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ABSTRACT
This paper focuses on the reversibility of human actions in the
frame of human-machine interaction, with a special focus on the
interaction between a pilot and a flight management system con-
trolling an aircraft. A multi-level reversibility scale is defined for
human actions. A reversibility property is defined for each level.
An algorithm implementing a reversibility property check on the
machine logic described in ADEPT is proposed. Specifically this
paper describes a method for formally identifying actions that are
not reversible within one step, that are eventually totally unrecov-
erable and that are totally unrecoverable.

CCS Concepts
•Human-centered computing→ Heuristic evaluations;

Keywords
Reversibility, human-machine interaction, undo.

1. INTRODUCTION
Suppose you are driving in down-town Toulouse, more precisely

on Rue de Metz (near Esquirol metro station, see figure1a point A)
heading west. You want to reach Rue de l’Écharpe (see figure1a
point B), so the second street to the right. That is a 100 m trip.
Suppose you turn on the first street to the right by mistake and im-
mediately notice your mistake: you will reach the destination in 1.3
km (see figure1b). This happens because of the one-way streets:
you cannot perform a U-turn in order to recover the situation where
the error occurred. Many cities have one way systems like this one.

Whether by omission or commission, mistake or slip [Rea90],
errors are an everyday part of human existence. While it is possible
to design systems to be less vulnerable to errors, the systems also
require the ability to gracefully recover from errors when they do
happen. The process of error recovery (i.e. detection, explanation,
correction) [AW97, Kon99] could be achieved only if the machine
logic allows the reversibility of erroneous actions. For that reason
the analysis of the ease of recoverability could be very useful in the
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evaluation of designs, particularly for the design of safety critical
systems like the interaction between a pilot and a flight manage-
ment system.
While a complete assessment of recoverability is beyond the cur-
rent scope, this paper focuses on the reversibility of commands as
one dimension of recoverability. Specifically this paper describes
a method for formally identifying actions that are not reversible
within one step, or are irreversible.

(a) Shortest way: 100 m. (b) Turn on the first right,
length: 1.3 km.

Figure 1: (Map data: @OpenStreetMap contributors)

Reversibility [CCH08] is generically meant as the property to
undo the effects of some action after the execution of a sequence
of actions. When defining the reversibility property, it is important
to define the domain of interest that is relevant for the designer’s
purposes. If time is an explicit state variable, all the actions are
non reversible. The same is true if some of the state variables are
monotonous functions of time. Using aviation as an example do-
main, there are many action sequences that are not reversible due
to the passage of time (e.g. the fuel level always decreases, dis-
tance to destination should decrease, etc.). In the same way, there
are aircraft automation modes that are irreversible due to the time
dynamics.

In the next section the context is presented: a brief review of
the existing literature is carried out. Some useful definitions for
the following sections are given and the underlying structure of the
human-machine system is presented.
Then a six-level reversibility scale is defined for human action-
driven state changes (Undo, One action reversibility, Reversibility,
Irreversibility, Eventually totally unrecoverable, Total unrecover-
ability). One reversibility property corresponds to each level. It is
shown that the set of state changes verifying higher level properties
is included in the sets of state changes verifying lower level prop-
erties.



An automated test to assess the reversibility degree of each state
change is formalized next. The test can verify four out of six prop-
erties (Undo, One action reversibility, Eventually totally unrecov-
erable, Total unrecoverability). The check of the last two properties
(Reversibility, Irreversibility) is out of the scope of this paper. The
results of the automated test are presented for a toy example.
In the last section the automated test is performed for the reversibil-
ity of the Go-around mode engagement for an autopilot simplified
machine logic.

2. CONTEXT
A human–machine system (see figure 2) is a two-agent team

formed by a human operator and a machine with a common goal
[Jen95], they communicate and act on a physical system (or just sys-
tem) for the achievement of their goal. Note that we call machine
only the part of the automation logic structure and current state the
human operator has to know in order to operate effectively.
The goal achievement is pursued through the execution of functions
[MC99]. Some of those functions can only be executed by the hu-
man operator, some only by the machine. In this work we focus
on the case of a pilot interacting with a flight management system
in order to control an aircraft. Nevertheless the concepts developed
in this paper are applicable in the wider context of human-machine
systems.

Figure 2: Human–machine systems in charge of controlling a phys-
ical system

The human/machine interface (H/M interface) is composed by
input devices (e.g. buttons, knobs etc.) and output devices (e.g.
displays, visual and aural alarms etc.).
Feedback is the machine to human communication through the hu-
man/machine interface. In the same way the selections are hu-
man actions that constitute the human to machine communication
through the human/machine interface.
In principle feedback allows a certain degree of observability on
the state of the machine so that the human could make observa-
tions; selections should affect the state. State changes that are the
result of selections are selection triggered transitions. We call au-
tomated transitions state changes that are not caused by selections.
The human/physical system interface (H/S interface) is composed
of input devices (e.g. control stick, yoke, control pedals, etc.) and
output devices (e.g. sensors displays, control stick with retrofeed-
back etc.).
The machine/physical system interface (M/S interface) is composed
of the software and the hardware systems meant to provide the con-
nection between the machine and the sensors and actuators of the

physical system.
We define the sensors as a part of the controlled physical system
providing information about the physical system state itself through
the H/S interface and through the M/S interface. For instance we
consider a Global Positioning System (GPS) as a sensor.
We define the actuators as parts of the controlled physical system
that can change the system state and are controlled through the H/S
interface and the M/S interface. We consider the servoing systems
(as the automatic control loops) as part of the actuators.
Commands are human actions on the H/S interface meant to control
the actuators. Similarly machine commands are data sent from the
machine to the actuators through the M/S interface.
Sometimes, for ergonomics reasons, a single physical action may
embed commands and selections: that is the case for an operator
taking the authority on the steering wheel of a unmanned ground
vehicle (a selection) and controlling the direction of the vehicle (a
command) with a single movement on the control stick. Sometimes
the same display may be part of the H/M interface and the H/S in-
terface at the same time.
We call other observations all other pieces of information the hu-
man receives neither from sensor observations nor from feedback
(e.g. a visual estimate of the altitude based on the observation of
the ground, communications received by the radio coming from
the air traffic control (ATC)). Similarly we call other readings all
other pieces of information the machine receives neither from sen-
sor reading nor from selections (e.g. radio communication from the
traffic collision avoidance system (TCAS) of another aircraft).
A function may be performed by the human or by the machine (re-
spectively human-function and machine-function).

For a wise function allocation the HMS (Human Machine Sys-
tem) designer should keep in mind the human and machine strengths
and weaknesses. The machine is good at performing repetitive
tasks and at quick and precise computation, but is bad at unex-
pected event management [LSMC10]. The human is usually better
in adaptability, i.e. in failure and unexpected event management
and in coping with uncertainty and lack of information [Ras83].
Nevertheless unexpected HMS performance degradations may arise
because of errors [PSW00], bad communication [DCV14] and bad
coordination between the human and the machine [Wic05, SMW07,
DCT11, PDT11, PTD14, TD12, Deh02] or automation surprises
[SW95, DPS15], i.e. the wrong assessment of the states, due to an
unexpected automated state change. Moreover some works have
focused on formal properties of the machine logic that could re-
veal bad designs, which could in turn cause human errors. For in-
stance [JMDK00] define objective properties (e.g. the presence of
a feedback for a function) and subjective properties (e.g. the learn-
ability of a function) for the functions of the interaction, [LPS97,
Fea05] define critical transitions for the state machine model (e.g.
an automated transition, transitions with similar feedback), [DH02]
evaluate whether the interface provides the necessary information
about the machine, so as to enable the operator to perform a spec-
ified task successfully, [CCH08] define patterns for potential un-
foreseen interaction problems and discover discrepancies between
the user manual and the real machine behaviour, [PH00, Piz13] de-
velop action-based models to detect dangerous situations, [Pal97]
compares and evaluates different formal approaches.

While all those studies have contributed to improve the human-
machine interaction, users are fallible [Rea90] and the total elimi-
nation of errors is an unrealisable ambition. Therefore interfaces
have to take into account and exhibit error resistance i.e. pre-
vent users from making errors, e.g. a human/machine interface
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Figure 3: Reversibility
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that requires more than one selection to perform a bank transfer,
[MDK93] and error tolerance: errors should be reversible (e.g. a
bank web portal that allows a bank transfer to be nullified within
30 minutes).

For instance in the NASA ASRS database 21 safety incident/si-
tuation reports (in the period 2001-2014) are related to situations
in which the pilots performed an involuntary action whose effects
they tried to reverse [NAS]. More precisely those involuntary ac-
tions made the automation drop some safety constraints (e.g. re-
quirements on the minimal altitude).

In the next section a six-level reversibility scale is defined for
human action-driven state changes.

3. DEFINITIONS AND SIX-LEVEL
REVERSIBILITY SCALE

3.1 Reversibility
Definition [Reversibility][CCH08]: a state change from state z0

to state z1 triggered by action 1 is said reversible if from state z1,
it exists at least one sequence of actions (action A, action B...) that
at some point in the future can take back the state to the initial state
z0, see figure 3.

3.2 Undo
Definition [Undo](inspired by [CCH08]): The undo by a spe-

cific action, is a special case of the reversibility definition: the se-
quence of actions is replaced by a unique action, always the same
whatever the action to undo (see figure 4).

The undo is desirable for non critical domains, as for instance
text editor software. Nevertheless, even for this application, pre-
dictability issues arise: despite the general agreement of the impor-
tance of undo, few systems supply more than the simplest single-
step undo command and, even then, the effect of command and
when it can be applied is often far from obvious. (...) Undo support
for single user systems is regarded as essential, but recognised to
be fraught with potential pitfalls [AD91].
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Figure 5: One action reversibility

In the literature the emphasis is put on action triggered state
changes whose consequences, for the same action, are not always
the same: they are defined as “inconsistent behaviour” [LPS97,
CCH08] or also “moded behaviour” [Fea05, Fea07]. They are
widely recognized as state changes that may be misunderstood by
the operator.
The specific action is always the same whatever the action to undo,
for instance to press a specific undo button, or to enter a specific
key stroke combination (e.g. control+Z). The last performed ac-
tion is in general not shown on the interface: the human operator
has to remember it in order to predict the effect of the undo. For
that reason the undo is in general an “inconsistent behaviour”.

For safety critical domains such as aeronautics predictability is
highly desirable [Fea05]. So the undo, because of its predictabil-
ity issues [AD91, LPS97, CCH08, Fea05], is not a desired feature.
The absence of the undo function does not lead to the loss of re-
versibility. For instance it is enough to show that any action can be
undone simply by a proper re-action.

Definition [One action reversibility] (inspired by [CCH08]): a
state change from state z0 to state z1 triggered by action 1 is said
one action reversible if from state z1, it exists at least one single
action (action A) that can take back the state to the initial state z0,
see figure 5.

Example: Consider a machine with a three-value state variable
high/medium/low and three actions up/down/undo. The initial state
is medium. After performing an up action the new state is high.
To reverse the effects of this action it is possible to perform the
undo action. To obtain the same result it is also possible to execute
the down action. In the first case the effects of the up action via
a specific action (undo) are nullified, in the second one the effects
of the up action are reversed via a relevant reaction (one action
reversibility).

3.3 Unrecoverability
Definition [Irreversibility]: The execution of an action from a

state z0 can lead to a state z1 from which there is no possible way
back to z0. Such a state change, according to definition [Reversibil-
ity], is irreversible, see figure 6.

Definition [Total unrecoverability. 1]: The execution of an ac-
tion from a state z0 can lead to a state z1 from which there is no
possible way out, i.e. there is no further sequence of actions that
can lead to a new state that is different from z1. z1 is a blocking
state (figure 7). Such states could correspond to a physical limit of
the machine or a machine failure. They can also be the result of a
design error: this is typically the case of machine deadlocks after
the execution of an unexpected sequence of actions. Those state
changes are said to be totally unrecoverable.
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Figure 7: Total unrecoverability

Example: let us consider a machine with a three-value state vari-
able high/medium/low, a two-value state variable ok/out of order
and three possible actions Up/Down/Oops! (put out of order). Ini-
tial state is (medium, ok). After the execution of the action Oops!
(put out of order) the state becomes (medium, out of order). At that
point there is no possible sequence of actions to change the state
(in this simplified model there is no repair action).

Another definition that is equivalent to the previous one is:

Definition [Total unrecoverability. 2]: a state change triggered
by an action 1 from a state z0 resulting in the new state z1 is said
totally unrecoverable if from z1 there is no action that can lead to
a state that is different from z1.

This second definition is easier to verify because it only needs
the evaluation of the state after the execution of just one action.
Therefore it will be used in the algorithm to verify the total unre-
coverability property.

And finally:
Definition [Eventual total unrecoverability]: a state change

triggered by an action 1 from a state z0 may lead to an impasse
state ( 6= z0) from which any possible action leads to a blocking
state or to another impasse state (figure 8). This state change is
called eventually totally unrecoverable.

The detection of eventually totally unrecoverable state changes
will need an iterative process (see section 4.2.2).

3.4 Reversibility scale
Different types of reversibilities and irreversibilities have been

defined in the previous sections. Table 1 summarizes as a scale
the different cases of reversibility from the “most reversible” to the
“less reversible”.

If we note as ⊂ “is a particular case of”, we get the following
relations:

z0

action 1

Impasse state Impasse state

Blocked state

Figure 8: Impasse states and blocked state

Case Reverse z0 → z1

Undo A particular action to come back to z0
One action reversibility One action to come back to z0

Reversibility A sequence of actions to come back to z0
Irreversibility No sequence of actions to come back to z0

Eventually totally unrecoverable Eventually no action to leave some state from z1
Total unrecoverability No action to leave z1

Table 1: Reversibility scale

Undo ⊂ One action reversible ⊂ Reversible

Totally unrecoverable ⊂Eventually totally unrecoverable ⊂ Ir-
reversible

Combining them in just one formula:
¬ Undo ⊃ ¬ One action reversible ⊃ Irreversible ⊃ Eventually

totally unrecoverable ⊃ Totally unrecoverable

or also:

Undo ⊂ One action reversible ⊂ Reversible ⊂ ¬ Eventually to-
tally unrecoverable ⊂ ¬ Totally unrecoverable

4. AN AUTOMATED TEST FOR REVERSIBIL-
ITY ASSESSMENT WITHIN ADEPT

There are many formal models of human-automation interfaces,
however the vast majority of them are computationally equivalent
to a finite state transition system or finite state machine [BBS13].
Among such models ADEPT (Automation Design and Evaluation
Prototyping Toolset) [Fea05, Fea07] is well suited to multimodal
systems as the modes can be easily represented as system state vari-
ables. Those state variables constitute preconditions that allow or
forbid state transitions involving other state variables. Moreover
the ADEPT model may be made smaller and more efficient by com-
bining state transitions that lead to the same final state [Fea05],
therefore it can partially address the problem of big size systems
representation. ADEPT performs a set of automated analyses on
the structure of the human-machine interface in order to verify
properties like completeness and consistency in addition to vulner-
ability checks detailed hereafter. However it does not perform any
reversibility verification [CCH08]. Our contribution is to define an
additional algorithm within ADEPT so that it can evaluate a set of
reversibility properties, as defined previously.

4.1 ADEPT
ADEPT checks a number of properties that might flag potential



vulnerabilities of the human-machine interaction:

Moded input: the same action performed by the human operator
has many possible effects, depending on the state of the ma-
chine.

Armed behaviour: the effects of an action of the human operator
may be delayed.

Automated behaviour: a state transition that does not need an ac-
tion of the human operator to be triggered.

Inhibited behaviour: an action of the human operator that has no
effect on the machine state.

Similar feedback: the same display is used for more than one be-
haviour of the machine state.

The following definitions are inspired by [Fea05].

Definition [Machine, Machine model, State variable, Transi-
tion]: in the human-machine interaction the human operator has to
know part of the automation logic structure and current state in or-
der to operate effectively. In this work we call machine this part of
the automation. The machine is modelled as a finite-state machine
(FSM). Within the FSM a state variable is one of the variables that
are used to describe the state of the machine. Each state variable
may accept two or more values. The machine is in only one state
at a time, that state is described by the values taken by its state
variables. A state change can occur when an event happens (e.g. a
condition is verified); this state change is called a transition. Note
that the machine model logic representation in ADEPT is provided
in the form of a logic table (for the relevant definition see hereafter)
that is a compact equivalent of an FSM.

Definition [Input/Output state]: given a transition an input/out-
put state is the state before/after the firing of the transition.

Definition [Selection]: a selection is a human action that con-
stitutes the human to machine communication through the human/-
machine interface.

In ADEPT state transitions are represented as triples (input state,
selection, output state). If the state change does not need a selec-
tion to be triggered, the triplet is noted (input state, “no selection”,
output state).

Definition [Situation]: a situation is defined as the conjunction
between a proposition about the selections and a proposition con-
cerning the input states: selections are described as a disjunction
of selections and input states are described as a conjunctive normal
form, i.e. a logic conjunction between the state variables and a dis-
junction of values of the same variable.
Selections and input states are either defined explicitly or take the
parametric value “no matter which value/no matter which action
(noted as **)”.

Definition [Behaviour]: a behaviour, which is the result of a
situation, is defined as a logic conjunction between state variables
that take just one value at a time. This value is either defined ex-
plicitly or take the parametric value “same as input (noted as *)”.

The link between situation and behaviour is summarized on fig-
ure 9.

Example:

situation : (action = [a1 ∨ a3]) ∧ (x1 = [v11 ∨ v12])∧

Input states Output state

Action

Situation Behaviour
Figure 9: Situation and Behaviour in ADEPT.

∧(x2 = [∗∗])

behaviour : (x1 = [∗]) ∧ (x2 = [v22])

In this example the situation is expressed in natural language as:
“action is either a1 or a3 and variable x1 value is either equal to
v11 or v12, and variable x2 takes any value”. The behaviour is ex-
pressed as: “variable x1 value is the same as input and variable x2

value becomes v22”.

Definition [Logic table]: The set of pairs (situation, behaviour)
is represented in ADEPT in a compact table called logic table.
The first column of the table contains actions and state variables
names, the second column contains actions and state variables val-
ues. From the third column, each column represents a pair (situa-
tion, behaviour), consequently pair number 1 will be represented in
the column called c1. In those columns an empty box is set to 0 (or
false). If for some situation all the boxes corresponding to the ac-
tions or a state variable are empty, the action or variable takes [**].
If for some behaviour all the boxes for a state variable are empty,
the variable has the same value as the input [*].

Example A (see table 2):

Let us consider a machine that is entirely represented by a three-
value state variable X and a two-value state variable Keyboard. X
can take the High/Medium/Low values. The human operator can
change the value of X through the keyboard, which can be Ok or
Out of order. The human operator’s actions on the keyboard are
Increase X, Decrease X, Oops! (action Oops! represents the acci-
dental breakage of the keyboard). The behaviour of the machine
is shown in table 2. Note that in this representation the transition
labels represent the column of the logic table they embody, not the
transition name.
The logic table columns (c1 to c8) representing the pairs (situation,
behaviour) are as follows:

• from c1 to c6: user increases or decreases X.
• c7: accidental breakage of the keyboard, from this point it is

out of order.
• c8: in the case the keyboard is out of order, any action of the

human operator has no effect (i.e. all the variables keep the
same value as the input).

Regarding columns c3, c4 and c8 their behaviour is no effect.
For instance, column c8 represents the following pair (situation,
behaviour):

situation : (action = [∗∗]) ∧ (X = [∗∗])∧

∧(keyboard = [Out of order])

behaviour : (X = [∗]) ∧ (keyboard = [∗])
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Actions
Increase X 1 1 1
Decrease X 1 1 1

Oops! 1
No action

State
Keyboard Ok 1 1 1 1 1 1 1

Out of order 1
X High 1 1

Medium 1 1
Low 1 1
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State
Keyboard Ok

Out of order 1
X High 1(ok) 1(ok)

Medium 1(ok) 1(a) 1
Low 1(c) 1(b) 1

Table 2: ADEPT Logic table for Example A

The natural language description of this pair (situation, behaviour)
is if the keyboard is out of order any action for any value of X has
no effect.
For more details on the construction of a logic table in ADEPT see
[Fea05, Fea10].

Definition [Complete logic table]: A logic table is complete if
each combination (input state, action) is listed in at least one situa-
tion.

Definition [Input consistent logic table]: A logic table is input
consistent (or simply consistent) if each combination (input state,
action) is listed in at most one situation.

Consequently, in a complete and consistent logic table, for any
combination (input state, action) there is always one and only one
situation, and one resulting behaviour. Note that in a complete
logic table any combination (input state, action) must be explicitly
listed in the table, including those whose behaviour is no effect.

4.2 Towards reversibility assessment with ADEPT

4.2.1 Definitions
As in ADEPT each pair (situation, behaviour) may represent sev-

eral state changes at the same time (e.g.: situation : (action =
[a1]) ∧ (X = [v1 ∨ v2]), behaviour : (X = [v3]) represents the
transitions t1 : action = [a1] ∧ X = [v1] → X = [v3] and
t2 : action = [a1] ∧ X = [v2] → X = [v3]) the formal defini-
tions of reversibility need to be adapted, according to a conservative
choice:

Definition [Reversibility property]: We define generically as a
reversibility property each of the already defined properties: Undo,
One action reversibility, Reversibility.

Definition [Irreversibility property]: We define generically as
an irreversibility property each of the already defined properties:
Irreversibility, Eventually totally unrecoverable, Total unrecover-
ability.

Definition [Pair reversibility property in ADEPT]: a pair (sit-
uation, behaviour) satisfies a given reversibility property when all
the state changes represented by the pair satisfy this property.

Definition [Pair irreversibility property in ADEPT]: a pair
(situation, behaviour) satisfies a given irreversibility property if at
least one state change represented by the pair satisfies this property.

4.2.2 Algorithm
The verification of the reversibility property needs the evalua-

tion of the effects of an unknown-length sequence of actions. In
this algorithm we have decided to evaluate the effects of one action
and one further action to reverse the effects of the first one. That
greatly reduces the algorithm complexity. Consequently we will
check the undo, one action reversibility, and total unrecoverability
properties. The eventual total unrecoverability property check is
performed as well. Therefore the algorithm for reversibility assess-
ment in ADEPT is shown in Algorithm 1.

4.3 Algorithm applied on example A



Data: Define the logic table for the machine logic in the form
of N pairs (situation, behaviour). One of the actions
may be labelled as Undo action

Result: The evaluation of the reversibility properties for each
pair (situation, behaviour): Undo, One action
reversible, Non one action reversible, Eventually
totally unrecoverable, Totally unrecoverable.

