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While traditional FPGA design flow usually employs fine-grained tile-based placement, modular placement
is increasingly required to speed up the large-scale placement and save the synthesis time. Moreover, the
commonly used modules can be pre-synthesized and stored in the library for design reuse to significantly
save the design, verification time and development cost. Previous work mainly focuses on modular floor-
planning without module placement information. In this paper, we propose a library-based placement and
routing flow, which best utilizes the pre-placed and routed modules from the library to significantly save
the execution time while achieving the minimal area-delay product. The flow supports the static and recon-
figurable modules at the same time. The modular information is represented in B*-Tree structure, and the
B*-Tree operations are amended together with Simulated Annealing to enable a fast search of the placement
space. Different width-height ratios of the modules are exploited to achieve area-delay product optimization.
Partial reconfiguration-aware routing using pin-to-wire abutment is proposed to connect the modules after
placement. Our placer can reduce the compilation time by 65% on average with 17% area and 8.2% delay
overhead compared with fine-grained results of VPR through the reuse of module information in the library
for the base architecture. For other architectures, the area increase ranges from 8.32% to 25.79%, the delay
varies from -13.66% to 19.79%, and the running time improves by 43.31% to 77.2%.
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1. INTRODUCTION
With the technology advancement, both semiconductor industry and design communi-
ty face the great challenge that the design effort is continuously increasing [Castro-
lpez et al. 2006]. The rapidly growing design complexity and short time-to-market
pressure make the problem even worse [Castro-lpez et al. 2006]. Library-based design
is a promising solution to address this challenge as it facilitates the design reuse. De-
sign reuse is an approach that utilizes a previously successful design in a new design
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project to reduce the design, verification cycle and risk [Castro-lpez et al. 2006; Xiu
2007]. It also reduces design cost since the reused components have been prepared
and verified [Castro-lpez et al. 2006; Xiu 2007]. Library based design has been stud-
ied in previous work. The work in [Wang and Leeser 2010] presents a floating-point
library to support floating-point computation in general formats and enable a higher
level of parallelism. In [Sklyarov et al. 2003], they reuse hardware components of the
library in Field-Programmable Gate Array (FPGA) design for improving the verifica-
tion of the digital circuits implemented on FPGA. In [Lavin et al. 2011], hard macros
(already placed and routed) are reused to reduce the compilation time. IP reuse is one
type of design reuse and it helps to address the gap between the capacity for design
complex system and productivity [Gajski 1999]. IP modules are used for improving
productivity in [Zergainoh et al. 2005]. In [Hekmatpour et al. 2005], a methodology is
described for IP design and integration. The above mentioned studies mainly consider
the library based design for design of application-specific circuits or reduce compilation
time for the FPGA design flow based on hard macros consisting of synthesized, placed
and routed circuits.

In recent years, FPGA has attracted attention as accelerators in the computing sys-
tems due to its high performance, low power, high design flexibility and low cost [Telle
et al. 2004; Stitt et al. 2004; Vereen, L. 2004]. FPGAs are widely used in various fields
to accelerate the intensively critical computations [Cong et al. 2011]. To implement a
design in FPGA, placement and routing are important stages which significantly af-
fect the performance of the design. In traditional design flow, fine-grained tile-based
placement is performed to achieve the optimal solution. However, it usually requires a
long searching time. Especially for a large-scale design, the running time of tile-based
placement can be hours or days [Sankar and Rose 1999; Gort and Anderson 2014]. Hi-
erarchical or modular floorplanning is hence proposed to speed up the process [Areibi
et al. 2007; Samaranayake et al. 2009]. The requirement for modular floorplanning
and placement also arises from the support for dynamic partial reconfiguration (PR)
in FPGA. This operation requires the separation of PR logic, i.e., the logic reconfig-
ured during operation, and static logic, i.e., the logic kept unchanged during operation.
Thus, decomposing the circuit into logic modules is a well adopted method to differen-
tiate the reconfigurable logic and static logic [Xilinx 2012; Altera 2010]. The final and
most important advantage of the module-based placement is that it can enable module
reuse and the commonly used modules with pre-placement and routing can be stored
in a library for later reuse to save significant development efforts, like IP cores.

In this paper, in order to take the advantage of design reuse in FPGA, we propose a
library-based flow to improve the efficiency of placement and routing. The pre-placed
modules in the library are used to significantly save the placement time. Moreover,
with the accurate pre-placement module information, it can better direct the global
placement of the modules in the whole design. A B*tree-based placer (BMP) is intro-
duced to perform a fast modular placement on both fine-grained and coarse-grained
FPGA resources considering both module sizes and aspect ratios. Reconfigurable mod-
ules with multiple contexts are well supported during the placement. Finally, we pro-
pose a pin-to-wire abutment routing interface to connect the modules in the reconfig-
urable and static regions which does not require the macro or proxy logic which are
usually needed in current tools [Xilinx. 2011b; Carver et al. 2009; Athanas and et al.
2007].

The proposed flow has been integrated into the Versatile Place and Route
(VPR) [Rose and et al. 2012] to substitute the original placer and router. Experiments
demonstrate improvement on execution time with acceptable area and delay overhead
compared with the results of tile-based VPR. The results show that BMP has around
17% overhead in area and 8.2% overhead in delay. The execution time is significantly
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improved by 65% for the basic architecture. For other architectures, the area increase
ranges from 8.32% to 25.79%, the delay varies from -13.66% to 19.79%, and the run-
ning time improves by 43.31% to 77.2%. We also perform thorough design space explo-
rations to analyze and optimize the parameters of BMP. Our main contributions can
be summarized as follows:

— We propose a library-based placement and routing flow to facilitate design reuse
and improve the placement quality. The multi-context reconfigurable module is well
supported during the placement and routing.

— We utilize B*-tree representation to enable a fast modular placement on both fine-
grained and coarse-grained fabric considering different module ratios.

— We introduce the detailed pin-to-wire routing interface to support the PR-aware rout-
ing.

The rest of the paper is organized as follows. Section 2 reviews the previous work
related to module-based design flow. Section 3 introduces the overview of our proposed
placement and routing flow. Section 4 discusses the methodology for module library
construction prepared for the later placement and routing. The detailed placement
steps are introduced in Section 5, and Section 6 describes the PR-aware routing in-
terface design. Section 7 describes the local placement and local routing for multiple
contexts in the PR region. Section 8 discusses the experimental results and parameter
optimizations through design space exploration. Finally, we conclude with our remarks
in Section 9.

2. RELATED WORK
2.1. Tile-based placement
Conventional place and route tools for FPGA are based on fine-grained homogeneous
units to map the logic functions. Verilog-to-Routing (VTR) [Rose and et al. 2012] gave
a complete flow from hardware description language (HDL) to physical mapping on
FPGAs of various hardware architectures, where VPR was used inside to perform the
tile-based placement and routing. Later work extended the fine-grained placement to
heterogeneous FPGAs. For example, [Jamieson et al. 2013] introduced the genetic al-
gorithm for solving the heterogeneous FPGA placement. [Selvakkumaran and et al.
2004] proposed a multilevel multi-resource partitioning algorithm for heterogeneous
FPGA placement. [Hu 2006] employed a multi-layer density system for the heteroge-
neous FPGA placement. [Gort and Anderson 2012] proposed an analytical placer for
the heterogeneous FPGAs. However, as we mentioned before that the tile-based place-
ment faces the challenges of a long running time for large-scale designs.

