THE UNIVERSITY OF

WARWICK

Original citation:

Jhumka, Arshad and Mottola, Luca. (2016) Neighborhood view consistency in wireless
sensor networks. ACM Transactions on Sensor Network

Permanent WRAP url:

http://wrap.warwick.ac.uk/77808

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher statement:

© Jhumka, Arshad and Mottola, Luca. This is the author’s version of the work. It is
posted here for your personal use. Not for redistribution. The definitive version was
published in ACM Transactions on Sensor Network http://tosn.acm.org

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

o ——
nighlight your research

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/77808
http://tosn.acm.org/
mailto:publications@warwick.ac.uk

Neighborhood View Consistency in Wireless Sensor Networks

ARSHAD JHU MKA, University of Warwick, Coventry, UK
LUCA MOTTOLA, Politecnico di Milano, Italy and SICS Swedish ICT

Wireless sensor networks (WSNs) are characterized by localized interactions, that is, protocols are often based on message
exchanges within a node’s direct radio range. We recognize that for these protocols to work effectively, nodes must have
consistent information about their shared neighborhoods. Different types of faults, however, can affect this information,
severely impacting a protocol’s performance. We factor this problem out of existing WSN protocols and argue that a notion
of neighborhood view consistency (NVC) can be embedded within existing designs to improve their performance. To this
end, we study the problem from both a theoretical and a system perspective. We prove that the problem cannot be solved in
an asynchronous system using any of Chandra and Toueg’s failure detectors. Because of this, we introduce a new software
device called pseudocrash failure detector (PCD), study its properties, and identify necessary and sufficient conditions for
solving NVC with PCDs. We prove that, in the presence of transient faults, NVC is impossible to solve with any PCDs, and
thus define two weaker specifications of the problem. We develop a global algorithm that satisfies both specifications in the
presence of unidirectional links, and a localized algorithm that solves the weakest specification in networks of bidirectional
links. We implement the latter atop two different WSN operating systems, integrate our implementations with four different
WSN protocols, and run extensive micro-benchmarks and full-stack experiments on a real 90-node WSN testbed. Our results
show that the performance significantly improves for NVC-equipped protocols; for example, the Collection Tree Protocol
(CTP) halves energy consumption with higher data delivery.

1. INTRODUCTION

Wireless Sensor Networks (WSNs) are distributed systems of resource-constrained embedded
nodes. Because of their characteristics, such as ease of deployment, WSNs have become a viable
tool to harvest fine-grained data from the physical world and to act on it.

Problem. Different types of faults may occur in WSNs. A node’s memory may be corrupted be-
cause of defective hardware [[Werner-Allen et al. 2006; |[Finne et al. 2008]], erroneous sensor read-
ings [Sharma et al. 2007, or software bugs such as buffer overflows [Chen et al. 2009; |[Huang et al.
2012} |Cooprider et al. 2007]]. The nodes may crash because of environmental factors or exhausted
batteries [[Werner-Allen et al. 2006} Beutel et al. 2009; [Barrenetxea et al. 2008}; [Hnat et al. 2011]].
Moreover, due to the limited power that can be invested in radio transmissions, wireless links are
prone to failure due to, for example, external interference, environmental noise, and collisions on
the wireless channel [[Baccour et al. 2012; |Srinivasan et al. 2010]].

To achieve better scalability and energy efficiency, the design of WSN protocols often favors lo-
calized interactions |Estrin et al. 1999]|. This entails that a protocol’s operation is mainly based on
interactions among nodes within direct radio range, in what is known as a node’s neighborhood.
As example, Figure[]] illustrates the operation of a simplified data collection protocol. These pro-
tocols support many-to-one traffic by building a tree-shaped routing topology towards a sink node.
The paths are determined based on a routing metric that every node periodically advertises to its
neighbors. In this example, we consider for simplicity the number of hops to the sink as the routing
metric. In Figure[I(a)] every node chooses its next hop to minimize the hop distance to the sink.

Author’s addresses: A. Jhumka, Department of Computer Science, University of Warwick, UK; L. Mottola, Department of
Electronics, Information, and Bioengineering, Politecnico di Milano, Italy and SICS Swedish ICT.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions @acm.org.

© YYYY ACM 1550-4859/YYYY/01-ARTA $15.00

DOT : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.

1

/
K

~
3

0

(a) Before a link failure and (b) After a link failure and
a data corruption. a data corruption occur.

Fig. 1. Example operation of a data collection protocol with node A as sink. Dashed lines are bidirectional links. Thick
lines are links chosen for routing. Numbers indicate the perceived hop distance from A.

WSN protocols must effectively deal with the possible faults to maintain good performance.
If the link between node B and E fails in Figure[I(a)] the protocol must recognize the topology
change and reconfigure the paths accordingly. However, if the information on a node’s neighborhood
is incorrectly represented in the program’s state, the protocol operation may be misguided. For
example, say that data advertised by node C is corrupted at node E and in a way that C appears
unreachable from E. If the protocol is unable to recognize the data corruption, the routes may be
eventually sub-optimally reconfigured as in Figure[I(b)|

As we elaborate in Section[2] erroneous neighborhood information may generate severe problems
in data collection protocols, such as routing loops [lova et al. 2013} |Gnawali et al. 2009; Romer and
Ma 2009; |[Keller et al. 2012; |Burri et al. 2007]]. These protocols are not the only example: neighbor-
hood information are at the core of most WSN protocols. For example, incorrect information on a
node’s neighbors may yield systematic packet collisions in MAC protocols [Saifullah et al. 2010;
Saifullah et al. 201 1; Demirkol et al. 2006; |Song et al. 2009; |Rhee et al. 2008]]; it may generate poor
performance when using in-network processing algorithms due to sub-optimal allocation of pro-
cessing functions [Bonfils and Bonnet 2003]; and tends to cause drastic inaccuracies in localization
protocols [Langendoen and Reijers 2003|].

Unfortunately, as we also discuss in Section [2] the design of WSN protocols often overlooks
these issues, adopting fairly simplistic techniques to manage neighborhood information. Some form
of un-coordinated beaconing from every node is typically used to signal the reachability of a de-
vice [Ko et al. 2011;[Hansen et al. 2011}, [Levis et al. 20045 Dunkels et al. 201 1;|Gnawali et al. 2009]).
These techniques show several weaknesses: i) they induce long delays before the nodes possibly ac-
quire the correct topology information, ii) they cannot detect data corruption affecting neighborhood
information, and iii) they are unable to distinguish between different types of faults, such as data
corruption as opposed to node crashes or link failures, which may require distinct corrective actions.

Contribution and road-map. To remedy the issues above, we must ensure that the physical neigh-
borhood of a node—defined in terms of the underlying physical connectivity—is accurately re-
flected in that node’s logical states, that is, in the program that governs a protocol’s operation. To
achieve this, every time a fault occurs, nodes must quickly and accurately identify a “consistent
view” on their 1-hop neighbors. Consistency here intuitively indicates that:

Given any two nodes n and m, all nodes within a single hop from both n and m must
always appear in both n’s and m’s logical states, namely, any 2-hop neighbors must
agree on their shared neighborhoods.

To the best of our knowledge, we are the first to recognize this problem—which we call neighbor-
hood view consistency (NVC)—and to factor it out the existing WSN literature. NVC indeed repre-
sents a primitive notion at the core of many WSN protocols. We claim that efficiently tackling NVC
can benefit a vast fraction of such protocols, and that one can embed algorithms providing NVC

within existing protocols to improve their performance. As an example, as soon as neighborhood
consistency is achieved at every node in Figure[I(b)] node C would correctly appear in node E’s
logical state. Hence, node E would realize C is a better next hop than D.

In this paper, we investigate NVC from both a theoretical and a system perspective. In Section[3]
we define the necessary conceptual framework. Then, we provide the following contributions:

— We formally define in Section[d] the NVC problem in terms of safety and liveness, and prove that
the problem is impossible to solve using traditional failure detectors [Chandra and Toueg 1996]
combined with localized interactions in an asynchronous system. These results lay the basis for
the remainder of the work.

— Next, we split the problem along two dimensions: i) neighborhood monitoring, and ii) view con-
sistency enforcement:

— To solve i), Section[5] presents a (software) device stronger than traditional failure detectors,
which we call pseudocrash failure detector (PCD). We study its properties, and prove that they
can only be eventually guaranteed in the general case. We provide an algorithm implementing
such PCD, and show that PCDs are in general necessary, but not sufficient to provide NVC: a
synchronous system is also required.

— To solve ii), Section[f|investigates how to enforce NVC based on the output of PCDs, proving
again that NVC is impossible with the feasible PCDs. We thus define two weaker specifications
of NVC and: i) demonstrate that none of them can be solved with a localized algorithm if uni-
directional links are present, and ii) provide a global algorithm that solves both specifications
in the presence of unidirectional links, as well as a localized algorithm that solves the weakest
specification when links are bidirectional.

The last algorithm, which we call WeakC, can replace the un-coordinated beaconing used in most
WSN protocols based on localized interactions, which mostly operate over bidirectional links [Ko
et al. 2011} |Gnawali et al. 2009; |[Kim et al. 2007a; Mottola and Picco 2011} [Voigt and Osterlind
2008} Burri et al. 2007]]. Compared to existing solutions to manage neighborhood information, upon
the occurrence of faults, WeakC can reconcile the neighborhood information much earlier, reducing
the time a protocol operates in the absence of NVC. Moreover, it can do so in a consistent manner
across all involved nodes, easing a protocol’s reconfiguration in that the nodes’ neighborhood are
readily sound compared to each other. Finally, WeakC separates data corruption from node crashes
or link failures, giving protocols a chance to react differently depending on the fault.

As described in Section[7] we implement WeakC atop two different WSN operating systems. Our
implementations are designed to be sufficiently flexible to replace the neighborhood management
component in many WSN protocols with only limited memory overhead. To demonstrate this as
well as the benefits of NVC, we integrate our WeakC implementation with four different WSN
protocols and run extensive micro-benchmarks and full-stack experiments in a real-world 90-node
testbed, as reported in Section[§] The results indicate that: i) WeakC efficiently deals with different
types of faults, and ii) NVC significantly improves the performance of existing WSN protocols. For
example, NVC allows the Collection Tree Protocol (CTP) [Gnawali et al. 2009] to deliver more data
by halving the energy consumption.

We end the paper by surveying the existing related literature in Section9] and with brief conclud-
ing remarks in Section[T0}

2. MOTIVATION AND STATE OF THE ART

Ample evidence exists of the role that efficiently and correctly detecting a node’s neighbors plays in
WSNs. Despite the advancements achieved on the efficiency side, however, solutions to ensure the
correctness of these information are much less developed. Existing approaches tackle the problem
at the system level, yet theoretical analysis of the problem are also largely missing.

Applications. The literature includes plenty of experiences from WSN deployments that demon-
strate the issues in managing neighborhood information against possible faults. Since early anec-

dotal evidence [Langendoen et al. 2006]], these experiences ultimately resulted in entire works re-
porting on the corresponding lessons learned, both in outdoor [Barrenetxea et al. 2008]| and residen-
tial [Hnat et al. 2011]] settings. For example, Barrenetxea et al. [2008] describe their experiences in
seven environmental monitoring deployments, each lasting several months, observing that an over-
hearing strategy to maintain the nodes’ neighbor tables is efficient in terms of energy consumption,
as it does not require proactively transmitting beacons. However, by doing so, the representation
of the physical topology in a node’s state may lag behind topology changes, yielding reliability
problems [Barrenetxea et al. 2008].

Additional evidence from real-world WSN installations comes from Dawson-Haggerty et al.
[2012]. Based on data collected from a 500 node indoor deployment of power metering devices
over one year, they observe that the vast majority of links are intermittent even in such a benign en-
vironment. Using a form of periodic un-coordinated beaconing, a node’s neighborhood information
is thus seldom on par with the underlying physical topology. Dawson-Haggerty et al. [2012] observe
that this may cause an increase in routing stretch by a factor of two, that is, twice the number of
messages are generated to reach the destination. This ultimately impacts the system’s scalability.

Arora et al. [2004] as well as Dutta et al. [2006]] report similar observations, cast in the operation
of target tracking applications employing 500+ nodes. To offer sufficient accuracy in localizing the
target, the nodes must be precisely aware of their neighboring relations; otherwise, targets may be
represented as duplicates or false positives may be reported. To deal with inconsistent neighborhood
information, |Arora et al. [2004] define a dedicated notion of logical neighbor based on the long-term
stability of wireless links. Even if this solves the specific problem they face in the given application,
it also results in ruling out many links that may be usefully employed if a dedicated solution to
manage neighborhoods against faults would be deployed.

In the volcano expedition of [Werner-Allen et al. [2006], for about 37% of the time at least one
node out of nineteen was reported as crashed, and often multiple nodes were not responding. This
created continuous changes in the neighborhood information. In the same deployment, due to the
complexity of the software running on the nodes and the bugs therein, data corruptions occurred
frequently, hampering the operation of the system until a bug was fixed. The bug probably affected
neighborhood information as well, as the operation of the data collection protocol, in turn heavily
based on neighborhood information, was significantly impaired [Werner-Allen et al. 2006].

We also have first-hand experience of the impact of incorrectly maintaining neighborhood infor-
mation. To obtain a quantitative insight, we analyze the logs available from five distinct deployments
we carried out in past research efforts [Ceriotti et al. 2009} Mottola et al. 2010; |Ceriotti et al. 2011]).
Note that we did not obtain these logs explicitly for studying the NVC problem; thus, they only
include partial information compared to our goals in this paper and the following figures are prob-
ably quite optimisti(ﬂ In the Torre Aquila deployment [Ceriotti et al. 2009]], we find out that about
43% of the packet lost on the way to the sink could be definitely traced back to nodes reasoning
upon inconsistent neighborhood information. The same figure amounts to about 41% for our road
tunnel deployments [Mottola et al. 2010; |Ceriotti et al. 2011]] and to about 40% for our vineyard
deployment [Mottola et al. 2010].

As technology evolves, we expect these issues to keep existing and possibly to worsen. For exam-
ple, as energy harvesting and wireless energy transfer find their way in WSNs [Bhatti and Mottola
2016} [Sudevalayam and Kulkarni 2011} K. et al. 2015]], the operating modes will drastically mutate.
Nodes will enter some form of deep hibernation to survive periods of energy unavailability, and will
later resume the previous state—as opposed to restarting from scratch—as soon as ambient energy
is newly available [Ransford et al. 2011]]. This will require revisiting many assumptions about dis-
covering and communicating with neighbors [Pannuto et al. 2014]]. Note that hibernating a node
is, in fact, analogous to a node crashing and later recovering. Maintaining consistent neighborhood
information in this setting will present similar issues as those we tackle here.

I The deployments are unfortunately no longer accessible for further experimentation.

Systems. Neighborhood information are at the core of many system functionality. A plethora of
works exist in this area, which however focus on achieving efficiency rather than correctness.

Besides the four protocols [Mottola and Picco 201 1;|Gnawali et al. 2009; Ko et al. 201 1;|Voigt and
Osterlind 2008] we employ in Section many other examples exist whose functioning relies upon
an accurate logical representation of a node’s physical neighborhood [Burri et al. 2007; Kim et al.
2007a; [Tova et al. 2013 |[Ko et al. 2011};|Schmid et al. 2010; (Choi et al. 2009}, [Saifullah et al. 2010;
Saifullah et al. 2011]]. One example is that of [P-enabled low-power wireless protocols, expected to
provide the communication backbone for the emerging “Internet of Things”. Multiple works gen-
erally observe that the efficiency of RPL-based networks is also a function of the “coherence” of
neighborhood information across nodes [Ko et al. 2011} [lova et al. 2013]]. Another example are the
issues in computing the packet schedules in WirelessHART networks, due to conciliating different
neighborhood information at different nodes [Saifullah et al. 2010; |Saifullah et al. 2011]]. Some
works try and lessen the role of neighborhood information in the protocol operation; for example,
by employing opportunistic transmissions schemes [Duquennoy et al. 2013]], by avoiding the use of
beacons for neighbor discovery [Puccinelli et al. 2012], or by employing multi-hop network-wide
flooding as the only communication primitive [Ferrari et al. 2012]. We aim at formally and practi-
cally solving the NVC problem to improve the performance of protocols relying on this information.

Consistent neighborhood information is instrumental not just to the operation of networking pro-
tocols, but also to underpin the operation of higher-level programming systems and applications.
Whitehouse et al. [2004] design a neighborhood abstraction to replicate data between 1-hop nodes,
whereas Costa et al. [2007]] build a shared memory space across neighboring nodes. As node crash,
link fail, and data corruption occur, these programming systems need to be aware of these changes,
so that application programmers are minimally affected. Cases also exist where maintaining neigh-
borhood information is the application itself. Examples are mechanisms for quickly computing
the neighborhoods’ cardinality [Cattani et al. 2014, and neighbor discovery protocols for mobile
WSNss; for example, used in wildlife monitoring scenarios [Pasztor et al. 2010]. In the latter, several
solutions exist [Dutta and Culler 2008; Kandhalu et al. 2010; |Zhang et al. 2012] that allow designers
to use radios as proximity sensors.

Two other research lines provide further evidence of the importance of the problem. On one
hand, the design of WSN monitoring and debugging tools [Romer and Ma 2009; Keller et al. 2012]
often centers on the ability to inspect the neighborhood information at a node. Reasoning upon this
information is regarded as a fundamental part of the testing process, as many bugs are ultimately
a function of how neighborhood information is acquired and maintained [Romer and Ma 2009;
Keller et al. 2012]]. On the other hand, owing to the energy cost of managing multiple beaconing
processes of different protocols, software architectures exist to reduce such overhead [Dunkels et al.
2011; Hansen et al. 2011]]. Here again, the focus is on efficiency, especially in terms of energy
consumption, rather than on the correctness of the neighborhood information.

Neighborhood view consistency. We argue that applying a notion of NVC in many of these sys-
tems would provide significant benefits. Many of them employ network functionality that closely
resembles the four protocols we consider in Section[§] For these, we quantitatively demonstrate
remarkable performance improvements, for example, in data yield and energy consumption. The
cost to gain these benefits using our implementations is a small increase in data and program mem-
ory due to replacing the neighborhood management component with an implementation of WeakC,
along with a limited network overhead. Importantly, the latter is only required whenever NVC must
be re-established: in the absence of faults, WeakC causes no additional traffic.

On the other hand, we also maintain that many of the systems we surveyed did not originally
employ a notion of NVC essentially because the problem was insufficiently understood. Especially
in real-world deployments, obtaining reasonable—albeit greatly sub-optimal—performance is often
deemed sufficient even when room for improvements is clearly available [Barrenetxea et al. 2008;
Hnat et al. 2011]]. Formally fixing the notion of NVC, as we do in Section[4] provides the necessary
conceptual foundations. Moreover, splitting the problem between neighborhood monitoring and

logical T gp 7
states >

Fig. 2. Intuitive representation of physical and logical neighborhoods. Thick dashed lines represent links in the physical
topology. Thin dashed lines represent how those links are reflected in the nodes’ logical states. The physical neighborhood
of node a is A = {b, c,d}. However, due to faults, A* = {c, d} # A. Therefore, WSN protocols running at a would think
they cannot communicate with b, although this is physically possible.

view consistency enforcement, which we discuss separately in Section[5|and Section[f] offers the
opportunity to employ selected parts of our work, depending on the specific application setting.

Even though our work focuses on WSNs, worth noticing is that the problem of managing neigh-
borhood information, and thus possibly a notion of NVC, is not only germane to WSNs. In mo-
bile ad-hoc networks, for example, several protocols operate based on information about the 1-hop
nodes [Cornejo et al. 2014]. Specific solutions thus exist to ensure that these information is effi-
ciently collected despite mobility [Iyer et al. 2011; |Cornejo et al. 2014]).

