skip to main content
research-article

Realtime 3D eye gaze animation using a single RGB camera

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

This paper presents the first realtime 3D eye gaze capture method that simultaneously captures the coordinated movement of 3D eye gaze, head poses and facial expression deformation using a single RGB camera. Our key idea is to complement a realtime 3D facial performance capture system with an efficient 3D eye gaze tracker. We start the process by automatically detecting important 2D facial features for each frame. The detected facial features are then used to reconstruct 3D head poses and large-scale facial deformation using multi-linear expression deformation models. Next, we introduce a novel user-independent classification method for extracting iris and pupil pixels in each frame. We formulate the 3D eye gaze tracker in the Maximum A Posterior (MAP) framework, which sequentially infers the most probable state of 3D eye gaze at each frame. The eye gaze tracker could fail when eye blinking occurs. We further introduce an efficient eye close detector to improve the robustness and accuracy of the eye gaze tracker. We have tested our system on both live video streams and the Internet videos, demonstrating its accuracy and robustness under a variety of uncontrolled lighting conditions and overcoming significant differences of races, genders, shapes, poses and expressions across individuals.

Skip Supplemental Material Section

Supplemental Material

a118.mp4

mp4

237.4 MB

References

  1. Anon, Applied science laboratories, 2015. http://www.as-l.com.com.Google ScholarGoogle Scholar
  2. Baltrušaitis, T., Robinson, P., and Morency, L.-P. 2012. 3d constrained local model for rigid and non-rigid facial tracking. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2610--2617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beeler, T., Bickel, B., Beardsley, P., Sumner, B., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graph. 29, 4, 40:1--40:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. 30, 4, 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. 2007. Multi-scale capture of facial geometry and motion. ACM Trans. Graph. 26, 3, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. BioID, 2015. https://www.bioid.com/about/bioid-face-database.Google ScholarGoogle Scholar
  7. Bouaziz, S., Wang, Y., and Pauly, M. 2013. Online modeling for realtime facial animation. ACM Trans. Graph. 32, 4 (July), 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graph. 29, 4, 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Breiman, L. 2001. Random forests. Machine learning 45, 1, 5--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cao, X., Wei, Y., Wen, F., and Sun, J. 2012. Face alignment by explicit shape regression. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2887--2894. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cao, C., Weng, Y., Lin, S., and Zhou, K. 2013. 3d shape regression for real-time facial animation. ACM Trans. Graph. 32, 4 (July), 41:1--41:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Transactions on Graphics (TOG) 33, 4, 43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cao, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. 2014. Facewarehouse: a 3d facial expression database for visual computing. IEEE Transations on Visualizationa and Computer Graphics (TVCG) 20, 3, 413--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cao, C., Bradley, D., Zhou, K., and Beeler, T. 2015. Realtime high-fidelity facial performance capture. ACM Transactions on Graphics (TOG) 34, 4, 46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chai, J., Xiao, J., and Hodgins, J. 2003. Vision-based control of 3D facial animation. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 193--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chau, M., and Betke, M. 2005. Real time eye tracking and blink detection with usb cameras. Tech. rep., Boston University Computer Science Department.Google ScholarGoogle Scholar
  18. Chen, Y.-L., Wu, H.-t., Shi, F., Tong, X., and Chai, J. 2013. Accurate and robust 3d facial capture using a single rgbd camera. In IEEE International Conference on Computer Vision (ICCV), 3615--3622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Comaniciu, D., and Meer, P. 2002. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 5, 603--619. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Corcoran, P. M., Nanu, F., Petrescu, S., and Bigioi, P. 2012. Real-time eye gaze tracking for gaming design and consumer electronics systems. IEEE Transactions on Consumer Electronics 58, 2, 347--355.Google ScholarGoogle ScholarCross RefCross Ref
  21. Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graph. 32, 6, 158. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hsieh, P.-L., Ma, C., Yu, J., and Li, H. 2015. Unconstrained realtime facial performance capture. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1675--1683.Google ScholarGoogle Scholar
