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A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones
of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction

Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones

and finitely-generated weighted relational clones [SICOMP’13], and asked whether this connection holds in
general. We answer this question in the affirmative for weighted (relational) clones with real weights and

show that the complexity of the corresponding valued CSPs is preserved.
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1. INTRODUCTION
The constraint satisfaction problem (CSP) is a general framework capturing decision
problems arising in many contexts of computer science [Hell and Nešetřil 2008]. The
CSP is NP-hard in general but there has been much success in finding tractable frag-
ments of the CSP by restricting the types of relations allowed in the constraints.
A set of allowed relations has been called a constraint language [Feder and Vardi
1998]. For some constraint languages, the associated constraint satisfaction problems
with constraints chosen from that language are solvable in polynomial-time, whilst
for other constraint languages this class of problems is NP-hard [Feder and Vardi
1998]; these are referred to as tractable languages and NP-hard languages, respec-
tively. Dichotomy theorems, which classify each possible constraint language as either
tractable or NP-hard, have been established for constraint languages over two-element
domains [Schaefer 1978], three-element domains [Bulatov 2006], for conservative (con-
taining all unary relations) constraint languages [Bulatov 2011], for maximal con-
straint languages [Bulatov et al. 2001; Bulatov 2004], for graphs (corresponding to
languages containing a single binary symmetric relation) [Hell and Nešetřil 1990], and
for digraphs (corresponding to languages containing a single binary relation) without
sources and sinks [Barto et al. 2009]. The most successful approach to classifying the
complexity of constraint languages has been the algebraic approach [Jeavons et al.
1997; Bulatov et al. 2005; Barto and Kozik 2014]. The dichotomy conjecture of Feder
and Vardi [Feder and Vardi 1998] asserts that every constraint language is either
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Society University Research Fellowship. A part of this work appeared in Proceedings of the 42nd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), 2015 [Fulla and Živný 2015].
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tractable or NP-hard, and the algebraic refinement of the conjecture specifies the pre-
cise boundary between tractable and NP-hard languages [Bulatov et al. 2005].

The valued constraint satisfaction problem (VCSP) is a general framework that cap-
tures not only feasibility problems but also optimisation problems [Cohen et al. 2006;
Živný 2012; Jeavons et al. 2014]. A VCSP instance represents each constraint by a
weighted relation, which is a Q-valued function where Q = Q ∪ {∞}, and the goal
is to find a labelling of variables minimising the sum of the values assigned by the
constraints to that labelling. Tractable fragments of the VCSP have been identified
by restricting the types of allowed weighted relations that can be used to define the
valued constraints. A set of allowed weighted relations has been called a valued con-
straint language [Cohen et al. 2006]. Dichotomy theorems, which classify each possi-
ble valued constraint language as either tractable or NP-hard, have been established
for valued constraint languages over two-element domains [Cohen et al. 2006], for
conservative (containing all {0, 1}-valued unary cost functions) valued constraint lan-
guages [Kolmogorov and Živný 2013], for finite-valued (all weighted relations are Q-
valued) constraint languages [Thapper and Živný 2013]. Moreover, it has been shown
that a dichotomy for constraint languages implies a dichotomy for valued constraint
languages [Kolmogorov et al. 2015a]. Finally, the power of the basic linear program-
ming relaxation [Thapper and Živný 2012; Kolmogorov et al. 2015b] and the power of
the Sherali-Adams relaxation [Thapper and Živný 2015c; 2015b] for valued constraint
languages have been completely characterised.

Cohen et al. have introduced an algebraic theory of weighted clones [Cohen et al.
2013], further extended in [Thapper and Živný 2015a; Kozik and Ochremiak 2015], for
classifying the computational complexity of valued constraint languages. This theory
establishes a one-to-one correspondence between valued constraint languages closed
under expressibility (which does not change the complexity of the associated class of
optimisation problems), called weighted relational clones, and weighted clones [Cohen
et al. 2013]. This is an extension of (a part of) the algebraic approach to CSPs which
relies on a one-to-one correspondence between constraint languages closed under pp-
definability (which does not change the complexity of the associated class of decision
problems), called relational clones, and clones [Bulatov et al. 2005], thus making it
possible to use deep results from universal algebra. This theory has been developed
primarily as an aid for studying the computational complexity of valued CSPS (and
indeed, recent progress on valued CSPs [Thapper and Živný 2012; 2013; Kolmogorov
et al. 2015b; Thapper and Živný 2015c; Kolmogorov et al. 2015a] and on special cases
of valued CSPs [Uppman 2013] heavily rely on the theory introduced in [Cohen et al.
2013]), but the theory is interesting in its own right [Thapper and Živný 2015a; Kozik
and Ochremiak 2015; Vančura 2014; Vaicenavičius 2014].

Contributions
The Galois connection between weighted clones and weighted relational clones estab-
lished in [Cohen et al. 2013] was proved only for weighted (relational) clones gener-
ated by a finite set. The authors asked whether such a correspondence holds also for
weighted (relational) clones in general. In this paper we answer this question in the
affirmative.

Firstly, we show that the Galois connection from [Cohen et al. 2013] (using only ra-
tional weights) does not work for general weighted (relational) clones. Secondly, we
alter the definition of weighted (relational) clones and establish a new Galois connec-
tion that holds even when the generating set has an infinite size. We allow weighted
relations and weightings to assign real weights instead of rational, require weighted
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relational clones to be closed under operator Opt and to be topologically closed, and
prove that these changes preserve tractability of a constraint language (albeit only in
an approximate sense).

Including the Opt operator (sometimes called argmin)1 in the definition of weighted
relational clones simplifies the structure of the space of all weighted clones, and guar-
antees that every non-projection polymorphism of a weighted relational clone Γ is as-
signed a positive weight by some weighted polymorphism of Γ. Indeed, including the
Opt operator is very natural and can be used to simplify several results in [Kozik and
Ochremiak 2015]. Real weights (as opposed to rational weights) were previously used,
in the context of valued CSPs, in [Thapper and Živný 2013] and our results confirm
that real weights are necessary when studying infinite weighted (relational) clones.

The proof of the Galois connection in [Cohen et al. 2013] relies on results on linear
programming duality; we use their generalisation from the theory of convex optimisa-
tion in order to establish the connection even for infinite sets.

2. BACKGROUND
2.1. Valued CSPs
Throughout the paper, let D be a fixed finite set of size at least two.

Definition 2.1. An m-ary relation2 over D is any mapping φ : Dm → {c,∞} for some
c ∈ Q. We denote by R

(m)
D the set of all m-ary relations and let RD =

⋃
m≥1 R

(m)
D .

Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m.
Let Q = Q ∪ {∞} denote the set of rational numbers with (positive) infinity.

Definition 2.2. An m-ary weighted relation over D is any mapping γ : Dm → Q. We
denote by Φ

(m)
D the set of all m-ary weighted relations and let ΦD =

⋃
m≥1 Φ

(m)
D .

From Definition 2.2 we have that relations are a special type of weighted relations.

Example 2.3. An important example of a (weighted) relation is the binary equality
φ= on D defined by φ=(x, y) = 0 if x = y and φ=(x, y) =∞ if x 6= y.

Another example of a relation is the unary empty relation φ∅ defined onD by φ∅(x) =
∞ for all x ∈ D.

For any m-ary weighted relation γ ∈ Φ
(m)
D , we denote by Feas(γ) = {x ∈ Dm | γ(x) <

∞} ∈ R
(m)
D the underlying feasibility relation, and by Opt(γ) = {x ∈ Feas(γ) | γ(x) ≤

γ(y) for every y ∈ Dm} ∈ R
(m)
D the relation of minimal-value tuples.

Definition 2.4. Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V
is an expression of the form γ(x) where γ ∈ Φ

(m)
D and x ∈ V m. The number m is called

the arity of the constraint, the weighted relation γ is called the constraint weighted
relation, and the tuple x the scope of the constraint.

We call D the domain, the elements of D labels (for variables), and say that the
weighted relations in ΦD take values or weights.

1Given a k-ary function f : Dk → Q, Opt(f) is the k-ary relation over D of minimal-value tuples of f .
2An m-ary relation R over D is commonly defined as a subset of Dm. For the corresponding mapping
φ : Dm → {0,∞} it holds φ(x) = 0 when x ∈ R and φ(x) = ∞ otherwise. We shall use both defini-
tions interchangeably. Because two mappings that differ only by a constant are usually equivalent for our
purposes, we consider mappings Dm → {c,∞} to be relations even if c 6= 0.
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Definition 2.5. An instance of the valued constraint satisfaction problem (VCSP) is
specified by a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and an
objective function I expressed as follows:

I(x1, . . . , xn) =

q∑
i=1

γi(xi) , (1)

where each γi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can appear
multiple times in I.

