skip to main content
research-article

Computational thermoforming

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We propose a method to fabricate textured 3D models using thermoforming. Differently from industrial techniques, which target mass production of a specific shape, we propose a combined hardware and software solution to manufacture customized, unique objects. Our method simulates the forming process and converts the texture of a given digital 3D model into a pre-distorted image that we transfer onto a plastic sheet. During thermoforming, the sheet deforms to create a faithful physical replica of the digital model. Our hardware setup uses off-the-shelf components and can be calibrated with an automatic algorithm that extracts the simulation parameters from a single calibration object produced by the same process.

Skip Supplemental Material Section

Supplemental Material

References

  1. 3dsystems, 2016. ProJet CJP 660Pro. http://www.3dsystems.com/3d-printers/professional/projet-660pro. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  2. Accuform, 2016. T-sim. http://www.t-sim.com. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  3. Agisoft, 2016. Agisoft photoscan standard edition 1.2.2. http://www.agisoft.com/. Accessed: 2015-12-18.Google ScholarGoogle Scholar
  4. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M. A., and Seidel, H. 2008. Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bermano, A., Brüschweiler, P., Grundhöfer, A., Iwai, D., Bickel, B., and Gross, M. 2013. Augmenting physical avatars using projector-based illumination. ACM Trans. Graph. 32, 6, 189:1--189:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. 2004. High accuracy optical flow estimation based on a theory for warping. In Computer Vision - ECCV 2004, 8th European Conference on Computer Vision, Prague, Czech Republic, May 11-14, 2004. Proceedings, Part IV, Springer, T. Pajdla and J. Matas, Eds., vol. 3024 of Lecture Notes in Computer Science, 25--36.Google ScholarGoogle Scholar
  8. Cuttlefish, 2015. Cuttlefish: 3D printing pipeline. https://www.cuttlefish.de/. Accessed: 2015-03-01.Google ScholarGoogle Scholar
  9. ESI, 2016. ESI Pam-form. https://www.esi-group.com/software-solutions/virtual-manufacturing/composites/solutions-plastics-trims. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  10. FUJIFILM, 2016. Thermoforming ink. http://www.fujifilm.com.au/powerofinkjet/applications/thermoforming. Accessed: 2016-04-19.Google ScholarGoogle Scholar
  11. Hergel, J., and Lefebvre, S. 2014. Clean color: Improving multi-filament 3D prints. Computer Graphics Forum 33, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hill, R. 1998. The Mathematical Theory of Plasticity. Oxford classic texts in the physical sciences. Clarendon Press.Google ScholarGoogle Scholar
  13. Klein, P. 2009. Fundamentals of Plastics Thermoforming. Synthesis lectures on materials engineeering. Morgan & Claypool.Google ScholarGoogle Scholar
  14. Kouba, K., Bartos, O., and Vlachopoulos, J. 1992. Computer simulation of thermoforming in complex shapes. Polymer Engineering and Science 32, 10, 699--704.Google ScholarGoogle ScholarCross RefCross Ref
  15. Koziey, B., Ghafur, M., Vlachopoulos, J., and Mirza, F. 1997. Computer simulation of thermoforming. In Composite Sheet Forming, D. Bhattacharyya, Ed., vol. 11 of Composite Materials Series. Elsevier, ch. 3, 75--89.Google ScholarGoogle Scholar
  16. Kuzmin, A., Luisier, M., and Schenk, O. 2013. Fast methods for computing selected elements of the greens function in massively parallel nanoelectronic device simulations. In Euro-Par 2013 Parallel Processing, F. Wolf, B. Mohr, and D. Mey, Eds., vol. 8097 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 533--544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lincoln, P., Welch, G., Nashel, A., Ilie, A., State, A., and Fuchs, H. 2009. Animatronic shader lamps avatars. In Proc. ISMAR, 27--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lindemeier, T., Pirk, S., and Deussen, O. 2013. Image stylization with a painting machine using semantic hints. Computers & Graphics 37, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. In Proceedings of the Symposium on Geometry Processing, SGP '08, 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ltd., M. T., 2016. Mcor Technologies Ltd. http://mcortechnologies.com/. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  21. Mieghem, B. V., Desplentere, F., Bael, A. V., and Ivens, J. 2015. Improvements in thermoforming simulation by use of 3D digital image correlation. Express Polymer Letters 9, 2.Google ScholarGoogle Scholar
  22. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proc. Graphics Interface, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nied, H. F., Taylor, C. A., and Delorenzi, H. G. 1990. Three-dimensional finite element simulation of thermoforming. Polymer Engineering and Science 30, 20, 1314--1322.Google ScholarGoogle ScholarCross RefCross Ref
  24. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Panozzo, D., Diamanti, O., Paris, S., Tarini, M., Sorkine, E., and Sorkine-Hornung, O. 2015. Texture mapping real-world objects with hydrographics. Comput. Graph. Forum (Proc. Symp. Geometry Processing) 34, 5, 65--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Prévost, R., Jacobson, A., Jarosz, W., and Sorkine-Hornung, O. 2015. Large-scale painting of photographs by interactive optimization. Computers & Graphics. In press.Google ScholarGoogle Scholar
  27. Raskar, R., Welch, G., Low, K.-l., and Bandyopadhyay, D. 2001. Shader lamps: Animating real objects with image-based illumination. In Proc. EG Workshop on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Reiner, T., Carr, N., Měch, R., Št'ava, O., Dachsbacher, C., and Miller, G. 2014. Dual-color mixing for fused deposition modeling printers. Computer Graphics Forum 33, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rheoware, 2016. Rheoware simulation. http://www.blowmolding-thermoforming-simulation.com. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  30. Rouiller, O., Bickel, B., Kautz, J., Matusik, W., and Alexa, M. 2013. 3D-printing spatially varying BRDFs. IEEE Computer Graphics and Applications 33, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Schenk, O., Wchter, A., and Hagemann, M. 2007. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Computational Optimization and Applications 36, 2-3, 321--341. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schenk, O., Bollhöfer, M., and Römer, R. A. 2008. On large-scale diagonalization techniques for the anderson model of localization. SIAM Rev. 50, 1 (Feb.), 91--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Shilkrot, R., Maes, P., Paradiso, J. A., and Zoran, A. 2015. Augmented airbrush for computer aided painting (CAP). ACM Trans. Graph. 34, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Simo, J. C., and Hughes, T. J. R. 1998. Computational inelasticity. Interdisciplinary applied mathematics. Springer.Google ScholarGoogle Scholar
  35. Thermo3D, Q., 2016. Quadraxis Thermo3D. http://quadraxis.com/site/?page_id=45. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  36. transferpaper, 2015. Themagictouch cpm 6.2 - hard surface transfer paper. http://www.themagictouch.com/cpm.html/. Accessed: 2016-13-04.Google ScholarGoogle Scholar
  37. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M. 2014. Embree: A kernel framework for efficient CPU ray tracing. ACM Trans. Graph. 33, 4, 143:1--143:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Witkin, A., and Baraff, D., 1997. Physically based modeling: Principles and practice, siggraph course notes.Google ScholarGoogle Scholar
  40. X-Rite, 2016. X-rite. http://xritephoto.com/. Accessed: 2016-01-18.Google ScholarGoogle Scholar
  41. Zhang, Y., Yin, C., Zheng, C., and Zhou, K. 2015. Computational hydrographic printing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2015) 34, 4 (Aug.). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational thermoforming

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 35, Issue 4
      July 2016
      1396 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2897824
      Issue’s Table of Contents

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2016
      Published in tog Volume 35, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader