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ABSTRACT

Air traffic predictability is paramount in the air traffic sys-
tem in order to enable concepts such as Trajectory Based
Operations (TBO) and higher automation levels for self-
separation. Whereas in simulated environments 4D conflict-
free trajectory optimisation has shown good potential in
the improvement of air traffic efficiency, its application to
real operations has been very challenging due to the current
lack of information sharing between airspace users. Con-
sequently, such operations are still very limited in scope
and rarely attempted in dense traffic situations. Better pre-
dictability of other traffic future states would be an enabler
for each aircraft to fly its user preferred route without de-
creasing safety in a self-separation context. But this is not
an easy task when basic aircraft parameters such as aircraft
weight, performance data or airline strategies are not avail-
able at the time of prediction. In this paper the authors pro-
pose to compensate this hindrance by continuously integrat-
ing the state of the surounding traffic to improve the own-
ship’s knowledge of other aircraft’s dynamics. Specifically,
conventional position (and velocity) messages, as coming
from Automatic Dependent Surveillance Broadcast (ADS-
B), are integrated at the ownship. Then, an optimisation
problem is formulated, using optimal control theory, that
minimises the error with the known states, having the pa-
rameters of study (i.e. mass) as decision variables. A sce-
nario with two departing trajectories is used to demonstrate
the effectiveness of this parameter estimation method. In it,
the take-off mass of the potential intruder is estimated on-
board the ownship and its impact to conflict detection and
resolution is presented, demonstrating the big improvements
in predictability and safety.
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One of the major drivers for research and development in
the SESAR and NextGen programmes is the improvement
of air transport efficiency in terms of economic and environ-
mental impact. New technologies and procedures for future
air traffic management (ATM) and on-board systems and
operations are being investigated and proposed. More and
more, the air traffic system is seeking benefit from initiatives
such as Continuous Climb Operations (CCO), Continuous
Cruise Climbs (CCC), and Continuous Descent Operations
(CDO), which propose good fuel reduction in specific phases
of the flight. However, such operations are hugely dependent
on multiple characteristics of each aicraft (such as aircraft
performance, weights or operating procedures) and meteo-
rologic conditions. This produces a great variety of optimal
vertical and speed profiles that difficult the task of separat-
ing the traffic, ultimately impacting negatively on airspace
capacity [1].

To prevent this negative impact in efficiency and/or airspace
capacity, research has been performed on the integration of
CDOs in dense TMAs |2} 3, 4} 5]. The Oceanic Tailored
Arrivals program, currently in place at San Francisco air-
port, is another relevant example [6]. These arrivals are
supported by the En-route Descent Advisor (EDA) devel-
oped by NASA-AMES, which is able to compute conflict-
free optimal descent trajectories and satisfy a given arrival
fix metering by issuing speed advisories to participating air-
craft [7]. The literature on optimal arrival trajectories is
very extensive when compared to that regarding optimised
aircraft departures (8} 9 [10].

Most solutions, however, lack accurate aircraft perfor-
mance data, since airlines do not publish what they consider
is subject to confidentiality. This leads to uncertainties in
the prediction of aircraft future states. A lot of effort has
been put into enhancing the sharing of information between
aircraft users 11} [12], although the specific contents are still
subject of debate and the implementation of such paradigm
is still far in the future. On the other hand, many techniques
for trajectory prediction are avaiable in the literature [13].
Furthermore research is being done with the purpose of us-
ing the aircraft past states to enhance ground based predic-
tions [14} 15| |16} [17]. Most of these algorithms are based on
analytical models that iteratively correct the aircraft weight
estimation with each new received track data minimising the
energy rate differences with the projected energy rate using
a simplified dynamic model.

Along these lines, this paper presents a unified framework
for trajectory optimisation, prediction and parameter esti-


10.1145/1235

mation with the purpose of enhancing predictability of air
traffic operations whilst proposing optimal trajectories and
conflict resolution in a dense traffic area. Following concepts
described in [1§], a continuous multiphase optimal control
problem formulation is created. Given different spatial and
temporal constraints along with the definition of specific ob-
jective functions for each purpose, the same problem for-
mulation provides optimisation, prediction and estimation
functionalities. The described framework builds upon pre-
vious research by the authors presented in |19} [20].

Through this approach, fistly an aircraft trajectory is opti-
mised upon own cost-objectives with a high accuracy model
of dynamics. In current day air transportation density, it is
most probably that this trajectory conflicts with other traf-
fic. Consequently, given ADS-B intent information (e.g. list
of fixes), the aircraft (ownship) predicts surrounding traffic
future states using simplified dynamics model and assump-
tions (based on BADA['). As the situation evolves, ADS-B
state data is used to learn about other aircraft dynamics
(e.g. initial mass). This information forms a trail of past
states that the estimation model uses to converge to more
accurate parameters. Accordingly, the prediction is continu-
ously regenerated as the knowledge of the other traffic grows
(i-e. longer trail). The ownship then uses this updated pre-
diction to detect any potential conflict and generates a new
conflict-free trajectory. It is shown how this enhanced pre-
diction enables efficient conflict detection and resolution.

This paper is organised as follows. Section [2| describes a
self-separation optimisation framework that integrates tra-
jectory prediction, mass estimation and conflict-free optimi-
sation. Section [3|lays out the dynamic model of the aircraft,
the optimal control problem formulation and the trajectory
modelling in multiple phases. Section[d]describes the scenar-
ios and the success of the self-separation framework. Finally,
section [o| presents the authors’ conclusions.

2. SELF-SEPARATION FRAMEWORK

Conflict-free trajectory optimisation in dense traffic con-
ditions has a very complex implementation due to many
factors that introduce uncertainties at different levels. The
research framework described in this paper tries to unify
three main aspects in an effort to minimise such inaccura-
cies: trajectory prediction, mass estimation and trajectory
optimisation. These functionalities work together intercon-
nected in order to achieve better predictability for a safer
and more efficient self-separated air traffic system. The con-
cept of operations is summarised in figure [I] and the main
modules described in the following subsections. The prob-
lem formulation of the optimisation engine, which provides
core functionality of each module, is described in section [3]
Its use for trajectory optimisation and trajectory prediction
is almost identical, whereas some slight modifications occur
for parameter estimation.

2.1 Trajectory prediction

Prediction methods in the literature are usually based on
the integration of the aircraft dynamics model with specific
assumptions in form of throttle setting, vertical speed, flight
path angle, etc. [13]. In a different manner, our assumption
for prediction purposes is that the aircraft of study is opti-
mising on a cost functional as defined in equation
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t
J= / PP (@, w) dt. (1)
to

As opposed to fix specific controls to integrate the predic-
tion, this assumption allows for more complex predictions
and can potentialy provide more accurate results when many
restrictions apply to a trajectory. Especially, when a flight
plan is available that follows a defined lateral route or when
multiple constraints have to be met at one fix (e.g. altitude
and time). Particularly, the optimisation framework pre-
sented in section [3]is used to generate predictions. However,
given the fact that a complete knowledge of the other traffic
is unknown, the following restrictions apply:

(a) Since we do not have an enhanced and accurate dynam-
ics model of the other aircrat, assuming we can work
out the type of aircraft, we use BADA to model the
dynamics of the state variables and provide nominal
parameters. Among this nominal parameters, there is
the take-off mass, which BADA defines for each type
of aircraft.

(b) We assume that the aircraft intents are available in form
of a list of geographical points that represent the lat-
eral (and potentially vertical) route. Such information
could be available in form of ADS-B messages or other
concepts such as AIDL (Aircraft Intent Description
Language) [21] and SWIM (System Wide Information
Management) [12].

Given the potential big deviations between the predictions
and the reference truth (mainly introduced by big parameter
biases such as the aircraft weight), we propose a parameter
estimation method to enhance the prediction model. With
it, parameters such as the weight of the aircraft, the airline
strategy (i.e. Cost Index), thrust and drag corrections (to
compensate for small aerodynamic differences with the as-
sumed case), etc. are inferred so predictions become more
accurate. The scope of this paper is limited to estimate the
mass of the aircraft only, as described in section

2.2 Mass estimation

The core part of the parameter estimation framework is
based on expoiting the known states of the intruder trajec-
tory. Using ADS-B messages, the ownship can generate a
trailing trajectory that positions the intruding aircraft along
the time (in the past). The longer this trailing trajectory,
the more can be extracted from it. Then, an optimisation
process is performed that, as opposed to finding the cost-
optimal trajectory as described in equation , finds the
initial mass that produces a trajectory that minimises the
error to this trailing trajectory.

To do so, we use a slight modification of the optimisation
framework described in section This parameter estima-
tion framework is thus based on the same basic structure,
state and control variables, and only some additional con-
straints and a different cost function are proposed to achieve
the specific objectives. Specifically, the constraint on the ini-
tial mass of the problem has to be removed (in section [3|all
state variables are bound at the initial value), so the op-
timiser is free to find aircraft take-off mass that minimises
the cost functional. Additionally, a fixed throttle setting is
assumed throughout the climbing phase.
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Figure 1: Self-separated optimisation framework concept diagram.

Because the optimisation solver requires all variables to
be modelled as twice-differential continuous functions, we
model the intruder’s trailing trajectory following polynomi-
als that depend on the time [22]|. To this end, we store the
current and past states (from ADS-B) to form a trailing tra-
jectory, which is then approximated with curves represented
by basis splines (B-splines). A cubic B-spline is a continuous
function twice-differentiable represented by piecewise poly-
nomials of order three. As opposed to higher degree poly-
nomials, these provide an accurate fitting and have been
demonstrated to perform well with NLP optimisation [23]
19| as they can be very smooth. Effectively, this solution has
proven very reliable, robust and performant in our simula-
tions as shown in the results section. With such process, our
problem creates three splines that represent the ownship’s
north and east coordinates and altitude over time (Fizt)ll(t),

Ffjal(t) and Fiﬁll(t) respectively).

At the parameter estimation process, the solver will it-
eratively call these curves that represent the geographical
position over time, to minimise error of these to the n, e
and h variables in the state vector over ¢. This has been
implemented in the cost function of the optimisation prob-
lem so as to minimise the root mean square (RMS) of the
deviation as follows:

J = RMS(Trear(t) — xe(t)). (2)

where x. is the state vector subset of the mass estimation
model containing north and east coordinates and altitude
(complete set is defined in section ,

Finally, we relax some other constraints of the problem
with the purpose of helping find a feasible and optimal so-
lution. Given the fact that the trailing trajectory is the
most accurate information we have about the intruder, other
constraits on time, altitude, position, etc. (as could come
from the published flight intents) are removed. Furthermore,
using BADA model could mean that some of these con-
straints are unfeasible with regards to exactly following the

lateral and vertical trailing trajectory as defined by Ffﬂz()ll(t),

Fg‘;)al(t) and Fgﬁil(t). Doing so really helps the optimisation
problem on finding the mass that produces a trajectory that

is the closest to what the aircraft has actually flown.

2.3 Trajectory optimisation

Finally, the trajectory optimiser module generates a conflict-

free trajectory given the (enhanced-)predicted trajectories
of surrounding traffic (see section|2.1)) whilst minimising the
following cost functional:

J= / Y IFF (2, w) + O] dt. 3)

to

The Cost Index (CI) scalar relates the cost of time to
the cost of fuel (F'F) and takes into account different airline
policies. Moreover, the value of ¢; is a decision variable itself
and will be fixed by the optimisation algorithm.

Additional constraints in this optimisation problem ensure
that the minimum required separation between aircraft is
maintained. Again, splines are used to model the intruder’s
predicted trajectory (I‘;:id(t), F;i)ed(t) and Fgﬁld(t)) (19,
20]. Specific details about the optimisation framework are
found in section

3. OPTIMISATION FRAMEWORK

Aircraft trajectory optimisation has been a subject widely
researched in the last decades. A mathematical approach to
formulate such problem is as a continuous and constrainted
optimal control problem. Although several references on
its resolution can be found in the literature, realistic air-
craft trajectories are hardly possible to solve analytically due
to the important non-linearities in the different equations.
Thus, a wide variety of numerical solutions have arisen [24,
25|. One of the most relevant ones converts the infinite-
dimensional original problem into a finite-dimensional non-
linear programming (NLP) problem with a finite set of deci-
sion variables in the time interval [to,tf]. To do so, a direct
transcription or collocation strategy is applied, being Euler,
Trapezoidal or Pseudospectral among the most used [26].

Let x(t) € R be the state vector describing the trajec-
tory of the aircraft over time ¢ and u(t) € R™ the control
vector that leads to a specific trajectory. The goal is to find
the best trajectory that minimises a given cost functional
defined over the whole time period [to, tf]:

J(@(t), u(t)). (4)

We have formulated an optimal control problem, the so-
lution to which minimises the objective defined in Eq.
with the state and control vectors defined as follows:
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In order to guarantee a feasible and acceptable trajec-
tory, as a result of this optimisation process, several con-
straints must be considered. In particular, the dynamics of
the system (dynamics of the state vector) expressed by non-
linear differential equations. Furthermore, additional alge-
braic constraints either at the initial/final points or all along
the trajectory must be specified. Next sections describe the
mathematical formulation of these constraints.