The goal is to find an assignment (or a labelling) of labels to the variables that min-
imises I.

CSPs are a special case of VCSPs using only (unweighted) relations with the goal to
determine the existence of a feasible assignment.

Definition 2.6. Any set Γ ⊆ ΦD is called a (valued) constraint language over D, or
simply a language. We will denote by VCSP(Γ) the class of all VCSP instances in which
the constraint weighted relations are all contained in Γ.

Definition 2.7. A constraint language Γ is called tractable if VCSP(Γ′) can be solved
(to optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called in-
tractable if VCSP(Γ′) is NP-hard for some finite Γ′ ⊆ Γ.

We refer the reader to a recent survey [Jeavons et al. 2014] for more information on
the computational complexity of constraint languages.

2.2. Weighted relational clones
Definition 2.8. A weighted relation γ of arity r can be obtained by addition from the

weighted relation γ1 of arity s and the weighted relation γ2 of arity t if γ satisfies the
identity

γ(x1, . . . , xr) = γ1(y1, . . . , ys) + γ2(z1, . . . , zt) (2)
for some (fixed) choice of y1, . . . , ys and z1, . . . , zt from amongst x1, . . . , xr.

Definition 2.9. A weighted relation γ of arity r can be obtained by minimisation
from the weighted relation γ′ of arity r + s if γ satisfies the identity

γ(x1, . . . , xr) = min
(y1,...,ys)∈Ds

γ′(x1, . . . , xr, y1, . . . , ys) . (3)

Definition 2.10. A constraint language Γ ⊆ ΦD is called a weighted relational clone
if it contains the binary equality relation φ= and the unary empty relation φ∅,3 and is
closed under addition, minimisation, scaling by non-negative rational constants, and
addition of rational constants.

For any Γ, we define wRelClone(Γ) to be the smallest weighted relational clone con-
taining Γ.

Note that for any weighted relational clone Γ, if γ ∈ Γ then Feas(γ) ∈ Γ as Feas(γ) =
0γ (we define 0 · ∞ =∞).

Definition 2.11. Let Γ ⊆ ΦD be a constraint language, I ∈ VCSP(Γ) an instance
with variables V , and L = (v1, . . . , vr) a list of variables from V . The projection of I
onto L, denoted πL(I), is the r-ary weighted relation on D defined as

πL(I)(x1, . . . , xr) = min
{s:V→D | (s(v1),...,s(vr))=(x1,...,xr)}

I(s) . (4)

3Although the definition in [Cohen et al. 2013] does not require the inclusion of φ∅, the proofs there implicitly
assume its presence in any weighted relational clone.
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We say that a weighted relation γ is expressible over a constraint language Γ if γ =
πL(I) for some I ∈ VCSP(Γ) and list of variables L. We call the pair (I, L) a gadget for
expressing γ over Γ.

The list of variables L in a gadget may contain repeated entries. The minimum over
an empty set is∞.

Example 2.12. For any Γ ⊆ ΦD, we can express the binary equality relation φ=

on D over language Γ using the following gadget. Let I ∈ VCSP(Γ) be the instance
with a single variable v and no constraints, and let L = (v, v). Then, by Theorem 2.11,
πL(I) = φ=.

We may equivalently define a weighted relational clone as a set Γ ⊆ ΦD that contains
the unary empty relation φ∅ and is closed under expressibility, scaling by non-negative
rational constants, and addition of rational constants [Cohen et al. 2013, Proposition
4.5].

The following result has been shown in [Cohen et al. 2013].

THEOREM 2.13. A constraint language Γ is tractable if and only if wRelClone(Γ) is
tractable, and Γ is intractable if and only if wRelClone(Γ) is intractable.

Consequently, when trying to identify tractable constraint languages, it is sufficient
to consider only weighted relational clones.

2.3. Weighted clones
Any mapping f : Dk → D is called a k-ary operation. We will apply a k-ary operation f
to k m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that is,

f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) ∈ Dm . (5)

Definition 2.14. Let γ be an m-ary weighted relation on D and let f be a k-ary
operation on D. Then f is a polymorphism of γ if, for any (x1, . . . ,xk) ∈ (Feas(γ))k, we
have f(x1, . . . ,xk) ∈ Feas(γ).

For any constraint language Γ over a set D, we denote by Pol(Γ) the set of all opera-
tions on D which are polymorphisms of all γ ∈ Γ. We write Pol(γ) for Pol({γ}).

A k-ary projection is an operation of the form e
(k)
i (x1, . . . , xk) = xi for some 1 ≤ i ≤ k.

Projections are (trivial) polymorphisms of all constraint languages.

Definition 2.15. The superposition of a k-ary operation f : Dk → D with k `-ary
operations gi : D` → D for 1 ≤ i ≤ k is the `-ary function f [g1, . . . , gk] : D` → D defined
by

f [g1, . . . , gk](x1, . . . , x`) = f(g1(x1, . . . , x`), . . . , gk(x1, . . . , x`)) . (6)

Definition 2.16. A clone of operations, C, is a set of operations on D that contains
all projections and is closed under superposition. The k-ary operations in a clone C will
be denoted by C(k).

Example 2.17. For any D, let JD be the set of all projections on D. By Defini-
tion 2.16, JD is a clone.

It is well known that Pol(Γ) is a clone for all constraint languages Γ.

Definition 2.18. A k-ary weighting of a clone C is a function ω : C(k) → Q such that
ω(f) < 0 only if f is a projection and∑

f∈C(k)

ω(f) = 0 . (7)
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We will call a function ω : C(k) → Q that satisfies Equation (7) but assigns a negative
weight to some operation f 6∈ J

(k)
D an improper weighting. In order to emphasise the

distinction we may also call a weighting a proper weighting.
When specifying a weighting, we often write it as a weighted sum of operations (i.e.∑
ω(f) · f ) without any zero terms.

Definition 2.19. For any clone C, any k-ary weighting ω of C, and any g1, . . . , gk ∈
C(`), the superposition of ω and g1, . . . , gk is the function ω[g1, . . . , gk] : C(`) → Q defined
by

ω[g1, . . . , gk](f ′) =
∑

f∈C(k) ∧ f [g1,...,gk]=f ′

ω(f) . (8)

By convention, the value of an empty sum is 0.
If the result of a superposition is a proper weighting (that is, negative weights are

only assigned to projections), then that superposition will be called a proper superpo-
sition.

Definition 2.20. A weighted clone, Ω, is a non-empty set of weightings of some fixed
clone C, called the support clone of Ω, which is closed under scaling by non-negative
rational constants, addition of weightings of equal arity, and proper superposition with
operations from C.

We now link weightings and weighted relations by the concept of weighted polymor-
phism, which will allow us to establish a correspondence between weighted clones and
weighted relational clones.

Definition 2.21. Let γ be an m-ary weighted relation on D and let ω be a k-ary
weighting of a clone C of operations on D. We call ω a weighted polymorphism of γ if
C ⊆ Pol(γ) and for any (x1, . . . ,xk) ∈ (Feas(γ))k, we have∑

f∈C(k)

ω(f) · γ(f(x1, . . . ,xk)) ≤ 0 . (9)

If ω is a weighted polymorphism of γ, we say that γ is improved by ω.

Example 2.22. Let D = {0, 1} with ordering 0 < 1. Binary operations min and max
return the smaller and larger of their two arguments respectively. A function γ : Dk →
Q is submodular if it satisfies γ(x1) + γ(x2) ≥ γ(min(x1,x2)) + γ(max(x1,x2)) for all
x1,x2. Clearly, submodular functions are improved by the binary weighting ω = −e(2)

1 −
e

(2)
2 + min + max.

Definition 2.23. For any Γ ⊆ ΦD, we define wPol(Γ) to be the set of all weightings
of Pol(Γ) which are weighted polymorphisms of all weighted relations γ ∈ Γ. We write
wPol(γ) for wPol({γ}).

Definition 2.24. We denote by WC the set of all possible (proper) weightings of clone
C, and define WD to be the union of the sets WC over all clones C on D.

Any Ω ⊆WD may contain weightings of different clones over D. We can then extend
each of these weightings with zeros, as necessary, so that they are weightings of the
same clone C, where C is the smallest clone containing all the clones associated with
weightings in Ω.

Definition 2.25. We define wClone(Ω) to be the smallest weighted clone containing
this set of extended weightings obtained from Ω.
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For any Ω ⊆WD, we denote by Imp(Ω) the set of all weighted relations in ΦD which
are improved by all weightings ω ∈ Ω.

The main result in [Cohen et al. 2013] establishes a 1-to-1 correspondence between
weighted relational clones and weighted clones.

THEOREM 2.26 ([COHEN ET AL. 2013]).

(1) For any finite D and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).
(2) For any finite D and any finite Ω ⊆WD, wPol(Imp(Ω)) = wClone(Ω).

Thus, when trying to identify tractable constraint languages, it is sufficient to consider
only languages of the form Imp(Ω) for some weighted clone Ω.

3. RESULTS
First we show that Theorem 2.26 can be slightly extended to certain constraint lan-
guages and sets of weightings of infinite size.

THEOREM 3.1.

(1) Let Γ ⊆ ΦD. Then Imp(wPol(Γ)) = wRelClone(Γ) if and only if wRelClone(Γ) =
Imp(Ω) for some Ω ⊆WD.

(2) Let Ω ⊆ WD. Then wPol(Imp(Ω)) = wClone(Ω) if and only if wClone(Ω) = wPol(Γ)
for some Γ ⊆ ΦD.

PROOF. We will only prove the first case as the second one is analogous.
Suppose that wRelClone(Γ) = Imp(Ω) for some Ω ⊆ WD. As Γ ⊆ wRelClone(Γ),

every weighting in Ω improves Γ, hence Ω ⊆ wPol(Γ) and Imp(wPol(Γ)) ⊆ Imp(Ω) =
wRelClone(Γ). The inclusion wRelClone(Γ) ⊆ Imp(wPol(Γ)) follows from the fact that
Imp(wPol(Γ)) is a weighted relational clone [Cohen et al. 2013, Proposition 6.2] that
contains Γ.

The converse implication holds trivially for Ω = wPol(Γ).

We remark that any finitely generated weighted relational clone on a finite domain
satisfies, by Theorem 2.26 (1), the condition of Theorem 3.1 (1). Similarly, any finitely
generated weighted clone on a finite domain, by Theorem 2.26 (2), satisfies the condi-
tion of Theorem 3.1 (2).

However, our next result shows that Theorem 2.26 does not hold for all infinite con-
straint languages and infinite sets of weightings.

THEOREM 3.2.

(1) There is a finite D and an infinite Γ ⊆ ΦD with Imp(wPol(Γ)) 6= wRelClone(Γ).
(2) There is a finite D and an infinite Ω ⊆WD with wPol(Imp(Ω)) 6= wClone(Ω).

Our aim is to establish a Galois connection even for infinite sets of weighted relations
and weightings. As we demonstrate in the proof of Theorem 3.2, this cannot be done
when restricted to rational weights; hence we allow weighted relations and weight-
ings to assign real-valued weights. To distinguish them from their formerly defined
rational-valued counterparts, we will use a subscript/superscript R.

We will show in Theorem 5.9 that wPolR(Γ) is topologically closed (in a natural topol-
ogy defined later) for any set of weighted relations Γ; analogously, in Theorem 5.10 we
will show that ImpR(Ω) is topologically closed for any set of weightings Ω. Therefore,
our new definitions of weighted (relational) clones require them to be topologically
closed.

Inspired by weighted pp-definitions [Thapper 2010], we extend the notion of
weighted relational clones: we require them to be closed also under operator Opt.
This change is justified by Theorem 5.13 in which we prove that the inclusion of Opt
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preserves tractability. In order to retain the one-to-one correspondence with weighted
clones, we need to alter their definition too: weightings now assign weights to all op-
erations and hence are independent of the support clone (which becomes meaningless
and we discard it).

Including the Opt operator brings two advantages to the study of weighted clones.
Firstly, it slightly simplifies the structure of the space of all weighted clones. According
to the original definition, a weighted clone is determined by its support clone and the
set of weightings it consists of; by our definition a weighted clone equals the set of its
weightings. Secondly, any non-projection polymorphism of a weighted relational clone
Γ is assigned a positive weight by some weighted polymorphism of Γ (see Theorem 5.8).

Our main result is the following theorem, which holds for our new definition of real-
valued weightings and weighted relations.

THEOREM 3.3 (MAIN).

(1) For any finite D and any Γ ⊆ ΦR
D, ImpR(wPolR(Γ)) = wRelCloneR(Γ).

(2) For any finite D and any Ω ⊆WR
D, wPolR(ImpR(Ω)) = wCloneR(Ω).

Finally, we show that taking the weighted relational clone of a constraint language
preserves solvability with an absolute error bounded by ε (for any ε > 0), and demon-
strate certain difficulties with proving that it preserves exact solvability.

4. PROOF OF THEOREM 3.2
In this section we will prove Theorem 3.2, which we state here as two lemmas.

LEMMA 4.1. There is a finite D and an infinite Γ ⊆ ΦD with Imp(wPol(Γ)) 6=
wRelClone(Γ).

PROOF. We set the domain to be D = {0, 1, 2} and choose a positive irrational num-
ber t. Let U ⊆ Φ

(1)
D be the set of unary weighted relations ρ such that

ρ(2)− ρ(0) ≥ (1 + t) · (ρ(1)− ρ(0)) (10)

holds whenever ρ(0), ρ(1), ρ(2) are all finite. It is easy to show that U is closed under ad-
dition, scaling by non-negative rational constants, and addition of rational constants.

For any rational u < t, we define a unary weighted relation µ−u ∈ U such that µ−u (0) =
0, µ−u (1) = −1, and µ−u (2) = −1− u. For any rational v > t, we define a unary weighted
relation µ+

v ∈ U such that µ+
v (0) = 0, µ+

v (1) = 1, and µ+
v (2) = 1 + v. It is easy to verify

that these weighted relations belong to U . Set U also contains any unary (unweighted)
relation.

Let us define Γ ⊆ ΦD as the set of weighted relations γ that can be written as

γ(x1, . . . , xr) =

r∑
i=1

ρi(xi) +
∑

(i,j)∈S

φ=(xi, xj) , (11)

where r equals the arity of γ, ρi ∈ U for all i, φ= is the binary equality relation, and S
is an equivalence relation on {1, . . . , r}. We claim that Γ is a weighted relational clone.
It certainly contains φ= and φ∅, and is closed under addition, scaling by non-negative
rational constants, and addition of rational constants (as set U is closed under these
operations). It is also closed under minimisation. Without loss of generality, let us
assume we minimise an r-ary weighted relation γ (r ≥ 2) over the last variable (xr). If
the equivalence class of r in S is a singleton, we simply add the value of minxr∈D ρr(xr)
to (say) ρ1. Otherwise, we can pick any i 6= r such that (i, r) ∈ S and replace weighted
relation ρi with ρi + ρr.
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We want to determine which weightings improve Γ. Let ω ∈ wPol(k)(Γ) be a k-ary
weighting and x ∈ Dk. For any a ∈ D, we will denote by sa the sum of weights ω(f) of
all operations f such that f(x) = a. Note that s0 + s1 + s2 = 0. For any rational v > t,
weighting ω improves µ+

v ∈ Γ, so we get s1 + (1 + v) · s2 ≤ 0 and therefore v · s2 ≤ s0.
Similarly, for any rational u < t, weighting ω improves µ−u ∈ Γ, and therefore s0 ≤ u ·s2.
We can choose both u and v arbitrarily close to t, so it must hold s0 = t · s2. However,
s0 and s2 are rational while t is not. Therefore, we must have s0 = s1 = s2 = 0 for any
weighting ω ∈ wPol(k)(Γ) and any x ∈ Dk.

Now, let us consider the unary weighted relation ρ defined as ρ(0) = 0 and ρ(1) =
ρ(2) = 1. It follows from the previous paragraph that any weighting ω ∈ wPol(Γ)
improves ρ, i.e. ρ ∈ Imp(wPol(Γ)). However, ρ 6∈ Γ = wRelClone(Γ), so we get
Imp(wPol(Γ)) 6= wRelClone(Γ).

LEMMA 4.2. There is a finite D and an infinite Ω ⊆ WD with wPol(Imp(Ω)) 6=
wClone(Ω).

PROOF. We set the domain to be D = {0, 1, 2} and choose a positive irrational num-
ber t. Let C be the set of all operations f such that f(0, . . . , 0) = 0. Clearly, C contains
all projections and is closed under superposition; hence it is a clone. Let us define a
set of weightings Ω ⊆WD of the support clone C. For any arity k ≥ 1, Ω(k) consists of
weightings ω such that for all x ∈ Dk,

t ·
∑

f(x)=2

ω(f) ≤
∑

f(x)=0

ω(f) . (12)

It is easy to check that Ω is closed under addition of weightings and non-negative
scaling. To show that it is also closed under superposition, let us consider any sequence
of `-ary operations g1, . . . , gk and x ∈ D`. For any a ∈ D we have∑

f(x)=a

ω[g1, . . . , gk](f) =
∑

f [g1,...,gk](x)=a

ω(f) =
∑

f(y)=a

ω(f) , (13)

where y = (g1(x), . . . , gk(x)). As ω satisfies Inequality (12) for vector y, the superposi-
tion ω[g1, . . . , gk] satisfies it for vector x. Therefore, Ω is a weighted clone.

Let us denote by c0 the unary constant zero operation, by f, g the unary operations
and by h the binary operation such that

f(x) =


0 for x = 0

0 for x = 1

2 for x = 2

, g(x) =


0 for x = 0

2 for x = 1

2 for x = 2

, h(x, y) =


1 for x = 0 ∧ y = 2

2 for x = 2 ∧ y = 2

0 otherwise
. (14)

We denote by ω0 the unary weighting −e(1)
1 + c0. For any rational v > t, we define a

unary weighting µ
(1)
v = −(1 + v) · e(1)

1 + v · f + g. For any positive rational u < t, we
define a binary weighting µ(2)

u = −u · e(2)
1 − e

(2)
2 + (1 + u) · h. It is easy to show that all

these weightings belong to Ω.
We will show that all weighted relations improved by Ω are relations, i.e. Imp(Ω) ⊆

RD. Suppose, to the contrary, that there is an r-ary weighted relation γ ∈ Imp(Ω) that
is not a relation. First, we obtain from it a ternary weighted relation with the same
property. Weighting ω0 improves γ, so we have γ(0) ≤ γ(x) for all x ∈ Feas(γ), where
0 = c0(x) is the zero r-tuple. As γ is not a relation, there must be an r-tuple z =
(z1, . . . , zr) ∈ Feas(γ) for which γ(0) < γ(z). Let us define a ternary weighted relation ρ
so that ρ(x0, x1, x2) = γ(xz1 , . . . , xzr ). It holds that ρ(0, 0, 0) = γ(0) and ρ(0, 1, 2) = γ(z),
so ρ(0, 0, 0) < ρ(0, 1, 2) <∞. Moreover, ρ ∈ Imp(Ω).
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For any rational v > t, weighting µ
(1)
v improves ρ. As (0, 1, 2) ∈ Feas(ρ), we also

have (f(0), f(1), f(2)) = (0, 0, 2) ∈ Feas(ρ), (g(0), g(1), g(2)) = (0, 2, 2) ∈ Feas(ρ), and the
inequality

ρ(0, 2, 2)− ρ(0, 1, 2) ≤ v · (ρ(0, 1, 2)− ρ(0, 0, 2)) . (15)

For any positive rational u < t, weighting µ(2)
u improves ρ. As (0, 0, 2), (0, 2, 2) ∈ Feas(ρ),

we get
ρ(0, 2, 2)− ρ(0, 1, 2) ≥ u · (ρ(0, 1, 2)− ρ(0, 0, 2)) . (16)

We can choose both u and v arbitrarily close to t, so it must hold

ρ(0, 2, 2)− ρ(0, 1, 2) = t · (ρ(0, 1, 2)− ρ(0, 0, 2)) . (17)

However, weights assigned by ρ are rational while t is not. Therefore, ρ(0, 0, 2) =

ρ(0, 1, 2) = ρ(0, 2, 2). Similarly, by applying weightings µ
(2)
u to (0, 0, 0), (0, 0, 2) and

weightings µ(1)
v to (0, 0, 1) we obtain ρ(0, 0, 0) = ρ(0, 0, 1) = ρ(0, 0, 2), which contradicts

ρ(0, 0, 0) < ρ(0, 1, 2). Therefore, Imp(Ω) contains only (unweighted) relations.
Now, let us consider the unary weighting ω = −e(1)

1 + g. Although it does not belong
to Ω = wClone(Ω) (it violates Inequality (12) for x = (1)), ω certainly improves any
γ ∈ Imp(Ω). Therefore, wPol(Imp(Ω)) 6= wClone(Ω).

5. NEW GALOIS CONNECTION
In this section we will prove our main results. In Section 5.1, we will describe the dif-
ferences between the previous definitions of weighted (relational) clones (as they were
defined in [Cohen et al. 2013] and presented in Section 2 and the first part of Section 3)
and our new definitions. Section 5.2 proves the main result, which establishes a 1-to-1
correspondence between weighted relational clones and weighted clones. Finally, Sec-
tion 5.3 is devoted to computational-complexity consequences of our results.

5.1. Preliminaries
Let R = R ∪ {∞} denote the set of real numbers with (positive) infinity. We will allow
weights in relations and weighted relations, as defined in Definition 2.1 and 2.2 re-
spectively, to be real numbers. In other words, an m-ary weighted relation γ on D is a
mapping γ : Dm → R. We will add a subscript/superscript R to the notation introduced
in Section 2 in order to emphasise the use of real weights.

For any fixed arity m and any F ⊆ Dm, consider the set of all m-ary weighted rela-
tions γ ∈ ΦR

D with Feas(γ) = F . Let us denote this set by H and equip it with the inner
product defined as

〈α, β〉 =
∑
x∈F

α(x) · β(x) (18)

for any α, β ∈ H; H is then a real Hilbert space. Set ΦR
D is a disjoint union of such

Hilbert spaces for all m and F , and therefore a topological space with the disjoint
union topology induced by inner products on the underlying Hilbert spaces. When we
say a set of weighted relations is open/closed, we will be referring to this topology.

Definition 5.1. A constraint language Γ ⊆ ΦR
D is called a weighted relational clone

if it contains the binary equality relation φ= and the unary empty relation φ∅, is closed
under addition, minimisation, scaling by non-negative real constants, addition of real
constants, and operator Opt, and is topologically closed.

For any Γ, we define wRelCloneR(Γ) to be the smallest weighted relational clone
containing Γ.
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As opposed to Theorem 2.10, our new definition requires weighted relational clones
to be closed under operator Opt. In order to establish a Galois connection now, we need
to make an adjustment to the definition of weighted clone too. We will discard the
explicit underlying support clone; instead, (k-ary) weightings will assign weights to all
(k-ary) operations. The role of the support clone of a weighted clone Ω is then taken
over by supp(Ω) (see Theorem 5.7).

We denote by O(k)
D the set of all k-ary operations on D and let OD =

⋃
k≥0O

(k)
D .

Definition 5.2. A k-ary weighting is a function ω : O(k)
D → R such that ω(f) < 0 only

if f is a projection and ∑
f∈O(k)

D

ω(f) = 0 . (19)

We define supp(ω) as

supp(ω) = J
(k)
D ∪

{
f ∈ O(k)

D

∣∣∣ ω(f) > 0
}
. (20)

We will call a function ω : O(k)
D → R that satisfies Equation (19) but assigns a neg-

ative weight to some operation f 6∈ J
(k)
D an improper weighting. In order to emphasise

the distinction we may also call a weighting a proper weighting.

We denote by WR
D the set of all weightings on domain D. For any fixed arity k,

consider the set H of all functions O(k)
D → R equipped with the inner product defined

as

〈α, β〉 =
∑

f∈O(k)
D

α(f) · β(f) (21)

for any α, β ∈ H; H is then a real Hilbert space. Set WR
D lies in the disjoint union

of such Hilbert spaces for all k, which is a topological space with the disjoint union
topology induced by inner products on the underlying Hilbert spaces. When we say
a set of weightings is open/closed, we will be referring to this topology. Clearly, any
closure point of a set of weightings is itself a weighting.

Definition 5.3. Let Ω be a non-empty set of weightings on a fixed domain D. We
define supp(Ω) = JD ∪

⋃
ω∈Ω supp(ω).

We call Ω a weighted clone if it is closed under scaling by non-negative real constants,
addition of weightings of equal arity, and proper superposition with operations from
supp(Ω), and is topologically closed.

It is often convenient to build a desired proper weighting by taking a sum of (pos-
sibly) improper superpositions. The following lemma, which is an analogue of [Cohen
et al. 2013, Lemma 6.4], shows that weighted clones are closed under such construc-
tions.

