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ABSTRACT

We present GarbledCPU, the first framework that realizes
a hardware-based general purpose sequential processor for
secure computation. Our MIPS-based implementation en-
ables development of applications (functions) in a high-level
language while performing secure function evaluation (SFE)
using Yao’s garbled circuit protocol in hardware. Garbled-
CPU provides three degrees of freedom for SFE which allow
leveraging the trade-off between privacy and performance:
public functions, private functions, and semi-private func-
tions. We synthesize GarbledCPU on a Virtex-7 FPGA as a
proof-of-concept implementation and evaluate it on various
benchmarks including Hamming distance, private set inter-
section and AES. Our results indicate that our pipelined
hardware framework outperforms the fastest available soft-
ware implementation.
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1. INTRODUCTION

Secure Function Evaluation (SFE) allows two (or more)
mistrusting parties to jointly compute an arbitrary function
on their private inputs without revealing information but
the result. The seminal work of Yao [20] has introduced the
concept of two-party SFE using the Garbled Circuits (GC)
protocol which requires that the function is represented as
a Boolean circuit. While the GC protocol was originally
thought to be of theoretic interest only, algorithmic and
implementation optimizations have significantly improved
its efficiency during the last decades. In addition to the
advances in computing platforms, the key enablers for the
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progress include newer cryptographic constructs, logic-level
transformations, and software techniques.

Compilers for SFE have been continually evolving. A
number of compilers [2,4,12,13] translate a functionality
written in a domain-specific input language into a Boolean
circuit, also described in an intermediate language, which
is then evaluated with Yao’s GC protocol. Other compil-
ers [5,11] use a subset of the C language as input. How-
ever, these methods imply building software-to-Boolean cir-
cuit compilers from scratch and often put limitations on the
functionality. Moreover, verifying the correctness of these
compilers is challenging [14].

Recently, it was shown that the long-established and veri-
fied hardware synthesis compilers can be used for generation
of Boolean circuits for SFE, eliminating the need for building
ad-hoc logic compilers or tedious handcrafting of Boolean
circuits. Another key advantage of conventional logic syn-
thesis is allowing a sequential logic description which can
be adapted to map general functionalities to Boolean cir-
cuits optimized for Yao’s GC protocol. The approach was
introduced in [17] and shown to yield great improvements in
terms of memory and communication. A fully-automated
toolchain which utilizes existing logic synthesis compilers
and can be generalized for other SFE protocols was pre-
sented in [3]. This latter work takes advantage of the built-in
intellectual property (IP) and custom design libraries which
can be readily adapted during circuit synthesis to realize a
broad suite of applications optimized for SFE.

The authors in [17] leverage the capability of synthesiz-
ing a sequential circuit and introduce the idea of a general-
purpose sequential processor for private function SFE (PF-
SFE) by GC, where both input data and function are pri-
vate. PF-SFE is useful for scenarios where the function
is proprietary or classified, e.g., credit checking or private
database queries. Their so-called garbled processor allows
to use existing software compilers for describing the func-
tion and generates compatible machine code which is also
garbled. A partial implementation of a MIPS processor is
provided in [17] which only considers PF-SFE where the en-
tire processor circuit and Instruction Set (IS) have to be
garbled in each instruction step during SFE in order to hide
the executed instructions in the private function. This re-
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sults in a tremendous cost compared with SFE for public
functions. Thus, their MIPS processor incurs an unneces-
sary overhead for numerous applications in which a private
function is not required. (The only benchmark presented
in [17] is the Hamming distance function.)

We propose GarbledCPU, the first configurable hardware-
based general purpose sequential CPU for SFE. The FPGA
realization of GarbledCPU is based on the MIPS instruc-
tion set. GarbledCPU provides a generalized support for
SFE of varying flavors of privacy, beyond PF-SFE, to allow
for more relaxed privacy demands and hence an improved
performance. More explicitly, with GarbledCPU the parties
can evaluate a private, semi-private or public function by
revealing none, partial or all information about the func-
tion respectively while still benefiting from the simplicity of
programming a processor. Both parties decide first which
subset of IS they are willing to use which determines the
level of privacy ensured. The function is compiled from a
high-level language, e.g., C/C++ into assembly code of the
agreed upon IS. Next, the garbled processor is securely eval-
uated given users’ garbled input and the compiled function
instructions (also garbled) to compute the output.

