a
point v 6= q such that d(q, v) + d(v, t) = d(q, t).

When the metric space is RD with D ≥ 2, endowed with the Lp norm for p ∈ (1,∞), it suffices
to query two points q1, q2 not collinear with the target: their query responses reveal two lines on
which t must lie, and these lines intersect in a unique point. For the L1 norm in D ≥ 2 dimensions,
on the other hand, an adversary can always provide only answers that get closer to the target in
the first dimension, without ever revealing any information about the second. Hence, no adaptive
algorithm can provide any guarantees.

For more general metric spaces, e.g., arbitrary surfaces, the question of how many queries are
required to locate a point is wide open. In preliminary work, we have shown that in an arbitrary
polygon with n corners, a target can always be found using O(log n) queries. However, our approach
does not extend to higher genus.

7Dallas, TX.
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There are many other fundamental generalizations of the model that are possible, and would
be of interest. These include querying an approximate median instead of an exact one, receiving
answers that lie on approximately shortest paths, or searching for multiple targets at once. Absent
careful definitions, some of these generalizations make the problem trivially impossible to solve,
but with suitable definitions, challenging generalizations arise.
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A Hardness Proofs

Here, we supply the hardness proofs omitted from Section 4. We begin with the proof for Theo-
rems 10 and 11. The proofs are quite similar, so we present them together.

First, recall (see [35, Chapter 17.2] for a more detailed discussion) that Σ2k−1 (here, we are
interested only in odd classes) can be characterized as all problems that can be expressed as

∃x1∀y1∃x2∀y2 · · · ∃xk : F (x1,y1,x2,y2, . . . ,xk),

where each xi = (xi,1, . . . , xi,r),yi = (yi,1, . . . , yi,r) is a vector of r Boolean variables, and F is a
predicate that can be evaluated in polynomial time. A canonical hard problem for Σ2k−1, which
we will use for the hardness proof here, is the problem QBFk, in which we specifically choose
F (x1,y1, . . . ,xk) =

∧m
`=1C` as a CNF formula. Without loss of generality, we may assume that no

clause contains both a variable and its negation, since such a clause is always satisfied, and can thus
be pruned. When k is part of the input, QBFk is equivalent to the well-known QBF problem — in
that case, the problem is PSPACE-hard even when each xi,yi is just a single Boolean variable.

QBFk (and thus also QBF) can be considered as a two-player game in which the players take
turns choosing values for the variables. During the ith round, the first player assigns either true or
false to each of the r variables in xi; subsequently, the second player chooses Boolean values for
the r variables in yi. The first player’s objective is to satisfy F while the second player wants F
to become false. Using this interpretation, QBFk can be rephrased as follows: “Is there a winning
strategy for the first player?”

Proof of Theorem 10. We consider the adaptive query problem as a two-player game, in which
the first player (whom we call the vertex player) queries r vertices at a time, while the second player
(the edge player), for each queried vertex q, chooses an outgoing edge from q lying on a shortest
path from q to the target. The vertex player wins if after k rounds, he can uniquely identify the
target vertex based on the responses, while the edge player wins if after k rounds of r queries each,
there is still more than one potential target vertex consistent with all answers.

To prove membership in Σ2k−1 (and thus also in PSPACE when k is part of the input), first
notice that the vertex player’s choice of r nodes to query can be encoded in r log(n) bits, i.e.,
Boolean variables, as can the edge player’s response of r edges. Membership in Σ2k would now be
obvious, as we could quantify over all of the edge player’s responses, and given all responses, it is
obvious how to decide whether the target is uniquely identified.

To prove the stronger bound of Σ2k−1, consider the following decision problem: given all queries,
as well as possibly responses to some of them, can the edge player respond to the remaining queries
while keeping at least two candidate targets? This question can be decided as follows. The edge
player enumerates all target pairs {t1, t2}. For each query independently, she checks if there is a
response that would be consistent with both t1 and t2. If such responses exist, then the edge player
can ensure that the vertex player cannot differentiate between t1 and t2; otherwise, the vertex
player will succeed. By exhaustively checking all pairs, the edge player tries all possible winning
strategies.

Let k̂ = k − 2. To prove hardness, we reduce from QBF2k̂−1, i.e., we let k̂ be the number of ∃
quantifiers in the formula. For the PSPACE-hardness proof, we only need each xi,yi to be a single
variable.