LEMMA 5.4. Let Ω be a weighted clone, ω1, . . . , ωn ∈ Ω, and c1, . . . , cn ≥ 0. We will
denote the arity of weighting ωi by `i. For any 1 ≤ i ≤ n and 1 ≤ j ≤ `i, let gi,j ∈ supp(Ω)
be a k-ary operation (for some fixed arity k). If the k-ary weighting µ defined as

µ =

n∑
i=1

ci · ωi[gi,1, . . . , gi,`i ] (22)

is proper, then µ ∈ Ω.
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PROOF. We show that weighting µ can be constructed using proper superpositions
only.

Let us denote
∑

1≤i≤n `i by t. For any 1 ≤ m ≤ n, let sm =
∑

1≤i<m `i. A super-
position with projections is always proper (as all negative weights are transferred to
projections), and therefore the t-ary weighting µ′ defined as

µ′ =

n∑
i=1

ci · ωi
[
e

(t)
si+1, . . . , e

(t)
si+`i

]
(23)

belongs to Ω. Since µ = µ′[g1,1, . . . , g1,`1 , g2,1, . . . , gn,`n ], we get µ ∈ Ω.

The following lemma has also been observed in [Kozik and Ochremiak 2015; Thap-
per and Živný 2015c].

LEMMA 5.5. Let Ω be a weighted clone. Then supp(Ω) is a clone.

PROOF. We will denote supp(Ω) by C. Since it contains all projections, we only need
to show that it is closed under superposition.

Let f ∈ C(k) and g1, . . . , gk ∈ C(`). If f [g1, . . . , gk] is a projection or is equal to gi for
some i, then it clearly belongs to C. Otherwise, f is not a projection and therefore there
is a k-ary weighting ω ∈ Ω for which ω(f) > 0. Weighting ω[g1, . . . , gk] certainly assigns
a positive weight to f [g1, . . . , gk] (we are using the fact that only operations g1, . . . , gk
may receive negative weight from projections in ω). However, it is possibly improper,
as it may assign a negative weight to some gi that is not a projection.

We denote by G the set of such operations g ∈ {g1, . . . , gk} that are not projections
and ω[g1, . . . , gk](g) < 0. For any g ∈ G, there is an `-ary weighting µg ∈ Ω for which
µg(g) > 0. Then the `-ary weighting defined as

ω[g1, . . . , gk] +
∑
g∈G

−ω[g1, . . . , gk](g)

µg(g)
· µg (24)

is proper, belongs to Ω (by Theorem 5.4), and assigns a positive weight to
f [g1, . . . , gk].

Again, we link weightings and weighted relations by the concept of weighted poly-
morphism.

Definition 5.6. Let γ be an m-ary weighted relation on D and let ω be a k-ary
weighting on D. We call ω a weighted polymorphism of γ if supp(ω) ⊆ Pol(γ) and for
any (x1, . . . ,xk) ∈ (Feas(γ))k, we have∑

f∈supp(ω)

ω(f) · γ(f(x1, . . . ,xk)) ≤ 0 . (25)

If ω is a weighted polymorphism of γ we say that γ is improved by ω. We will denote
the set of weighted polymorphisms of Γ by wPolR(Γ) and the set of weighted relations
improved by Ω by ImpR(Ω).

The next lemma shows that supp(Ω) consists of all polymorphisms of ImpR(Ω) and
hence fulfills the same role as the support clone in Theorem 2.20.

LEMMA 5.7. Let Ω ⊆WR
D be a weighted clone. Then supp(Ω) = Pol(ImpR(Ω)).

PROOF. We will denote supp(Ω) by C. Projections are polymorphisms of every
weighted relation, and any operation f with ω(f) > 0 for some ω ∈ Ω is a polymorphism
of ImpR(Ω) by the definition of weighted polymorphism. Therefore, C ⊆ Pol(ImpR(Ω)).
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Let Inv(C) be the set of (unweighted) relations over D that are invariant under all
operations from C (i.e. operations from C are their polymorphisms). As any relation
invariant under supp(ω) is also improved by ω, we have Inv(C) ⊆ ImpR(Ω) and thus
Pol(ImpR(Ω)) ⊆ Pol(Inv(C)) = C (the last equality follows from the Galois connection
between relational clones and clones of operations [Bodnarčuk et al. 1969; Geiger 1968]
and Theorem 5.5).

The following corollary has been observed in the context of Min-Sol-Hom and Min-
Cost-Hom [Uppman 2013] by Hannes Uppman.4

COROLLARY 5.8. Let Γ ⊆ ΦR
D be a weighted relational clone. Then

supp(wPolR(Γ)) = Pol(Γ).

PROOF. We are going to use the Galois connection established later in Section 5.2.
As wPolR(Γ) is a weighted clone (Theorem 5.9), by Theorem 5.7 we have

supp(wPolR(Γ)) = Pol(ImpR(wPolR(Γ))) = Pol(Γ) (the last equality follows from The-
orem 5.11).

Finally, we introduce some notation that will be used throughout Section 5.2. A se-
quence of k m-tuples over D can be written as X = (x1, . . . ,xk) ∈ (Dm)k. By XT we
will denote the transpose of X, i.e. the sequence of m k-tuples (y1, . . . ,ym) ∈ (Dk)m

such that yi = (x1[i], . . . ,xk[i]). Let f be a k-ary operation; we denote by f(X) the m-
tuple obtained by applying f coordinatewise to x1, . . . ,xk, i.e. f(X) = f(x1, . . . ,xk) =
(f(y1), . . . , f(ym)).

Let γ ∈ ΦR
D be a weighted relation and ω ∈ WR

D a k-ary weighting with supp(ω) ⊆
Pol(γ). Let us denote by H the Hilbert space of functions Pol(k)(γ)→ R with the inner
product analogous to (21). As weighting ω assigns non-zero weights only to operations
from supp(ω) ⊆ Pol(k)(γ), we can identify ω with its restriction to Pol(k)(γ). For any
X ∈ (Feas(γ))k, we denote by γ[X] the vector in H such that γ[X](f) = γ(f(X)) for all
f ∈ Pol(k)(γ). Inequality (25) can be then written as 〈ω, γ[X]〉 ≤ 0.

The (internal) polar cone K◦ of a set K ⊆ H is defined as

K◦ =
{
α ∈ H

∣∣∣ 〈α, β〉 ≤ 0 for all β ∈ K
}
. (26)

It is well known ([Boyd and Vandenberghe 2004; Hiriart-Urruty and Lemaréchal
2001]) that K◦ is a convex cone, i.e. K◦ is closed under addition of vectors and scaling
by non-negative constants. Moreover, K◦ is topologically closed, and K◦◦ = (K◦)◦ is
the closure of the smallest convex cone containing K.5

Let

K =
{
γ[X]

∣∣ X ∈ (Feas(γ))k
}
. (27)

Weighting ω is then a weighted polymorphism of γ if and only if ω ∈ K◦.

5.2. Main Proofs
LEMMA 5.9. For any finite D and any Γ ⊆ ΦR

D, wPolR(Γ) is a weighted clone.

PROOF. Let k ≥ 1 be a fixed arity. We denote by H the Hilbert space of functions
Pol(k)(Γ)→ R and define a set K ⊆ H as

K =
{
γ[X]

∣∣ γ ∈ Γ ∧X ∈ (Feas(γ))k
}
. (28)

4Private communication, 2014.
5If K is a finite set, the smallest convex cone containing K is topologically closed. This is why the former
definitions of weighted (relational) clones did not have to require topological closedness explicitly.
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A k-ary weighting ω with supp(ω) ⊆ Pol(k)(Γ) is a weighted polymorphism of Γ if and
only if its restriction to Pol(k)(Γ) belongs to K◦. Set wPol

(k)
R (Γ) is therefore closed under

addition as K◦ is convex, it is closed under non-negative scaling as K◦ is a cone, and it
is topologically closed as K◦ is.

It remains to show that wPolR(Γ) is closed under superposition. Let ω ∈ wPolR(Γ)
be a k-ary weighting and g1, . . . , gk ∈ Pol(Γ) be `-ary operations. For any γ ∈ Γ and
X ∈ (Feas(γ))`, we have Y = (g1(X), . . . , gk(X)) ∈ (Feas(γ))k and∑

f∈supp(ω[g1,...,gk])

ω[g1, . . . , gk](f) · γ(f(X)) =
∑

f∈supp(ω)

ω(f) · γ(f [g1, . . . , gk](X)) (29)

=
∑

f∈supp(ω)

ω(f) · γ(f(Y )) (30)

≤ 0 . (31)

Therefore, weighting ω[g1, . . . , gk] is a weighted polymorphism of Γ.