A recent technical report [19] also suggests a secure com-
putation framework using MIPS code. The approach relies
on garbled universal circuits to emulate the execution of each
instruction of the MIPS program and on Oblivious RAM
(ORAM) for memory access. They propose using static
analysis of functions to reduce the set of instructions to be
garbled. However, [19] only presents a software SFE im-
plementation, while we present the first practical hardware
sequential processor for both SFE and PF-SFE. An earlier
hardware implementation of GC was reported in [7] but the
approach only addresses SFE with no support for function
hiding and is limited to combinational Boolean circuit as it
predated [17]. A combinational description limits usability
and scalability and is impractical for control-intensive func-
tions such as CPUs that need to be expressed sequentially.

Contributions. In brief, our contributions are as follows:

e We propose the first hardware-only solution for 2-party
GC-based secure sequential function computation with
different SFE flavors that allows leveraging the trade-
off between privacy and performance: application-
specific IS for SFE (§3.1), restricted IS (§3.2) for semi-
private SFE, and full IS (§3.3) for PF-SFE.

e We realize a proof-of-concept FPGA implementation
which demonstrates the feasibility of the sequential
garbled processor in hardware, and motivates further
research in this direction. GarbledCPU achieves ef-
ficiency and performance by leveraging the most re-
cent optimizations for GC [1,9,17,21], along with a
high-throughput pipelined GC evaluation on FPGA.
It outperforms the fastest software implementation in
the literature which relies on the Intel AES-NI [1].

e We extensively benchmark more complex functions
such as AES, Private Set Intersection (PSI), and Ham-
ming distance and evaluate them under our different
privacy settings using our framework and when appli-
cable, compare our performance with prior work.

2. PRELIMINARIES

In this section, we present an introduction to secure com-
putation and SFE in §2.1 and GC optimizations in §2.2.

2.1 Secure Computation and Garbled Circuit

Yao’s GC protocol [20] allows two parties, Alice and Bob,
to jointly compute a function f(xatice,ZBob) on their pri-
vate inputs (zarice and zpoy). Alice garbles the function f,
where f is represented as a Boolean circuit. To do this, Al-
ice maps the plain binary values of inputs and intermediate
gates’ outputs to random labels (keys). For each gate in the
circuit, an encrypted truth table is generated that allows
computation of the gate’s output label based on its input
labels. Alice sends the encrypted truth tables of all gates,
along with her corresponding encrypted input labels to Bob.
To compute f, Bob needs to know the labels corresponding
to his inputs without revealing them to Alice. For this, Bob
obtains his labels obliviously through a 1-out-of-2 Oblivious
Transfer (OT) protocol [15] and uses them to evaluate the
garbled circuit gate by gate. Finally, Alice provides a map-
ping from the encrypted output label to the plain output.

Two-party Private Function SFE (PF-SFE) allows secure
computation of a function faiice(+) held by Alice on Bob’s
data zpo» (Bob) while both the data and the function are
kept private, i.e., Bob learns fajice(TBob) but nothing else
about faice. This is in contrast to the usual setting of SFE
where the function is known to both parties. PF-SFE is
especially useful when the function is proprietary or classi-
fied. Traditionally, PF-SFE is realized by running SFE of
a Universal Circuit (UC) [8,10,18]. A UC is similar to a
Universal Turing Machine that receives a Turing machine
description f(-) and applies it to the input data on its tape.
Usage of UC results in complexity at least O(nlogn) for a
circuit with n gates [18].

2.2 GC Optimizations

Our GC evaluator architecture is based on fixed-key block
cipher garbling [1] and utilizes garbling sequential circuits
[17]. We also consider the most recent optimizations on GC:
the half-gates technique [21] allows to use two ciphertexts
for each non-XOR gate (instead of three) while still being
compatible with the free-XOR technique [9].