Given an instance of QBF2k̂−1, in which each xi,yi has (without loss of generality) exactly r
Boolean variables (r = 1 for the PSPACE-hardness reduction), we construct an unweighted strongly
connected graph G = (V,E) with the following pieces, illustrated in Figure 1.
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C` = y1,1 ∨ y1,2 ∨ xr,2

v̂

Figure 1: A schematic depiction of the graphs produced by the reduction.

• For each variable xi,j , add two literal vertices of type I, named ui,j and ui,j . Similarly,
corresponding to each variable yi,j , add two literal vertices of type II, named vi,j and vi,j . For

every 1 ≤ i < k̂ and 1 ≤ j ≤ r, add undirected edges from both ui,j and ui,j to both vi,j and
vi,j . Add undirected edges between each pair of literal vertices of type II.

Furthermore, add an extra vertex v̂. Add undirected edges between v̂ and each of the literal
vertices of type II, as well as between v̂ and both uk̂,j and uk̂,j for all 1 ≤ j ≤ r. For the

PSPACE-hardness reduction, also add directed edges from v̂ to both ui,j and ui,j for i < k̂;

however, for the Σ2k̂−1-hardness, there is no edge between v̂ and ui,j or ui,j for i < k̂.

• For each 1 ≤ i ≤ k̂, 1 ≤ j ≤ r, add two critical gadgets Ti,j and T ′i,j that will be specified
momentarily. Choose two arbitrary distinct vertices in each critical gadget as critical nodes.
Let ti,j and ti,j be critical nodes of Ti,j , and t′i,j and t′i,j be in T ′i,j . Add undirected edges

between ui,j and both ti,j and t′i,j , as well as between ui,j and both ti,j and t′i,j .

For the PSPACE-hardness reduction, the ith critical gadgets are directed cycles of length

k̂+ 3− i; for the Σ2k̂−1-hardness proof, they are undirected paths of length 2(r+ 1)k̂+2−i− 1.

• Corresponding to each clause C` in F , add two clause gadgets P` and P ′`. Each clause gadget
is an undirected path of length 2(r + 1)2 − 1. (For the PSPACE-hardness reduction, where
r = 1, the path has length 7.) Let p` and p′` be vertex number 2(r + 1) on the respective
paths. For the case r = 1, this is the midpoint of the path, and more generally, the leftmost
of the set of vertices dividing the path into r + 1 equal-sized subpaths.

• Whenever a literal (xi,j , xi,j , yi,j , yi,j) appears in clause C`, add two intermediate nodes
specific to this pair of a literal and clause. Add undirected edges between the intermediate
nodes and the corresponding literal vertex (ui,j , ui,j , vi,j , vi,j) and add an undirected edge
between the first intermediate node and p`, and between the second intermediate node and
p′`. (The intermediate nodes connect the corresponding literal vertex to both p` and p′` via
paths of length 2.) See Figure 1.

17



Recall that we set the total number of rounds to be k = k̂ + 2. The vertex player is allowed to
query r vertices in each round. Notice that the graph we construct is strongly connected, because
all the critical gadgets and clause gadgets are strongly connected. Moreover, although there are
some directed edges in the construction for PSPACE-hardness, all the edges are undirected for the
Σ2k̂−1-hardness reduction.

Furthermore, while the size of the critical gadgets for the Σ2k̂−1-hardness reduction grows

exponentially in k, it is polynomial for constant k̂ (and therefore, k). The reduction thus always
takes polynomial time. We begin with a simple lemma elucidating the role of the critical gadgets
and clause gadgets.

Lemma 12 (Gadgets) 1. Conditioned on knowing that the target is in Ti,j (or T ′i,j), and noth-

ing else, k̂ + 2 − i = k − i rounds of r queries are necessary and sufficient to find the target
in the worst case.

2. Conditioned on knowing that the target is in a specific clause gadget P` or P ′`, but nothing
more, 2 more rounds of queries are necessary. The same number is also sufficient to identify
the target uniquely, even when the target may be in an intermediate node adjacent to the
clause gadget.

Proof. We begin with the first part of the lemma: For the directed cycle, until all but one of the
vertices have been queried, there are always at least two candidates; querying all but one vertex is
also clearly sufficient.