LEMMA 5.10. For any finite D and any Ω ⊆WR
D, ImpR(Ω) is a weighted relational

clone.

PROOF. Both φ= and φ∅ are improved by any weighting and hence belong to
ImpR(Ω). Addition, non-negative scaling, and addition of a constant preserve Inequal-
ity (25), and therefore ImpR(Ω) is closed under these operations.

We need to prove that ImpR(Ω) is closed under minimisation. Let γ ∈ ImpR(Ω) be an
r-ary weighted relation and consider γ′ obtained from γ by minimising over the last
argument, i.e.

γ′(x1, . . . , xr−1) = min
xr∈D

γ(x1, . . . , xr−1, xr) . (32)

Let ω ∈ Ω be a k-ary weighting and X ′ = (x′1, . . . ,x
′
k) ∈ (Feas(γ′))k. For any

i ∈ {1, . . . , k}, we can extend (r − 1)-tuple x′i to an r-tuple xi ∈ Feas(γ) so that
γ′(x′i) = γ(xi); we will denote the list of these extended r-tuples by X = (x1, . . . ,xk).
Note that f(X) is an extension of f(X ′) for any k-ary operation f ∈ supp(ω), and there-
fore γ′(f(X ′)) ≤ γ(f(X)). Moreover, γ′(f(X ′)) = γ(f(X)) whenever f is a projection. As
γ satisfies Inequality (25) and only projections may be assigned a negative weight, we
have ∑

f∈supp(ω)

ω(f) · γ′(f(X ′)) ≤
∑

f∈supp(ω)

ω(f) · γ(f(X)) ≤ 0 , (33)

and thus γ′ ∈ ImpR(Ω).
Now we prove that ImpR(Ω) is closed under operator Opt. Let γ ∈ ImpR(Ω) and

ρ = Opt(γ). We will assume that Feas(γ) is non-empty (otherwise γ = ρ) and denote by
c the minimum weight assigned by γ. Let ω ∈ Ω be a k-ary weighting. As ρ is a relation,
we only need to show that all operations in the support of ω are polymorphisms of ρ.
Let X ∈ (Feas(ρ))k ⊆ (Feas(γ))k. For any operation f in the support of ω, it holds
γ(f(X)) ≥ c. Moreover, γ(f(X)) = c whenever f is a projection. We have

0 ≥
∑

f∈supp(ω)

ω(f) · γ(f(X)) ≥
∑

f∈supp(ω)

ω(f) · c = 0 , (34)

which for all f ∈ supp(ω) implies γ(f(X)) = c and hence f(X) ∈ Feas(ρ). Therefore,
ρ ∈ ImpR(Ω).

Finally, we show that ImpR(Ω) is topologically closed. Let r be a fixed arity and F ⊆
Dr; we claim that the set Γ ⊆ ΦR

D of r-ary weighted relations γ with Feas(γ) = F
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which are not improved by Ω is an open set. Take any γ ∈ Γ. There must be a non-zero
weighting ω ∈ Ω (let us denote its arity by k) and X ∈ F k such that 〈ω, γ[X]〉 = d
for some positive d, i.e. ω violates Inequality (25) for γ and X. Then for every r-ary
weighted relation γ′ with Feas(γ′) = F and distance from γ less than

d∑
f∈supp(ω)

|ω(f)|
(35)

it holds 〈ω, γ′[X]〉 > 0, so γ has a neighbourhood contained in Γ.

We are now ready to prove our main result, stated as Theorems 5.11 and 5.12.

THEOREM 5.11. For any finite D and any Γ ⊆ ΦR
D, ImpR(wPolR(Γ)) =

wRelCloneR(Γ).

PROOF. First, we show that wRelCloneR(Γ) ⊆ ImpR(wPolR(Γ)). Surely Γ ⊆
ImpR(wPolR(Γ)) and therefore wRelCloneR(Γ) ⊆ wRelCloneR(ImpR(wPolR(Γ))). By The-
orem 5.10 we know that ImpR(wPolR(Γ)) is a weighted relational clone. Hence,
wRelCloneR(ImpR(wPolR(Γ))) = ImpR(wPolR(Γ)).

Now we will prove the other inclusion, ImpR(wPolR(Γ)) ⊆ wRelCloneR(Γ). Let ρ ∈
ImpR(wPolR(Γ)) be a weighted relation and denote |Feas(ρ)| by k. If k = 0, ρ is ex-
pressible from φ∅ and hence ρ ∈ wRelCloneR(Γ). Otherwise, we will focus solely on
the k-ary weighted polymorphisms of Γ. Let us denote the Hilbert space of functions
Pol(k)(Γ)→ R by H; the k-ary weighted polymorphisms of Γ can be then seen as vectors
from H. Denoting m = |D|k, a k-ary operation on D is uniquely determined by the m-
tuple of labels it assigns to its m possible inputs. Later we will define a correspondence
between a subset of m-ary weighted relations and H.

The outline of the proof is as follows. We transform Γ into a set M ⊆ wRelCloneR(Γ)
of m-ary weighted relations and consider their corresponding vectors in H. The polar
cone of these vectors equals wPol

(k)
R (Γ), and its polar cone, in turn, consists of m-ary

weighted relations improved by wPol
(k)
R (Γ). We know that the polar cone of the polar

cone of a set is the closure of the smallest convex cone containing this set; therefore,
any m-ary weighted relation improved by wPol

(k)
R (Γ) belongs to wRelCloneR(Γ). This

also includes a particular m-ary weighted relation that we use to express ρ, so we get
ρ ∈ wRelCloneR(Γ).

We begin by formally defining the correspondence between certain m-ary weighted
relations and vectors from H. Let us denote by (z1, . . . , zm) = ZT the sequence of all
k-tuples over D in an arbitrary fixed order; any k-ary operation f is then determined
by the m-tuple (f(z1), . . . , f(zm)) = f(Z). Let us define a set F ⊆ Dm as

F =
{
f(Z)

∣∣∣ f ∈ Pol(k)(Γ)
}
. (36)

For any m-ary weighted relation γ with Feas(γ) = F , the corresponding vector in H is
γ[Z]. Conversely, for any vector in H there is a corresponding m-ary weighted relation
with finite weights precisely on F .

Now we transform Γ into a set of m-ary weighted relations M ⊆ wRelCloneR(Γ) that
captures enough information to reconstruct the set of k-ary weighted polymorphisms
of Γ. Let γ ∈ Γ be an n-ary weighted relation and X ∈ (Feas(γ))k; we will denote
the k-tuples of XT by (x1, . . . ,xn). We claim that there is an m-ary weighted relation
µγ,X ∈ wRelCloneR(Γ) with Feas(µγ,X) = F such that µγ,X(f(Z)) = γ(f(X)) for all
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f ∈ Pol(k)(Γ). First, we construct an m-ary weighted relation µ′γ,X as

µ′γ,X(yz1
, . . . , yzm

) = γ(yx1
, . . . , yxn

) , (37)

where yzi
are variables indexed by k-tuples over D. Clearly, µ′γ,X(f(Z)) =

µ′γ,X(f(z1), . . . , f(zm)) = γ(f(x1), . . . , f(xn)) = γ(f(X)). However, we are not done yet,
as µ′γ,X assigns a finite weight to all m-tuples f(Z) such that f(X) ∈ Feas(γ), even if
f 6∈ Pol(k)(Γ). We can easily fix this: Let f be an k-ary operation that is not a poly-
morphism of Γ; then there is a weighted relation γf ∈ Γ and Xf ∈ (Feas(γf ))k such
that f(Xf ) 6∈ Feas(γf ). Adding 0 · µ′γf ,Xf

to µ′γ,X ensures that the weighted relation
will assign infinity to m-tuple f(Z) without changing other weights. This can be done
for all (finitely many) such operations f , so we obtain a weighted relation µγ,X with
Feas(µγ,X) = F .