Prepare a list of all the possible states (for instance as a
Cartesian product of the state variables), each of them will be a
called state instance;
for every pair (situation, behaviour) do

if any of the state instances is a valid input state for this
pair, i.e. is included in the relevant situation then

The state instance is called z0 and stored for later use;
Compute the resulting output state, called z1, store for
later use;
Verify which pairs have a situation that includes z1. z2
is the resulting output state for those pairs (a different
z2 for each pair) and stored for later use;
if Undo action is included in the relevant situation
then

store the information in the boolean variable
Undid = true;

end
end

end
for every pair (situation, behaviour) do

if for at least one z1 of this pair all the z2 are identical to
z1 then

the pair is classified as Totally unrecoverable, and z1
is classified as blocked state;

end
if for at least one z1 of this pair all the z2 are different
from z0 then

the pair is classified as Non one action reversible;
end
if for all the z1 of this pair at least one z2 is identical to z0
then

the pair is classified as One action reversible;
end
if for all the z1 of this pair at least one z2 is identical to z0
and Undid==True then

the pair is classified as Undo;
end
while there are no new states left classified as impasse
state do

if for at least one z1 of this pair all the z2 are identical
to a state classified as blocked or impasse then

the pair is classified as Eventually totally
unrecoverable;
z1 is classified as an impasse state;

end
end

end
Algorithm 1: Reversibility check for ADEPT.

Let us consider again the example described by table 2. First the
automatic analysis is performed on a correct design. Afterwards it
is performed on three different design error scenarios. In the three
error scenarios the reversibility properties of the machine logic is
not as expected. That incoherence with the expected behaviour for
the correct design may alert the system designer of the presence of

design errors. The results of the analysis are intuitively explained
for the four scenarios (i.e. correct design and design errors).

Correct design: the “1(ok)” values in columns c1, c2, c3 de-
scribe the correct logic design for the machine.
The results of the analysis are:

pair number 1 is 1-action reversible for all
of its input states

pair number 2 is 1-action reversible for all
of its input states

pair number 3 has no effect
pair number 4 has no effect
pair number 5 is 1-action reversible for all

of its input states
pair number 6 is 1-action reversible for all

of its input states
pair number 7 is totally unrecoverable

for input state: Keyboard(Ok), X(High)
for input state: Keyboard(Ok), X(Medium)
for input state: Keyboard(Ok), X(Low)

pair number 8 has no effect

Not surprisingly pairs number 1, 2, 5 and 6 are found to be 1-
action reversible for all their input states: they describe the action
of increasing or decreasing the value of variable X.
Pair number 7 is found to be totally unrecoverable for three input
states.
The result of the analysis is coherent with the expected behaviour:
putting the keyboard out of order (represented by column c7 that
has as input state [Keyboard (Ok), X (any value)]) should be the
only totally unrecoverable state change for the user operational do-
main (if no modelling error has been committed).
Pairs number 3, 4 and 8 are found to have no effect (according to
their definitions in Table 2) and are not classified on the reversibil-
ity scale as they have no effect to be reversed.

Design error “1(a)” (column c2): action increase X in the case
of X/Medium has no effect. The result of the automatic analysis is
the same as in the nominal case, with the exception of pair 6 that is
classified as:

NON 1-action reversible

Indeed pair 6 (embodied by column 6) represents the transition
from X/High to X/Medium. Due to the fact that the transition from
X/Medium to X/High is corrupted, pair 6 has become non reversible
and therefore non one action reversible. As the automatic analysis
cannot recognize non reversible state changes the column is recog-
nized as “just” non one action reversible.

Design error “1(b)” (column c3): the action increase X in the
case of X/High leads to the value X/Low. The result of the automatic
analysis is the same as in the nominal case, with the exception of
pair 3 that is classified as:

NON 1-action reversible

Indeed two actions increase X are needed to restore the input state.

Design error “1(c)” (column c1): the action increase X in the
case of X/Low has no effect. The result of the automatic analysis is
the same as in the nominal case, with the exception of pair 5 that
becomes:



eventually totally unrecoverable

for input state [Keyboard (Ok), X (Medium)]. Pair 5 (embodied by
column 5) represents the transition from X/Medium to X/Low. Due
to the fact that the transition from X/Low to X/Medium is corrupted,
pair 5 has become eventually totally unrecoverable. Indeed the re-
sult of the firing of the transition described by pair 5 is that after-
wards only the transition described by pair 7 may be fired, leading
to a blocking state (i.e. it is no more possible to change X but it is
still possible to put the keyboard out of order). Consequently the
firing of the transition described by pair 5 leads to an impasse state:
therefore pair 5 is precisely “eventually totally unrecoverable”.

As far as real systems are concerned an intuitive guess for re-
versibility may be very difficult. In those cases the automatic anal-
ysis may be particularly useful in the frame of a trial and error
method to evaluate the impact of a design change on the reversibil-
ity of each pair of the logic table. This approach is illustrated in the
next section on a simplified autopilot model.