2.2. Module-based floorplanning and placement
Module-based floorplanning has been proposed in recent years to ease the mapping
of large-scale designs in modern FPGAs. In [Cheng and Wong 2006], they proposed a
floorplanning algorithm for heterogeneous resource. They firstly found a position for
the specific slicing structure and then used simulated annealing to tune towards a
better solution. [Yuan et al. 2005] proposed an approach named “less flexibility first”
algorithm to find locations of different modules and used a metric to estimate the so-
lution priority. [Banerjee et al. 2009] used a three-phase deterministic approach to get
a unified floorplan topology and then used the bipartitioning method to find the final
positions for the heterogeneous blocks. [Liu et al. 2011] proposed a high utilization
method for heterogeneous FPGAs. They used the non-slicing structure to optimize the
wirelength first and then used min-cost-max-flow algorithm to assign the positions to
Configurable Logic Blocks (CLBs). Finally they assigned positions to the RAMs and
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DSPs. [Chen et al. 2014] proposed a packing and analytical placement flow for het-
erogeneous FPGAs from floorplanning to detailed placement. They used look-ahead
legalization to allocate positions to different resources.

In order to support partial reconfiguration, commercial FPGA mapping flow has in-
cluded PR-aware placement. However, it needed manual specification which was an
error-prone and tedious process. Xilinx Early-Access (EA) PR design flow [Xilinx 2012;
He and et al. 2012; Xilinx. 2011a] was commonly used in the PR designs, which re-
quired that PR regions were manually defined in terms of shape, size, and physical lo-
cation. In order to reduce the manual efforts for searching in a large design space, vari-
ous work proposed automatic floorplanning for PR modules. In earlier work [Bazargan
et al. 2000], each PR module was modeled as a fixed-size block and the PR floorplan-
ning was formulated as a three-dimensional template placement problem. However,
this assumption was difficult to apply in practical applications. Later studies like [Y-
ousuf and Gordon-Ross 2010; Beckhoff and et al. 2013] developed automatic flow for
PR floorplanning based on Xilinx process and special bus was needed to connect mod-
ules and support run-time reconfiguration. [Carver et al. 2009] developed an automat-
ed simulated annealing-based bus macro placement tool and evaluated the tool using
timing results generated by Xilinx PAR (place and route) utility. The dimensions of
partial reconfigurable region were fixed and the PR region was manually placed, then
the bus macro was automatically placed around the reconfigurable region. [Banerjee
and et al. 2011] extended the floorplanning algorithm in [Cheng and Wong 2006] to
consider the PR floorplanning in heterogeneous resources. In that work, a global floor-
plan generation approach was introduced to obtain shared positions for common mod-
ules across sub-task instances. [Singhal and Bozorgzadeh 2006] proposed a multi-layer
floorplanner which combined the multiple reconfigurable design’s floorplanning and
maximized the reuse of common components to reduce the reconfiguration overhead.
These two work focused more on the maximization of resource reuse among multiple
designs. [Vipin and Fahmy 2011] proposed an efficient mapping method which per-
formed the floorplanning optimization of reconfigurable modules from the high-level
estimation.

There was also work proposed to perform simultaneously floorplanning and place-
ment or a direct global placement. [Montone et al. 2010] introduced a mapping flow,
which partitioned the scheduled task graph into reconfigurable regions and then per-
formed floorplanning and placement of reconfigurable regions in heterogeneous re-
configurable FPGAs targeting the wirelength minimization. Most recently, [He and
et al. 2012] proposed a fine-grained placement for PR FPGA. Compared with these
studies, our work focused more on the efficient reuse of pre-placed modules in the li-
brary to significantly save the execution time. In addition, our placement introduced
B*-tree representation to represent module information and speed up the searching
speed while considering different ratios of modules during placement to achieve the
area-delay product optimization.

2.3. PR-aware routing
The routing interface design is a major step for supporting the PR operation and used
for connecting the static logic and reconfiguration logic. In Xilinx FPGAs, bus macros
were predefined and used for connecting the static and reconfigurable modules [Shah
and Rose 2012; Claus and et al. 2007]. The bus macros were double-lines or hex-lines
in the early generation of Virtex II or Virtex II-Pro devices, while a Look-Up-Table
(LUT) based bus macro was used in recent devices, such as Virtex-4, Virtex-5 and
Spartan-III. [Claus and et al. 2007] used a bus macro generated based on Xilinx De-
sign Language (XDL) for connecting the static and reconfigurable parts. [Koch et al.
2008] proposed a tool called ‘ReCoBus-Builder’ to enable the communication between
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Fig. 1. Mapping flow for library based design.

the static and reconfigurable modules through a fixed bus infrastructure or dedicated
point-to-point links with other parts of the system. [Athanas and et al. 2007] used
a wrapper structure to connect different regions and each reconfigurable module was
encased in a wrapper structure before placement and routing. The wrapper structure
had anchor points which existed at pre-defined locations for the module’s ports. Xilinx
PR design flow [Xilinx. 2011b] used ‘proxy’ logic to solve the boundary crossing connec-
tion problem. The ‘proxy’ logic was a one-input LUT which had a fixed placement in a
reconfigurable region. It must be the same for every reconfigurable module. It involved
logic overhead for implementing the ‘proxy’ logic and extra delay for passing the ‘prox-
y’ logic. [Koch et al. 2010] used the pre-assigned route for connecting different regions
and eliminating ‘proxy’ logic. However, it imposed constraint on the communication
between static systems and PR regions which may increase the design complexity and
narrow its range of usage. [Shah and Rose 2012] explored the pin-to-wire connections
and measure the difficulty to form such type connections. However, it was not used in
the PR system and it did not describe the interface design when there were more than
two PR regions. We adopted the pin-to-wire concept and proposed a detailed pin-to-
wire interface to support PR-aware routing without requirement of the bus macro or
‘proxy’ logic.

3. LIBRARY-BASED MAPPING FLOW
The mapping flow we propose to solve the library-based placement is shown in Fig. 1.
The flow is composed of four main stages: information collection of individual sub-
function modules, netlist combination, module-based placement, PR-aware routing
targeting delay and area optimization, and local placement and local routing for PR
regions. First, we assume that logic modules have been decomposed from the main
logic function by designers. The first stage gathers the information on area, delay, con-
nection ports, netlist, etc. of the modules from the library storing the information of
modules. If the module is not available in the library yet, our flow can run a trial
round to generate the corresponding information from the HDL files of the modules.
Since different ratios may be suitable for different designs, the trial round will gener-
ate the module placement and routing for k different ratios which result in minimal
area-delay product. If the module is a reconfigurable module, the area and delay for
multiple contexts are considered where each context is a configuration. Then the logic
modules are combined to form the netlist for the whole function in the second stage.
In the third step, a B*tree-based placer (BMP) is introduced to place the static and
reconfigurable modules simultaneously in heterogeneous FPGA resources. BMP intro-
duces B*-tree representation [Chen and Chang 2006] to model a floorplan, and enables
corresponding operations for fast search of the optimal solution. The cost function of
total delay and area is used to guide the simulated annealing based search algorith-
m [Chen and Chang 2006]. Note that different ratios may occupy different placement
resources which affect the placement result significantly, especially considering the
special resource and position constraint, i.e., modules with memory blocks must be
placed in special positions. During the placement, not only the module size, delay, but
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Fig. 2. Library based structure.

also the aspect ratio (width/height) is considered to achieve the area-delay produc-
t optimization, which creates a large solution space. After placement, the PR-aware
routing is performed to connect the modules with restricted routing outside of PR re-
gion to prevent resource interference during PR procedure. The last stage of the flow
is specifically for PR modules. It performs local placement and routing for each context
inside the module.