  23. Huang, W., and Mariani, R. 2000. Face detection and precise eyes location. In International Conference on Pattern Recognition, vol. 4, 722--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Huang, J., and Wechsler, H. 1999. Eye detection using optimal wavelet packets and radial basis functions (rbfs). International Journal of Pattern Recognition and Artificial Intelligence 13, 07, 1009--1025.Google ScholarGoogle ScholarCross RefCross Ref
  25. Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. 2007. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Tech. rep., Technical Report 07-49, University of Massachusetts, Amherst.Google ScholarGoogle Scholar
  26. Huang, H., Chai, J., Tong, X., and Wu, H.-T. 2011. Leveraging motion capture and 3d scanning for high-fidelity facial performance acquisition. ACM Trans. Graph. 30, 4, 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kawato, S., and Ohya, J. 2000. Real-time detection of nodding and head-shaking by directly detecting and tracking the between-eyes. In IEEE International Conference on Automatic Face and Gesture Recognition, 40--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lc Technologies, 2015. http://www.eyegaze.com.Google ScholarGoogle Scholar
  29. Li, H., Yu, J., Ye, Y., and Bregler, C. 2013. Realtime facial animation with on-the-fly correctives. ACM Trans. Graph. 32, 4 (July), 42:1--42:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Li, H., Trutoiu, L., Olszewski, K., Wei, L., Trutna, T., Hsieh, P.-L., Nicholls, A., and Ma, C. 2015. Facial performance sensing head-mounted display. ACM Transactions on Graphics (TOG) 34, 4, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Liu, Y., Xu, F., Chai, J., Tong, X., Wang, L., and Huo, Q. 2015. Video-audio driven real-time facial animation. ACM Trans. Graph. 34, 6 (Oct.), 182:1--182:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. 2008. Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Graph. 27, 5, 121:1--121:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Megvii Technology, 2015. http://www.faceplusplus.com.cn.Google ScholarGoogle Scholar
  34. Morimoto, C. H., and Flickner, M. 2000. Real-time multiple face detection using active illumination. In IEEE International Conference on Automatic Face and Gesture Recognition, 8--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ren, S., Cao, X., Wei, Y., and Sun, J. 2014. Face alignment at 3000 fps via regressing local binary features. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 1685--1692. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and Mcdonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State-of-the-Art Report, 69--91.Google ScholarGoogle Scholar
  37. Saragih, J. M., Lucey, S., and Cohn, J. F. 2011. Realtime avatar animation from a single image. In IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), IEEE, 117--124.Google ScholarGoogle Scholar
  38. Shi, F., Wu, H.-T., Tong, X., and Chai, J. 2014. Automatic acquisition of high-fidelity facial performances using monocular videos. ACM Transactions on Graphics (TOG) 33, 6, 222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sugano, Y., Matsushita, Y., and Sato, Y. 2014. Learning-by-synthesis for appearance-based 3d gaze estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1821--1828. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Tian, Y.-l., Kanade, T., and Cohn, J. F. 2000. Dual-state parametric eye tracking. In IEEE International Conference on Automatic Face and Gesture Recognition, 110--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tobii Technologies, 2015. http://www.tobii.com.Google ScholarGoogle Scholar
  43. Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graph. 31, 6 (Nov.), 187:1--187:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Weise, T., Li, H., Van Gool, L., and Pauly, M. 2009. Face/off: live facial puppetry. In Symposium on Computer Animation, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Weise, T., Bouaziz, S., Li, H., and Pauly, M. 2011. Realtime performance-based facial animation. ACM Trans. Graph. 30, 4, 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wood, E., Baltrusaitis, T., Zhang, X., Sugano, Y., Robinson, P., and Bulling, A. 2015. Rendering of eyes for eye-shape registration and gaze estimation. arXiv preprint arXiv:1505.05916.Google ScholarGoogle Scholar
  48. Xiong, X., and De la Torre, F. 2013. Supervised descent method and its applications to face alignment. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 532--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhang, L., Snavely, N., Curless, B., and Seitz, S. 2004. Spacetime faces: high resolution capture for modeling and animation. ACM Transactions on Graphics 23, 3, 548--558. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zhang, X., Sugano, Y., Fritz, M., and Bulling, A. 2015. Appearance-based gaze estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4511--4520.Google ScholarGoogle Scholar

Index Terms

  1. Realtime 3D eye gaze animation using a single RGB camera

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 35, Issue 4
          July 2016
          1396 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2897824
          Issue’s Table of Contents

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 July 2016
          Published in tog Volume 35, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader