
A Faster Algorithm for Computing Straight Skeletons

Cheng Siu Wing; Liam Mencel; Antoine Vigneron

ACM Transactions on Algorithms, v. 12, (3), June 2016, Article number 44

Preprint

10.1145/2898961

Association for Computing Machinery (ACM)

© 2016 ACM 1549-6325/2016/04-ART44



A Faster Algorithm for Computing Straight Skeletons

Siu-Wing Cheng∗ Liam Mencel† Antoine Vigneron‡

Abstract

We present a new algorithm for computing the straight skeleton of a polygon. For a
polygon with n vertices, among which r are reflex vertices, we give a deterministic algo-
rithm that reduces the straight skeleton computation to a motorcycle graph computation in
O(n(log n) log r) time. It improves on the previously best known algorithm for this reduc-
tion, which is randomized, and runs in expected O(n

√
h+ 1 log2 n) time for a polygon with

h holes. Using known motorcycle graph algorithms, our result yields improved time bounds
for computing straight skeletons. In particular, we can compute the straight skeleton of a
non-degenerate polygon in O(n(log n) log r + r4/3+ε) time for any ε > 0. On degenerate
input, our time bound increases to O(n(log n) log r + r17/11+ε).

1 Introduction

The straight skeleton S of a polygon P is defined as the trace of the vertices when the polygon
shrinks, each edge moving at the same speed inwards in a perpendicular direction to its orien-
tation. (See Figure 1.) It differs from the medial axis [10] in that it is a straight line graph
embedded in the original polygon, while the medial axis may have parabolic edges. Aichholzer
et al. introduced the straight skeleton in 1995, and gave the first algorithm for computing it [2].
However, the concept has been recognized as early as 1877 by von Peschka, in the author’s
interpretation as projection of roof surfaces [25].

The straight skeleton has numerous applications in computer graphics. It allows one to
compute offset polygons [17], which is a standard operation in CAD. Other applications include
architectural modelling [23], biomedical image processing [11], city model reconstruction [13],
computational origami [14, 15, 16] and polyhedral surface reconstruction [3, 12, 18]. Improving
the efficiency of straight skeleton algorithms increases the speed of related tools in geometric
computing.

The first algorithm runs in O(n2 log n) time, and simulates the shrinking process dis-
cretely [2]. Eppstein and Erickson presented the fist sub-quadratic algorithm, which runs in
O(n17/11+ε) time [17]. In their work, the authors proposed motorcycle graphs as a means of
encapsulating the main difficulty in computing straight skeletons. This notion was expanded
on by reducing the straight skeleton problem in non-degenerate cases to a motorcycle graph
computation and a lower envelope computation [9]. This reduction was later extended to de-
generate cases [21]. Cheng and Vigneron gave an algorithm for the lower envelope computation
on a non-degenerate polygon with h holes, which runs in O(n

√
h+ 1 log2 n) expected time.

They also provided a method for solving the motorcycle graph problem in O(n
√
n log n) time.

Putting the two together gives an algorithm which solves the straight skeleton problem in
O(n

√
h+ 1 log2 n+ r

√
r log r) expected time, where r is the number of reflex vertices.
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(a) The input polygon P. (b) An offset of P. (c) Straight skeleton S.

Figure 1: The straight skeleton is obtained by shrinking the input polygon.

Previously best known This paper

Arbitrary polygon O(n8/11+εr9/11+ε)
[17]

O(n(log n) log r + r17/11+ε)

Non-degenerate pol. O∗(n
√
r log2 n)

[9]
O(n(log n) log r + r4/3+ε)

Simple pol.
arbitrary

O∗(n log2 n+ r17/11+ε)
[9]
[17]

O(n(log n) log r + r17/11+ε)

Simple pol.
O(log n) bits

O∗(n log2 n)
[9]
[24]

O(n log2 n)

Table 1: Summary of previously best known results, compared with those of our new algorithm.

Comparison with previous work Recently, Vigneron and Yan described a faster, O(n4/3+ε)-
time algorithm for computing motorcycle graphs [24]. It thus removed one bottleneck in straight
skeleton computation. In this paper we remove the second bottleneck: We give a faster reduc-
tion to the motorcycle graph problem. Our algorithm performs this reduction in deterministic
O(n(log n) log r) time, improving on the previously best known algorithm, which is randomized
and runs in expected O(n

√
h+ 1 log2 n) time [9]. Using a different approach, Bowers recently

claimed an O(n log n)-time, deterministic algorithm to perform this reduction in the case of
simple polygons, and an O(n(log c) log r)-time reduction for arbitrary polygon, where c is the
number of connected components in the motorcycle graph [6]. The latter result appeared after
our result was made available.

Using known algorithms for computing motorcycle graphs, our reduction yields faster algo-
rithms for computing the straight skeleton. In particular, using the motorcycle graph algorithm
by Vigneron and Yan, we can compute the straight skeleton of a non-degenerate polygon in
O(n(log n) log r + r4/3+ε) time for any ε > 0. On degenerate input, we use Eppstein and Er-
ickson’s algorithm, and our time bound increases to O(n(log n) log r + r17/11+ε). For simple
polygons whose coordinates are O(log n)-bit rational numbers, we can compute the straight
skeleton in O(n log2 n) time using the motorcycle graph algorithm by Vigneron and Yan (even
in degenerate cases). Table 1 summarizes the previously known results and compares with our
new algorithm. O∗ denotes the expected time bound of a randomized algorithm, and O is for
deterministic algorithms. To make the comparison easier, we replaced the number of holes h
with r, as h = O(r). The conference version of this paper appeared in the proceedings of the
European Symposium on Algorithms [8].

Our approach We use the known reduction to a lower envelope of slabs in 3D [9, 21]: First
a motorcycle graph induced by the input polygon is computed, and then this graph is used to
define a set of slabs in 3D. The lower envelope of these slabs is a terrain, whose edges vertically
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project to the straight skeleton on the horizontal plane. (See Section 2.)
The difficulty is that these slabs may cross, and in general their lower envelope is a non-

convex terrain, so known algorithms for computing lower envelopes of triangles would be too
slow for our purpose. Our approach is thus to remove non-convex features: We compute a
subdivision of the input polygon into convex cells such that, above each cell of this subdivision,
the terrain is convex. Then the portion of the terrain above each cell can be computed efficiently,
as it reduces to computing a lower envelope of planes in 3D. The subdivision is computed
recursively, using a divide and conquer approach, in two stages.

During the first stage (Section 3), we partition the polygon using vertical lines, that is, lines
parallel to the y-axis. At each step, we pick the vertical line � through the motorcycle vertex
in the current cell with median x-coordinate. We first cut the cell using �, and we compute the
restriction of the terrain to the space above �, which forms a polyline. It can be computed in
near-linear time, as it reduces to computing a lower envelope of line segments in the vertical
plane through �. Then we cut the cell using the steepest descent paths along the terrain, which
begin from the vertices of this polyline. (See Figure 5–8.) We recurse until the current cell does
not contain any motorcycle vertex in its interior. (See Figure 8b.)

The first step ensures that the cells of the subdivision are convex. However, valleys (non-
convex edges) may still enter the interior of the cells. So our second stage (Section 4) recursively
partitions cells using lines that split the set of valleys of the current cell, instead of vertical lines.
(See Figure 9.) As the first stage results in a partition where the restriction of the motorcycle
graph to any cell is outerplanar, we can perform this subdivision efficiently by divide and
conquer.

Each time we partition a cell, we know which slabs contribute to the child cells, as we know
the terrain along the vertical plane through the cutting line. In addition, we will argue via
careful analysis that our divide and conquer approach avoids slabs being used in too many
iterations, and hence the algorithm completes in O(n(log n) log r) time.

We state here the main result of this work:

Theorem 1.1 Given a polygon P with n vertices, r of which being reflex vertices, and given the
motorcycle graph induced by P, we can compute the straight skeleton of P in O(n(log n) log r)
time.

Our algorithm does not handle weighted straight skeleton as defined by Eppstein and Er-
ickson where edges move at different speeds during the shrinking process [17]. In fact, there
are several ambiguities in obtaining a valid definition of weighted straight skeletons [5]. Also,
it is unknown how to reduce the weighted straight skeleton construction to a lower envelope
computation. Therefore, our algorithm does not apply to weighted straight skeleton.

The previous algorithm by Cheng and Vigneron also partitions the polygon into cells and
then computes the portion of the straight skeleton within a cell by a lower envelope computa-
tion [9]. The challenge is to prevent a slab from contributing to too many cells, as this would
entail processing the same slab too many times and result in a high running time. In the case
of a simple polygon, the straight skeleton is a tree, so it is natural to divide the tree into sub-
trees by cutting at the “median vertex” of the tree. In fact, the tree is cut at all intersection
points between the straight skeleton edges and a vertical line � through the “median vertex”.
The polygon is cut by the steepest descending paths that start from these intersection points.
This produces subtrees of sizes at least a constant factor less the original size, which leads
to a divide-and-conquer recursive strategy. A polygon with holes, say h of them, is harder
because its straight skeleton is not a tree any more. So the polygon is turned into a simple
polygon by cutting along a spanning tree of low crossing number O(

√
h) that connects the

hole and outer boundaries. The complication is that there are now O(
√
h) artificial polygon

edges. Indeed, the intersections between the slabs and these artificial polygon edges lead to
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π
4

(a) (b)

T P

Figure 2: Illustration of the two different types of slabs. (a) The terrain T , an edge slab
and motorcycle slab. This terrain has two valleys, adjacent to the two reflex vertices of the
polygon. (b) The motorcycle graph associated with P and the boundaries of the edge slab and
the motorcycle slab viewed from above.

an O(n
√
h+ 1 · polylog(n)) running time [9]. The main tool introduced in this paper is a new

decomposition of the polygon so that each slab does not contribute to too many cells, and hence
we avoid this extra factor

√
h+ 1 is the running time.

2 Notation and preliminaries

A reflex vertex of a polygon is a vertex at which the internal angle is more than π. The input
polygon is denoted by P. It has n vertices, among which r are reflex vertices. We work in R

3

with P lying flat in the xy-plane. The z-axis becomes analogous to the time dimension. We
say that a line, or a line segment, is vertical, if it is parallel to the y-axis, and we say that a
plane is vertical if it is orthogonal to the xy-plane. The boundary of a set A is denote by ∂A.
The cardinality of a set A is denoted by |A|. We denote by pq the line segment with endpoints
p, q.

Terrain At any time, the horizontal plane z = t contains a snapshot of P after shrinking for
t units of time. While the shrinking polygon moves vertically at unit speed, faces are formed
as the trace of the edges, and these faces make an angle π/4 with the xy-plane. The surface
formed by the traces of the edges is the terrain T . (See Figure 2a.) The traces of the vertices
of P form the set of edges of T . The boundary edges of T are the edges of P. For every
non-boundary edge e of T , there are exactly two faces of T , say f and f ′, that are incident to
the interior of e. We say that e is convex if the dihedral angle between f and f ′ above T is
greater than π. The edges of T corresponding to the traces of the reflex vertices will be referred
to as valleys. Valleys are the only non-convex edges on T ([2], Lemma 2). The other edges,
which are convex, are called ridges. The straight skeleton S is the graph obtained by projecting
the edges and vertices of T orthogonally onto the xy-plane. We also call valleys and ridges the
edges of S that are obtained by projecting valleys and ridges of T onto the xy-plane.

Motorcycle graph Our algorithm for computing the straight skeleton assumes that a mo-
torcycle graph induced by P is precomputed [9]. This graph is defined as follows. A motorcycle
is a point moving at a fixed velocity. We place a motorcycle at each reflex vertex of P. The
velocity of a motorcycle is the same as the velocity of the corresponding reflex vertex when P is

4
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θ1/ sin(θ2)

(a) (b)

Figure 3: (a) The motorcycle (blue) associated with the reflex vertex of the shaded polygon.
(b) The induced motorcycle graph (red).

shrunk, so its direction is the bisector of the interior angle, and its speed is 1/ sin (θ/2), where
θ is the exterior angle at the reflex vertex. (See Figure 3a.)

The motorcycles begin moving simultaneously. They each leave behind a track as they move.
When a motorcycle collides with either another motorcycle’s track or the boundary of P, the
colliding motorcycle halts permanently. (In degenerate cases, a motorcycle may also collide
head-on with another motorcycle, but for now we rule out this case.) After all motorcycles
stop, the tracks form a planar graph called the motorcycle graph induced by P, denoted by G.
(See Figure 3b.)

General position assumptions To simplify the description and the analysis of our algo-
rithm, we assume that the polygon is in general position. No edge of P or S is vertical. No two
motorcycles collide with each other in the motorcycle graph, and thus each valley is adjacent to
some reflex vertex. Each vertex in the straight skeleton graph has degree 1 or 3. Our results,
however, generalize to degenerate polygons, as explained in Section 5.

Lifting map The lifted version p̂ of a point p ∈ P is the point on T that is vertically above
p. In other words, p̂ is the point of T that projects orthogonally to p on the xy-plane. We may
also apply this transformation to a line segment s in the xy-plane, then ŝ is a polyline in T .
We will abuse notation and denote by Ĝ a lifted version of G where the height of a point is the
time at which the corresponding motorcycle reaches it. Then the lifted version ê of an edge e of
G does not lie entirely on T , but it contains the corresponding valley, and the remaining part
of ê lies above T [9]. (See Figure 2a.)

Given a point p̂ that lies in the interior of a face f of T , there is a unique steepest descent
path from p̂ to the boundary of P. This path consists either of a straight line segment orthogonal
to the base edge e of f , or it consists of a segment going straight to a valley, and then follows this
valley [2, Theorem 7]. (In degenerate cases, the path may follow several valleys consecutively.)
If p̂ is on a ridge, then two such descent paths from p exist, and if p̂ is a convex vertex, then
there are three such paths. (See Figure 4c.)

Reduction to a lower envelope Following previous work [17, 9, 21], we use a construction
of the straight skeleton based on the lower envelope of a set of three-dimensional slabs. Each
edge e of P defines an edge slab, which is a 2-dimensional half-strip at an angle of π/4 to the
xy-plane, bounded below by e and along the sides by rays perpendicular to e. (See Figure 2.)
We say that e is the source of this edge slab.

For each reflex vertex v = e ∩ e′, where e and e′ are edges of P, we define two motorcycle
slabs making angles of π/4 to the xy-plane. One motorcycle slab is bounded below by the edge
of Ĝ incident to v and is bounded on the sides by two rays from each end of this edge in the
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(a) The skeleton S. (b) The skeleton S ′. The bold
segments are the flat edges.

(c) The bold polylines are the
descent paths.

Figure 4: The polygon P, its skeletons and descent paths.

ascent direction of e. The other motorcycle slab is defined similarly with e replaced by e′. The
source of a motorcycle slab is the corresponding edge of Ĝ. The following result was proved in
non-degenerate cases by Cheng and Vigneron, and extended to degenerate cases by Huber and
Held [9, 20]:

Theorem 2.1 The terrain T is the restriction of the lower envelope of the edge slabs and the
motorcycle slabs to the space vertically above the polygon.

Our algorithm constructs a graph S ′, which is obtained from S by adding two edges at
each reflex vertex v of P going inwards and orthogonally to each edge of P incident to v. (See
Figure 4b.) These extra edges are called flat edges. We also include the edges of P into S ′.
It means that each face f of S ′ corresponds to exactly one slab. More precisely, a face is the
vertical projection of T ∩σ to the xy-plane for some slab σ. By contrast, in the original straight
skeleton S, a face incident to a reflex vertex corresponds to one edge slab and one motorcycle
slab.

3 Computing the vertical subdivision

In this section, we describe and we analyze the first stage of our algorithm, where the input
polygon P is recursively partitioned using vertical cuts and cuts along steepest descent paths.
The corresponding procedure is called Divide-Vertical, and its pseudocode can be found in
Algorithm 1. It results in a subdivision of P, such that any cell of this subdivision has the
following property: It does not contain any vertex of G in its interior, or it is contained in the
union of two faces of S ′. The second stage of our algorithm is presented in Section 4.

3.1 Subdivision induced by a vertical cut

At any step of the algorithm, we maintain a planar subdivision K(P), which is a partition of
the input polygon P into polygonal cells. Each cell is a polygon, hence it is connected. A cell
C in the current subdivision K(P) is subdivided as follows.

Let � be a vertical line through a vertex of G. (Remember that a vertical line is a line parallel
to the y-axis. We always use vertical lines through some vertices of G to induce a partition
of P.) We assume that � intersects the interior of C, and hence C ∩ � consists of several line
segments s1, . . . , sq. These line segments are introduced as new edges in K(P); they are called
the vertical edges of K(P). They may be further subdivided during the course of the algorithm,
and we still call the resulting edges vertical edges.

We then insert non-vertical edges along steepest descent paths, as follows. Note that we are
able to efficiently compute the intersection S ′ ∩ � without knowing S ′ (this is explained in the
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ALGORITHM 1: Divide-Vertical
Input: Cell Ci
Output: Skeleton S ′

i

Select a median vertex in Vi, and draw the vertical line � through it;
Construct the vertical edges s1, . . . , sq of � ∩ Ci;
Compute the lower envelope of the slabs along the vertical plane through �;
Construct the lifted version ŝ1, . . . , ŝq of the vertical boundary segments;
Trace within Ci the steepest descent paths from each vertex of ŝ1, . . . , ŝq;
Update K(P) using s1, . . . , sq and the descent paths as new boundaries;
for each child cell Cj of Ci do

Construct the data structure for Cj ;
if Cj is a wedge or is empty then

Compute S ′
j by brute force.

end
else

if Vj = ∅ then
Call Divide-Valley(Ci)

end
else

Call Divide-Vertical(Cj).
end

end

end

detailed description of the algorithm). Each intersection point p ∈ sj ∩ S ′ has a lifted version
p̂ on T . There are at most three steepest descent paths to ∂C from p̂, which follows from our
general position assumption that each vertex in S has degree at most 3. The vertical projections
of these paths onto C are also inserted as new edges in K(P). The resulting partition of C is
the subdivision induced by �. (See Figure 6b.)

We denote by C1, C2, . . . the cells of K(P) that are constructed during the course of the
algorithm. Let �−i and �+i denote the vertical lines through the leftmost and rightmost point
of Ci, respectively. When we perform one step of the subdivision, each new cell lies entirely to
the left or to the right of the splitting line, and thus by induction, any vertical edge of a cell Ci
either lies in �−i or �+i . We now study the geometry of these cells.

Lemma 3.1 Let p be a reflex vertex of a cell Ci. Then p is a reflex vertex of P such that ∂Ci
and ∂P coincide in a neighborhood of p, or p is a point where a descent path bounding Ci reaches
a valley.

Proof. We prove it by induction on the successive refinement of K(P) induced by vertical lines.
The initial cell is C1 = P, and hence the property holds. When we perform a subdivision of
a cell Ci along a line �, we cannot introduce reflex vertices along �, as we insert the segments
Ci∩� as new cell boundaries. So new reflex vertices may only appear along descent paths. They
cannot appear at the lower endpoint of a descent path, as a descent path can only meet a reflex
vertex along its exterior angle bisector. So a reflex vertex may only appear in the interior of a
descent path, and a descent path only bends when it reaches a valley. (This case occurs in the
rightmost cell in Figure 6b.)

The lemma above shows that non-convexity may only be introduced when a descent path
bounding a cell reaches a valley. The lemma below implies that, at any point in time, this can
occur only once per valley (within the cell containing the segment bq described below).
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Figure 5: Input polygon P and the graph S ′. The white dots are the vertices of the motorcycle
graph induced by the reflex vertices of the polygon. The white dots on ∂P are in fact terminal
vertices as the corresponding motorcycles run into ∂P.

�

(a) (b)

Figure 6: (a) First vertical cut using the vertical bold dashed line �. The bold polylines are the
descent paths that start at the intersections S ′ ∩ �. (b) Subdivision of P into cells induced by
the first vertical cut.
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(a) (b)

Figure 7: (a) Second vertical cut using the vertical bold dashed line. The bold polylines are
the descent paths that start the intersections between S ′ and the vertical line. (b) Subdivision
induced by the second vertical cut.

(a) (b)

Figure 8: (a) Third vertical cut using the vertical bold dashed line. (b) Vertical subdivision
computed by Divide-Vertical on the polygon in Figure 5. The darker cells are in conflict
with one or more valleys, hence a non-trivial application of Divide-Valley is required.
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(a) (b)

Figure 9: (a) Final subdivision computed by Divide-Valley and (b) its overlay with S ′.

Lemma 3.2 Let e = pq be a valley or a flat edge of S ′, with p being a reflex vertex of P and q
being the other endpoint of e. At any time during the course of the algorithm, there is a point
b along e such that pb is contained in the union of the boundaries of the cells of K(P), and the
interior of bq is contained in the interior of a cell Ci.

Proof. Intuitively, this lemma holds because any two descent paths that lead to the same valley
must merge. We now prove it by induction on the number of steps executed in the algorithm.
So we assume that at the current point of the execution of the algorithm, there is a point b on
e such that pb is contained in the union of the edges of K(P), and the interior of bq is contained
in the interior of a cell Cj . At the start of the algorithm, we have b = p. Edge e can only
intersect the interior of a new cell if this cell is obtained by subdividing Cj . When performing
this subdivision, at most two descent paths and one vertical cut can intersect bq, and then the
descent paths from these intersection points to b are added as cell boundaries. After that, we
are again in the situation where e is split into two segments pb′ and b′q, with pb′ being covered
by edges of K(P) and b′q being in the interior of a cell.

A ridge, on the other hand, can cross the interior of several cells. But its intersection with
any given cell is a single line segment:

Lemma 3.3 For any ridge e and any cell Ci, the intersection e ∩ Ci is a single line segment,
and e ∩ ∂Ci consists of at most two points.

Proof. As e is a convex edge, the only descent paths that can meet e are descent paths that start
from e. So e can only be partitioned by a vertical line cut through its interior. When we perform
one such subdivision along a segment of e, it is split into two segments, one on each side of the
cutting line, and these segments now belong to two different cells. When we repeat the pro-
cess, it remains true that e∩Ci is a segment, and that it can only meet ∂Ci at its endpoints.

An empty cell is a cell of K(P) whose interior does not overlap with S ′. (See Figure 10a.)
Thus an empty cell is entirely contained in a face of S ′. Another type of cell, called a wedge,
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�∂f

C1

C2

C3
C4

C5

(a) The cells C1, . . . , C5 are empty. The first cut
is performed along �.

�b

a
b

p q

�a

C

(b) The wedge C corresponding to ab.

Figure 10: Empty cells and a wedge. Blue edges belong to ∂P .

will play an important role in the analysis of our algorithm. Let pq be a ridge of S ′, and let
a, b be two points in the interior of pq. Let �a and �b be the vertical lines through a and b,
respectively. Consider the subdivision of P obtained by inserting vertical boundaries along �a
and �b, and the four descent paths from a and b. (See Figure 10b.) The cell of this subdivision
containing ab is called the wedge corresponding to ab. The lemma below shows that wedges
are the only cells that can overlap the interior of a ridge, without containing any of the ridge’s
endpoints in the interior of the cell.

Lemma 3.4 Let Ci be a cell overlapping a ridge, but not its endpoints. Then Ci is a wedge.

Proof. Let a and b be the points on ∂Ci which are farthest along the ridge in either direction.
A ridge can only intersect descent paths that start from it, so a and b must each lie on a vertical
cut, �a and �b. Right after both vertical cuts �a and �b have been made (at different times),
ab lies in the interior of the wedge C corresponding to ab. Other vertical cuts may have been
made before arriving at the current subdivision K(P) that contains Ci. However, no vertical
cut can be made between a and b, otherwise a and b could not be in the same cell. So there
is no vertical cut in the interior of C, and thus no descent path has been traced inside C. It
follows that Ci is the wedge C.

3.2 Data structure

During the course of the algorithm, we maintain the polygon P and its subdivision K(P) in
a doubly-connected edge list [4]. So each cell Ci is represented by a circular list of edges, or
several if it has holes. In the following, we show how we augment these chains so that they
record incidences between the boundary of Ci and the faces of S ′.

For each cell Ci, let S ′
i be the subdivision of Ci induced by S ′. (So the two-dimensional faces

of S ′
i are the non-empty intersections of two-dimensional faces of S ′ with Ci.) Let Q denote a

circular list of edges that form one component of ∂Ci. We subdivide each vertical edge of Q at
each intersection point with an edge of S ′. Now each edge e of Q bounds exactly one face fj of
S ′
i. We store a pointer from e to the slab σj corresponding to fj . In addition, for each vertex

of Q which is a reflex vertex of P, we store pointers to the two corresponding motorcycle slabs.
We call this data structure a face list. So we store one face list for each connected component
of ∂Ci. (See Figure 11.)

Lemma 3.5 makes an observation that will be used in subsequent lemmas.

Lemma 3.5 A hole of a cell is necessarily a hole of P.
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σ9

σ10

e15

e16

e17

σ11

σ14
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σ15
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Figure 11: The face lists for the cell Ci bounded by the vertical line cuts �−i and �+i . The faces
are denoted by f1, . . . , f19 and the corresponding slabs are σ1, . . . , σ19. The face lists point to
these slabs, as the exact shape of the faces of S ′ is not known.
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Proof. When we subdivide a cell Ci, each newly added edge either connects directly to ∂Ci, or
connects to ∂Ci via a descent path. Therefore, every new boundary edge created in subdividing
Ci is connected to ∂Ci. If there was a hole, it would imply that there is a sequence of new
boundary edges that is not connected to ∂Ci, an impossibility. It follows that no new holes
are created by our algorithm. The initial cell C1 contains holes which are precisely the holes of
P.

We say that a vertex v of the motorcycle graph G conflicts with a cell Ci of K(P) if either
v lies in the interior of Ci, or v is a reflex vertex of ∂Ci. We also store the list of all the vertices
conflicting with each cell Ci. This list Vi is called the vertex conflict list of Ci. In summary, our
data structure consists of a doubly-connected edge list storing K(P), and the face lists and the
vertex conflict list Vi of each cell Ci.

We say that an edge e of S ′ conflicts with the cell Ci if it intersects the interior of Ci. We
denote by ci the number of edges of S ′ conflicting with Ci. During the course of the algorithm,
we do not necessarily know all the edges conflicting with a cell Ci, and we don’t even know ci,
but this quantity will be useful for analyzing the running time. In particular, it allows us to
bound the size of the data structure for Ci.

Lemma 3.6 If Ci is non-empty, then the total size of the face lists of Ci is O(ci). In particular,
it implies that ∂Ci has O(ci) edges, and Ci overlaps O(ci) faces of S ′. On the other hand, if Ci
is empty, then the total size is O(1), and thus ∂Ci has O(1) edges.

Proof. Let Q denote the outer boundary of Ci, and let |Q| denote its number of edges. By
Lemma 3.1, each reflex vertex p of Q is in a valley, and the two edges of Q incident to p bound
the two faces of Si incident to this valley. So any subchain Q′ of Q that bounds only one face
f of S ′

i must be convex. The edges of Q′ can take only 3 directions: vertical, parallel to the
base edge of f , or the steepest descent direction. So Q′ can have at most 5 edges: two vertical
edges, two edges parallel to the steepest descent direction, and one edge along the base edge of
f .

Thus, Q can be partitioned into at least |Q|/5 subchains, such that two consecutive sub-
chains bound different faces of S ′

i. Any vertex of Q at which two consecutive subchains meet
must be incident to an edge e of S ′

i that conflicts with Ci. By Lemma 3.2 and 3.3, this edge can
meet ∂Ci at most twice. So in total, Q has at most 10(ci + 1) edges.

Now consider the holes of Ci, if any. Such a hole must be a hole of P according to Lemma 3.5,
so each vertex along its boundary is the endpoint of at least one edge that conflicts with Ci.
Each conflicting edge is adjacent to at most one hole vertex, so there are O(ci) such vertices in
Ci. In addition, each edge of a hole bounds only one face, and for each reflex vertex, another
two faces corresponding to motorcycle slabs are added. So in total, the face lists for holes have
size O(ci).

We just proved that the total size of the face lists is O(ci + 1). If ci is non-empty, we have
ci ≥ 1, and thus the bound can be written O(ci). Otherwise, if Ci is empty, then it does not
conflict with any edge, so ci = 0. Hence, the data structure has size O(1).

3.3 Algorithm

Our algorithm partitions P recursively, using vertical cuts, as in Sect. 3.1. In this section, we
show how to perform a step of this subdivision in near-linear time. A cell Ci is subdivided along
a vertical cut through its median conflicting vertex, so the vertex conflict lists of the new cells
will be at most half the size of the conflict lists of Ci. When the vertex conflict list of Ci is
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empty, we call the procedure Divide-Valley presented in Section 4. If Ci is empty1 or is a
wedge, then we stop subdividing Ci, and it becomes a leaf cell.

We now describe in more details how we perform a vertical cut efficiently. We assume that
the cell Ci conflicts with at least one vertex, and that Ci is given with the corresponding data
structure as described in Sect. 3.2. We first find the conflicting vertex with median x-coordinate
in O(|Vi|) time. We compute the list of vertical boundary segments s1, . . . , sq created by the
cut along the vertical line � through the median vertex. This list is sorted along �, and it can
be constructed in time proportional to the number of edges bounding Ci, which is O(ci) by
Lemma 3.6.