3. GARBLED PROCESSOR

The idea of garbling a processor was first introduced in [17]
as a solution for hiding the function in PF-SFE. Besides en-
abling PF-SFE, another advantage of a garbled processor is
usability for non-expert users since it can be programmed us-
ing high-level languages, whereas other frameworks for the
GC protocol require tedious Boolean circuit construction.
However, garbling and evaluating the entire processor in-
curs a tremendous cost compared to SFE solutions due to
stronger privacy requirements in PF-SFE.

Adversary Model. We assume an honest-but-curious (i.e.,
semi-honest or passive) adversary which is sufficient for most
practical scenarios to enable efficient protocols. This estab-
lishes the first step towards protocols with stronger security
guarantees against malicious or covert adversaries.

In this work, we propose GarbledCPU as a hardware-only
garbled processor framework for secure computation that
provides scalable support for generalized SFE with a relaxed
privacy setting but improved performance, besides the more
security-demanding PF-SFE, as well as a flavor in-between.
To avoid information leakage about the function (i.e., PF-
SFE), we use GarbledCPU with its full Instruction Set (IS),



which incurs a large overhead due to garbling and evaluating
of the entire IS. We can also compile the function using only
a subset of the IS: restricted IS (i.e., semi-private function).
A third alternative is public function mode in which the
function is compiled using only an application-specific subset
of the IS that is required for executing the function. In the
following, we discuss these modes of function evaluation and
the trade-off between privacy and performance further.

Figure 1 shows the overview of GarbledCPU for 2-party
computation between Alice (garbler) and Bob (evaluator).
Alice generates the garbled instructions and tables by gar-
bling the processor circuit for the selected IS mode and sends
them to Bob. He also receives his garbled input data through
OT from Alice without revealing his input to her. Bob evalu-
ates GarbledCPU and produces the garbled output. Eventu-
ally, Alice reveals the output map to Bob and he “ungarbles”
and learns the output data.

Garbled Oblivious
o—"n Die—0

Garbled
i Instructions bled
Alice Garbled GarbledCPU Bob
Tables
Output Output
o— Map Output»Q

Figure 1: Overview of GarbledCPU.

3.1 Garbled Processor for Public Functions

Using a general-purpose processor with its entire IS in
SFE results in garbling a large processor which is very costly
and unnecessary since both parties know the function in-
structions being executed but not their results. Hence, gar-
bling a limited application-specific IS for executing each in-
struction is sufficient to achieve privacy. In §5.3 we show
three examples of GarbledCPU with application-specific IS.
To further reduce the IS, assuming for example, a function
that consists of 10 instructions, we could theoretically gen-
erate 2' — 1 netlists (netlists of IS with different combina-
tions of the 10 instructions, excluding the netlist with zero
instructions). At run-time, one of these netlists is plugged
in (garbled and evaluated) at each instruction step depend-
ing on the expected instructions. However, to make it more
reasonable (generate fewer netlists), for functions with con-
trol flow independent of private data, we know in advance
which instruction will be executed at each step. Thus, we
need only the netlist of the processor implementing IS with
that specific instruction, restricting the required netlists in
this case to 10. For functions with control flow dependent on
private data, a simple static analysis can be used to specify
the combination of possible instructions at each step, and
hence the required IS netlist as proposed in [19].

3.2 Garbled Processor for Semi-Private Func-
tions

The main cost for garbling a processor with its entire
IS results from garbling circuits for expensive instructions
like multiplication and division. Most compilers are able
to avoid these costly instructions and replace them with
cheaper loops of shifts, addition, and subtraction instruc-
tions. This would eliminate the need for the Mult/Div unit
in the processor and reduce the cost of garbling per instruc-
tion on one hand. However on the other hand, one expensive
instruction will be replaced with multiple cheap instructions,

thus increasing the total number of instructions. For exam-
ple, multiplying two 32-bit numbers with the MULT instruc-
tion in MIPS requires 15 cycles and a circuit of 13,257 non-
XOR gates!, while it requires at least 31 cycles and a circuit
of 9.676 non-XOR gates when using a conditional loop over
an ADD instruction. We call this mode “semi-private” since
it only reveals partial information about instructions used
in the program (that the program does not use division/-
multiplication) and increases the probability of guessing an
instruction by reducing the subset of possible instructions
(restricted IS).