For designing a new function, the designer only needs to list modules in use and pro-
vide connection port name and top module IO information. Then to finish the design,
only module-based placement and routing are needed. Fig. 2 shows an example for the
library based design. There are totally four functions (modules) A, B, C and D, where
B and C are reconfigurable modules with multiple contexts. The designer can specify
the module list, such as A1, B1, C1 and D1 as initial modules and connections in the
top netlist. Then modules are fetched from the library and combined into a complete
function netlist. After the modular placement and routing, the netlist is implement-
ed. For reconfigurable module B and C, the implementation supports other contexts to
substitute B1 and C1 during operation.

4. MODULE LIBRARY CONSTRUCTION
As shown in the overall mapping flow, we need to prepare the modules and store the
information of all the modules in the module library when needed. VTR [Rose and
et al. 2012] can be used to synthesize each module from verilog file to layout. The syn-
thesized modules stored in a library may contain both fine-grained and coarse-grained
resources. We need to consider the following several aspects for constructing a module
library. Firstly, we need to determine the delay, area and pinlist for the reconfigurable
modules with multiple contexts. Secondly, we need to choose the k ratios of modules to
achieve a good area-delay trade-off. Thirdly, we need to support the delay estimation
for the module with a specific ratio, i.e., an user-specific ratio which is not available in
the current library, since the modules are only synthesized with the proper k ratios. In
the next subsections, we discuss each of the aspect in detail.

(a) 4x4 clbs FPGA. (b) 3x3 clbs FPGA.

Fig. 3. Two contexts of a reconfigurable module
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4.1. Synthesis of Reconfigurable Modules
Since the reconfigurable modules have multiple contexts for different functions, the
synthesis flow needs to run for each context of the reconfigurable function. The area
and delay of the module are determined by the maximum one across all the contexts.
However, since the routing between the modules may go through the static region
and cannot be reconfigured, the pinlist of the module needs to satisfy the input/output
requirement of all the contexts. Hence, the pinlist of the module is the combination of
IOs of all the contexts. For example, Fig. 3 shows the two contexts of a reconfigurable
module. Since the context in (a) has a larger area than the context in (b), the module
size and delay are determined according to the context in (a). However, for the pinlist
of the module, we need to find out all the unique IO nets. For example, assume that two
contexts, context R1 and context R2, share the IO nets of netA and netB, but context
R2 has a unique IO net of netC. In order to enable the context switch between R1 and
R2, all the required IO nets netA, netB, netC need to be routed and connected. Hence,
the total pinlist of the reconfigurable module is the combination of unique IOs of the
two contexts, which is {PadA, PadB, PadC}. Then the local placement and routing of
the contexts inside the module are based on the pin arrangement of the module.

4.2. Module Ratio Selection
We observe that the shape of a module shows impact on delay and area. Fig. 4
and Fig. 5 demonstrate simulation results of delay and area of MCNC benchmark-
s [Minkovich K. 2007] for various aspect ratios, respectively. Legends shown in the
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(a) Square shape. (b) Rectangular shape.

Fig. 6. Module of various shapes and delay.

figures are aspect ratios, width over height, of the shapes. Note that here we assume
the basic reconfigurable unit is one CLB without lost of generality. The parameter for
the aspect ratio can be set to other number without affecting the placement method.
It can be seen from the figure that among different ratios, the delay has at most 38%
difference for the same benchmark. Fig. 6(a) and Fig. 6(b) demonstrate placement re-
sults of an example module rng5 in the shapes of square and rectangle, respectively.
The corresponding delays are 2.56ns and 2.05ns. The module of the square shape has
extra 25% delay compared to the rectangular one. The module rng5 is a simple logic
which only needs fewer tiles for the logic function, thus, a shape with low aspect ratio
makes input signal pass through logic to output in a shorter path incurring smaller
delay. Area of the benchmarks has less variation than delay for different aspect ratios
because each benchmark has fixed numbers of tiles in usage. Area differences among
various ratios are from the wasted area of empty tiles included in the rectangular
shape.

There are several types of resources in FPGA and different resources in a module
must be placed in their corresponding positions. Fig. 7 shows the impact of ratio change
to a module with heterogeneous resources. For example, a logic has three memory
blocks and six CLBs. When the ratio is 1/4, we can place it in the region A. When we
change the ratio to 4/1, the new space with the same area is invalid, since it does not
have enough resource (RAMs) for fitting the logic. Thus empty region B cannot be used
for the module. Hence, for heterogeneous modules, we not only need to check the space
size, but also need to check the type of resource. In other words, we must place the
module in a valid position which makes use of the resource efficiently and results in a
shorter delay.

To indicate the delay and area for each module with different aspect ratios, we in-
troduce a parameter τ which is area × delay of a shape of the module. Shapes of each
module are sorted in the ascending order of τ in a list for reference in the later place-
ment stage.
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4.3. Delay Estimation Model for the Modules with Specific Ratios
Constructing an efficient module library is a challenging problem due to the reason
that it is difficult and impractical to collect the implementations of a PR logic with all
the possible ratios in the module library. We currently store the implementations of
the modules with the best k τ in the module library. However, sometimes the user may
want to try other ratios during the module placement without pre-synthesized module
layout. To enable this flexibility, we propose an approach for estimating the module
delay based on the available module information for these specific ratios which do not
exist in the current library. We use piecewise linear interpolation to estimate mod-
ule delay and give an effective and fast feedback to the user for the search of optimal
placement. We first sort the module in the ascending order of its aspect ratios. Then
we create a linear interpolation function between each adjacent points. Thus each ra-
tio can use a corresponding function to get its estimated delay value. The more the
aspect ratio points exist in the current library, the more accuracy the approximate
approach can achieve. We adopt this estimation approach because modules for two ad-
jacent points usually have similar structure which may reflect the delay information
more accurately than the wirelength estimation due to the routing impact. Moreover,
it saves the efforts for identifying the critical path. An example of module delay es-
timation is shown in Fig. 8. We assume that we have four ratios for a module in the
library. The ratios are 0.2, 0.4, 0.6 and 0.8. We need to estimate the module delay with
ratio A = 0.5. Thus we can use the yellow line to approximate its delay. The function for
yellow line is y = 5x and the delay is 2.5 for the point A. We also apply this approach
in our flow. Assume k = 5 so that we have five ratios for each module stored in the
library and the ratios are 0.2, 0.6, 1.0, 1.6 and 5.0. We need to estimate the module
delay with ratios 0.4, 0.8, 1.2 and 2.5. During placement, we use the delay estimation
approach to estimate these specific ratios. The experiments show that our estimation
method can achieve 93% accuracy on average on the critical path of the final routing
results. Some previous studies [Nayak et al. 2002; Mak et al. 2007; Hung et al. 2009]
report that their delay estimation approaches for FPGA have approximate error rate
of 13% which shows our approach is feasible.