Each segment si can be lifted vertically to a polyline ŝi on T . We compute ŝ1, . . . , ŝq as
follows. Let H denote the vertical plane through �. We first find the list of slabs corresponding
to the faces of S ′

i. We obtain this list as the union of the slabs that appear in the face lists of Ci.
We compute the intersection of each such slab with H. This gives us a set of O(ci) segments
in H, of which we compute the lower envelope. It can be done in O(ci log ci) time [19]. Then
we obtain ŝ1, . . . , ŝq by scanning through this lower envelope and the list s1, . . . , sq. Overall it
takes time O(ci log ci) to compute this lower envelope, and it has O(ci) edges, as each edge of
S ′
i or Ci creates at most one vertex along this chain.
The partition induced by � is obtained by tracing steepest descent paths from s1, . . . , sq.

For a vertical edge sj , any vertex of ŝj , when projected onto the horizontal plane, corresponds
precisely to a point where sj intersects an edge e of S ′

i. At each of these points, we do the
following without actually knowing S ′

i. There are at most three steepest descent paths from
a = ê ∩ ŝj , one for each slab through a. Each such descent path consists of one line segment
along the slab, followed possibly by another line segment along a valley in the case where the
slab is a motorcycle slab. Let γ denote one of these descent paths. As we know the slab and
the starting point of γ, we can construct γ in constant time. This path γ goes all the way to
∂P, so if necessary, we clip it at � or ∂Ci.

These descent paths cannot cross, and by construction they do not cross the vertical bound-
ary edges. Each edge of S ′

i may create at most three such descent paths, so we create O(ci)
such new descent paths. There are also O(ci) new vertical edges, so we can update the doubly-
connected edge list in time O(ci log ci) by plane sweep. Using an additional O(|Vi| log ci) time,
we can update the vertex conflict lists during this plane sweep. The face lists can be updated in
overall O(ci) time by splitting the face lists of Ci along the lower endpoints of the new descent
paths, and inserting new subchains along each vertical edge sj , which we obtain directly from
ŝj in linear time. So we just proved the following:

Lemma 3.7 We can compute the subdivision of a non-empty cell Ci induced by a line through
its median conflicting vertex, and update our data structure accordingly, in O((ci + |Vi|) log ci)
time.

3.4 Analysis

In the previous section, we saw that the vertical subdivision of each cell Ci can be obtained
in time near-linear in the size of the data structure for Ci. We now bound the overall running
time of the algorithm, so we need to bound the sum

∑
i ci + |Vi| over all cells created by

Divide-Vertical.
We use the recursion tree associated with Algorithm 1. Each node ν of this tree represents

a cell Ci, and the child cells of Ci are stored at the descendants of ν in the recursion tree. In
particular, the cells stored at the descendants of ν form a partition of the cell stored at ν. Each
time we subdivide a cell Ci, the vertex conflict list of each new cell has at most half the size of

1Recall that a cell is empty if its interior does not intersect S ′.
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Figure 12: A first wedge is created (left), and an adjacent wedges is created afterwards (right).
The cell containing p has been split simultaneously. Blue edges belong to ∂P .

the vertex conflict list of Ci. As there are at most 2r vertices in G, it follows that:

Lemma 3.8 The recursion tree of Divide-Vertical has depth O(log r).

The degree of any vertex in K(P) is at most 5, because there can be at most three descent
paths through any point, as well as two vertical edges. It implies that any point of P is contained
in at most 5 cells at each level of the recursion tree. It follows that:

Lemma 3.9 Any point in P is contained in O(log r) cells of K(P) throughout the algorithm.

In particular, if we apply this result to each of the 2r vertices of G, we obtain:

Lemma 3.10 Throughout the algorithm, the sum
∑

i |Vi| of the sizes of the vertex conflict lists
is O(r log r).

We now bound the total number of conflicts between edges of S ′ and cells of K(P).

Lemma 3.11 Throughout the algorithm, each edge e of S ′ conflicts with O(log r) cells. It
follows that

∑
i ci = O(n log r).

Proof. Let p, q denote the endpoints of e. First we assume that e is a ridge. By Lemma 3.9,
there are at most O(log r) cells containing p or q, so it remains to bound the number of cells
that overlap e but not {p, q}. By Lemma 3.4, these must be wedges. A wedge overlapping with
e is created only if at least two vertical cuts through e have been made. When the second such
cut is made, the wedge associated with a segment ab ⊂ e is created. Assume without loss of
generality that a is between p and b. Any wedge is a leaf cell. So the wedge associated with ab
will not be split by vertical cuts again. In order to create a new wedge along e, one must cut
with a vertical line through pa or bq. (See Figure 12.) It creates a new wedge adjacent to the
first one, and it splits the cell containing p or q, creating a new cell containing p or q. Repeating
this process, we can see that for each new wedge created along e, a new cell containing p or q
is created. So there can be only O(log r) wedges along e.

If e is a valley or a flat edge, then by Lemma 3.2, it only conflicts with cells that contain its
higher endpoint, so throughout the algorithm, there are O(log r) such cells by Lemma 3.9.

We can now state the main result of this section. Its proof follows from Lemmas 3.6, 3.7, Lemma 3.10,
and 3.11.