For a path of length M , querying r nodes can at most eliminate those nodes, and results at
best in r + 1 subpaths of length (M − r)/(r + 1) each. Spacing the query nodes evenly matches
this bound. A simple proof by induction now establishes the bound.

The proof of the second part is analogous: The length of the path is chosen to require exactly
2 rounds of r queries. The choice of the vertices p` and p′` ensures that if the target was at an
intermediate vertex, this fact is revealed in the first round of querying.

We claim that the first player in the QBF game has a winning strategy if and only if the vertex
player can find any target in G using at most k rounds of queries.

(1) First, assume that there exists a strategy for finding the target in G using no more than k
rounds of queries.

Let Qi be the set of vertices queried by the vertex player in the ith round. We claim the following,
for each i ≤ k̂: if Qi′ ⊆ {ui′,j , ui′,j | j = 1, . . . , r} for each i′ < i, and all of the second player’s
responses were toward either vi′,j or vi′,j , then Qi ⊆ {ui,j , ui,j | j = 1, . . . , r}, and furthermore, Qi
contains exactly one of {ui,j , ui,j} for each j. The reason is that under the assumption about prior
queries, all critical gadgets Ti,j and T ′i,j are still in S. Having already used i− 1 rounds previously,
the vertex player has only k − (i − 1) rounds left, and k − i rounds are necessary in order to find
a target in one of these critical gadgets, by the first part of Lemma 12. Since the edge player can
also choose which of the 2r critical gadgets contains the target, the vertex player has to identify
the correct gadget using at most one round, which is only accomplished by choosing one of ui,j , ui,j
for each j.

We now define the following mapping from the vertex player’s strategy to a winning strategy
for the first player in the formula game. When the vertex player queries ui,j , the first player assigns
xi,j = true, whereas when the vertex player queries ui,j , the first player sets xi,j = false. For

i < k̂, in response to the first player’s setting of xi,j , the second player will set yi,j either true or
false. If the second player sets yi,j = true, then we have the edge player reveal vi,j , whereas when
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yi,j = false, the edge player reveals vi,j instead. By the previous claim, if i < k̂, the vertex player’s
next queries must be to either ui+1,j or ui+1,j , meaning that we can next set all of the xi+1,j by
the same procedure. For the kth round of queries, we make the edge player reveal the edge toward
v̂. We thus obtain a variable assignment to all xi,j and yi,j , and it remains to show that it satisfies
all clauses C`.

By assumption, having used k̂ = k − 2 rounds of queries, the vertex player can always identify
the target with the remaining 2 rounds. Note that for each matching pair (P`, P

′
`) of clause gadgets,

both P` and P ′` are entirely in the candidate set, or both have been completely ruled out. This is
because all responses were pointing to vi,j or vi,j , and were thus symmetric for both P` and P ′`.
By the second part of Lemma 12, it would take at least 2 rounds of queries to identify a node in
a known clause gadget, and one more to identify the correct gadget. This is too many rounds of
queries, so no clause gadgets can be in S, and all clause gadget instances must have been ruled out
previously.

This means that for each clause C`, there must have been 1 ≤ i ≤ k̂ such that the responses
to the ith query ruled out the target being in either P` or P ′`. Suppose that the queried set Qi
contained a node qi,j ∈ {ui,j , ui,j}, and vi,j or vi,j (or v̂ if i = k̂) is the answer. Then, the clause
gadgets could have been ruled out in one of two ways:

• qi,j is connected to P` and P ′` via intermediate nodes, i.e., there is a path of length 2 from
qi,j to p` and also p′`. These clause gadgets have been ruled out because the answer of the
query was not toward one of the intermediate nodes (connected to p` or p′`). In this case, by
definition, the literal corresponding to qi,j (either xi,j or xi,j) is in C`, and because qi,j was
queried, the literal is set to true. Thus, C` is satisfied under the assignment.

• An intermediate node connects vi,j to P` (and P ′`) and the edge player chose vi,j , or —
symmetrically — an intermediate node connects vi,j to P` (and P ′`) and the edge player chose
vi,j Without loss of generality, assume the first case. In that case, by definition, yi,j = true
(because vi,j was chosen), and by construction of the graph, yi,j ∈ C`. Again, this ensures
that C` is satisfied under the assignment.

In summary, we have shown that all clauses are satisfied, meaning that the first player in the
formula game has won the game.

(2) For the converse direction, assume that the first player has a winning strategy in the formula
game. We will use this strategy to construct a winning strategy for the vertex player in the target
search game.