3. PRELIMINARIES

We provide the necessary formal background, including the models we use, the program syntax and
semantics, the computation and communication models, as well as the types of failures we consider.

3.1. System Model

Topology and processes. A WSN node is a computing device associated to a unique identifier.
Communication in WSNs is typically modeled with a circular communication range centered on
a node, and assuming all nodes have the same communication range. With this model, a node is
thought as able to exchange data with all devices within its communication range. In reality, com-
munication between two nodes may be temporarily disrupted by a number of factors; for example,
interference from co-located wireless networks and environmental noise [[Baccour et al. 2012; |Srini-
vasan et al. 2010]. Hence, the network topology changes with time.

In graph-theoretic terms, we represent a WSN as a directed graph G = (V, A) with a set V' of
vertices representing the nodes, and a set A of arcs representing the directed communication links
between pairs of nodes. We denote by « the number of nodes in the network, that is, v = |V|. To
model network dynamics, we denote the topology of the network at a time ¢ by G; = (V;, A;). We
assume, for simplicity, that all links are initially bidirectional, that is, the directed graph is initially
symmetric. We also assume that the network remains connected throughout, otherwise enforcing
NVC becomes impossible in the general case.

Localized interactions in WSN protocols require accurate physical neighborhood information. On
the other hand, a program running on a node only keeps—in its logical states—information about
its “perception” of the physical neighborhood. We call this the program’s logical neighborhood. We
indicate as N} node n’s logical neighborhood at time ¢, that is, the set of nodes that the program
running at n believes are neighbors of n at time ¢. Differently, for a given node n, we denote its
physical neighborhood at time ¢ by V¢, namely, IV; is the set of nodes reachable from n with a

single transmission at time ¢, independently of whether they appear in n’s logical states. We will
simply denote the physical (logical) neighborhood of a node n by N (') when time is immaterial.

The physical and logical neighborhoods of a node may differ. Figure[] intuitively represents the
concept. Node a’s physical neighborhood is A = {b, ¢, d}. However, because of different types of
faults, this information may be incorrectly reflected in node a’s logical states. For example, data
corruption may make node ¢ appear as not reachable from «a in a single transmission, hence the
logical neighborhood at @ may differ from the physical one: A' = {c,d} # A. This is, in essence,
the source of the NVC problem we study.

The actions taken by the individual nodes are dictated by the process running on it. The system
thus consists of a finite set II of v > 0 processes p; ... p,, where each node in the network runs
a proces Adjacent processes, defined by the physical topology, are linked by unreliable wireless
channels, where a finite number of messages may be unpredictably lost. No spurious messages
are delivered. Each process contains a non-empty set of variables and actions, also called steps,
depending on an algorithm .4. We denote a variable v of process p by p.v. An assignment of values
to variables in a program is called a state.

Program syntax and semantics. We write programs in the guarded command notation [Dijkstra
1974]. Hence, an action has the form (name)::(guard) — (command). In general, a guard is a
predicate defined over the set of a process’ variables. When a guard evaluates to true, the command
can be executed, which takes the program from one state to another. When the state transition is
complete, we say that event (name) has occurred. A command is a sequence of assignments and
branching statements. A guard or command can contain universal or existential quantifiers of the
form: (quantifier)(boundvariables) : (range) : (term), where range and term are Boolean
constructs. When a guard evaluates to true in a state, the corresponding action is enabled in that
state. A special timeout(timer) guard evaluates to true when a timer variable reaches zero. A
set(timer, value) command sets the timer variable to a specified value.

We choose this notation for several reasons. First, it is usually simpler to formally reason on a
program execution in terms of what guards become true at a given point in the execution, rather than
following a specific control flow. Moreover, the guarded command notation makes programs more
compact, compared to the more traditional state transition or procedural representations. Finally,
the guarded command notation matches the programming style of many WSN software platforms,
which tends to be event driven [Hill et al. 2000]. In these cases, the binding of events to their
handlers is, in a sense, corresponding to the evaluation of guards.

The execution of a step of an algorithm A causes the process to update one or more variables and
moves the system from one state to another in one atomic step. In a given state s, several processes
may be enabled, and a decision is needed about which one(s) to execute. The subset of processes that
take a step when possible is chosen according to different scheduling policies. To ensure the system
makes progress, a notion of fairness is also required. Whenever any of the enabled processes can
take a step independent of all others, that is, a continuously enabled action is eventually executed,
we say the system is weakly fair [Dolev 2000]] and runs in an asynchronous manner. This entails
there is no bound on relative process speeds and message transmission time. Differently, we say
the system is synchronous whenever all enabled processes take a step. This captures the fact that
processes execute in lock-step, thus, process speeds and message latency are bounded and known.
The notion of weak fairness never extends to faults.

Communication. Each process has a special channel variable, denoted by ch, modeling a FIFO
queue of incoming messages sent by other processes. This variable is defined over the set of (possi-
bly infinite) message sequences. An action with a rev(msg,sender) guard is enabled when there is
a message at the head of the channel variable ch of a process. Executing the corresponding action
causes the message at the head of the channel to be dequeued, while msg and sender are bound
to the content of the message and the sender identifier. Differently, the send(msg,dest) command

2We will use the terms node and process interchangeably where no ambiguity can arise.

causes message msg to be attached to the tail of the channel variable ch of processes in the dest
set. To capture the broadcast multi-hop nature of WSNs, the semantics of send when executed on
node n depends on the processes in dest:

— if all nodes in dest are in the physical neighborhood N of node n, that is, Vi € dest : i € N, then
msg is simultaneously appended to the tail of the channel variable at all processes in dest;

—if dest is a predefined value BCAST, then message msg is simultaneously appended to the tail
of the channel variable ch of all processes that are in n’s physical neighborhood: this implies
the message reaches processes that may not appear in the sender’s logical states, modelling the
semantics of physical broadcast in WSNis;

—if at least one node in dest is not in N, then message msg is appended to the tail of the channel
variable ch at all processes in dest possibly at different times, modeling multi-hop transmissions.

3.2. Faults

We consider three types of faults: i) process crash svmptoms communication state
faults, ii) omission faults, and iii) transient faults. yme not possible ; inconsistencies
These are schematically shown in Figure[3] together o 4
with their symptoms, that is, the way they manifest failures | Process omission | transient

from a program’s perspective. crashes feuts | faults

A process crash occurs when a process stops exe-

cuting, for example, because a node runs out of en- Fig. 3. Types of failures and their symptoms.
ergy or is physically damaged [Werner-Allen et al.
20006; Beutel et al. 2009; Barrenetxea et al. 2008} |Hnat et al. 2011]], whereas an omission fault
occurs when a node sends a message that fails to be delivered to at least one of the intended re-
cipients. This occurs due to, for example, interference and message collisions [Baccour et al. 2012;
Srintvasan et al. 2010]]. Both types of failures manifest with the same symptom: communication is
prevented from one node to another. These failures are thus conceptually similar, and so is their
impact in determining the conditions under which we can provide NVC. In the rest of the paper, we
say a node n pseudocrashes if n crashes or n undergoes an omission fault.