Lemma 3.12 The vertical subdivision procedure completes in O(n(log n) log r) time. The cells
of the resulting subdivision are either empty cells, wedges, or do not contain any motorcycle ver-
tex in their interior. They are simply connected, and the only reflex vertices on their boundaries
lie on valleys.
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Proof. The vertical subdivision procedure subdivides every cell recursively unless it is an empty
cell or a wedge, or it does not contain any motorcycle graph vertex. So the final subdivision
consists of these three kinds of cells only. When we perform a subdivision, we can identify
in constant time each empty child cell, because by Lemma 3.6, these cells have constant size.
When we find such a cell, we do not recurse on it, so these cells do not affect the running
time of our algorithm. Therefore, by Lemma 3.7, the running time of Algorithm 1 is the
O(

∑
i(ci+ |Vi|) log ci) over all cells created during the course of the algorithm. By Lemmas 3.10

and 3.11, this quantity is O(n(log n) log r).
Lemma 3.1 implies the only reflex vertices on the boundary of a cell lie on valleys.
We prove by contradiction that the cells are simply connected. Suppose that at the end

of the vertical subdivision, a cell Ci has a hole. This hole must be a hole of P according to
Lemma 3.5, hence it has a reflex vertex which conflicts with Ci. As the vertex conflict list of Ci is
non-empty, it must be an empty cell or a wedge, in which case it cannot contain a hole of P.

4 Cutting between valleys

4.1 Algorithm

In this section, we describe the second stage of the algorithm. The corresponding procedure
is called Divide-Valley, and its pseudocode is supplied in Algorithm 2. Let Ci be a cell of
K(P) constructed by Divide-Vertical on which we call Divide-Valley. This cell Ci is not
empty and is not a wedge, as these are handled via brute force by Divide-Vertical, so by
Lemma 3.12 it does not contain any motorcycle graph vertex in its interior. Let Ri denote
the set of valleys that conflict with Ci. We call Ri the valley conflict list. The extended valley
e′ corresponding to a valley e ∈ Ri is the segment obtained by extending e until it meets the
boundary ∂Ci of the cell. By Lemma 3.2, the valley e must meet ∂Ci, so we only need to extend
it in one direction so as to obtain e′. As Ci does not contain any motorcycle graph vertex in its
interior, it implies that the extended valleys of Ci do not cross. By Lemma 3.12, the cell Ci is
simply connected, so the extended valleys along with ∂Ci form an outerplanar graph with outer
face ∂Ci. (See Figure 13.)

ALGORITHM 2: Divide-Valley
Input: Cell Ci
Output: Skeleton S ′

i

if no valley conflicts with Ci then
Compute S ′ ∩ Ci as a lower envelope of planes;
return

end
Build the list of all valleys conflicting with Ci;
Construct a balanced cut s as in Lemma 4.1;
Construct the vertical slab H through s;
Construct ŝ as the lower envelope of the slabs intersecting H;
Trace within Ci the two or three steepest descent paths from each vertex of ŝ;
Update the partition K(P) using s and the descent paths as new boundaries;
for each child cell Cj of Ci do

Construct the data-structure for Cj ;
Call Divide-Valley(Cj);

end

At this stage of the algorithm, the cells are simply connected, so we record each cell Ci using
a single face list. We do not need vertex conflict lists, as the cells do not conflict with any

16

This is the Pre-Published Version 



CiCi

s
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Figure 13: (Left) The cell Ci and the conflicting valleys. (Middle) The extended valleys, and a
balanced cut. (Right) The triangulation and its dual graph.

motorcycle graph vertex. We do not need to store the valley conflict list Ri either, as we can
obtain it in linear time from the face list.

If Ci conflicts with at least one valley, we first construct a balanced cut, which is a chord s
of ∂Ci such that there are at most 2|Ri|/3 extended valleys on each side of s. (See Figure 13,
middle.) The existence of s and the procedure to identify s are explained below, in Lemma 4.1,
but we first describe the rest of the algorithm. This balanced cut plays exactly the same role
as the vertical edges along the cutting line that were used in Divide-Vertical. So we insert
s as a new boundary segment, we compute its lifted version ŝ, and at each crossing between s
and S ′, inserts the descent paths as new boundary edges.

We repeat this process recursively, and we stop recursing whenever a cell does not conflict
with any valley. All the structural results in Section 3 still hold, except that now a cell is
sandwiched between two balanced cuts, which can have arbitrary orientation.

So now we assume that we reach a leaf Ci, which does not conflict with any valley. By
Lemma 3.1, this cell Ci must be convex. As valleys are the only non-convex edges of T , its
restriction Ĉi above Ci is convex. Hence, it is the lower envelope of the supporting planes of its
faces. These faces are obtained in O(ci) time from the face lists, and the lower envelope can
be computed in O(ci log ci) time algorithm using any optimal 3D convex hull algorithm. 2 We
project Ĉi onto the xy-plane and we obtain the restriction S ′

i of S ′ to Ci.

4.2 Analysis

It remains to analyze this algorithm, and prove the existence of a balanced cut.

Lemma 4.1 Given a simply connected cell Ci that does not conflict with any motorcycle vertex,
and that conflicts with at least one valley, and given the face list of Ci, we can compute a balanced
cut of Ci in time O(ci log ci).

Proof. By Lemma 3.6, the cell Ci has O(ci) edges. We obtain the list Ri of valleys conflicting
with Ci in O(ci) time by traversing the face list. Let e1, . . . , eq denote these valleys. We first
compute the set of extended valleys R′

i = {e′1, . . . , e′q}. The set R′
i can be obtained in O(ci) time

by traversing ∂Ci as follows: We start at an arbitrary vertex of Ci, and each time we encounter
an endpoint of a valley, we push the valley into a stack. At each edge u of Ci that we traverse,

2Although it would not improve the overall time bound of our algorithm, we can even compute Ĉi in O(ci)
time using a linear-time algorithm for the medial axis of a convex polygon [1]: First construct the polygon on
the xy-plane that is bounded by the traces of the supporting planes of the faces of Ĉi, then compute its medial
axis, and construct its intersection with Ci.
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we check whether the extended valley e′j at the top of the stack meets it, and if so, we draw e′j ,
we pop it out of the stack, and we check whether the new edge at the top of the stack meets u.

Now we consider the outerplanar graph obtained by inserting the chords of R′
i along ∂Ci.

