
ar
X

iv
:1

60
3.

07
08

6v
1

 [c
s.

C
R

]
23

 M
ar

 2
01

6

Are easily usable security libraries possible and how
should experts work together to create them?

Kai Mindermann
University of Stuttgart

Institute of Software Technology
kai.mindermann@informatik.uni-stuttgart.de

ABSTRACT
Due to non-experts also developing security relevant appli-
cations it is necessary to support them too. Some improve-
ments in the current research may not reach or impact these
developers. Nonetheless these developers use security li-
braries. There are findings that even their usage is not easily
possible and applications are left vulnerable to supposedly
treated threats. So it is important to improve the usability
of the security libraries. This is itself is not straightforward
because of a required maturing process for example. By get-
ting together experts of different involved areas, especially
cryptographic and API-usability experts, both of the prob-
lems can be tackled.

CCS Concepts
•Security and privacy → Usability in security and

privacy; Software security engineering; •Software and

its engineering → Software libraries and repositories; Soft-
ware evolution;

Keywords
Abstraction, API, developer knowledge

1. INTRODUCTION
The security oriented-branch of the software engineering

community, proposes a continuous flow of new tools and
ideas to improve the overall security of developed applica-
tions and the software lifecycle. The ideas and tools have
very different approaches on how they want to improve se-
curity. There are many tools to analyze the security during
or after the development and there are many tools and ideas
to model threats and risks. But is security really improved
through that?

I think we have to remember that there are software de-
velopers that are unexperienced and/or non-security experts
but still develop security-relevant applications, maybe even
without knowing it. The ideas may have low impact for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 16-16 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4155-4/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897586.2897610

those developers. This is not unintentional because it is not
expected and desired that every software developer knows
about every concept and tool that is proposed. Nonethe-
less those developers can produce relevant applications and
should be supported.

Besides the separate tools, developers can be supported
through security libraries which they can utilize to develop
faster and more secure applications. But still many secu-
rity libraries are not completely comprehensible for the semi-
professional developers and make it hard for them to apply
and implement them securely [1] and give them false hope
to implement secure software which in the end is not secure
or not secure enough.

This is why I propose to shift the focus to improve and
develop easily usable security and cryptographic libraries.

2. RELATED WORK
During the analysis of different Secure Sockets Layer (SSL)

Man-in-the-middle vulnerability causes, work by Fahl et al.
revealed for example that “[. . .]broken SSL code was added
because developers had difficulties understanding the prob-
lem[. . .]” [1] and“[. . .]there are developers, who, while being
technically adept enough to use Wireshark to check if their
app’s traffic is really encrypted, do not understand the na-
ture of the threat and thus take no precautions to counter
it.” [1]. Building upon that Georgiev et al. argue that “the
root causes of [. . .] vulnerabilities are badly designed APIs
of SSL implementations[. . .]” [2].

There is research that “concentrates on the usability and
security of non-security-related APIs [. . .]” [3] which explic-
itly does not focus on security libraries [5].

3. PROPOSITION
I base the proposed shift to improve and develop easily

usable security libraries on the following assumptions: (1)
Most software developers are no security experts and they
have no thorough understanding of possible attack vectors
or ways to exploit their software systems. (2) There are ap-
plications that are developed by those non-security-experts
but their applications have a security-relevant impact for
their users. (3) It is really hard to implement security con-
cepts the right way. (4) And even by using existing security
libraries it stays hard because they are not easily usable.
(5) Security of applications can be provided and can be im-
proved by using security libraries. These assumptions seem
to be true for at least some developers [1], applications and
libraries [2].

http://arxiv.org/abs/1603.07086v1
http://dx.doi.org/10.1145/2897586.2897610

Also based on these assumptions I expect that the secu-
rity of developed applications will be far better if the secu-
rity libraries are easily usable and that there will be more
applications that are secure. The difference I believe to ex-
ist is that easily usable security libraries are less prone to
erroneous implementation and therefore less subject to in-
troducing vulnerabilities in the application.

This seems to be obvious and conclusive but there are a
few problems that stop us from applying it to the known
libraries and security concepts.

4. PROBLEMS

4.1 Maturing of Security Libraries
Recommendable security usually follows Schneier’s law:

“Anyone, from the most clueless amateur to the best cryptog-
rapher, can create an algorithm that he himself can’t break.
It’s not even hard. What is hard is creating an algorithm
that no one else can break, even after years of analysis. And
the only way to prove that is to subject the algorithm to
years of analysis by the best cryptographers around.” [4].