3.3 Garbled Processor for Private Functions

In the standard 2-party PF-SFE, Alice provides the func-
tion faiice(-) and Bob provides the input data zpo, and the
output i faice(Bob). In this work, GarbledCPU receives a
list of instructions as faiice(-) and applies them to the input
data xpop in memory and the output will be written back to
the memory. To avoid information leakage about the private
function, we use a general-purpose processor with its entire
IS (full IS).

4. GarbledCPU IMPLEMENTATION

We present our garbled processor in §4.1, a high perfor-
mance hardware architecture for GC to evaluate Garbled-
CPU in §4.2, and implementation challenges in §4.3.

4.1 MIPS

To implement GarbledCPU, we use the MIPS architecture
from the Plasma project in Opencores [16]. We chose the
single-cycle implementation of the 32-bit MIPS I instruction
set which is based on the Reduced Instruction Set Comput-
ing (RISC), making its Boolean representation among the
simplest of modern processors. Note that the gates should
be garbled/evaluated one after another in the GC protocol,
and it is challenging to benefit from physical level paral-
lelism that exists inherently in hardware. Thus, using a
multi-cycle, pipelined, or a more sophisticated architecture
not only complicates the implementation, but also counter-
intuitively, increases the overall cost of garbling for the same
functionality. The time required for garbling a circuit de-
pends only on the total number of gates and not the critical
path. In §5.3 we present the garbling cost for MIPS with
various memory sizes.

4.2 Our Hardware Architecture

To the best of our knowledge, the fastest implementation
of GC is JustGarble [1]. JustGarble is a software GC re-
alization using fixed-key AES garbling which benefits from
the AES-NI instruction set in modern Intel processors. Its
performance reaches about 20 clock cycles per gate for GC
evaluation. Prior to JustGarble, Jiarvinen et al. introduced
two hardware realizations for the GC protocol in [7]. How-
ever, their performance is much slower than JustGarble be-
cause JustGarble utilizes a more efficient fixed-key AES for
garbling instead of an expensive hash function. Thus, it
is possible that a hardware implementation leveraging the
latest GC optimizations including fixed-key AES garbling
would outperform JustGarble. Furthermore, a processor is

IXOR gates are evaluated freely in GC according to the
free-XOR optimization of [9].
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Figure 2: Our GC Evaluator Architecture.

essentially a sequential circuit and its evaluation requires
sequential GC which none of these works supports.

Our GC evaluator is based on the most recent optimiza-
tions listed in §2.2. Its architecture is shown in Figure 2 and
consists of: (1) Simple Circuit Description (SCD) memory:
read-only memory that stores the information about gates
in the MIPS circuit in SCD format [1,17]. (2) GC Label
memory: read-write random-access memory that stores GC
ciphertext labels of all wires in the corresponding MIPS cir-
cuit. (3) Garbled Tables (GT) memory: read-write random-
access memory that stores the ciphertext garbled tables of
each non-XOR gate in the MIPS circuit that are generated
by Alice (garbler). (4) Sequential Handler: controller that
supports evaluation of the sequential circuits with the GC
protocol. (5) Evaluator Engine: main functionality of GC
evaluation according to Yao’s GC protocol and its most re-
cent optimizations [1,9,17,21].

As shown in Figure 2, Bob’s input labels in the Label
memory are initialized by the OT protocol with Alice. The
rest of the labels in the Labels memory and the Garbled
Tables memory are received in clear-text from Alice.

Pipelined Evaluator Engine and Gate Dependency. To
maximize the performance of the GC evaluator, we use a 20-
stage pipelined AES implementation [6] inside our Evaluator
Engine module. It increases the throughput of the module
by increasing the maximum operating clock frequency of the
engine. We also add one stage for the rest of the GC eval-
uation functionality. Due to the free-XOR technique [9],
evaluating an XOR gate requires only XOR-ing the input
labels while evaluating a non-XOR gate requires two AES
encryptions (due to half-gates technique presented in §2.2,
and was one encryption before). Therefore, evaluation of an
XOR gate can be done in only one stage of the AES pipeline.
Different timing for XOR and non-XOR gates introduces a
challenge for handling dependencies of gates’ inputs and out-
put. A gate cannot enter the evaluation pipeline if its inputs
are another gate’s output which is not yet evaluated. This
results in pipeline stalls which degrade the overall perfor-
mance. To mitigate this, we push XOR gates to the latest
empty stage of the pipeline such that the subsequent depen-
dent gates can enter the pipeline as soon as possible.