Similarly, there are m-ary weighted relations µι, µ−ι ∈ wRelCloneR(Γ) with
Feas(µι) = Feas(µ−ι) = F such that µι(f(Z)) = 1 and µ−ι(f(Z)) = −1 for all
f ∈ Pol(k)(Γ). Again, we start with µ′ι(yz1

, . . . , yzm
) = 1, µ′−ι(yz1

, . . . , yzm
) = −1 and

then add 0 · µ′γf ,Xf
for all k-ary operations f 6∈ Pol(k)(Γ) to ensure that the resulting

weighted relations µι, µ−ι assign finite weights only to m-tuples from F .
Let ι ∈ H be the vector assigning every operation value 1. For any operation f ∈

Pol(k)(Γ) that is not a projection, let χf ∈ H be the vector such that χf (f) = 1 and
χf (g) = 0 for all g 6= f . We define a set of m-ary weighted relations M ⊆ wRelCloneR(Γ),
the set of corresponding vectors V ⊆ H, and an auxiliary set of vectors W ⊆ H as
follows:

M =
{
µγ,X

∣∣ γ ∈ Γ ∧X ∈ (Feas(γ))k
}
∪ {µι, µ−ι} (38)

V =
{
γ[X]

∣∣ γ ∈ Γ ∧X ∈ (Feas(γ))k
}
∪ {ι,−ι} (39)

W = V ∪
{
−χf

∣∣∣ f ∈ Pol(k)(Γ) \ J
(k)
D

}
. (40)

We claim that the polar cone W ◦ consists of k-ary weighted polymorphisms of Γ. Let
ω ∈ W ◦ be a vector. As 〈ω, ι〉 ≤ 0 and 〈ω,−ι〉 ≤ 0, we have 〈ω, ι〉 = 0, i.e. the sum of
weights of ω equals 0. For any non-projection f we have 〈ω,−χf 〉 ≤ 0, i.e. ω(f) is non-
negative. Finally, for any γ ∈ Γ and X ∈ (Feas(γ))k it holds 〈ω, γ[X]〉 ≤ 0; hence ω is a
weighted polymorphism of Γ.

Let us now return to weighted relation ρ and denote the sequence of elements of
Feas(ρ) in an arbitrary fixed order by R ∈ (Feas(ρ))k. As ρ is improved by wPolR(Γ),
any vector ω ∈ W ◦ satisfies Inequality (25) for ρ and any X ∈ (Feas(ρ))k, in particular
for X = R. Hence, we would like to claim that 〈ω, ρ[R]〉 ≤ 0 for all ω ∈ W ◦ and thus
ρ[R] ∈ W ◦◦. However, ρ[R] might be ill-defined: Although ρ ∈ ImpR(wPolR(Γ)), not
necessarily all operations f ∈ Pol(k)(Γ) are polymorphisms of ρ, and therefore possibly
ρ(f(R)) =∞. Let us denote the set of these problematic operations by

Q =
{
f ∈ Pol(k)(Γ)

∣∣∣ f(R) 6∈ Feas(ρ)
}
. (41)

On the other hand, every operation in the support of wPol
(k)
R (Γ) is a polymorphism of

ρ. This implies that operations in Q must be assigned a zero weight by all ω ∈ W ◦.
As ρ[R] might not exist, let us define instead a substitute vector β ∈ H such that
β(f) = ρ(f(R)) for all f ∈ Pol(k)(Γ) \Q, with arbitrary values assigned to operations in
Q. By the previous argument, β ∈ W ◦◦. Additionally, let β0 ∈ H be a vector such that
β0(f) > 0 if f ∈ Q, and β0(f) = 0 otherwise. For any ω ∈ W ◦ it holds 〈ω, β0〉 = 0, so β0

also belongs to W ◦◦.
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Any vector in W ◦◦ can be obtained from some vector in V ◦◦ by adding non-negative
multiples of −χf for f ∈ Pol(k)(Γ) \ J

(k)
D . Therefore, there is a vector α ∈ V ◦◦ such that

α(f) ≥ β(f) = ρ(f(R)) for all f 6∈ Q, and α(f) = β(f) = ρ(f(R)) when f is a projection.
Also, there is a non-negative vector α0 ∈ V ◦◦ such that α0(f) ≥ β0(f) > 0 if f ∈ Q, and
α0(f) = β0(f) = 0 if f is a projection.

Vectors in V correspond to weighted relations in M ⊆ wRelCloneR(Γ). Set V ◦◦ is
the closure of the smallest convex cone containing V , and therefore weighted relations
corresponding to vectors in V ◦◦ also belong to wRelCloneR(Γ) (as it is closed under
addition and non-negative scaling, and is topologically closed). Hence, there are m-
ary weighted relations ψ,ψ0 ∈ wRelCloneR(Γ) with Feas(ψ) = Feas(ψ0) = F such that
ψ[Z] = α and ψ0[Z] = α0. We are going to express ρ from them.

Let us denote the arity of ρ by n and the k-tuples of RT by (r1, . . . , rn). Consider the
following gadget. Let I be a VCSP instance with variables yz1 , . . . , yzm and a single
constraint ψ(yz1 , . . . , yzm), and let L = (yr1 , . . . , yrn). Then πL(I) is an n-ary weighted
relation expressible over wRelCloneR(Γ); we will denote it by ρ′. For any n-tuple x ∈ Dn,
we have

ρ′(x) = min
{(yz1 ,...,yzm )∈Dm | (yr1 ,...,yrn )=x}

ψ(yz1 , . . . , yzm) (42)

= min
{f :Dk→D | (f(r1),...,f(rn))=x}

ψ(f(z1), . . . , f(zm)) (43)

= min
f(R)=x

ψ(f(Z)) = min
f(R)=x

α(f) . (44)

Analogously, by replacing ψ with ψ0 in the gadget we obtain an n-ary weighted relation
ρ′0 for which ρ′0(x) = minf(R)=x α0(f).

For any x ∈ Feas(ρ) and k-ary operation f such that f(R) = x, it holds α(f) ≥
ρ(f(R)) = ρ(x). As R is a list of all elements of Feas(ρ), there is a projection f such that
f(R) = x; for it we have α(f) = ρ(f(R)) = ρ(x). Therefore, ρ′(x) = ρ(x). Similarly we
get ρ′0(x) = 0 for any x ∈ Feas(ρ).

We are almost done; the last issue is that ρ′(x) may be finite also for some x 6∈ Feas(ρ).
But f(R) 6∈ Feas(ρ) implies f ∈ Q, and in that case α0(f) is positive. Therefore, Opt(ρ′0)
is finite only on Feas(ρ), and ρ′ + Opt(ρ′0) = ρ.

THEOREM 5.12. For any finite D and any Ω ⊆WR
D, wPolR(ImpR(Ω)) = wCloneR(Ω).

PROOF. We begin with the inclusion wCloneR(Ω) ⊆ wPolR(ImpR(Ω)).
Weightings in Ω are weighted polymorphisms of all weighted relations in ImpR(Ω),

so Ω ⊆ wPolR(ImpR(Ω)), and hence wCloneR(Ω) ⊆ wCloneR(wPolR(ImpR(Ω))).
By Theorem 5.9, we have that wPolR(ImpR(Ω)) is a weighted clone, so
wCloneR(wPolR(ImpR(Ω))) = wPolR(ImpR(Ω)).

Now we prove that for any k ≥ 1 and any k-ary weighting µ ∈ wPolR(ImpR(Ω)), it
holds µ ∈ wCloneR(Ω). First, let us establish the clone of operations we will be working
with. Let C be the smallest clone containing supp(Ω). The support of wCloneR(Ω) is
itself a clone (by Theorem 5.5) so we also have C = supp(wCloneR(Ω)). As in the proof
of Theorem 5.11, we will represent k-ary weightings by vectors of the Hilbert space
H = C(k) → R, and identify those vectors with certainm-ary weighted relations (where
m = |D|k).

The outline of the proof is as follows. We transform Ω into a set W of k-ary weight-
ings. Although some of these weightings may be improper, any proper weighting ob-
tained as their non-negative linear combination belongs to wCloneR(Ω). The polar cone
W ◦ consists of m-ary weighted relations improved by Ω, and its polar cone W ◦◦ hence
contains µ. As the polar cone of the polar cone of a set is the closure of the smallest
convex cone containing this set, we get µ ∈ wCloneR(Ω).
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Recall the correspondence between a subset of m-ary weighted relations and H from
the proof of Theorem 5.11. This time, we are working with clone C, so we define F as

F =
{
f(Z)

∣∣∣ f ∈ C(k)
}
. (45)

Let Γ be the set of all m-ary weighted relations γ with Feas(γ) = F . Similarly as before,
there is a bijection between Γ and H: the corresponding vector to a weighted relation
γ ∈ Γ is γ[Z].