This is also applicable to security libraries. Imagine this:
You or even a group of people come up with a new library
which makes it really easy to use some encryption and/or
signing algorithms in a programming language. You can tell
everyone that your library solves all usability problems and
is as secure as the existing libraries. Even if this is true, se-
curity experts won’t recommend using your library because
it can not be said to be secure right at the beginning. It
takes a very long time for libraries in general to mature to
a recommendable and usable state. I assume this time is
even longer for security libraries because they should un-
dergo extensive cryptanalysis before they should be used in
applications available for end users.

This is why one can not simply present a new crypto-
graphic library. A more practical and more beneficial way
would be to enhance existing libraries to a better usable
state.

4.2 Breaking of Compatibility
While correcting problems in the cryptographic implemen-

tation of the security library may be without consequences
for the application, improving the usability of the library
usually involves changing established concepts as well as
changing interface functions.

Changing interface functions can lead to breaking existing
application code. And that leaves the application using the
now old library and it leads to having to support more ver-
sions of your library. Changing the concepts of the library
can effectively mean it is a fork and thereby a kind of new
library. That would imply it is subject to the mentioned
required maturing process of a security library.

4.3 Application of Usability Research to Secu-
rity Libraries

Even if the two problems of breaking compatibility and
the needed maturing of the library can be managed, it is still
unknown what easily usable means for a security library and
it is unknown if a security library can be easy to use and at
the same time be secure.

The most part that is in fact used by developers is the API
that is offered by the library. For this part there is ongoing
general research to improve APIs usability [3].

I don’t think all the results of that research can be applied
easily to security APIs and security libraries because mak-
ing something easier comprises abstraction: There are a lot
of different and very complex security algorithms and con-
cepts available and in use. It would be very negligent to let
non-security-experts decide which aspects can or should be
abstracted to make the interface of the library easier to use.
On the other hand increased security can lower usability [3].

So both the library-/API-experts and the security experts
are needed, to improve the usability of security libraries.

4.4 Developer Knowledge
An additional problem resulting from the abstraction prob-

lem is that it is not known how much abstraction is needed.
It is explicitly not known how much the developers must
know about the security concepts that they want or have to
use. This heavily depends also on the used algorithms and
their intuitiveness or knowledge about them. The result
could be the decision about which parameters in an API
need to be hidden from the developer through appropriate
default values.

Developers knowledge can influence the security of created
end-user applications [1]. It is important to think about that
during the creation or modification of security libraries.

So the audience, developers using the security libraries, is
needed for the work on the libraries too.

5. CONCLUSIONS
Concluding I think that easily usable security libraries

(APIs) are possible to a certain degree. It depends on the
balance between the knowledge and comprehension capabil-
ities of the developers and the comprehensibility and com-
plexity of the security concepts. The problem that remains
is that it is insufficient if research branches work on their
own on improvements to security libraries because of the
mentioned conditions in the security discipline. A devel-
opment team, consisting of usability-, cryptographic- and
software-library-experts, which applies the results to secu-
rity libraries together, would be ideal. The integration of
the cryptographic experts in the improvement process can
also lead to a shortened maturing process.

6. REFERENCES
[1] S. Fahl, M. Harbach, H. Perl, M. Koetter, and

M. Smith. Rethinking SSL development in an appified
world. In Proceedings of the 2013 ACM SIGSAC

Conference on Computer and Communications Security,
CCS ’13, pages 49–60, New York, NY, USA, 2013.
ACM.

[2] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The most dangerous code
in the world: Validating SSL certificates in non-browser
software. In Proceedings of the 2012 ACM SIGSAC

Conference on Computer and Communications Security,
CCS ’12, pages 38–49, New York, NY, USA, 2012.
ACM.

[3] B. A. Myers and J. Stylos. Improving API usability.
Commun. ACM, 59(6), June 2016.

[4] B. Schneier. A self-study course in block-cipher
cryptanalysis. Cryptologia, 24(1):18–33, Jan. 2000.

[5] S. Weber. Empirical evaluation of API usability and
security. Software Engineering Institute Blog, Jan. 2016.

	1 Introduction
	2 Related Work
	3 Proposition
	4 Problems
	4.1 Maturing of Security Libraries
	4.2 Breaking of Compatibility
	4.3 Application of Usability Research to Security Libraries
	4.4 Developer Knowledge

	5 Conclusions
	6 References

