Supplementary Material for
CofiFab: Coarse-to-Fine Fabrication of Large 3D Objects

1 Volumes of convex polyhedrons

To compute the volume V' (P) for a convex polyhedron P with
vertices P = {p1, ..., pn}, we first introduce a new vertex
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for every non-triangular face f; with vertices p;,, pjs, - - -, Pio()-
Connecting p(f;) with all vertices of f; results in a triangulation of
the polyhedron. Then the volume of the polyhedron can be computed
as [Allgower and Schmidt 1986]
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where T is the set of faces for the triangulated polyhedron, and
p'(t:), p>(t:), p®(t:) are the vertices of triangle t; in positive ori-
entation. In our optimization, the positive orientation is determined
from the initial polyhedron shape, by choosing a consistent ordering
of triangle vertices such that Equation (1) produces a positive value.

2 Surface sampling for convex polyhedrons

Our optimization requires sample points {q;} on the surface of
a polyhedron P, represented as q; = Pb,, where b; € R™ are
pre-computed convex combination coefficients with respect to the
polyhedron vertex positions. To generate the samples and compute
the coefficient vectors {b;}, we first triangulate the polyhedron by
introducing new vertices on non-triangular faces (see Section 1). We
then compute three types of sample points from the triangulated
polyhedron 1"

1. Vertices of T': such a sample point q; is either a vertex of the
original polyhedron P, or an interior point on a face of P. In the
former case, vector b; has exactly one non-zero element of value
1. In the latter case, there are o(j) non-zero elements in b;, each
with value 1/0(j), where o(j) is the number of vertices of the
original polyhedron face that contains q; (see Equation (1)).

2. Interior points on an edge e; of T': such a point can be represented
as a convex combination of the two vertex sample points that
belongs to e;. In our implementation, we generate K internal
sample points for each edge. Let q;,,q;, be the coefficient
vectors for the two end vertex samples for e;, then the K interior
samples on e; are computed as:
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q;(e;) = qi; + di,, Jj=1,...,K.
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3. Interior points on a triangle t; of T': such a point can be repre-
sented as a convex combination of the three vertex sample points
that belongs to ¢;. Let q;,,q:,, qi; be the coefficient vectors
for the vertex samples, then according to the parameter K the
sample points are computed as:
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where a,b,c € Nanda+b+c= K + 1.
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We determine the value of K from a user-specified parameter Ny
for the preferred number of samples. K is chosen as the smallest
number such that the total number of sample points is at least V.

3 Computation of centroids

To compute the centroid C of the final model, we consider the
final model as the combination of a hollow polyhedron made from
uniform thin-sheet materials, and a 3D volume shell with uniform
density. Then

(C1Vi — C3V3)p1 + C2A2p2

C =
(Vi = Va)p1 + Azp2

where C;, C3 are the solid centroids of the target shape and the
polyhedron, respectively; Cs is the surface centroid of the poly-
hedron; Vi, V3 are the internal volumes of the target surface and
the polyhedron, respectively; As is the polyhedron surface area; p;
and p, are parameters for the volume density of the 3D printed part
and the area density of the laser-cut material, respectively. Here
V1, V3 can be computed using Equation (1). Using the same nota-
tion as Equation (1), the solid centroid of a polyhedron shape can be
computed as
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Cy, Cs are computed using formula (2), while A; and C, are
computed using formulas (3) and (4), respectively.

4 Constraints for optimizing multiple polyhe-
drons

The two faces (f£, flj ) chosen for the connection between two poly-
hedrons must satisfy the following conditions:

1. fi, fz] are parallel, with their outward normals pointing to-
wards each other;

2. there exists a cylinder with radius r and with its axis parallel
to the normals of fy, f7, such that its two ends touch the two

faces (f}, flj ) and lie within the interior of each face, and the
whole cylinder lie inside the target shape.



For the first condition, we require
nj, + n{ =0,

where n{, and n{ are the outward normal variables for the two faces.
For the second condition, we introduce auxiliary variables ¢, c{ €
R? for the centers of the circles, where the cylinder touches the two
faces. ci and c{ are required to lie on the two faces, respectively.
The line segment between these two points must be orthogonal to
the two faces, thus requiring

c +tpng =cf,

with auxiliary variable i > 0. Moreover, each face must be kept
inside a disc with radius r and center ¢}, (or c; , respectively). Taking
face f;, as an example, we require
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where pj, , Pj, are two adjacent vertices in f; in an appropriate
order. A similar constraint is defined for face flJ . Finally, we
compute a set of sample points {q} on the cylinder, and enforce a
constraint
D (q) 2 dmiru

where D is the signed distance function from the surface of the
whole object. Each sample q is computed as
q=ach + (1 —a)n] 4 r(e’ cosb + e5’ cosb),

where parameters a € [0,1] and b € [0, 27| are pre-determined,
e eb" are auxiliary variables that form an orthonormal frame with

n;, previously used for enforcing the bounding rectangle constraints.
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