4.3 Hardware Prototype Challenges

We only use on-chip memory for our proof-of-concept in
this work. However, this prototype can be extended to sup-
port interfacing with off-chip memory which would store gar-
bled tables and labels of larger garbled processor circuits and
functions. It can also interface with another FPGA emulator

of the garbler which generates the garbled tables and labels
and streams them to our evaluator. A wide range of sce-
narios are now feasible owing to our current hardware plat-
form and state-of-the-art optimized GC evaluator. Such ex-
tensions would incur additional area and performance over-
heads, but would allow upscaling of our implementation to
support garbled processor circuits and benchmarks in the
Gigabytes range. We emphasize that we provide in this work
a proof-of-concept prototype to motivate further research in
this direction to bring garbled processors some steps closer
to the realm of feasible practical implementations.

5. EVALUATION

We give our evaluation setup in §5.1, benchmarks in §5.2,
synthesis results in §5.3, and performance evaluation in §5.4.

5.1 Evaluation Setup

We create different instances of a single-cycle MIPS ar-
chitecture with specific, restricted, and full IS to support a
trade-off between efficiency and privacy. (Full IS was pro-
posed in [17] and is reported for comparison.) The different
MIPS instances are synthesized using Synopsys Design Com-
piler DC H-2013.03-SP4 to generate optimized sequential
Boolean circuits. These circuits are then evaluated on our
hardware GC evaluator implemented using Vivado 2014.4.1
on a Xilinx Virtex-7 FPGA.

5.2 Benchmarks

As benchmarks we used Hamming distance, private set
intersection and AES. We compile these benchmarks from
high-level C to MIPS binary using a MIPS cross-compiler.
For some benchmarks, assembly code manipulation allows
to reduce the number of clock cycles required. To assure
correctness of both benchmarks and IS under test, we sim-
ulate the resulting binary file using the Modelsim simulator
and calculate the number of required cycles to compute each
of the benchmarks, reported in Table 1, for accurate perfor-
mance measurements. For Hamming distance, the number
of cycles depends on the size of the input strings. In the PSI
benchmark, we compute a variant of PSI called PSI cardi-
nality (PSI-CA) where only the number of common elements
is revealed. The sets can have different sizes where each el-
ement is 32-bit. For AES, we assume that one party holds
a 128-bit message and the other party holds eleven round
keys each of 128-bit length to avoid unnecessary garbling
and evaluation of the round-key generation function.

Table 1: Number of required cycles to compute benchmarks.

Benchmark | Input Size | # of required cycles
Hamming Distance 16 218
Hamming Distance 32 426
Hamming Distance 64 842
Hamming Distance 128 1,674
PSI 64 7,267
PSI 128 14,267
AES (no key expansion) 128 6,178

5.3 Synthesis of the GarbledCPU IS

We synthesize the MIPS architecture, shown in Figure 3,
with Synopsys DC for different ISs and memory sizes: 32 to
512 32-bit words for instruction and data memories. Gen-
erating these Boolean circuits is a one-time process and the
circuits can be re-used without incurring further compila-
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Figure 3: Single-Cycle MIPS architecture.

tion costs. Table 2 shows the synthesis time and number of
non-XOR gates of the IS’s with different sizes of memories.