We begin by considering a round i ≤ k̂ in which the vertex player needs to make a choice.
Assume that for each round i′ < i, Qi′ ⊆ {ui′,j , ui′,j | j = 1, . . . , r}, and furthermore, Qi′ contains
exactly one of {ui′,j , ui′,j} for each j. Also assume that the edge player responded with either
vi′,j or vi′,j for each query of ui′,j or ui′,j . (We will see momentarily that these assumptions are
warranted.) Interpret an answer pointing to vi′,j as setting yi′,j = false, and an edge pointing to
vi′,j as setting yi′,j = true. Consider the choice for xi,j prescribed by the first player’s assumed
winning strategy, based on the history so far. The vertex player will query ui,j if xi,j = true, and
ui,j if xi,j = false. We distinguish several cases, based on the response:

• If one of the queried vertices is the target, then clearly, the vertex player has won.

• If the edge player’s response is toward an instance of critical gadgets, then the target is known
to lie in that critical gadget. By Lemma 12, there exists a query strategy for Ti (or T ′i ) which
can find the target using at most k − i rounds of r queries. Together with the i rounds of
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queries already used by the vertex player, this gives a successful identification with at most
k rounds of queries total.

• If the answer is toward an intermediate node connected to one of the queried nodes, then the
target must lie in the corresponding clause gadget, say P`, or is one of the intermediate nodes
connected to this gadget. By Lemma 12, it takes at most 2 more rounds of queries to identify
the target; together with the first i rounds of queries, this is a successful identification with
at most k rounds of queries.

• This leaves the case when the edge player chooses the edge toward vi,j or vi,j (or v̂, if i = k̂),
justifying the assumption made earlier that for each of the first i rounds of queries, the edge
player responds by revealing edges toward either vi,j or vi,j .

In summary, the fact that the assignment satisfies all C` implies that the target cannot lie on
any clause gadget. The fact that the edge player responded with edges toward vi,j or vi,j to the

first k̂ rounds of queries implies that the target cannot lie on any critical gadgets, either.
The remaining case is the k̂th round of queries, when the edge player’s response may contain

edges toward v̂. Then, the only candidate nodes remaining after k rounds of queries are (some
of) the literal vertices, (some of) the intermediate nodes and v̂. In this case, 2 more rounds are
sufficient for both of the reductions, as follows. For the PSPACE-hardness reduction, query v̂, and
subsequently query the vertex ui,j , ui,j , vi,j or vi,j with which the edge player responds. (Recall
that there are edges from v̂ to all the literal vertices.) That query either reveals the target, or points
to an intermediate vertex which is then known to be the target. For the Σ2k̂−1-hardness reduction,
v̂ is queried in the first extra round. Next, the vertex player simultaneously queries whichever of
vi,j , vi,j the edge player responded with, as well as the node of ui,j , ui,j that he has not queried yet.
This will either reveal the target in one of the queried nodes, or reveal an edge to an intermediate
vertex which is then known to be the target.

Finally, notice that the number of rounds was chosen to be k = k̂ + 2; expressing the hardness
result in terms of the number of rounds of the target search game implies the claimed Σ2k−5-
hardness for the semi-adaptive version with k rounds. We believe that a somewhat more complex
construction and argument improves this bound to Σ2k−3-hardness.

Proof of Theorem 11. We only detail the changes in the gadgets of Theorem 10 here. First,
we set an upper bound of K = k̂+ 3 on the cost, instead of the bound k = k̂+ 2 on the number of
rounds. Recall that for critical gadgets Ti and T ′i , we only need the following property: K−i queries
are necessary and sufficient in the worst case to find the target in each of them. We therefore let
each Ti and T ′i consist of two vertices connected with an undirected edge. For each of these nodes,
the query cost is K − i. The new critical gadgets still satisfy Lemma 12, which was all that the
proof required.

Clause gadgets are replaced with paths of length 15 (instead of paths of length 7), meaning
that instead of two queries, three queries are now necessary and sufficient to identify a target in
a clause gadget. Also, p` and p′` are again the middle points of these paths. Finally, in the new

construction, no directed edges are inserted from v̂ to the ui,j , ui,j for i < k̂. The only difference is

that now, when all critical and clause gadgets have been ruled out after k̂ queries, it takes 3 more
queries to find the target. The rest of the proof stays the same as before.