3.1 Aircraft dynamics

In this paper, a point-mass representation of the aircraft is
used, where forces apply at its centre of gravity. A situation
without wind in a flat non-rotating earth has been assumed.
The equations of motion are written as follows [27]:

dv _ . _ 1 .
% = 0 = —(T'—-D-—mgsiny)

d .

T = 9 = Z(nzcos¢—cosvy)

dx _ y _ gsin¢

dt = X T wcosvy'"*

de — ¢ = ycosysin

@ = ¢ = veosysiny (6)
dn _ . —

@ = ™ = wcosycosy

dh i _ :

9% = h = wvsiny

dm _ . _

where n and e represent the spatial location of the aircraft
in north and east coordinates respectively, h is the geomet-
ric altitude, v is the true airspeed, v the aerodynamic flight
path angle, x the heading and ¢ the bank angle. Further-
more, we model the dynamics of the mass of the aircraft m.
The load factor (n.) is defined as the relation between the
aerodynamic lift force and the aircraft weight.

Regarding the atmosphere, a set of polynomic approxi-
mations of real weather data predictions have been imple-
mented to define the density p, pressure p and temperature
7 magnitude as functions of the altitude and geographic lo-
cation.

All aerodynamic and engine parameters are represented
by continuous polynomials, that ensure continuity for the
first and second derivatives as it is required for the numerical
solvers used here. Details on the modeling of aerodynamic
Lift (L) and Drag (D) forces, and engine thrust (7") and fuel
flow (F'F) are described in [19].

3.2 Operational constraints

Besides the equations of motion described above, the prob-
lem is further constrained by additional equations that take
into account several operational restrictions. Since the op-
erating speeds are always expressed in calibrated airspeed
(vcas), an extra constraint equation to relate this speed to
the true airspeed (v) is added:

% [(5((2“;+1>‘1‘—1> +1)H—1] (7

VcAs =

Ya—1

where pu = , Ya is the specific heat ratio of the air and
R the perfect agas constant.

Some other constraints are specified as a function of the
along path distance (s), which although it is not a state
variable its dynamics are modelled as:

%:é:\/é2+h2 (8)

Table [I] depicts the constraints considered in the optimi-
sation problem. Many of these are operational constraints,
either to stay within the flight envelope or comply with ATM
constraints such as CAS profiles and ground obstacle avoid-
ance. Additionally, bounding constraints on n, and ¢ are de-
fined following civil aviation standards. More information on
optimal control formulation and resolution techniques used
in this research can be found in [23].

Table 1: Constraints in the optimal control problem

Constraint Definition
Operating airspeeds Vmca <wvcas(t) < Vmo
No deceleration allowed vcas(t) >0
No descent allowed h(t) >0

Minimum climb gradient
Load factor
Bank angle

h(t) > 0.033 s(t)
0.85 < n.(t) < 1.15
—25° < ¢(t) <25°

Furthermore, specific constraints are set for the state vari-
ables at specific nodes to represent the initial and final state
of the optimisation problem as well as intermediate restric-
tions (such as waypoints, RTAs, etc.).

Finally, an aircraft departing trajectory comprehends dif-
ferent flight phases, each with specific performance and geo-
graphical constraints. Specific details on the formulation of
these phases into the problem is found in |20]. Some colloca-
tion and link equations ensure that the different state nodes
(collocation points) within a phase are correctly linked to
the previous phases in compliance with the dynamic mod-
els, and that the phases relate to the time continuum they
represent.

4. NUMERICAL EXAMPLE

For the purpose of this paper, we have prepared a scenario
following close-to-real life operations in two major airports
in the Catalonia region. An aircraft departs from Reus air-
port (LERS) to the east, but instead of flying the standard
departure BCN1S, it is guided through a more fuel efficient
route, convenient to its destination. At the same time, an-
other aircraft departs from Barcelona airport (LEBL) to the
west through the GRAUS3W SID. Figure [2| shows the lat-
eral routes as resulting from the optimiser, overlaid to the
charts defined in the AIP [28] [29)].