Table 2: Synthesis results of different variants of (IS)

Memory Size | Synthesis Time | # of Combinatorial | # of Sequential

(words) seconds (s) non-XOR gates gates
Hamming Distance-specific IS
DM, IM = 32 19.648 s 6,715 2,021
DM, IM = 64 31.692 s 9,830 3,046
DM, IM = 128 62.212 s 16,062 5,095
DM, IM = 256 167.398 s 28,493 9,192
DM, IM = 512 589.186 s 53,374 17,385
PSI-specific IS
DM, IM = 32 18.735 s 6,751 2,021
DM, IM = 64 31.117 s 9,866 3,046
DM, IM = 128 61.551 s 16,097 5,095
DM, IM = 256 163.564 s 28,529 9,192
DM, IM = 512 591.145 s 53,410 17,385
AES-specific IS
DM, IM = 256 | 169.498 s | 32,177 | 9,214
DM, IM = 512 | 594.047 5 | 61,570 | 17,406
ALU&Shift IS
DM, IM = 32 21.681 s 9,676 2,046
DM, IM = 64 34.588 s 12,702 3,070
DM, IM = 128 65.873 5 19,694 5,118
DM, IM = 256 170.974 s 34,071 9,214
DM, IM = 512 593.945 s 66,238 17,406
ALU-only IS
DM, IM = 32 19.599 s 8,136 2,046
DM, IM = 64 31.970 s 11,696 3,070
DM, IM = 128 62.599 s 18,316 5,118
DM, IM = 256 164.894 s 33,041 9,214
DM, IM = 512 598.986 s 65,183 17,406
Full IS [17]
DM, IM = 32 38.331 s 13,257 2,110
DM, IM = 64 50.446 s 16,818 3,134
DM, IM = 128 82.863 s 23,899 5,182
DM, IM = 256 189.157 s 38,118 9,278
DM, IM = 512 616.750 s 69,423 17,470

e Application-specific IS for public functions: We syn-
thesized three variants of the application-specific IS
where the selected instructions include only the ones
used by a particular function, for various memory sizes.
We create the application-specific IS for the three
benchmarks: Hamming distance?, PSI?, and AES?.

2 . . . .
Instructions required for Hamming distance are: Lw, Sw, ADD,
SUB, XOR, NOP, SLL and BEQ

3 . .
Instructions required for PSI are: Lw, sw, ADD, SUB, NOP, SLL,
BEQ, BNE and SLT

4 . .
Instructions required for AES are: Lw, LB, SW, SB, ADD, SUB,
AND, XOR, OR, NOP, SLL, SRL, BEQ, BNE, JAL, JR and SLT

e Restricted IS for semi-private functions: We synthe-
sized two variants of the restricted IS: one without
the Mult/Div unit and another without Mult/Div and
Shift units. Since the difference between the two de-
pends mainly on reducing the control logic and select
lines of multiplexers, the numbers of non-XOR, gates
for both are different. However, the number of flip-
flops are the same.

o Full IS [17] for private functions: We show full IS syn-
thesis results with different memory sizes in Table 2.

5.4 Performance Evaluation

Area. Table 3 shows the resource allocation and utilization
of our GC Evaluator on a Xilinx Virtex-7 FPGA. Note that
the FPGA utilization does not vary for different memory
sizes and instances of the MIPS processor since the eval-
uator logic remains unaltered. For different memory sizes
and IS instances, only the non-XOR gate count varies. This
only impacts the garbled labels and tables memory which
significantly affects the off-chip memory utilized for storing
the garbled tables, and the Block Random-Access Memory
(BRAM) resources utilization only to a small extent.

Table 3: Resource allocation and utilization of GarbledCPU GC
Evaluator on a Xilinx Virtex-7 FPGA.

Resource | Estimation | Utilization %
Flip-Flop (FF) 22,035 2.54
Slice LookUp Table (LUT) 21,229 4.90
BRAM 354 24
BUFG 2 6.25

Performance. Table 4 presents the runtime required to
evaluate GarbledCPU for one instruction in terms of clock
cycles and ps. Our GC evaluator operates at 100MHz on
the FPGA. This is used to compute an average evaluation
runtime of 1.1 clock cycles per gate for our pipelined GC
evaluator which translates to an average of 11ns per gate in
our FPGA implementation. The reported runtime can be
further improved by providing tighter timing constraints.