Transient faults corrupt a process state by arbitrarily altering values of variables. They model
memory corruption due to, for example, bit-flips caused by defective hardware [Finne et al. 2008;
Werner-Allen et al. 2006] or software bugs such as buffer overflows [Chen et al. 2009; (Cooprider
et al. 2007; |[Huang et al. 2012; [McCartney and Sridhar 2006]]. Due to the lack of memory protec-
tion in most WSN operating systems, the latter are particularly frequent [[Cooprider et al. 2007].
Transient faults may also affect messages in transit. We assume that transient faults do not occur
infinitely often, otherwise the system’s liveness may be compromised. Transient faults manifest as
state inconsistencies in a program, that is, a given state in a program cannot be the result of any
execution of an algorithm A. For example, a state inconsistency may be due to conflicting values
in different variables, locally to a process or across different processes. As discussed next, transient
faults bear a unique effect on the conditions leading to solvable instances of NVC.

Worth noticing is that we do not make any assumption on the spatial or temporal correlation
of faults. The theoretical results and algorithms we discuss next do not rely on any such premise,
neither do the implementations we describe in Section[7] used to obtain the results in Section [§]

Pseudocrash failure patterns. To model pseudocrashes occurring during system execution, we
define a failure pattern F to be a function from 7 to 2!!, where T represents the range of output
from a fictional global clockﬂ Intuitively, F(¢) denotes the set of nodes that are pseudocrashed at
time ¢. We say a node n is working at time ¢ if n ¢ F(t) and we say n is not working at time ¢ if
n € F(t). Hence, a node n pseudocrashes at time t if n is working at time ¢’ < ¢ and not working
at time ¢. Dually, we say that a node n recovers at time t if n is not working at time ¢’ < ¢ and n

3The notion of a global clock simply serves to assign a timestamp to the output of a failure pattern, yet there is no actual
global clock in the system. This is simply a tool to simplify the presentation without compromising its formal coherence.

is working at time ¢. We also consider a function F’ from 7 to bag II that denotes the number of
times the nodes have pseudocrashed at time ¢, or how many pseudocrashes occurred in the network
until ¢. Thus, a node n can be in any of these states in a failure pattern F:

— Always working: node n never pseudocrashes in F.
— Eventually working: node n pseudocrashes at least once, but a time ¢ exists when n recovers in F.
— Eventually not working: node n permanently pseudocrashes in F after a given time ¢.

When a node is eventually working, we do not require the node to work permanently after time ¢.
Rather, we require that it keeps working for a long enough time to allow progress to be made. A
pseudocrash failure can last for an arbitrary length of time. However, if a node alternates between
working and not working infinitely often, in what is an “unstable” state, then progress might be
compromised. Thus, to ensure liveness, we require the duration of a pseudocrash to be of a certain
minimum length. This means that the time between a node pseudocrashing and recovering is lower
bounded. In this model, a node crash is a pseudocrash with infinite duration.

We also define two sets including the processes that are always working in F and those that are
eventually not working in F, namely:

workingA(F)={n|Vt>0:n¢& F(t)}
notWorkingE(F) ={n | 3tVt' >t:ne F{t')}

Failure detectors. A failure detector is a (software) device responsible for the detection of node
crashes in a distributed system [[Chandra and Toueg 1996]. A failure detector can be queried at any
time ¢ € T. It returns the set of processes it suspects to have crashed at a time ¢. A failure detector
history H is a mapping from ITx 7T to 2!, where H(m,t) denotes the value of the failure detector
for process m at time ¢. In other means, if the failure detector at process m is queried at time ¢, then
H (m,t) contains the set of processes that m suspects to have crashed at time ¢. A failure detector
D maps a failure pattern F to a set of failure detector histories.

However, not all possible failure detector histories are useful or accurate. For example, failure
detector histories where node crashes are nor detected are not accurate. In fact, there is not just one
type of failure detector, but many possible types depending on what properties they provide, that is,
depending on their strength. To reason on how useful a failure detector history is, failure detectors
are required to satisfy certain properties [Chandra and Toueg 1996]. The completeness property
captures the ability to detect crashes. On the other hand, the accuracy property captures the ability to
avoid wrong suspicions. Due to the uncertainty in an asynchronous system, these properties cannot
be taken for granted, giving rise to different degrees of completeness and accuracy. For example,
in a WSN, uncertainty can arise due to wireless interference. In such a case, a failure detector may
report that a node crashed when it is actually correct. Extending failure detectors to pseudocrashes,
we define strong accuracy and strong completeness as follows:

— Strong accuracy: no process is suspected before it pseudocrashes. Specifically,
VFYH € D(F)Vt € T.Ym,n € II\ F(t).m & H(n,t)
— Strong completeness: a pseudocrashed process is eventually permanently suspected by all correct
neighbor processes. Specifically,
VFNYH € D(F).3t € T.Ym € notWorkingE(F).Nn € workingA(F), m € N.
Vt' > t.m € H(n,t')

These properties characterize the strength of the completeness and accuracy properties of a specific
failure detector. The strong specification of these properties also entail that it is the strongest formu-
lation achievable, that is, a failure detector cannot offer a completeness (accuracy) property stronger
than strong completeness (strong accuracy). A failure detector that provides both strong accuracy
and strong completeness is called perfect failure detector. A perfect failure detector permanently
suspects a pseudocrashed node until it recovers.

3.3. Algorithms and Computation

Chandra and Toueg [1996] define a computation to be a tuple C = (F,D,I,S,T) where F is
a failure pattern, D a failure detector, I is the system’s initial state, S is a sequence of algorithm
steps, and 7' is a sequence of increasing time values when these algorithm steps are taken. In this
paper, we study algorithms that use devices similar to failure detectors. However, our definition of
computation will be slightly different [Gértner and Pleisch 2002], but equivalent to that of |Chandra
and Toueg [1996]]. We define two functions: a step function A from T to the set of all algorithm
steps, and a process function A, from 7T to IL. In other words, function A, (t) denotes the process
that takes a step at time ¢ and A (t) identifies the step that was taken.

To account for the possibility of transient faults, we augment our notion of computation with
a special process called environment and denoted by ¢, which causes a further set F}, of steps to
become possible. The actions in F},. model transient failures [[Arora and Kulkarni 1998]. Without
loss of generality, we assume that at any time, at most one process, including the environment, takes
a step. If no process takes a step at time ¢, both the step function and the process function evaluate
to L. A computation in the presence of transient faults is thus C' = (F, D, I, A; U Fy,., A, U {€}).