(See Figure 13, middle.) We triangulate this graph, which can be done in O(ci) time using
Chazelle’s linear-time triangulation algorithm [7], or in O(ci log ci) time using simpler algo-
rithms [4]. We construct the dual of this triangulation. We subdivide any edge of the dual
corresponding to an extended valley, and we assign weight one to the new node. The other
nodes have weight zero. This graph is a tree, with degree at most 3, so we can compute a
weighted centroid ω in time O(ci) [22]. If the centroid is an edge of the tree, then its removal
yields connected components each of weight at most |Ri|/2. If the centroid is a node of the tree,
then its removal yields connected components each of weight at most 2|Ri|/3. If ω corresponds
to an extended valley e′j , we pick s = e′j as the balanced cut. Otherwise, ω corresponds to a
face of the triangulation. We cut along the edge s of this triangular face corresponding to the
subtree with largest weight.

Lemma 4.1 plays the same role as Lemma 3.7 in the analysis of Divide-Vertical. At each
level of recursion, the size of the largest valley conflict list Ri is multiplied by at most 2/3, so
the recursion depth is still O(log r). A leaf cell Ci is handled in O(ci log ci) time by computing
a lower envelope of planes, as explained above. It follows that we can complete the second step
of the subdivision, and compute S ′ within each cell, in overall O(n(log n) log r) time. Then
Theorem 1.1 follows.

Our analysis of this algorithm is tight, as shown by the example in Section 6.

5 Degenerate cases

As discussed in Section 2, the description and analysis of our algorithm was given for polygons
in general position. Here we briefly explain why our result generalizes to arbitrary polygons.

Almost all degeneracies can be treated by standard perturbation techniques, replacing high
degree nodes with several nodes of degree 3 [17]. The only difficult case is when two or more
valleys meet, and generate a new valley. In the induced motorcycle graph, this situation is
represented by two or more motorcycles colliding, and generating a new motorcycle. (See
Figure 14.) Huber and Held gave the definition of motorcycle graphs in degenerate cases [21].

Let the movement of motorcycle m be defined by two moving edges during the shrinking
process. We call the edge to the left of the track the left arm of m, and the other edge the
right arm. From each reflex vertex we launch a motorcycle as described in Section 2, so the
two reflex edges form the two arms.

Suppose two or more motorcycles crash simultaneously at a point p, and a new motorcycle
is created. Denote by m1, ...,mk the motorcycles that crashed at p such that (i) their traces
appear counter-clockwise around p and (ii) the traces of m1 and mk bound the convex slice of
a local disc D around p. Then we start at p a motorcycle m which inherits the left arm of m1

and the right arm of mk. This tells us the speed and direction of the new motorcycle. (See
Figure 14c.)

So in degenerate cases, we assume that the exact induced motorcycle graph has been com-
puted. It can be done in time O(r17/11+ε) for any ε > 0 [17]. Then the problem becomes one
of computing a lower envelope of slabs. For each motorcycle, we create two slabs in the same
way as in the non-degenerate case: For each arm of a motorcycle vertex, the corresponding slab
makes an angle π/4 with the horizontal, and is bounded by rays orthogonal to the arm and
going through the endpoints of the motorcycle edge. (See Figure 14d.)

The only difference with the non-degenerate case is that now, instead of having each valley
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Figure 14: (a) The straight skeleton S of a degenerate polygon P. Two valleys meet at q, and
three meet at p. (b) Three reflex vertices collide at p during the shrinking process. (c) The
motorcycle graph associated with this polygon. The left and right arms at p are e2 and e3. At
q, the left and right arms are e1 and e3, and the velocity of the new motorcycle at q is given by
the translates e′1 and e′3 of e1 and e3. (d) The slabs are bounded by the dashed segments. (e)
The skeleton S ′. (f) The partition of S ′ induced by � (bold). The whole subtree rooted at p is
in the new boundary.
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Figure 15: Tight example. For vertical cuts that are introduced from left to right, the four
slabs corresponding to e1, e2, e3, e4 conflict with the cuts.

adjacent to a reflex vertex, the valleys form a forest, with leaves at the reflex vertices. So a
descent path may be a polyline with arbitrarily many vertices. In Section 2 we explained how
we obtain S ′ from S. Now, we extend this definition for the degenerate case. Let v be a straight
skeleton vertex at which two or more motorcycles collide and form a new motorcycle with track
t. Let e1 and e2 be the left and right arms of t respectively. At v we draw a flat edge in the
direction perpendicular to e1. (See Figure 14e.) This flat edge goes into the adjacent face of
S until it hits another edge of S. A second flat edge is drawn in the opposite face in a similar
way, orthogonally to e2. Repeating this for all motorcycle start vertices of G gives us S ′.

In Section 3.1 we stated that there are at most three steepest descent paths to ∂C from
a point p̂ on T above a cell C. In the degenerate case, we can only say that there are O(r)
paths of steepest descent from such a point p̂. When we perform a vertical cut, we cut along
all the possible descent paths. (See Figure 14f.) We can not necessarily trace a descent path in
constant time. However, we can trace it in time proportional to its size, and its edges become
cell boundaries. The subdivision can be updated in amortized O(log n) time for each such edge,
as we update the partition by plane sweep. So the extra contribution to the overall running
time is O(n log n).

6 Tightness of analysis

We give an example to demonstrate that for this algorithm the analysis is tight. A similar
example is used by Huber and Held to show that a triangulation-based straight skeleton algo-
rithm may take Θ(n2 log n) time [21]. Consider a polygon P where, on the left hand side, we
have a convex chain of Ω(n) near-vertical edges. Along the top boundary of P we have Ω(r)
small reflex dips pointing downwards. See Figure 15 for an example with a convex chain of
size 4, and 5 reflex dips. The straight skeleton faces corresponding to each edge of the convex
chain to the left of the polygon extend deep into the polygon. Each time we make a vertical
cut to the right of all other vertical cuts previously made, it will cross through all faces of the
chain, hence all the slabs must be provided to the lower envelope calculation. It then follows
that Algorithm 1 spends Ω(n(log n) log r) time as it computes Ω(log r) lower envelopes of Ω(n)
line segments.
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