5. ANALYSIS OF THE REVERSIBILITY OF
THE GO-AROUND MODE ENGAGEMENT

A “Go-around” is an aborted landing of an aircraft that is on final
approach. Many modern aircraft include a “Go-around mode” that
automatically sets the throttle to the maximum level. Moreover, de-
pending on the manufacturer, it either switches off the autopilot or
it just switches off the instrument landing system mode. Reversing
a Go-around decision can be hazardous (e.g. the human operator
initiating a late go-around, and successively overriding it and trying
to land the aircraft in the short amount of time left [AIR07]). An
untimely or involuntary Go-around activation can be hazardous as
well (e.g. the Nagoya accident [AAIC94]). Runway overruns, im-
pact with obstructions and major aircraft damage (or post impact
fire) often are the consequences of reversing an already initiated
rejected landing [AIR]. Moreover autopilot systems are often de-
signed to require many steps to disengage a Go-around mode so
that the crew should be fully conscious of the new state of the au-
topilot.

An autopilot mock-up model, inspired by the autopilots com-
monly in use on modern commercial aircraft, is presented in this
section in order to analyse the reversibility of the Go-around mode
engagement. First the automatic analysis is performed on a correct
design. Afterwards it is performed on a design error scenario.

In this simplified model a limited number of state transitions are
modelled. The state variables are the Autopilot modes (Mode 1,
Mode 2, Mode 3, Go-around)1, Throttle level (“+” for idle, “++”
for 40 percent throttle, “+++” for wide-open throttle), Autopilot
state (On, Off), Autopilot engagement conditions (satisfied, not sat-
isfied). In this model the human operator (i.e. the crew) may switch
the autopilot On or Off, may select Autopilot modes and Throttle
level. Switching the Autopilot Off has the effect to reset the Au-
topilot mode. The human operator may switch the Autopilot On if
the engagement conditions are satisfied, otherwise pressing the On
button has no effect. Moreover the selection of modes 1, 2 and 3
has no effect if the current mode is Go-around.
For the detailed behaviour of the machine see the logic table 3.

Columns 5, 6 and 7 represent autopilot mode changes. Columns
9 to 14 represent thrust level changes. Columns 2 and 3 represent
1Typical autopilot modes are Climb, Descend, Climb ignoring al-
titude constraints, Final descent, Landing etc. For the sake of sim-
plicity in this study only three modes and the Go-around mode are
modelled.

autopilot state changes. Column 2, unlike column 3, also involves
the autopilot mode: when disengaged the autopilot is set on Mode
1. Column 1, corresponding to the engagement of the Go-around
mode, changes both the autopilot mode and the throttle level. Note
that column 1 represents 12 state transitions at the same time (12
transitions that have as input the cartesian product of 4 autopilot
modes and 3 throttle levels).

Correct design: the “1(ok)” value in column c2 describes the
correct logic design for the machine. Note that in those represen-
tations the transition labels represent the column of the logic table
they embody, not the transition name.

The results of the automated analysis are as follows.
Pairs number 1, 2 and 3 are found to be

NON 1-action reversible

Pairs number 4, 8, 11 and 14 are found to have (according to their
definitions in table 3)

no effect

Pairs number 5, 6, 7, 9, 10, 12, 13 and 14 are found to be

1-action reversible

Regarding pair 1 (Go-around mode activation) it is not reversible
in a single action because it changes the values of several state vari-
ables at the same time, when almost all other pairs act only on one
variable at a time. For example in the case of the initial state:
[Autopilot mode (Mode 3), Autopilot state (On), Throttle level (+)],
Go-around mode engagement brings the machine to state:
[Autopilot mode (Go-around), Autopilot status (On), Throttle level
(+ + +)]
and the initial state cannot be recovered in less than five actions: Off
selection, On selection, Mode 3 selection, Decrease throttle level,
Decrease throttle level. This design indeed represents a machine
logic for which many steps are needed to disengage a Go-around
mode so that the crew should be fully conscious of the new state of
the autopilot.

Pairs 2 and 3 non 1-action reversibility is due to the fact that pair
2 changes not only the autopilot state but also the autopilot mode.
For example in the case of initial state:
[Autopilot mode (Mode 3), Autopilot state (On), Throttle level (+)],
the “Off selection” brings the machine to state:
[Autopilot mode (Mode 1), Autopilot status (Off), Throttle level
(+)]
and the initial state cannot be recovered in less than two actions:
“On selection” and “Mode 3 selection”. This lack of reversibility
is not necessarily desired.