A specification is a set of computations. A program P satisfies a specification § if every compu-
tation of P is in ;|Alpern and Schneider [1985] state that every specification can be described as
the conjunction of a safety and liveness property. Intuitively, safety states that something bad should
not happen; liveness states that something good will eventually happen. Formally, the safety speci-
fication identifies a set of finite computation prefixes that should not appear in any computation. A
liveness specification identifies a set of computation suffixes that every computation should include.

4. NEIGHBORHOOD VIEW CONSISTENCY

As intuitively presented in Figure[2] the NVC problem arises when the physical neighborhood is
incorrectly or partially reflected in the nodes’ logical states. To solve this problem, the system must
detect what type of fault happens when. In this section, we show that this is in general impossible
to achieve using any of Chandra and Toueg’s failure detectors [[Chandra and Toueg 1996].

First, we define how a node removes from its logical neighborhood the devices it suspects to have
pseudocrashed.

Definition 4.1 (Remove). Consider a physical topology G = (V, A),anode n € V and a logical
neighborhood N' of n. We say that node n removes a node ¢ € N'if N = N\ {q} where N"
represents the updated value of N'.

Next, we define the notion of localized algorithm, which is often only informally described in
the existing literature [[Estrin et al. 1999]. Intuitively, an algorithm is said to be local whenever its
input data reside at nodes within some bounded hop distance from each other. For example, if an
algorithm running at a given node definitely employs information gathered at most within the 2-hop
neighborhood, then the algorithm is local. Differently, the algorithm is global whenever such bound
cannot be determined and, in principle, the algorithm may make use of data residing at any node in
the system, independent of the hop distance. We formally fix this notion as follows.

Definition 4.2 (Localized algorithm). Given a topology G = (V, A), problem specification
for GG, and an algorithm A that solves € in G, algorithm A is said to be local if the complexity of A
varies with the size of an n-hop neighborhood; A is global otherwise.

With these definitions, we formally define the NVC problem, which we call strong view consis-
tency in its most general formulation.

Definition 4.3 (Strong view consistency). Given a network G = (V, A), and two nodes n,m €
V', a program provides strong NVC for G if every computation satisfies:

— (Safety): A working node is never removed.

— (Liveness): Every time a node m pseudocrashes, then eventually Vn : m € N : n removes m.

The liveness property of strong NVC states that every time a node m pseudocrashes, every other
node that lists m in its logical neighborhood eventually removes it. Differently, the safety specifi-
cation rules out nodes mistakenly removing working nodes from their logical neighborhoods. The
eventual removal of the liveness property basically means that the removal does not need to be
instant, but because of the safety aspect, it certainly needs to happen before a possible recovery.
Otherwise, a working node would be removed, violating the safety property.

This specification formally fixes the intuitive formulation of consistency given in Section[I] in-
cluding the mutual agreement of 2-hop neighbors on their shared neighborhoods. This notion applies
to arbitrary networks by ensuring that Definition[d.3]applies on every possibly 2-hop slice of the net-
work, independent of the overall depth. Note that strong NVC represents an “ideal” situation, in that
an algorithm providing NVC—provided one exists—would be able to perfectly reflect the physical
topology in the nodes’ logical states. Worth considering is also that the notion of strong NVC as
specified in Definition[4.3]is memoryless, that is, it does not depend on past occurrences of failures.
The specification only advocates the removal of pseudocrashed nodes from the logical state of the
program whenever such faults occur. From this point of view, the cases of a new node joining the
system and of an existing node recovering are analogous.

We initially investigate the problem of NVC in an asynchronous system. We prove that, in this
setting, it is impossible to provide strong NVC with any of Chandra and Toueg’s failure detec-
tors [[Chandra and Toueg 1996]. The intuition behind this result is that, for an algorithm solving
strong NVC to exist, every node must be able to remove a pseudocrashed neighbor before it recov-
ers, that is, the removal needs to occur within a given upper bound. Therefore, whenever a node
pseudocrashes and then recovers, every neighbor of the pseudocrashed node must remove it before
it recovers, or removing the neighbor after it recovers would entail the removal of a working node,
violating the safety specification. However, assuming an upper bound for a process’ action implies
considering a synchronous system.

THEOREM 4.4 (IMPOSSIBILITY OF NVC WITH FAILURE DETECTORS). There exists no algo-
rithm that provides strong NVC with any failure detector D in an asynchronous system.

PROOF. We prove this by contradiction: we assume that there exists an algorithm .4 that solves
strong NVC with some failure detector D in an asynchronous system, and show a contradiction.

Consider first a failure pattern J,, where no pseudocrash occurs. Now, consider a run R,, =
(Fn: D(F,), 1,85, Sp) of A. Since A solves strong NVC, at every time instant, all nodes will
output (). Because A is correct and no pseudocrash occurs, all nodes remove no nodes.

Now, consider a failure pattern /; where a node n pseudocrashes at time ¢ and recovers at time
t" > t. Now, consider a run Ry = (F1,D(F,),1,Ss,Sp) of A with same step function S, and
process function S, as R,,. Hence, R; and R,, are indistinguishable. Since A solves strong NVC,
then in R; all neighbor nodes of n must have removed n by ¢’ and must output {n}. However, if the
neighbor nodes of n do not remove n by t/, then they cannot ever do so. Indeed, after ¢/, node n is
working again and algorithm A, correctly solving strong NVC, cannot remove a working node due
to the safety property.

This leads to a contradiction, because requiring that all neighbor nodes of n to remove n by t’
entails the system is synchronous, contradicting the initial conjecture. [J

This proof, as well as several others in the following, uses the standard technique of proof by
contradiction to show impossibility results, as explained by [Lynch [1996]. In such type of proofs,
it is shown that if something; for example, an algorithm A, exists, then two mutually contradictory
instances—that is, two different runs of . A—would have the same result. This demonstrates that A
cannot exist [Lynch 1996]. When applying this technique, the key aspect is the construction of the
instances that show the contradiction.

5. PSEUDOCRASH FAILURE DETECTORS

Based on the fundamental result of Sectiond] we split the problem along two dimensions: i) neigh-
borhood monitoring and ii) view consistency enforcement. For neighborhood monitoring, the key
issue is the detection of pseudocrashed nodes and of their 1-hop neighbors. Thus, we conceive a
device strictly stronger than a perfect failure detector, called a pseudocrash failure detector (PCD).
The PCD at a process j returns information on how j perceives its underlying physical neighbor-
hood J and on the neighborhoods of every node in J, that is, j’s 2-hop neighborhood. In contrast,
a perfect failure detector would only return information on a per-node basis, that is, the PCD gives
strictly more information than a perfect failure detector, as it also reaches further than the 1-hop
neighborhood of j. The process at j uses this information to update the logical neighborhood .J*.