It is easy to check that the diameter of the resulting graph is at most 13.

We now prove Theorem 9. Hardness results based on ETH and SETH have appeared in sev-
eral recent works: for example, Braverman et al. [7] proved a quasipolynomial-time lower bound
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for approximating the best Nash equilibrium, while Abbould et al. [1] and Bringmann et al. [8]
rule out sub-quadratic algorithms for a family of classical string problems (e.g., Longest Common
Subsequence).

Proof of Theorem 9. Let
∧m
`=1C` be an instance of CNF-SAT with n variables and m clauses

(with m polynomial in n). Without loss of generality, assume that n = k2 is a perfect square. (If
it is not, we can add O(

√
n) dummy variables to make it a perfect square.) Partition the variables

into k batches of k variables each, labeled xj,i.
The overall construction idea is similar to the proofs of Theorems 10 and 11, but slightly easier.

The (unweighted and undirected) graph looks as follows this time:

• For each batch j (1 ≤ j ≤ k), and each assignment a ∈ {0, 1}k, construct three vertices: an
assignment vertex vj,a and two intermediate vertices uj,a, u

′
j,a. Add edges between vj,a and

uj,a, and between vj,a and u′j,a. Add two extra nodes v̂, v̂′, connected via an edge. Moreover,
connect v̂ with all assignment vertices vj,a.

• For each batch j (1 ≤ j ≤ k), add two critical gadgets Tj and T ′j , each a simple path of length

2k−j+3 − 1. Let tj and t′j be the middle points of Tj and T ′j , respectively. Connect tj to the
intermediate nodes uj,a for all a, and t′j to u′j,a for all a. Hence, all assignment vertices are
connected to the corresponding critical gadgets via paths of length two.

• Corresponding to each clause C` in the formula, add a clause gadget P`, which is a simple
path of length 7. For each assignment vertex vj,a, if a satisfies C`, add a new intermediate
node u′′j,a,`, and connect it to both vj,a and the middle node of P`.

The overall outline of the proof is similar to (but simpler than) the one of Theorems 10 and
11. The key idea is again that to have any chance of finding a target in the critical gadgets, an
adaptive strategy must pick exactly one assignment vertex from each batch; otherwise, a target in
a critical gadget could not be identified. This allows us to establish a one-to-one correspondence
between adaptive strategies and variable assignments. Revealing an edge to a critical or clause
gadget would give the adaptive strategy an easy winning option, so one can show that w.l.o.g., all
responses are to v̂. This rules out all clause gadgets for clauses satisfied by the a for the queried
vertex vj,a.

In order to succeed in the final two rounds with v̂, v̂′, a number of unqueried vj,a and many u′′j,a,`
still remaining, an algorithm must have eliminated all of the clause gadgets from consideration,
which is accomplished only when all clauses are satisfied. (Conversely, if all critical and clause
gadgets have been eliminated, the algorithm can next query v̂ and the vj,a that is returned as the
response.) Hence, a satisfying variable assignment exists if and only if k + 2 queries are sufficient,
as captured by the following lemma:

Lemma 13 There exists an adaptive strategy to find the target in the constructed graph within at
most k + 2 queries if and only if the CNF formula is satisfiable.

The constructed graph has N = O(mk2k) vertices and M = O(mk2k) edges; thus logN =
k+o(k). Assume that some algorithm A decides whether there exists any adaptive strategy to find
the target with k + 2 queries. We would obtain the following complexity-theoretic consequences:

1. If the formula is a 3-CNF-SAT formula, and the running time of A is Mo(logN) = Mo(k), then
the reduction would give us an algorithm for 3-CNF-SAT with running time Mo(k) = 2o(n),
which contradicts the ETH.
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2. For general CNF-SAT instances, if the running time of A is O(M (1−ε) logN ), then the above
reduction would solve CNF-SAT with running time

O((m
√
n2
√
n)(1−ε)√n) = O(2(1−ε/2)n),

contradicting the SETH.

B Almost Undirected Graphs

We consider the generalization of the problem to (strongly connected) directed graphs. The example
of a directed cycle shows that one can, in general, not hope to find a target using a sublinear number
of queries. Thus, in order to achieve positive results, additional assumptions must be placed on the
graph structure. Indeed, we saw in Section 4 that deciding, for general strongly connected graphs,
whether a given number of queries is sufficient is PSPACE-complete.