5. LIBRARY-BASED PLACEMENT
With the combined netlist, the modules picked up from the library are placed into
the underlying reconfigurable fabric in the placement stage. In this section, we first

(a) Coarse-
grained
module
with ratio
1/4.

(b) Coarse-grained region with
ratio 4/1.

Fig. 7. Coarse-grained module with different ratios
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introduce the problem formulation for the library-based placement and then focus on
the discussion of the detailed placement steps.

5.1. Problem Formulation
The problem of library-based placement can be formed as the follows. Given a set of n
rectangular modules B = {b1, b2, ..., bn} stored in the library, where each module has
a width and height denoted by wi and hi, 1 ≤ i ≤ n respectively. The aspect ratio of
module bi is defined by wi/hi. A placement p = {(xi, yi)}(1 ≤ i ≤ n) with modules is
an assignment of the rectangular modules b′is such that no two rectangular modules
overlap and the bottom-left corner coordinate of module bi is assigned to (xi, yi). The
objective is to optimize the area utilization, wirelength and delay.

5.2. B*-tree Representation
In order to enable a fast search of optimal placement in the solution space, we use
B*-Tree to represent the module placement. Here we introduce the background for
the B*-Tree representation. B*-tree is an ordered binary tree structure proposed in
modern floorplanning of ASIC designs [Chen and Chang 2006]. Compared to other
data structures, B*-Tree provides faster searching and area estimation, convenient
handling of constraints, linear time transformation between the tree and placement.
The solution space of B*-tree algorithm isO(n!22n/n1.5) [Chen and Chang 2006], where
n is the number of modules.

To build a B*-Tree, the bottom-left corner of the placement is taken as the root. B*-
tree representation of the placement is built in a recursive fashion from the root. The
subtree is first constructed at the left-hand side and is then built in the same manner
at the right-hand side. Each node ni in a B*-tree denotes a module and the root of a
B*-tree corresponds to the module on the bottom-left corner. The left child ne of the
node ni denotes the module be which is the lowest adjacent unvisited module on the
right-hand side of bi, i.e., xe = xi + wi. The right child of nr of the node ni denotes
module br which is the lowest unvisited module above and adjacent to module bi and
its x-coordinate equal to that of bi, i.e., xr = xi. And also b′rs y-coordinate is smaller
than that of the top boundary of the module on the left-hand side and adjacent to bi,
if any. An example of the mapping graph for B*-tree and placement is shown in the
Fig. 9.

5.3. B*-tree based Module Placement
As discussed in the last section, given a non-overlapping placement, modules are rep-
resented as the nodes of a B*-Tree, which provides a fast searching and area esti-
mation with linear time transformation between the tree and placement. Simulated
Annealing (SA) is performed to search for the efficient placement based on the B*-
Tree. Without loss of generality, we assume that SA algorithm begins with a randomly

Fig. 8. Module delay estimation for a specific ratio.
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generated placement of modules. Then in each iteration, the B*-tree based operation
is performed to explore the solution space as follows:

— OP1 loads module with shape of 1/(aspect ratio).
It is similar to rotate node/block by 90 degrees in the B*-Tree as shown in Fig. 10(a).
Theoretically, the delay and the area of individual module with aspect ratio and (as-
pect ratio)−1 are the same. However, it affects the total placement results.

— OP2 moves module to an empty place.
It is to delete a node and move it to another empty place.

— OP3 swaps two modules.
It swaps two nodes in the B*-Tree.

— OP4 loads a different aspect ratio of the module.
It is modified from the original B*-Tree operation of resizing a soft block. For place-
ment on FPGA, resizing of modules cannot be arbitrary size, but is equivalent to
apply different aspect ratios to the module.

When placing the modules with heterogeneous resources, position constraints need
to be imposed on the operations. For example, the module with memory blocks must be
placed in a valid position. Moreover, for the module with heterogeneous resources, the
hardware fabric can have different positions inside the module for the same module
ratio. For example, the column of memory blocks can be on the left or right of the CLB
column. To simplify the design, currently we assume that the shift of the resource
position inside the module will not change the module delay. The assumption is similar
to the previous studies [Xilinx. 2011a; Beckhoff and et al. 2013; Xu et al. 2014]. Fig. 11
illustrates an example for the placement of heterogeneous modules. Here each module
represents a static region or reconfigurable region. Fig. 11 (a) is the coarse-grained
module placement generated by BMP. After we obtain this placement result, we then
map it to the FPGA architecture and meet the position constraint. The Fig. 11 (b) is the
final placement result. Note that the validation of a heterogeneous module has been
discussed when creating the module.

In the implementation, to simplify the operation, we combine OP1 and OP4 together.
The proposed BMP tool chooses a portion of the modules with smaller τ from the list
to optimize the placement and the portion represents the percentage of the number of
ratios for each module. Currently, we set the portion to be 0.5 to save the running time
while still obtain good placement quality. The portion can be set to any value between 0
and 1 according to the system requirement. Simulated annealing is performed together
with B*-Tree operation to explore the solution space. In each iteration, the options

b1

b0 b2
b3

b4

b5

b10

b9

b7
b11

b8

b6

(a) A non-overlap placement.

n3

n4

n0

n1

n6

n10

n8

n5n2n7

n9n11

(b) The (horizontal) B*-tree.

Fig. 9. A placement and corresponding B*-tree representation.
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5

1

1

5 ratio_A=5

ratio_B=0.2=1/(ratio_A)

a) b)

Fig. 10. Module rotation and wirelength estimation.(a) Rotation of a module. (b) Red line shows wirelength
estimation from two modules.

(a) Coarse-grained
module placement
generated by BMP.

(b) Coarse-grained mod-
ule placement after map-
ping to the FPGA archi-
tecture.

Fig. 11. Coarse-grained module placement results

OP2, OP3 and OP1+OP4, are randomly selected by the tool. Different weights are
given to the operations to control the probability of choosing each operation, which are
explored in the experiments.