Comparison with Other Work. Table 5 shows a compar-
ison with other GC evaluator implementations. However,
for fairness, we are leveraging GC optimizations that were
not available at the time for [7]. We compare with our two
implementations, the 21-stage pipelined evaluator and un-
pipelined variant to show the effect of pipelining in improv-
ing our performance by a factor of 7.8. Table 5 compares our
results with interpolated results estimated for other works.
Results indicate that our pipelined GC evaluator FPGA im-
plementation takes 51x fewer clock cycles compared to the
fastest software implementation JustGarble [1]. Although
the CPU clock frequency (3.0GHz) is 30x faster than that
of our Virtex-7 FPGA (100MHz), our pipelined implementa-
tion would still be almost 2x faster than JustGarble in terms
of absolute time. Note that our implementation is just a pro-
totype on a reconfigurable FPGA as opposed to a custom
design of Intel AES-NI in CPU. Implementing GarbledCPU
on an ASIC would improve its performance in terms of ab-
solute time even further. Moreover, our implementation is
two orders of magnitude faster than the previously fastest
hardware implementation of [7].



Table 4: Performance of GarbledCPU for different (ISs) with dif-
ferent memory sizes at 100MHz clock frequency.

Memory Size (words) | 32 | 64 | 128 | 256 | 512
Hamming Distance-IS
# of non-XOR gates 6,715 9,830 | 16,062 | 28,493 | 53,374
Time per inst. (cc) 7,118 | 10,813 | 17,829 | 30,773 | 57,644
Time per inst. (us) 71.18 | 108.13 | 178.29 | 307.72 | 576.44
Avg. Time per gate (cc) 1.06 1.10 1.11 1.08 1.08
PSI-IS
# of non-XOR gates 6,751 9,866 | 16,097 | 28,529 | 53,410
Time per inst. (cc) 7,426 | 10,952 | 18,029 | 30,811 | 57,149
Time per inst. (us) 74.26 | 109.52 | 180.29 | 308.11 | 571.49

Avg. Time per gate (cc) 1.10 1.11 1.12 1.08 1.07
AES-specific IS

# of non-XOR gates - - - | 32,177 | 61,570
Time per inst. (cc) - - - | 35,717 | 68,343
Time per inst. (us) - - - | 357.17 | 683.43
Avg. Time per gate (cc) - - - 1.11 1.11
ALU&Shift-IS
7 of non-XOR gates 9,676 | 12,702 | 10,604 | 34,071 | 66,238
Time per inst. (cc) 10,644 | 13,972 | 22,057 | 36,115 | 71,537
Time per inst. (us) 106.44 | 139.72 | 220.57 | 361.15 | 715.37
Avg. Time per gate (cc) 1.10 1.10 1.12 1.06 1.08
ALU-only IS
# of non-XOR gates 8,136 | 11,696 | 18,816 | 33,041 | 65,183
Time per inst. (cc) 8,624 | 12,866 | 21,074 | 35,684 | 73,657
Time per inst. (us) 86.24 | 128.66 | 210.74 | 356.84 | 736.57
Avg. Time per gate (cc) 1.06 1.10 1.12 1.08 1.13
Full 1S [17]
Z of non-XOR gates 13,257 | 16,318 | 23,399 | 38,118 | 69,423
Time per inst. (cc) 14,848 | 18,668 | 25,811 | 40,786 | 77,060
Time per inst. (us) 148.48 | 186.68 | 258.11 | 407.86 | 770.60
Avg. Time per gate (cc) 1.12 1.11 1.08 1.07 1.11

Table 5: Comparing our GC evaluator implementation with other
works’ estimation for MIPS with 64-word memory.
Total time
(cc)
37,329,233 | 2,219.6
1,291,054 255.2

Method ||

cc/gate

Jirvinen et al. (SoC) [7]

Jéarvinen et al. (Stand-Alone FPGA) [7]
JustGarble (CPU) [1] 948,535 56.4
Our work w/o pipeline 144,635 8.6
Our work w/ pipeline 18,500 1.1

6. CONCLUSION

We introduce GarbledCPU, the first hardware realization
of a sequential CPU for secure evaluation of MIPS code.
GarbledCPU enables to evaluate either public, semi-private
or private function on secret inputs by trading-off between
privacy and performance. GarbledCPU is synthesized on a
Virtex-7 FPGA as a proof-of-concept implementation, and
we evaluated our framework for three benchmarks: Ham-
ming distance, private set intersection, and AES.
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