We show that if the graph is “almost undirected,” then the positive result of Theorem 3 degrades
gracefully. Specifically, we assume that each edge e with weight ωe is part of a cycle of total weight
at most c · ωe. Notice that for unweighted graphs, this means that each edge e is part of a cycle of
at most c edges, and specifically for c = 2, the graph is undirected.8

Theorem 14 Algorithm 1 has the following property: if G is a strongly connected, positively
weighted graph, in which each edge e belongs to a cycle of total weight at most c · ωe, then the
algorithm finds the target using at most

1

ln c− ln(c− 1)
· lnn ≤ c ln(2) · log n

queries in the worst case.

Proof. In Algorithm 1, the potential is now defined with respect to directed distances. To analyze
its performance, assume that the algorithm, in some iteration, queried the node q, and received as
a response an edge e = (q, v). We define the sets S+ and S− as in the proof of Theorem 3. As
before, d(v, u) = d(q, u)−ωe for all vertices u ∈ S+. On the other hand, there exists a path of total
weight at most (c− 1) · ωe from v to q (since e appears in a cycle of length at most c · ωe). Thus,
for any vertex u ∈ S−, d(v, u) ≤ d(q, u) + (c− 1) · ωe. Therefore,

ΦS(v) ≤ ΦS(q)− ωe ·
(
|S+| − (c− 1) · |S−|

)
.

Since ΦS(q) is minimal, |S+| ≤ (c−1)·|S−|, so |S+| ≤ c−1
c ·|S|. Thus, after at most logc/(c−1)(n) =

lnn
ln c−ln(c−1) queries, the target must be identified. Finally,

ln(c)− ln(c− 1) =

∫ c

c−1
dx/x ≥ 1/c,

implying that lnn
ln c−ln(c−1) ≤ c · lnn = c ln(2) · log n.

8However, for weighted graphs with c = 2, G will not necessarily be undirected.
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The upper bound of Theorem 14 is nearly matched, up to a factor of O(log c), by the following
lower bound.

Proposition 15 For any integers N and c ≥ 2, there exists an unweighted and strongly connected
graph G of n ≥ N vertices, such that each edge in G belongs to a cycle of length c, and at least
c−1
log c · log n queries are required to identify a target in G.

Proof. We construct a family of unweighted strongly connected directed graphs Hc,k, k = 0, 1, . . .
inductively. Hc,0 is a single vertex. For any k ≥ 1, Hc,k is obtained from c disjoint copies of Hc,k−1.
For each of the c copies i = 1, . . . , c, let vi be an arbitrary vertex in that copy. Now add a directed
cycle of length c through the vertices vi. By construction, each edge is part of a cycle of length c;
and by induction, Hc,k is strongly connected for all k.

We will prove by induction that any strategy requires at least (c − 1) · k queries in the worst
case to identify the target in Hc,k. Because n = ck, this proves a lower bound of c−1

log c · log n on the
number of queries in an n-vertex graph.

The base case k = 0 of the induction is trivial. For the induction step, let G1, G2, . . . , Gc be the
c copies of Hc,k−1 that were combined to form Hc,k. For i < k, define v′i to be vi+1 and let v′k be
v1. Consider a query of a node q ∈ Gi. By construction, v′i lies on any path from q to any vertex
not in Gi. In other words, if an algorithm receives an edge (q, v) lying on a shortest path from q to
v′i, it might learn that the target is not in Gi, but cannot infer which Gj , j 6= i the target is in.

The adversary’s strategy is now simple: for the first c − 1 queries, to each query q ∈ Gi, the
adversary will give an edge toward v′i, i.e., the first edge of a shortest path from q to v′i. At this
point, there is at least one Gi such that no vertex in Gi has been queried. The adversary now picks
one such Gi (arbitrarily, if there are multiple), and commits the target to Gi. Then, he continues
to answer queries to vertices in Gj , j 6= i in the same way as before. Queries to vertices in Gi are
answered with the adversarial strategy for Hc,k−1.

As a result, after c− 1 queries, there will always remain at least one entirely unqueried copy of
Hc,k−1; the algorithm has no information about the location of the target vertex in this copy, and
by induction hypothesis, it will take at least (c− 1) · (k− 1) queries to find the target. Adding the
c− 1 queries to reach this point gives us a total of at least (c− 1) · k queries to find the target in
Hc,k.