Costsystem = α
A

A∗
+ (1− α)((β)DT

D∗T
+ (1− β)DM

D∗M
) (1)

After each operation, we map the placement result generated by BMP to the FP-
GA architecture and evaluate its quality. The cost function [Wang and Wong 1991] is
calculated as shown in Eq. 1. Here A and A∗ represent the current total and average
area, respectively. DM and DT are current total module delay and total track delay
(wirelength). D∗M and D∗T are the average module delay and track delay. We divide the
current results by the average value to normalize the results. The α is a parameter to
bias the cost function to area or delay. The β is a proposed value to balance the weight
between the inter and intra delay. Both parameters are explored in Section 8. The de-
lay of each module is already obtained from the library. Thus, we only need to calculate
the wirelength for the nets among the modules. The track delay (wirelength) is calcu-
lated by port-to-port wirelength between two modules [Kennings and Markov 2000] as
shown in Fig. 10(b). With the pre-placement modules, we can get the exact location of
the IOs of the modules and hence, more accurate wirelength can be obtained compared
to the previous simple Manhattan distance between the center points of the modules.
If the module needs to connect with the IO pads of the circuit, the delay is similarly
estimated, assuming the module connects with the available IO pads determined by
the minimum total wirelength.
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(a) Normal routing in VPR. (b) PR-aware routing.

Fig. 12. Normal routing in VPR and PR-aware routing.

6. PR-AWARE ROUTING
After getting the placement results, routing is performed to connect the modules. We
propose a PR-aware router to consider the routing restriction for PR regions without
adding extra logic. An example of the PR-aware routing and normal routing in VPR is
shown in the Fig. 12. Fig. 12 (a) shows that the path A from b1 to b2 connects directly
as the red path shown. However, path B can not go through the PR region R1 (green
bounding box) shown in the Fig. 12(b) and it finds another way as the red path shown.
Next, we investigate different routing cases and propose a corresponding interface
design in this section.

Firstly, we divide nets into four types based on the source and sink locations of nets
since the source and sink locations of a net determine whether the net can go through
the PR region. Fig. 13 shows an example for different types of connections existing in
the PR-aware routing. The FPGA contains 6×6 CLBs. We assume that it has two PR
regions and some static regions. The regions with green CLBs (left-top region R1) and
yellow CLBs (right-bottom region R2) are the only two PR regions while the orange
CLBs are the static region. The CLBs with white color are not used and other colored
CLBs indicate that they are currently used. There are four types of nets connecting
the static or reconfigurable modules. We describe their routing rules as follows.

— Type 1: If the source and sink are in two PR regions A and B respectively, the net
routing can go through region A, B and the static regions, but not other PR regions.

CLBIO

IO

CLBIO

IO CLB

CLBCLB

IO IO

CLBCLB

CLB CLB

CLBIO

IO CLB

IO

IO CLB

CLBCLB

CLB CLB

IOIO

CLB CLB

CLBCLB

IO IO

CLBCLB

CLB CLB

IOCLB

IO

IOCLB

CLB IO

CLBCLB

CLB CLB

IOIO

CLB CLB

IOCLB

CLB IO

IO

CLB IO

case1case2

case3

case4

PR 
Region R1

PR 
Region R2

Fig. 13. Four types of connections of nets.
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— Type 2: If the source and sink are all in the same PR region A, then the net routing
is limited within the region A.

— Type 3: If the source in a PR region A and the sink in a static region C, the net routing
can go through A and all the static regions.

— Type 4: If the source and sink are all in the static regions, the net routing can go
through all static regions.

The PR-aware global routing also determines the virtual pins (tracks) needed for
connecting the PR modules and static region for supporting PR and we call these
pin-to-wire connections [Shah and Rose 2012]. We describe the detailed pin-to-wire
interface design in the next section.

6.1. Pin-to-wire Routing Interface Design
We adopt the pin-to-wire connection framework and define the detailed interface to
support PR. The pin-to-wire connections mean creating connections from output pins
of logic blocks to specific wire segments in the network, or from specific wire segments
to input pins [Shah and Rose 2012]. We define virtual pins (tracks or wire segments)
to connect the PR regions and static regions. The PR regions are connected to tracks
as its virtual IOs and the virtual IOs are fixed during the PR operation to avoid the
interference with the static routing. By this way, the PR regions are connected to the
static regions without using the proxy logic.

We first setup a PR-aware global routing for the whole design which contains all the
modules (static and PR modules). After the initial PR-aware global routing, we can
identify the tracks which connect one PR region to other regions. The first track in
the static region that the IO port of the PR region connects to is defined as the virtual
pin of the PR region. We discuss different cases as illustrated in the Fig 14. Here we
assume that region A and B are the only two PR regions and other parts are static
regions.

— Case 1: The source port and sink port are in different PR regions A and B, and their
connection is through a switch box. Since there is no track in the static region along
the path, we define the virtual pin to be the track A1 (red line) in the region A and
track B1 (blue line) in the region B.

Fig. 14. Defining interface according to different types of nets.
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— Case 2: The source port and sink port are in different PR regions A and B, and the
ports are connected through a track C between the two regions. Then the track C
(green line) is defined as the virtual pin for both regions.

— Case 3: The source port and sink port are in different PR regions A and B. It is similar
as case 1, but a track A2 across the two regions can directly connect the ports. Thus
we define A2 (yellow line) track as the virtual pin for both regions.

— Case 4: The source port and sink port are in different PR regions A and B, and there
are more than one tracks between them. Thus we define track A3 (purple line) as the
virtual pin for track A, and track B2 (red line) as the virtual pin for region B.

— Case 5: The source port and sink port are in one PR region, such as region A, and the
static region, such as the pad. We only need to define the virtual pin the PR region.
Following the rule, the track A4 (green line) can be defined as the virtual pin for
region A.

— Case 6: The source port and the sink port are all in the same region (all are in the
static region or in the PR region). We do not need to define interface for this net.
Since all the content in the PR region can be reconfigured and re-routed.

We use these defined virtual pins or tracks for later PR operation. If a PR region
needs PR operation, the context in the specific region is modified while other parts
keep unchanged. During PR operation, the new context needs to connect to the virtual
pin and through it connects to the static region or other PR region. Local placement
and routing are needed to connect the PR context to the virtual pins as discussed in
the next section.

7. LOCAL PLACEMENT AND ROUTING IN PR REGION
As we have discussed in Section 4, the size of the reconfigurable module or region is
determined by the largest context of the module. To place the other different contexts
in the PR region, we need to perform local placement and routing to fit the context in
the region and connect the context IOs with the virtual pins which are fixed during the
global routing.

We divide local placement into two types. In the first case, some ratio of the pre-
synthesized module of the new context can be directly fitted in the PR region. Since
the contexts stored in the library are already placed and routed well, we take it as a
reference and place the module as a whole inside the region using the wirelength or
delay as the optimized objectives. In the second case, the new context cannot be fit in
the PR region directly. In this case, we need to place the logic of the new context using
tile-based placement in the PR region and route the whole region. Fig. 15 shows an

Fig. 15. Local placement in a PR region.
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Table I. Benchmarks in VPR Suite
Arch Name BLEs RAM Startcol RAM Gap RAM Height DSP Startcol DSP Gap DSP Height

Architecture 1 10 4 8 6 2 8 4
Architecture 2 4 3 5 2 5 5 4

Table II. Benchmarks in VPR Suite
circuit name modules CLB RAM DSP circuit name modules CLB RAM DSP

raygentop 15 427 7 1 stereovision1 21 4001 0 0
bgm 32 8290 0 0 stereovision2 14 7618 0 0

LU32PEEng 4 17897 32 150 boundtop 13 558 0 0
mkPktMerge 4 34 0 15 mcml 5 15504 30 38

mkSMAdapter4B 4 393 0 5 mkDelayWorker32B 8 1117 0 41
LU8PEEng 4 5102 8 45

example for the local placement in a PR region. We use the PR region R1 from the
Fig. 13 as shown in (a). Fig. 15 (b) and (c) are two contexts: R11 and R12 which need to
be loaded in the PR region R1. Fig. 15 (d) shows that the context R11 can be placed in
the PR region R1 directly, and Fig. 15 (e) shows that the context R12 can not be placed
in the PR region directly and thus we need to do tile-based local placement for this
context in the PR region.