Design error: The machine designer could intuitively imagine a
change of the machine logic, for instance simplifying the behaviour
of pair 2: nullifying the autopilot mode reset.
More precisely the action Autopilot engagement: Off selection would
affect only the Autopilot state (from On to Off). The “0(error)”
value in column c1 describes this logic design. Nevertheless the
results of the automated reversibility analysis is indeed an issue:

Pair number 1 is found to be

totally unrecoverable

Indeed the selection of the Go-around mode has become irre-
versible: the only way to disengage it has been lost. The results of
the automated analysis warns for undesired side effects in the trial
and error process.
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Pilot actions
Actions, button pressed Go-Around engaged 1

Mode 1 selection 1 1
Mode 2 selection 1 1
Mode 3 selection 1 1

Actions, Throttle level Increase throttle level 1 1 1
Decrease throttle level 1 1 1

Autopilot engagement On selection 1 1
Off selection 1

No action
State

Autopilot mode Mode 1 1 1 1
Mode 2 1 1 1
Mode 3 1 1 1

Go-around 1
Throttle level + 1 1

++ 1 1
+++ 1 1

Autopilot state On
Off

Autopilot engagement conditions satisfied 1
not satisfied 1
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State
Autopilot mode Mode 1 1(Ok), 0(error) 1

Mode 2 1
Mode 3 1

Go-around 1
Throttle level + 1 1

++ 1 1
+++ 1 1 1

Autopilot state On 1
Off 1

Table 3: Part of the logic table for a simplified autopilot model



6. LIMITATIONS
Definition [Reachability] [Ski09]: In graph theory, reachabil-

ity is the ability to get from one vertex to another within a graph.
We say that a vertex t is reachable from s if there exists a sequence
of adjacent vertices (i.e. a path) which starts with s and ends with t.

In the logic table representation of ADEPT, state transitions are
represented as pairs (situation, behaviour), and each pair (situation,
behaviour) may represent several transitions at once. The set of
transitions described in the logic table may be represented as a
graph: for the construction of such a graph an exhaustive explo-
ration of pairs (situation, behaviour) is required (for instance by
means of an iterative algorithm) to define the list of transitions. For
instance column c1 in logic table 3 represents 12 transitions (for
the two state variables Autopilot mode/Throttle level), they are:

1. (Mode 1/+)→ (Go around/+++)

2. (Mode 2/+)→(Go-around/+++)

3. (Mode 3/+)→ (Go-around/+++)

4. (Mode Go-around/+)→(Go-around/+++)

5. (Mode 1/++)→ (Go-around/+++)

6. (Mode 2/++)→ (Go-around/+++)

7. (Mode 3/++)→ (Go-around/+++)

8. (Mode Go-around/++)→(Go-around/+++)

9. (Mode 1/+++)→ (Go-around/+++)

10. (Mode 2/+++)→ (Go-around/+++)

11. (Mode 3/+++)→ (Go-around/+++)

12. (Mode Go-around/+++)→(Go-around/+++)

Therefore some formal analyses of the properties of the graph
cannot be performed directly from the logic table representation.
It should also be noted that the logic table exhaustively defines the
Cartesian product of all states, even for non-reachable ones starting
from the initial state.

For instance the effect of the pilot action Mode 1 selection in the
non-reachable state:
[Autopilot mode (Go-Around), Autopilot state (On), Throttle level
(+)],
is expressed by column (c8).
The reversibility analysis that is developed in this study for ADEPT
therefore recognizes irreversibilities regarding states that are actu-
ally not reachable.

Moreover the reversibility check presented in this paper cannot
handle continuous value variables. To partially address this draw-
back a pre-discretization of some continuous variables of particular
interest could be performed (e.g. flight speed discretized in 4 lev-
els: underspeed, normal speed, near overspeed, overspeed).

7. CONCLUSION
This paper is part of the studies that have been conducted to iden-

tify formal properties of the machine logic that are related to bad
designs and that could result in HMS performance degradation.
An algorithm to implement a reversibility check on the ADEPT
logical tables has been implemented. Four irreversibility proper-
ties are detected: the absence of undo, the absence of one action

reversibility, the total unrecoverability and the eventual total unre-
coverability.
Note that the lack of reversibility may be either the result of a de-
sign error, or a conscious design choice, or an intrinsic lack of re-
versibility or the representation of a failure. The designer, once
aware of those vulnerabilities, will possibly decide to modify the
machine logic. Thanks to this algorithm they will be able to esti-
mate the impact of those changes.
Further work will focus on the assessment of reversibility proper-
ties from a model of the machine represented by Petri nets. Indeed
classical characteristics of Petri nets such as transition and place in-
variants can be investigated in relation to reversibility, and classical
algorithms could be used. An algorithm to automatically translate
an ADEPT logic table into its equivalent Petri net has already been
designed and is currently investigated.
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