C More Informative Queries on Directed Graphs

Instead of restricting cycle lengths in G, an alternative way to obtain positive results for directed
graphs is to assume that the responses to queries are more informative. This approach is motivated
by the directed cycle, where the answer to a query reveals no additional information to the algo-
rithm. If the algorithm could learn not only the outgoing edge but also the distance to the target,
then a single query would suffice on the cycle. Indeed, we show that in general, this information
is enough to always find the target using at most log n queries. We remark that learning only the
distance to the target would not be enough to guarantee even a sublinear number of queries: in an
unweighted undirected star, when the target is a leaf, such an answer will reveal no information
except whether the queried node is the target.

Formally, we define more informative responses to queries as follows. Let N(u, e, `) = {v ∈
N(u, e) | d(u, v) = `}. In response to querying node q, the algorithm will be given an edge e and
distance ` such that t ∈ N(q, e, `).
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Theorem 16 Assume that each query reveals the distance from the queried node q to the target t
as well as an edge e = (q, v) on a shortest q-t path. Then, there is an efficient algorithm which,
for each directed, strongly connected and positively weighted graph G, finds the target using at most
log n queries.9

Proof. The algorithm is nearly identical to Algorithm 1. It also queries a vertex q minimizing
a potential function of the set S of remaining candidate vertices at each iteration. However, the
potential function takes a different form.

For each distance `, let Γ`(v) be the set of vertices at distance at most ` from v. Define ΨS(v)
as the minimum distance ` such that strictly more than half of the vertices of S are in Γ`(v).
When receiving an answer of (e, `) in response to a vertex query q, the algorithm updates S to
S∩N(q, e, `). Except for using ΨS(v) in place of ΦS(v) in Line 3, receiving the distance ` in addition
to the edge e in Line 7, and updating S ← S ∩ N(q, e, `) in Line 8, the algorithm is identical to
Algorithm 1.

Similar to the analysis of Algorithm 1, we show that the size of S decreases by at least a factor
of 2 in each iteration. Consider one iteration in which a vertex q is queried, and the response is an
edge e = (q, v) and distance `. We partition S into the remaining candidates S+ = S ∩N(q, e, `),
and the eliminated vertices S− = S \ S+.

Assume for contradiction that |S+| > |S|/2. Because more than half of the vertices of S are
thus at distance exactly ` from q, we obtain that ΨS(q) = `. And because v lies on a shortest q-u
path for any u ∈ S+, the distance from v to each u ∈ S+ is strictly less than `. Thus, more than
1
2 |S| vertices of S are at distance less than ` from v, implying that ΨS(v) < `. But this contradicts
the choice of q as minimizing ΨS(v).

D Edge Queries on Trees

As mentioned in the introduction, a version of the problem that has been studied more frequently
[30, 29, 3, 4, 34, 31], is one in which the algorithm is allowed to query the edges of a graph (most
often: a tree). For the case of trees, by querying an edge e = (u, v), the algorithm learns whether
the target is in the subtree rooted at u or the one rooted at v.

Ben Asher and Farchi [3] proved, for a tree with maximum degree ∆, an upper bound of
log∆/(∆−1)(n) = Θ(∆ log n) and a lower bound of ∆−1

log ∆ log n on the number of queries required,
which — contrary to the authors’ claim — leaves a small gap of Θ(log ∆). In this section, we prove
that the lower bound is practically tight:

Theorem 17 For any tree T with maximum degree ∆ > 1, there is an adaptive algorithm for
finding the target using at most 1 + ∆−1

log(∆+1)−1 log n edge queries.

Proof. The algorithm is quite similar to the algorithm for vertex queries in Section 2, in that it
repeatedly queries a median node v. However, since a vertex in the given tree cannot be queried
directly, the algorithm instead finds a median node v and queries the edge (v, u), where u is the
neighbor of v maximizing the size of its rooted subtree.