As for the local routing, note that we have considered the IOs needed for all the
contexts of a reconfigurable module as discussed in Section 4. Hence, the virtual pins
needed for this context have been fixed during the global routing. The local routing only
needs to connect the context with its corresponding virtual pins through the normal
routing. If the new context has no path to make connections to the previously chosen
virtual pin interfaces. We can adopt the following two ways. 1. We do re-placement of
the logic in the modules which are to connect to the virtual pin interface. 2. We change
the framework from scratch which is to redo the flow for the whole design. It is similar
to the VLSI and FPGA mapping flow that when the routing failed, the flow can reroute
(i.e., re-placement and re-routing).

8. EXPERIMENTAL RESULTS AND DISCUSSION
To demonstrate the performance of the proposed mapping flow and explore the de-
sign space of placer BMP, benchmarks for library-based placement and routing flow
are first created to test the tools. Then the results of the library-based mapping flow
is compared with the tile-based flow to demonstrate the trade-off in area, delay and
execution time. Finally, the design space exploration is performed to optimize the pa-
rameters of the BMP placer. The simulations are run on IBM server x3650 with Intel
Xeon(R) CPU and 42 GB DDR2 RAM. In general, we are using the architecture file
which is similar to k6 N10 memDepth16384 memData64 40nm timing, with the VTR
project. The experiments are performed on this base architecture and its homogeneous
variation which has the same architecture parameters except without the RAMs and
DSPs. The two architectures are denoted as Architecture 2 and 4. The channel width
is set to be 200 and the percentages for length-4, length-2 and length-1 wires are 60%,
20% and 20%, respectively. In order to further evaluate our flow in different architec-
tures, we changed the parameters of Architecture 2 and created a new architecture
file, denoted as Architecture 1, whose homogeneous variation is Architecture 3 corre-
spondingly. The parameters for the Architecture 1 and 2 are summarized in Table I.

8.1. Benchmarks for Library-based Placement
Due to the unavailability of the benchmarks for module-based mapping, we select and
modify the cases in the VPR suite for demonstrating the performance and function-
ality of the proposed library-based placement. Information of the cases are shown in
Table II. The number of modules ranges from 4 to 32 for current case set. We also
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(a) Boundtop floorplan. (b) Boundtop placement.

Fig. 16. Floorplan and placement results for the case boundtop.

Table III. Resource Utilization for all the cases
circuit name CLBU DSPU RAMU circuit name CLBU DSPU RAMU
LU32PEEng 68% 2% 4% LU8PEEng 80% 2% 4%

mcml 80% 2% 1% mkDelayWorker32B 63% 0 14%
mkPktMerge 27% 0 68% mkSMAdapter4B 88% 0 8%

raygentop 79% 22% 1% bgm 83% 0 0
boundtop 81% 0 0 stereovision2 89% 0 0

stereovision1 89% 0 0

show the number of tiles contained to compare the difference in the size among these
cases. The absolute tile values are for reference only since it varies in different archi-
tectures. We decompose each of the verilog file into multiple verilog files according to
subfunctions, which are known as modules. For each reconfigurable module, multiple
contexts are created correspondingly for pre-defined functions. For the module-based
applications, identifying connections between each module relies on the name of each
inputs and outputs. Ports of the same name would be connected together to form the
whole function in the netlist. Since depending on the benchmarks, different modules
may have their own best ratios. We evaluated some typical ratios within the range of
0.1 to 1.0 with step 0.1 and also their inversions. We observed that except the extreme
cases of very wide (ratio 10) or tall modules (ratio 0.1), the area-delay results of other
ratios do not differ very much. In order to provide the tool a good flexibility to choose
different ratio of modules according to different benchmark requirements and at the
same time limit the number of total ratios to a small number, we choose 0.2, 0.4, 0.6,
0.8, 1.0, 1.2, 1.6, 2.5, 5.0 for the case of K = 9. In the experiments, we assume all the
modules are stored in the library.

8.2. Library-based Placement Results and Discussion
First we demonstrate a placement result of benchmark Boundtop in Fig. 16(a). The
red rectangle (the outside boundary) is the area of the benchmark. The grey area is
the floorplan of each module of the logic function. White area is not placed with any
modules and is taken as the waste area due to the library-based placement. The IOs
are not shown here which is around the red area. We index each module with a spe-
cific number starting from 0. Hence, there are totally 13 modules in the benchmark.
Fig. 16(b) shows the placement results on VPR. The red area are the corresponding
mapping area of each module showed in Fig. 16(a). The proposed placement also sup-
ports heterogeneous components as discussed, e.g. internal memory, multiplier. Cur-
rently, the library-based flow deals with the low and high utilization designs in the
same manner. We take each module as a function module and place them in the chip.
The utilization rates of the cases are listed in Table III. CLBU, DSPU and RAMU
represent the utilization of CLB, DSP and RAM. The experiments show that our flow
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Fig. 17. Area comparison between tile-based results (VPR) and BMP results (our approach) for the tested
cases.
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Fig. 18. Delay comparison between tile-based results (VPR) and BMP results (our approach) for the tested
cases.

succeeds for the placement and routing of all the cases, even when the utilization rate
of some case is high. Next, we compare the mapping results between the tile-based
flow and our proposed flow to discuss the area and delay overhead incurred by the
library-based approach, and also on the other hand, the saving on the execution time.
Note that since VPR routing does not support PR, in order to fairly compare with the
tile-based flow, we assume all the modules are static.

8.2.1. Area. Fig. 17 shows the area comparison of each benchmark and average area
comparison of all the cases. The black (left, VPR) bars introduce the tile-based re-
sults generated by the original VPR flow and the red (right, BMP) bars demonstrate
the library-based placement results using the proposed flow. Theoretically, the library-
based placement has extra area cost because of the non-placed area demonstrated in
Fig. 16. Meanwhile, the amount of the logic tiles in usage for each benchmark should
be the same. Thus, the differences between the black bars and red bars mainly re-
sult from the extra cost. As the boundary (red) line of the bounding box showed in the
Fig. 16, the extra cost of each benchmark varies from -22% to 55%. The bars for average
area comparison in the last column shows that our approach has 17% extra area cost
more than tile-based results. Allowing more iterations in the searching may reduce
the wasted area between the modules. Moreover, the blank area inside the module de-
pends on the benchmark, however, it can also be minimized through properly selecting
the aspect ratio. Note that reducing the waste area may also reduce the delay, since
the track delay is proportional to the routing distance in the FPGAs.