We formally define the concept of PCD, study its properties, and prove that, in the presence
of transient faults, its properties can only be eventually guaranteed. We provide an actual algorithm
implementing a PCD with eventual guarantees, and show that PCDs are in general necessary, but not
sufficient to provide NVC: a synchronous system is also required. We tackle the view enforcement
problem in Section[6]

5.1. Definitions

Each process has access to a local PCD device providing (possibly incorrect) information about
the failure pattern that occurs in an execution. A process p can query its local PCD at any time.
The local PCD returns a set of tuples (n, N) called suspects, containing the set of processes the
PCD at p suspects to have pseudocrashed at a given time, together with the most recent (logical)
neighborhood N of each of the suspected processes. The most recent neighborhood N of anode n
at a time ¢ captures the most updated information n has about its neighborhood at time ¢, which
equals the last known neighborhood at ¢’ only if no node is removed in the meantime. In other words,
for a node n at time ¢, N is equal to the original neighborhood of n except the nodes pseudocrashed
at time ¢’. This notion is formally defined as follows.

Definition 5.1 (Most recent neighborhood). The most recent neighborhood mrn of a process n
at time ¢, which returns the set IV, is

mrn(n,t): 3t <t.((N = N\ F(t')AF{) #0)
AVt <t < t.Vx € N.n does not remove z)

In Deﬁnition the set N = N\ F(#) builds N by removing from N the nodes pseudocrashed
attime ¢, as F(t') # (0 and so there is indeed at least one pseudocrashed node at time ¢’'. Moreover,
time ¢’ is the last time that node n removes any neighbor from its logical states, because for any
time ¢ (¢ < t” < t), node n does not perform any remove action for any node z in N. As a result,
mrn(n, t) is the most recent neighborhood for node n at time ¢.

Let R denote the set of all possible tuples that can be returned by a PCD. A PCD history Hpcp
with range R is a function from ITx 7 to R, where Hpcp(p,t) is the output value of the PCD of
process p at time t. Hpcop(p,t) denotes the set of processes that p suspects have pseudocrashed at
time ¢, along with their neighborhoods, and thus captures how p’s suspicions evolve over time. In
short, we say that p suspects q with a neighborhood Q at time t if (¢, Q) € Hpcp(p,t). Therefore,
a PCD is a function that maps each failure pattern F to a set of PCD histories with range R pcp,
where R pcp denotes the range of output of the PCD. PCD(F) denotes the set of possible PCD
histories permitted by the PCD for the failure pattern F.

data memory at node n data memory at node n

storing neighborhood info storing neighborhood info
data about data about
neighbor k neighbor k
data about data about
neighbor | neighbor |
data about data about 8
neighbor m neighbor m 3o
52
o O
o
=
(a) Before the fault. Node n stores, some- (b) A data corruption occurs that affects the
where in its data memory, information about same memory segments that would change as
its 1-hop neighbor m. aresult of m’s pseudocrash.

Fig. 4. Pictorial example of a masking transient fault. Node n and m are 1-hop neighbors.

5.2. PCD Properties

A PCD that can be used to solve the strong NVC problem would satisfy the following two properties,
where count(n, F'(t)) returns the number of times node n has crashed in F until ¢:

— (Strong accuracy) No working process n is incorrectly suspected to have pseudocrashed with
neighborhood N. Formally,
VF.YHpcp € PCD(F). ¥t € T.¥Ym ¢ F(t) : (n,N) € Hpcp(m,t) = ', t' <t.n e
Ft'Y AN =mrn(n,t') A count(n, F'(t')) = count(n, F'(t))

— (Strong completeness) Every time a process n pseudocrashes, it will eventually be suspected with
some neighborhood N. Formally,
VF.VYHpcp € PCD(F). ¥Vt € Tm € F(t) = W, t <t.3Im & F(t'),n € M.(n,N) e
Hpep(m,t') AN # 0 A count(n, F'(t)) = count(n, F'(t'))

Intuitively, strong accuracy requires that no working node is wrongly suspected with a possibly
wrong neighborhood, whereas strong completeness requires that every node that pseudocrashes is
eventually suspected before its next pseudocrash, that is, every pseudocrash is suspected. We call a
PCD that satisfies both properties a perfect PCD.

It is, however, impossible to implement such perfect PCD in the presence of transient faults.
The intuitive reason for this is that it is possible to construct executions where transient faults may
deceive a PCD to suspect a node even though that has not pseudocrashed. Dually, even if a PCD
may correctly suspect some node with the correct neighborhood, transient faults can corrupt this
information, creating a situation where it would appear the pseudocrash never occurred.

Figure [shows a graphical example. Node n and m are 1-hop neighbors; node n stores, some-
where in its memory, information about its neighbor m as shown in Figurefd(a)] Consider m pseu-
docrashes due to the link between n and m failing. Now, node m should be removed from n’s logical
neighborhood. However, a data corruption happens that overlaps with the memory area where in-
formation about m is stored, as shown in Figure[d(b)] This fault modifies data structures such that it

appears as if m is still there. This causes n to keep m rather than removing it. Thus, we say that a
transient fault is “masking” the pseudocrash; we say transient faults are “non-masking” otherwise.

These situations are a result of a transient fault’s ability to arbitrarily corrupt the state of a pro-
gram, including ways that affect the same data that should be modified as a result of pseudocrashes.
In practice, these occurrences represent a quite unlucky situation: a pseudocrash and a transient
fault occur that impact overlapping data segments; plus, the transient fault “intelligently” corrupts
the state in a way that the pseudocrash goes undetected. Intuitively, this should represent a quite rare
situation. We analytically prove this statement in Appendix [A]

Considering the definition of strong NVC, however, if masking transient faults may occur, the
pseudocrashed node may never be suspected, as it happens in Figure[d] violating strong complete-
ness of the perfect PCD. Hence, the following holds.

THEOREM 5.2 (IMPOSSIBILITY OF PERFECT PCD). [n the presence of transient faults, it is
impossible to implement a perfect PCD.

For reason of space, we refer the reader to an extended technical report for the detailed
proof [Jhumka and Mottola 2014]).