We show that k-ary polymorphisms of any γ ∈ Γ are precisely the operations from
C(k). Let f ∈ C(k). For any X ∈ F k, there are k-ary operations g1, . . . , gk ∈ C(k)

such that X = (g1(Z), . . . , gk(Z)). So we have f(X) = f [g1, . . . , gk](Z) ∈ F because
f [g1, . . . , gk] ∈ C(k). Conversely, let f be a k-ary operation not belonging to C(k). Cer-
tainly Z = (e

(k)
1 (Z), . . . , e

(k)
k (Z)) ∈ F k, but f(Z) 6∈ F . Therefore, f is not a polymorphism

of γ.
Let us define a set W ⊆ H as

W =
{
ω[g1, . . . , g`] ∈ H

∣∣∣ ` ≥ 1 ∧ ω ∈ Ω(`) ∧ g1, . . . , g` ∈ C(k)
}
. (46)

We claim that for any vector in the polar cone W ◦, the corresponding weighted relation
is improved by Ω. Let γ ∈ Γ be a weighted relation such that γ[Z] ∈W ◦, ω ∈ Ω be an `-
ary weighting, and X ∈ F `. Then there are k-ary operations g1, . . . , g` ∈ C(k) for which
X = (g1(Z), . . . , g`(Z)), and we have∑

f∈supp(ω)

ω(f) · γ(f(X)) =
∑

f∈C(`)

ω(f) · γ(f [g1, . . . , g`](Z)) (47)

=
∑

f∈C(k)

ω[g1, . . . , g`](f) · γ(f(Z)) (48)

= 〈ω[g1, . . . , g`], γ[Z]〉 ≤ 0 . (49)
Weighting µ is a weighted polymorphism of ImpR(Ω), so it improves any weighted

relation γ corresponding to a vector in W ◦. Firstly, this implies supp(µ) ⊆ C(k); we can
therefore view µ as a vector of H. Secondly, µ satisfies Inequality (25) for γ and any
X ∈ F k. In particular, Z ∈ F k, so we get 〈µ, γ[Z]〉 ≤ 0 and thus µ ∈W ◦◦.

Set W ◦◦ is the closure of the smallest convex cone containing W . By Theorem 5.4,
any proper weighting obtained as a non-negative linear combination of weightings
from W belongs to wCloneR(Ω). Therefore, µ ∈ wCloneR(Ω).

5.3. Complexity Consequences
When studying the computational complexity of constraint languages, the focus on
weighted relational clones is justified by Theorem 2.13. The aim of this section is to
discuss the consequences of our changes in the definition of weighted relational clones
(allowing real weights and requiring weighted relational clones to be closed under
operator Opt and to be topologically closed) on the validity of that theorem. We will
assume the arithmetic model of computation, i.e. basic arithmetic operations with real
numbers take a constant time.

First we show that adding operator Opt preserves the tractability of weighted rela-
tional clones.

THEOREM 5.13. Let Γ ⊆ ΦR
D be a finite constraint language and γ ∈ Γ. Then

VCSP(Γ ∪ {Opt(γ)}) polynomial-time reduces to VCSP(Γ).

PROOF. Adding a constant to all weights of a weighted relation changes the value of
every assignment by the same amount, and hence does not affect tractability. Without
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loss of generality, we may therefore assume that all weighted relations in Γ assign non-
negative weights and that the minimum weight assigned by γ equals 0. We will also
assume that γ is not a relation, otherwise Opt(γ) = γ so the claim would hold trivially.
Let us denote by m the smallest positive weight assigned by γ, and by M the largest
finite weight assigned by any γ′ ∈ Γ.

Let I ∈ VCSP(Γ ∪ {Opt(γ)}) be an instance with q constraints. We replace every
constraint of the form Opt(γ)(x) in I with (q · dM/me+ 1) copies of γ(x), thus obtaining
a polynomially larger instance I ′ ∈ VCSP(Γ). Any feasible assignment for instance I is
also feasible for I ′ with the same value, which does not exceed qM . On the other hand,
any infeasible assignment for instance I is infeasible for I ′, or it incurs an infinite
value from a constraint of the form Opt(γ)(x) in I and therefore a value of more than
qM in I ′.

For any constraint language Γ ⊆ ΦR
D, we will denote by Γ∼ the smallest set of

weighted relations containing Γ that is closed under scaling by non-negative real con-
stants and addition of real constants. Analogously to [Cohen et al. 2013, Theorem 4.3],
we would like to show that Γ is tractable if and only if Γ∼ is tractable. Their proof, how-
ever, does not apply to scaling by an irrational factor α, as it relies on the existence
of integers p, q such that α = p/q. In fact, we were not able to prove that real-valued
scaling preserves tractability when insisting on exact solvability. If we consider solv-
ing VCSP with an absolute error bounded by ε (for any ε > 0), then real-valued scaling
does preserve tractability, as shown in the following theorem.

THEOREM 5.14. Let Γ,Γ′ ⊆ ΦR
D be finite constraint languages such that Γ contains

only weighted relations of the form c · γ′ for c ≥ 0, γ′ ∈ Γ′. For any ε > 0, there is
a polynomial-time reduction that for any instance I ∈ VCSP(Γ) outputs an instance
I ′ ∈ VCSP(Γ′) such that for any optimal assignment s′ of I ′ it holds I(s′) ∈ [v, v + ε],
where v is the value of an optimal assignment of I.

PROOF. Again, we may assume that all weighted relations in Γ and Γ′ assign
non-negative weights. Let us denote by M the largest finite weight assigned by any
weighted relation in Γ′; we may assume that M is well-defined and positive, otherwise
we would have Γ ⊆ Γ′. We will denote by q the number of constraints in I and let
b = dqM/εe.

Let instance I ′ ∈ VCSP(Γ′) have the same set of variables as I. For any constraint
ci ·γ′i(xi) of I, we add (bbcic+1) copies of constraint γ′i(xi) into I ′. Note that any feasible
assignment of I is a feasible assignment of I ′, and vice versa. Let us assume that I
admits a feasible solution. As (bbcic+ 1)− bci ∈ (0, 1], we have

b · I(t) ≤ I ′(t) ≤ b · I(t) + qM (50)

for any feasible assignment t. Let s be an optimal assignment of I; we get

b · I(s′) ≤ I ′(s′) ≤ I ′(s) ≤ b · I(s) + qM , (51)

and therefore I(s′) ≤ I(s) + ε = v + ε.

Taking a topological closure of a language also preserves tractability with a bounded
absolute error, as the following theorem shows.

THEOREM 5.15. Let Γ ⊆ ΦR
D be a constraint language and denote by Γ its closure.

For any ε > 0, there is a polynomial-time reduction that for any instance I ∈ VCSP(Γ)
outputs an instance I ′ ∈ VCSP(Γ) with the same variables such that any assignment t
is either infeasible for both I and I ′, or is feasible for both and |I(t)− I ′(t)| ≤ ε.
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PROOF. Let us denote by q the number of constraints in I. For any γ ∈ Γ, there is
a weighted relation γ′ ∈ Γ of the same arity and with Feas(γ) = Feas(γ′) such that the
distance between γ and γ′ is at most ε/q. We obtain the sought instance I ′ by replacing
all constraints γ from I with their counterparts γ′.

We finish this section with a discussion of the difficulty of improving Theorem 5.14
to exact solvability (to optimality). Let Γ be a finite constraint language and γ ∈ Γ. We
would like to prove that VCSP(Γ ∪ {c · γ}) polynomial-time reduces to VCSP(Γ), where
c ∈ R≥0. Given I ∈ VCSP(Γ ∪ {c · γ}), let

δI = min
{
|I(s1)− I(s2)|

∣∣∣ s1, s2 are solutions to I with different values
}
. (52)

If we choose an ε < δI , we obtain an optimal solution of I by Theorem 5.14. However, it
is not clear how fast the value of δI approaches 0 as the size of I grows to infinity, and
whether it is possible to compute it in polynomial time.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referees for their helpful comments and suggestions.

References
Libor Barto and Marcin Kozik. 2014. Constraint Satisfaction Problems Solvable by Local Consistency Meth-

ods. J. ACM 61, 1 (2014). DOI:http://dx.doi.org/10.1145/2556646 Article No. 3.
Libor Barto, Marcin Kozik, and Todd Niven. 2009. The CSP dichotomy holds for digraphs with no sources

and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM J. Comput. 38, 5 (2009),
1782–1802. DOI:http://dx.doi.org/10.1137/070708093
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