More precisely, the algorithm is as follows: Given a tree T , the algorithm initializes T ′ = T . In
each iteration, it considers a separator node v (a vertex such that each subtree (in fact, connected
component) of T ′ \ {v} contains at most |T ′|/2 vertices), breaking ties in favor of the separator
node from the previous iteration. That is, if the last chosen separator is still a valid separator for

9This upper bound is tight even for complete binary trees.
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the current tree T ′, the algorithm uses it for the next iteration; otherwise, it picks a new separator
node arbitrarily. Among all neighbors of v, let u be one maximizing the size of the subtree Tu of
T ′ rooted at u. The algorithm then queries the edge (v, u), and depending on whether the target
is in the subtree rooted at v or at u, updates T ′ to either T ′ \ Tu or Tu. When only a single vertex
remains, the algorithm returns it. More formally, the algorithm is given as Algorithm 4.

Algorithm 4 Target Search using Edge Queries (T )

1: T ′ ← T .

2: v ← a separator node of T ′: each subtree of T ′ \ {v} contains at most |T ′|/2 vertices.

3: while |T ′| > 1 do

4: if v is not in T ′ any more or it is not a separator for T ′. then
5: v ← a separator for T ′.
6: Let u1, u2, . . . be the neighbors of v in T ′, and T1, T2, . . . the subtrees of T ′ rooted at u1, u2, . . ..

7: i← argmax
j
{|Tj |}.

8: Query the edge (v, ui).

9: if the target is in Ti then

10: T ′ ← Ti.

11: else

12: T ′ ← T \ Ti.
13: return the unique vertex in T ′.

First off, recall that the existence of a separator node was proved by Jordan [24]. For the
purpose of analysis, we divide the execution of the algorithm into phases: maximal intervals during
which the same vertex v is used as a separator. Notice that there may be multiple phases during
which the same vertex is chosen — however, no two such phases can be adjacent by maximality.

Consider one phase and its corresponding vertex v; suppose that v was used k times, and had
degree d in T ′ at the beginning of the phase. Let u1, u2, . . . , ud be the neighbors of v in T ′, with
subtrees T1, T2, . . . , Td. Without loss of generality, assume that |T1| ≥ |T2| ≥ . . . ≥ |Td|, so that
during those k queries, the edges (v, u1), (v, u2), . . . , (v, uk) were queried. If the phase is the last
phase, and at some point, the tree only contains two vertices (and one edge), we treat the last step,
determining the target with one more query, separately. We now distinguish three cases, based on
how the phase ended:

1. The kth query revealed that the target is in Tk, so that v was permanently removed from
T ′ (along with all Ti for i 6= k). By the ordering of sizes, we have |Ti| ≥ |Tk| for all i < k.
Furthermore, because v is a separator at the kth query of the phase, 1 +

∑d
i=k+1 |Ti| ≥ |Tk|.

Thus, |T ′| ≥ (k + 1)|Tk| where |T ′| is the size of the tree at the beginning of the phase; in
other words, using k queries, the size of the remaining tree was reduced by a factor at least
k + 1.

2. The kth query did not place the target in Tk, but the removal of T1, . . . , Tk resulted in v not
being a separator any more. By the ordering of sizes, we have |Ti| ≥ |Tk+1| for all i ≤ k. Let
r = 1 +

∑
i≥k+1 |Ti| be the size of the remaining tree after the removal of T1, . . . , Tk. Because

v is not a separator any more, r < 2|Tk+1|, while |T ′| ≥ k|Tk+1|+ r, where |T ′| is the size of
the tree at the beginning of the phase. Thus, using k queries, the size of the remaining tree

was reduced by a factor at least
k|Tk+1|+r

r ≥ k+2
2 .
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3. T ′ consisted of a single node (the algorithm is done), or two nodes with one edge (the algorithm
is done with one more query).

Thus, in the first two cases, using k queries, the size of the remaining tree decreases by a factor
at least k+2

2 . Now, for each phase j, let kj be the length of the phase. The total number of queries is∑
j kj , and the constraint imposed by the size decrease is that

∏
j
kj+2

2 ≤ n. By writing
kj+2

2 = exj ,
we obtain a convex objective function

∑
j(2e

xj −2) subject to an upper bound
∑

j xj ≤ lnn, which
is maximized by making each xj (and thus kj) as large as possible or equal to 0. In other words,
we obtain an upper bound by setting kj = ∆− 1 for all j. Notice that the only case in which the
algorithm queries all d edges incident on a node is when there are exactly two nodes remaining
before the final query; this case is treated separately.

The number of phases is then log(∆+1)/2 n = logn
log(∆+1)−1 . Thus, the total number of queries,

counting the possible final query, is at most 1 + ∆−1
log(∆+1)−1 · log n, completing the proof.
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