8.2.2. Delay. We demonstrate the delay comparison in Fig. 18. The black (left, VPR)
bars and red (right, BMP) bars show that the delay of the critical path of each bench-
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mark generated by the original VPR and by BMP, respectively. We can see that our
flow gives better delay for 5 cases and worse delay for 6 cases. The average delay com-
parison in the last column shows that the average delay is slightly worse than the
VPR around 8.2%. The cases of LU8PEEng, mcml, bgm, boundtop and stereovision2
demonstrate delay is improved by 0.03%-24% as showed in Fig. 18. It is because that
the modules selected from the candidate list are with smaller τ . It gives the tool a good
initial placement to ease the optimization. Furthermore, each module can be regarded
as a cluster (the term is commonly used in FPGA field), for some benchmarks, it may
reduce the critical path. Thus, later it may ease the routing too and enable better per-
formance. The tile-based VPR flow needs to search in larger solution space in place-
ment stage which may result in less optimized results in the same amount of time.
Moreover, module with different ratios may provide better design for that module, it
enables better final placement results. For the benchmarks with poor delay, the situ-
ation is the opposite. The cluster does not catch the critical path well and the critical
path may across several modules and hence, trigger long delay. Tile-based placement
managed to optimize across the modules and place the critical path together while the
library-based could not achieve it. One thing to be noticed is that the preparation of
different ratios of a module is similar to compiling the module for multiple rounds with
different seeds. However, the efforts can be amortized through module reuse in later
designs. If we allow the VPR to run same number of rounds with different seeds and
select the best results, the delay of VPR flow can be improved by 3%.

8.2.3. Execution Time. The total execution time of the placement and routing of bench-
marks for the original VPR and BMP are shown in Fig. 19 with black (left, VPR) and
red (right, BMP) bars, respectively using log10 scale. Execution time includes place-
ment and routing stage. Assuming the module information is available in the library,
the library-based mapping flow has significantly better execution time in all bench-
marks. For benchmark with a large number of tiles, the improvement can achieve 96%.
For all the benchmarks, it has 65% improvement in average. The reason for the im-
provement is obviously from the reduction of searching space for solution. Compared
to the original VPR flow, the number of modules are largely reduced for several orders
of magnitude. At the same time, the reduction in the module number also leads to a
simple routing. All connections between modules are relatively close and thus the tool
has no need to trace and optimize for a long path.

The above discussion is for the situation that we have the modules’ information
available. If there is no module library or pre-synthesis results, the tool has to run a
trial round for all the modules. The module based placer (BMP) needs modules with
various aspect ratios, which take more trial rounds. However, since it is a part of floor-
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Fig. 19. Execution time comparison between tile-based results (VPR) and BMP results (our approach) for
the tested cases.
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(a) General. (b) PR-aware.

Fig. 20. Boundtop routing result without/with PR-aware.

Table IV. BMP Comparison Between Modules with Different Ratios and Modules with Only One Ratio

circuit name one ratio multi-ratio
Area Delay Area AreaIncrease Delay DelayImprove

LU32PEEng 40610 9.89E-08 43130 6.21% 9.73E-08 -1.66%
LU8PEEng 9600 1.05E-07 10437 8.72% 1.00E-07 -4.77%

mcml 31439 7.76E-08 32016 1.84% 7.63E-08 -1.72%
mkDelayWorker32B 2856 9.34E-09 2860 0.14% 9.43E-09 0.94%

stereovision2 8533 1.43E-08 8625 1.08% 1.30E-08 -9.54%
Average 18607.6 6.11E-08 19413.6 3.60% 5.93E-08 -3.35%

planning search, the total running time considering module generation is similar with
VPR flow to achieve the same placement results. Moreover, note that the trial rounds
are all independent, we can use multi-threaded processing to speed up the execution.

8.3. PR-aware Global Routing Results
The difference between PR-aware router and the router of VPR is that PR-aware router
cannot use the routing resource of all PR regions. Fig 20 shows the routing result
without PR-aware and with PR-aware. Fig 20(a) shows the routing result without PR-
aware for the case boundtop. Assuming that all the modules are PR modules, the rout-
ing resource for the static regions is limited to the tracks between modules and the
tracks between the modules and IO pads. Fig. 20(b) shows the routing result with
PR-aware. Compared to the routing result without PR-aware in the Fig 20(a), routing
result with PR-aware in Fig. 20(b) shows more congestion between modules. Due to the
resource limitations of PR-aware routing, it can be expected that more routing efforts
have to be made to find a feasible routing. The study of pin-to-wire routing [Shah and
Rose 2012] has observed a more than twice increase of routing efforts assuming using
30% more routing tracks than normal routing.

8.4. Design Space Exploration
The proposed mapping flow searches solution randomly at beginning which may re-
sult in widely various results. Thus, it is set to run 10 rounds for each benchmark of
each group of parameters in the exploration. It may give results of distinctive devia-
tion, but multi-round simulation helps to reduce impact of the deviations. Then, we
average across benchmarks and normalize the results of all benchmarks to eliminate
differences in logic complexity among benchmarks. Without loss of generality, we take
the case bgm for exploration and it totally has 32 modules. The distribution of module
sizes is as follows: there are 12 cases with CLB number less than 10, 9 cases with CLB
number less than 200 and 11 cases with CLB number bigger than 600.
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8.4.1. Reducing Searching Space. Searching space of a solution is the main factor for
the execution time. To reduce the searching space, we propose a reduction method to
lower down the search space for selecting the modules. We set the smaller modules to a
fixed aspect ratio, since they can easily fit in an empty slot and do not have big impact
on the total area. It indicates that original searching space should be modules× ratios,
now it becomesmoduleslarge×ratios+modulessmall. Here we need to discuss what is the
proper threshold value for defining small module. We compare the experiment results
between modules with different ratios and modules with only one ratio to show the
effects of the module ratios for area and delay, and the comparison results are listed in
the Table IV. From the table, we can see that we can get better delay when we consider
different ratios of modules compared with module with only one ratio. The average de-
lay improvement can achieve 3.35% with area increase slightly compared to the case
of using one ratio. The reason for delay improvement is that it can choose the best of
several different ratios of each module. We also show a design space exploration result
of the size threshold in Fig. 21. From the figure, we can see that with the threshold
increase, the area of the placement increases. It is because when the threshold increas-
es, more modules are placed with a fixed ratio, which reduces the placement flexibility
and leads to a suboptimal placement. If we look into the details of the curve, we can
see that there are fluctuations around the mean value. The fluctuations are from the
simulated annealing algorithm and the differences in the benchmark set. Fig. 21(b)
shows a trend that the larger module size can reduce execution time. Especially, when
all the modules have only one ratio, its runtime reduce largely. In summary, from the
normalized area graph Fig. 21(a) and time graph Fig. 21(b), we can see that blue line
(the average line) shows that the number from 13 to 16 is a proper number for defin-
ing the small module since the threshold larger than this has negative impacts to the
overall optimization results. It is because when larger module is set to fixed aspec-
t ratio, the solution space is smaller and the algorithm can quickly find the optimal
point, but the area and the runtime generally are conflicting objectives. We can see
from the exploration that according to characteristics of the targeting benchmark set,
threshold can be set to the value which optimizes the area and delay together. For our
benchmarks, the value can be around 14.