In the depicted case, if both aircraft were to fly their op-
timal trajectories, the separation between them would not
be kept to the required minimum of 3NM horizontal and
1000ft vertical throughout the flight. This situation could
be estimated just before take-off, since every aircraft has a
(fairly-)accurate prediction of its own future states. How-
ever, due to the very limited degree of information sharing
between airspace users, it is much more difficult from an
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Figure 2: Published standard instrumental departures for Barcelona (blue) and Reus (green) and optimised
trajectories for Barcelona departure GRAUS3W (light blue), Reus departure BCN1S (red) and proposed

direct route (orange).

external entity (e.g. another aircraft) to synthesise such ac-
curate predictions of other traffic: sensitive data such as
aircraft weight and performance data remain unknown.

To reflect this issue, we simulate the situation where the
ownship (BCN, flying from LEBL) predicts the intruder
(RES, flying from LERS) trajectory. As already said, the
ownship knows very little about the intruder. The follwing
subsections deliver results on different situations and aspects
of the problematic presented by this scenario.

4.1 Vertical predictability

In , the authors presented a case where a bad assump-
tion of an intruder’s mass would produce very inaccurate tra-
jectory predictions. To cope with the issue, a conformance
monitoring algorithm was presented that would relaunch a
new prediction every time the errors jumped over a specific
threshold. However, due to unchanged wrong assumptions,
the new predictions would quickly deviate again. The main
scope of this paper is to present an estimation process that,
using the past known states of the intruder, enhances the
accuracy of each new prediction.

Following the scenario described in [4] and depicted in fig-
ure this section presents results on the effectiveness of
estimating the mass of the intruder towards prediction ac-
curacy. To do so, two cases are presented as follows:

Case A: Without parameter estimation

The ownship uses the BADA performance model to
predict the intruder trajectory. The required unknown
parameters are filled with the nominal values of the in-
truder’s aircraft type in BADA. The intruder’s flight
intents (flight plan) is shared through an ADS-B mes-
sage as a list of fixes (geographic coordinates). Besides,
each aircraft broadcasts the current state (position and
velocity) through an ADS-B message.

Case B: With parameter estimation
Same as case A, but once the aircraft takes-off, the
ownship uses the intruder’s past and current state (from

ADS-B) to infer a more accurate value of the intruder’s
aircraft mass for subsequent predictions.

In all cases, the ownship generates an initial prediction of
the intruder trajectory with the said assumptions and as-
suming both aircraft start flying at ¢ = 0s and do not devi-
ate from their own individually cost-optimal trajectory (i.e.
without self-separation). After take-off, a new prediction is
generated every 25 s with the following updated values: cur-
rent intruder’s state (position and velocity, as coming from
ADS-B) and, if applicable, updated parameters (i.e. mass
in case B).

Figure shows the vertical deviation between each pre-
diction and the reference truth for case A. It can be seen how
at each new prediction (for visualisation purposes not all re-
calculations are shown), the magnitude of the error decreases
sightly, mainly because each time the current position and
velocity is corrected and the remaining trajectory is shorter.
However, the new prediction deviates rapidly, with a similar
rate than the previous calculations. This is expected, since
each new prediction has the same parameter assumption er-
TOrS.

This behaviour is, to some extend corrected with case B,
as seen in ﬁgure As expected, the magnitude of the er-
ror for the initial prediction is the same as in case A, since no
further information about the intruder is available yet (be-
fore take-off). However, the subsequent calculations have
remarcably lower altitude errors. This is thanks to a better
estimate of the intruder’s mass (see figure . See how this
estimation becomes better and better for later predictions
and is confined to vertical errors lower than 700t (and bet-
ter) for the whole climbing phase (more than 15 minutes look
ahead time). This is due to the fact that a bigger amount of
information is available when the parameter estimation pro-
cess is run (longer trajectory trail), and thus a better mass
estimation is produced. Even if globally the vertical error
decreases highly, the moments immediately after the recal-
culation are actually worsened. This is due to the fact that
the prediction model (based on optimisation) finds lower
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Figure 3: Vertical deviation between the intruder
predicted trajectory and the reference truth after
each recalculation for cases A and B.

costs at higher speeds (i.e. compared to current intruder’s
speed from ADS-B) with the new inferred mass and BADA
model. Therefore, the predicted trajectory initiates with an
acceleration segment that repercutes negatively on the ver-
tical rate, resulting into a big momentary vertical deviation.
This could be easily compensated at the prediction side by
applying conventional climb rules, or by expanding the es-
timation process to further assumptions (besides mass), to
enhance the dynamic model and its parameters as a whole.
Surely enough, when such parameter deviations are com-
pletely removed, and only the mass is wrong (i.e. the utopic
case where the aircraft dynamics model of the intruder is
very accurate), we have tested that the mass is immediately
estimated with no error at all.

It is worth mentioning that this parameter estimation
model is actually not intended to infer the real value. As
said, this process produces an estimated value that min-
imises the error between the real trajectory trail and a pre-
dicted trajectory with BADA. The intrinsinc inaccuracies of
this model, bias the estimation process. The effort is then
to enable sufficient correcting parameters, which can be es-
timated, to allow for a prediction model that can be brought
closer to the reference truth. This paper sets the grounds
for the authors to continue researching on this matter.

4.2 Along track predictability

12
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(e \N T A o]
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Figure 4: Predicted mass error at each recalculation
time.

Surprisingly, despite the proved gains in vertical predictabil-
ity, figure [5| demonstrates that along track predictability is
not ameliorated with the estimation of the mass alone.

The main reason for this is the difference in flight dy-
namic models and the way we synthesise the trajectory pre-
diction (which assumes optimisation in fuel). Consequently,
BADA model prefers to fly at faster speeds given the fact
that these provide lower fuel consumptions at the given es-
timated mass. To cope with this issue, the parameter esti-
mation model should be enhanced to account for the errors
in the calculation of dynamic forces such as drag and thrust
and also the fuel flow dynamics. Alternatively, improved
flight intents sharing between aircraft could also help with
this issue, as presented in section [£4]

Nevertheless, this does not hamper the effective detection
of the conflict and its resolution as explained in section 3]

4.3 Impact to conflict detection and resolution

The main issue with a bad intruder’s trajectory prediction
is that it adds a big deal of uncertainty to the detection of
possible conflicts in the future. Figure |§| shows the poten-
tial conflict geometry at different prediction times, assuming
both aircraft start flying at ¢ = 0s and do not deviate from
their own individually cost-optimal trajectory (i.e. without
self-separation). S} depicts the minimum horizontal dis-
tance between aircraft, and Sy|s, <3~m the minimum verti-
cal separation when the horizontal separation is not granted
(i.e. less than 3NM).

Effectively, due to the big errors in the initial prediction,
the ownship presumes that the vertical separation is main-
tained throughout the flight (even if the horizontal minimum
separation is not). However, from the real situation (the ref-
erence truth) we know this is not so. In case A, soon after
take-off a new prediction is generated, without much differ-
ence as seen in figure the ownship does not see a loss
of separation. Effectively, this situation continues until the
recalculation at ¢ = 200s, that the ownship realises the sit-
uation. Dramatically, this is only 106 s before entering into
loss of separation with the intruder.

In comparison, when using a mass estimation process (fig-
ure , even if the initial prediction is equally erroneous,
case B rapidly corrects for the mass inaccuracies and soon
after take-off the ownship predicts that a loss of separation
will occur (in the example, this happens at t = 50's, but with
a higher recalculation rate this would have been noticed even
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Figure 5: Along track deviation between the in-
truder predicted trajectory and the reference truth
after each recalculation for cases A and B.

before). Therefore, this leaves more room for efficient reso-
lution of the conflict: more than 256s.

Moreover, the impact on the conflict resolution is also
huge. Figure [7| repeats cases A and B but now, at each
recalculation (in this simulation, every 50s), the ownship
generates a new trajectory that removes all conflicts from
the predicted trajectories. Effectively, in case B BCN starts
deviating soon during the flight, resulting in an efficient reso-
lution that only increments the total fuel burned with 5.4 kg.
As expected, in case A the reaction comes very late and re-
sults in an unavoidable loss of separation.

4.4 Enhanced flight plan data

In section |4.2| one of the conclusions is on the difficulty of
enhancing horizontal predictability. To cope with this issue,
in this section we propose two new cases (C and D) that
provide different type of information in the shared flight in-
tents, to help in the trajectory prediction. Such information
is extracted from the Flight Management System (FMS) ref-
erence trajectory. At this moment, the uncertainty of such
data has been deliberately kept out of the study to isolate
the effectivity of the presented concept from other external
factors. Additionally, each of these situations will test with
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Figure 6: Predicted minimum horizontal and verti-
cal distances between the ownship (BCN) and the
intruder (RES) at different predictions and the real
situation.

and without parameter estimation (cases A and B).

Case C: Flight Plan with ETA
The shared flight intents contain estimated time of ar-
rival (ETA) at each fix.

Case D: Flight Plan with velocity estimates
The shared flight intents contain estimated velocities
at each fix.

Figure [8 shows the along track deviation error for cases
Ca and Cg (vertical errors are similar in magnitude than
those for cases A and B respectively, so these are ommited
from the paper). These plots demonstrate that knowing the
ETA at fixes reduces the uncertainty highly. Furthermore,
with mass estimation, these are even smaller, and in the
example, always lower than 0.1 NM.

Finally, figure [J] shows the along track deviation error for
cases Da and Dg. As for cases Ca and Cg, vertical error
plots are ommited from the paper. In these cases, the along
track error is higher when compared to cases Ca and Cg.
Again, estimating the mass iteratively helps reducing the
error to more than a half.
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Figure 7: Minimum horizontal and vertical distances
between the ownship (BCN) and the intruder (RES)
at different recalculation times.

Conclusively, even if nowadays such information sharing
is still far from operational implementation, we present re-
sults on the degree that these could help in improving air
traffic predictability, more so in combination with the mass
estimation model. Besides, similar degrees of information
sharing are already contemplated in concepts such as Tra-
jectory Based Operations (TBO) and System Wide Informa-
tion Management (SWIM) and alike, fostered within SESAR
and NextGen programmes.

S.  CONCLUSION AND FURTHER WORK

In a very secretive air traffic system, the application of
efficient collaborative operations such as TBO and self sep-
aration remain a big challenge. For such concepts to be
effective, an accurate awareness of surrounding traffic’s fu-
ture states is required. But such accuracy is impeded when
basic aircraft parameters A§such as aircraft weight, perfor-
mance data or airline strategies are not available at the time
of prediction. In this paper the authors have described a
framework to compensate this hindrance by continuously
integrating the state of the surounding traffic to improve
the ownship knowledge of other aircraft’s dynamics. We use
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Figure 8: Along track deviation between the in-
truder predicted trajectory and the reference truth
after each recalculation for cases Ca and Cg.

direct collocation methods to convert the complex problem
into a continuous multiphase optimal control problem that
is solved with NLP techniques. This same framework is used
for conflict-free trajectory optimisation, prediction and pa-
rameter estimation.

The effectivity of the whole framework is demonstrated
with a semi-cooperative scenario where aircraft current state
and future intents are shared between airspace users (ADS-
B). In it, two aircraft depart from close-by airports in the
Catalonia region, in a configuration that soon leads to a loss
of separation. It is shown how the prediction of the potential
conflict is enhanced (i.e. is realised earlier by the affected
aircraft) when a parameter estimation process is used in
combination with the trajectory prediction. Specifically, the
estimation of the other aircraft mass, which was previously
unknown, is inferred, reaching estimation errors below 2%
soon after take-off.

Furthermore, once the ownship has generated a more ac-
curate prediction of the intruder (thanks to a better estimate
of the take-off mass) it directly regenerates a cost-optimal
conflict-free trajectory of its own, in a continuous iterative
process. In |19, |20] we monitor the conformance of the in-
truder’s current state with respect to the predicted trajec-
tory and relaunch the process when the residuals go over
certain threshold, although for simplification, the current
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Figure 9: Along track deviation between the in-
truder predicted trajectory and the reference truth
after each recalculation for cases Da and Ds.

paper has set this iterations to happen on a timely basis.
This will be integrated in the future.

Despite the higher vertical predictability, big lateral devi-
ations still occur due to the inaccuracies of the performance
model used in the trajectory prediction process. We show an
example of how more informed flight intents in combination
with the parameter estimation method reduces inacuracies
greatly. However, without the will of cooperation and infor-
mation sharing, this is probably very utopic. Therefore, fu-
ture research should focus on adding the estimation of other
performance parameters (i.e. drag and thrust corrections)
and airline strategies (i.e. cost index). Besides, external
factors such as meteorological events and ATCo advisories
should also be taken into account, along with integrating
state sensor errors.

In a highly automated air traffic system the framework
described in this paper enhances the situational awareness of
the airspace user by enhancing its knowledge of surrounding
traffic and potential loss of separation in account of cost-
optimal trajectory generation.
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