8.4.2. Parameters α and β in Eq. 1. Parameter α and β of the cost function are two impor-
tant parameters to guide CAD tools in placement. Quality of placement and execution
time are strongly related to these two parameters. We demonstrate design space ex-
plorations for optimization of the two parameters here.

We explore α from 0.1 to 0.9 with step of 0.1, and also β is set from 0.1 to 0.9 with
step of 0.1. Fig. 22(a) shows the impact of variation of α on the normalized area and
deviation for the benchmarks. The area is related to α with around -4% to 7% deviation
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(b) Module size vs. computation time.

Fig. 21. Design space exploration for definition of small module size.
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Fig. 22. Design space exploration for parameters in the cost function.
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Fig. 23. Design space exploration for rate of moving operation.

from normalized average area for different values of α when β is stepping from 0.1 to
0.9. We can see that when α ranges from 0.5 to 0.9, the algorithm give best area results.
This is because that when α > 0.5, the cost function emphasizes area more. The best
point can be 0.6 and 0.8.

The β values are percentage between wirelength (track delay) and module delay in
the placement. To discuss impact of β on the wirelength (track delay), we first preset
α from 0.1 to 0.9 and β is varied from 0.1 to 0.9 with step of 0.1. The results of average
wirelength (track delay) and deviation to mean value with various β are showed in
Fig. 22(b). We can see that when when β ranges from 0.5 to 0.7, the algorithm give
best wirelength (track delay) results. The best point can be 0.6 and 0.7.

8.4.3. Probability of Operations in SA. Theoretically, there are four operations in the pro-
posed modified B*-tree representation. We merge OP1 and OP4 and then load all mod-
ules with various aspect ratio into computation. Hence, the weight for loading opera-
tion is 1. We only discuss the weight for the rest operations including moving module to
other empty place (OP2) and swapping two modules (OP3). Their weights sum up to be
1. Fig. 23(a) demonstrates impact of moving rate on the area. We simulate the bench-
marks with various moving rates in many rounds and then average and normalize the
result. We can see that the moving rate has less impact on the area result. Area de-
creases slightly when moving rate ranges from 0 to 0.6 and it increases slightly when
moving rate ranges from 0.6 to 0.8. The moving rate is zero, which indicates there is
no moving operation. Fig. 23(b) shows moving rate impact on the execution time. How-
ever, we can see the average time varied a lot with the moving rate change. From the
exploration, the moving rates ranging from 0.6 to 0.9 can improve the execution time
and it impacts the area slightly.
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Table V. Comparison between VPR and Our Proposed Flow in Different architectures.

circuit name ChannelWidth VPR BMP
Area Delay Time Area Delay Time

Architecture 1
LU32PEEng 200 10000 1.53E-07 18864.55 14694 1.55836E-07 1896.91
LU8PEEng 200 2916 1.52543E-07 966.47 4186 1.51457E-07 209.23

mcml 200 8464 1.11432E-07 5271.82 10212 1.10583E-07 514
mkDelayWorker32B 200 1764 7.77673E-09 135.23 1849 9.12278E-09 82.2

mkPktMerge 200 676 4.02695E-09 17.57 624 5.94131E-09 26.49
mkSMAdapter4B 200 324 7.73036E-09 23.91 418 8.67654E-09 6.18

raygentop 200 289 6.66207E-09 27.46 414 7.63094E-09 32.4
Average 1 1 1 25.79% 13.15% -43.31%

Architecture 2
LU32PEEng 250 29929 9.71165E-08 20057.85 43130 9.88503E-08 1962.22
LU8PEEng 250 8464 1.01784E-07 4288.78 10437 1.01821E-07 198.84

mcml 250 25921 9.07892E-08 16882.24 32016 7.79289E-08 866.83
mkDelayWorker32B 250 1849 6.21091E-09 237.99 2860 1.01263E-08 59.2

mkPktMerge 250 225 3.60412E-09 10.11 176 5.31364E-09 6.48
mkSMAdapter4B 250 676 6.15022E-09 46.21 704 7.048E-09 8.83

raygentop 250 729 4.51367E-09 56.12 888 5.67742E-09 45.63
Average 1 1 1 21.40% 19.79% -70.15%

Architecture 3
bgm 300 3481 3.40905E-08 2068.89 3922 3.2529E-08 202.19

boundtop 300 256 7.82643E-09 47.76 266 7.35228E-09 47.22
stereovision1 300 1681 9.57075E-09 505.17 2002 1.02107E-08 143.56
stereovision2 300 3136 1.61955E-08 1644.56 3312 1.74035E-08 111.36

Average 1 1 1 10.32% 0.88% -64.04%
Architecture 4

bgm 150 8464 2.67565E-08 4287.94 10064 2.10551E-08 245.61
boundtop 150 576 5.04455E-09 68.35 525 4.25568E-09 44.71

stereovision1 150 4096 6.85571E-09 1217.05 4582 7.8015E-09 193.06
stereovision2 150 7744 1.94235E-08 3691.04 8625 1.33106E-08 155.31

Average 1 1 1 8.32% -13.66% -77.20%

8.5. Running in Different Architectures
In order to evaluate the efficiency of our flow in different architectures, we perform the
experiments in four architectures as shown in Table I. Moreover, we also set channel
width to be different values to evaluate the impact of different channel widths. The
experiments show that basically the area increases all the time. The homogeneous ar-
chitectures tend to have less area overhead. It is because that the fixed position of
DSPs and RAMs increases the challenge of module placement and more easily incurs
area waste. Similarly the delay in homogeneous architecture is better than that of het-
erogeneous architecture, especially for Architecture 4. The possible reason should be
that our proposed BMP can get compact solution and there is no position constraint.
The Architecture 4 achieves better delay than Architecture 3 because except the bench-
mark stereovision1, other three benchmarks all favor the small CLBs in Architecture
4 and achieve delay improvement. Table V shows that the area increase ranges from
8.32% to 25.79%, delay varies from -13.66% to 19.79%, and running time improves by
43.31% to 77.2%. It shows the efficiency of the proposed flow in various architectures.

9. CONCLUSIONS
Our work proposes a library-based mapping flow which supports the partial run-time
reconfiguration and replacement for multi-context functions in a PR region. Further-
more it can reuse the resource in the module library to reduce the compilation time
and to build large circuits. The proposed module-based (BMP) placer uses the modified
B*-Tree representation to optimize the floorplanning and placement of the modules
with the consideration of flexible module ratio. The corresponding parameters for cost
functions and searching algorithms are explored in the experiments. Compared to the
original tile-based flow, the delay of the proposed module based flow is slightly worse
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than the VPR around 8.2% in a basic architecture, but with significant running time
reduction around 65% with acceptable area cost due to the empty space which shows
the efficiency of the proposed flow. We also develop the pin-to-wire interface to support
the PR-aware routing without adding extra cost.
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