There may be different means to circumvent this result. A possible strategy is to consider guaran-
tees that can be provided once transients faults stop occurring, called eventual guarantees. Thus, we
weaken the definition of both strong accuracy and strong completeness to capture eventual proper-
ties. We denote by X such eventually perfect PCD:

— (Eventual strong accuracy) There is a time after which no working process n is incorrectly sus-
pected with neighborhood N. Formally,
VF.VHy € (F). ' e 7.Vt > t'.Vm & F(t) : (n,N) € Hy(m,t) = 3", ¢ <t <t,ne
F(t") AN =mrn(n,t") A count(n, F'(t")) = count(n, F'(t))

— (Eventual strong completeness) There is a time after which, when a process n pseudocrashes,
eventually n will be suspected with some neighborhood N. Formally:
VF.VHy € 5(F). I e .Vt >t'ne Ft) = 't <t".Im & Fit"),n € M(n,N) €
Hy,(m,t") A count(n, F'(t)) = count(n, F'(t"))

It turns out that there exists a synchronous implementation of a PCD that is eventually perfect,
shown in Figure[5] This property is relevant for WSNs because, in the absence of transient faults,
the PCD is perfect. The key idea is to periodically exchange neighborhood information among
1-hop nodes so that all of them are eventually aware of their respective 2-hop neighborhoods. Once
transient faults stop happening, this information is sufficient to identify the suspected processes.

In action dissem of Figure[d] process j updates its logical neighborhood with the identifiers of
processes it believes to be still working; then it advertises its identifier and its current logical neigh-
borhood to the nodes in the physical neighborhood. Indeed, the send command with destination
BCAST reaches also 1-hop neighbors that may be unknown to process j, as outlined in Section[3]
Next, the algorithm sets a timeout A for the next round of advertisement and a shorter timeout © to
process the received information. In action compute, process j collects the neighborhood informa-
tion. When the detect timeout expires, process j computes the set of suspects as the neighbors it did
not hear in the last round of advertisement, along with their logical neighborhoods.

Another possibility to circumvent the impossibility result of Theorem[5.2]is to consider a stronger
fault setting. One such option is to only allow transient faults that cannot mask pseudocrashes, that
is, we only consider non-masking faults. This rules out all situations akin to Figure d} As demon-
strated in Appendix [A] these cases are actually the vast majority. Under non-masking transient
failures, it can be proven that the PCD in Figure[5]satisfies strong completeness and eventual strong
accuracy. Strong completeness is guaranteed because in the absence of masking transient faults,
then all pseudocrashes are eventually detected, as there is no way for a transient fault to “hide” a
pseudocrash. As a result, the PCD is strong complete. The eventual strong accuracy follows from the

process j

variables
% logical neighborhoods of j’s neighbors, N[j] implements J*
N[]: array of set of ids, initially N [j] = J;

% set of pseudocrashed nodes and their 1-hop neighborhood
suspects: set of (id, neighborhood) init 0;

% identifier of nodes detected during a round
live: set of ids, initially J;

% timers for exchanging neighborhoods and detection, © < A
neighborhoods, detect: timer init A, ©;

actions
dissem:: timeout(neighborhoods)—
N[j], live, suspects := live, (), D;
send((j, N[j]), BCAST);
set(neighborhoods,A);
set(detect,©);

compute:: rev((p, P),r) —
live, N[p]:= live U{p}, P;

detect:: timeout(detect)—
suspects := {(i, N[i])|¢ € N[j] \ live}

Fig. 5. A synchronous implementation of a PCD algorithm that is i) eventually perfect in the presence of transient faults,
and ii) perfect in their absence. Moreover, this PCD satisfies strong completeness with non-masking transient faults.

fact that the PCD of Figure[5]is eventually perfect. Strong accuracy, however, may be prevented as a
transient fault may still lead to wrong suspicions. The formal derivation of these results is available
in an accompanying technical report [Jhumka and Mottola 2014]].

5.3. Solving Strong NVC with PCDs

We now study necessary and sufficient conditions for solving strong NVC with PCDs. For the
former, we prove that, if we can solve strong NVC, then we can implement a perfect PCD.

THEOREM 5.3 (PCDS NECESSARY FOR NVC). A perfect PCD is necessary for strong NVC.

PROOF. The strong accuracy property of the PCD follows from the safety property of the strong
NVC problem (no node is wrongly removed) and from the fact that all neighbors eventually remove
the pseudocrashed node (part of liveness). The strong completeness property of the perfect PCD
derives from the liveness property of strong NVC. Hence, if strong NVC can be solved, we can also
implement a perfect PCD. 0O

As a matter of fact, Figure[f] shows an algorithm that emulates the output of a perfect PCD, given
the output of an algorithm solving strong NVC that we assume to exist. The output is stored in the
remove set, which contains the information about the pseudocrashed node to remove and about the
process that detects the pseudocrash. In action inform, process j tells process ¢, which detected the
pseudocrash, about its intention to remove the pseudocrashed node b. When the process detecting
the pseudocrash receives this message in action result, it keeps track of the pseudocrashed node b it
suspected, together with the set of its neighbors. The latter set is incrementally constructed as more
of these messages are received from neighbors of the pseudocrashed process.

Even though the PCD is a powerful device, it is unfortunately not sufficient to solve strong NVC.
The following result, which is dual to the necessary condition in Theorem[5.3] concludes that PCDs
cannot be used to provide strong NVC. This is captured as follows.

process j

variables
% logical neighborhoods of j, N[j] implements .J*
N[]: array of set of ids, initially N [j] = J;

% id of node to be removed and id of node that detected pseudocrash
remove: set of (id, id);

% output mimics the result of a pseudocrash failure detector
output: set of (id, neighborhood) init @;

actions
inform :: remove # () —
V(b,) € remove do
send({b,)1

remove := 0 ;

result :: rev(((b, 1),5) —
output:= output ®{ (b, N[b] U {i})};

Fig. 6. Emulating a perfect PCD using the output of an algorithm solving strong NVC.

THEOREM 5.4 (PCDS INSUFFICIENT FOR STRONG NVC). It is impossible to solve strong
NVC in an asynchronous system equipped with a perfect PCD.

PROOF. We prove this by contradiction. We assume that an algorithm .A that solves strong NVC
with a perfect PCD in an asynchronous system exists, and show that no such A can exist.

Assume a failure pattern F; where n € Fi(t) but n & F1(¢") with ¢ > ¢. In a computation C
of A, assume that n is suspected, together with its correct neighborhood, at ', ¢ < ¢’ < ¢t and n
is eventually removed at ¢’ Since A is correct, then no working node is ever removed, and it must
necessarily be that t" < ¢”.

Now, assume the same failure pattern but with a different A, and A, in another computation C’
of A, where n is suspected at t’ (as in C') but is removed exactly at t”. Both computations are feasible
for A. However, because A is correct, n should be removed before ¢, because n recovers at t”’. This
entails a lower bound on processes’ execution speed, hence the system must be synchronous, leading
to a contradiction. O

The problem here is that the removal of a pseudocrashed node needs to happen before a node
recovers or pseudocrashes next. Since the duration of a pseudocrash is lower bounded, then the
system should be synchronous to guarantee that the time to remove a pseudocrashed node is upper
bounded. This result is fundamental, in that it establishes that strong NVC can only be offered in a
synchronous system. The next section builds upon this result.

6. VIEW CONSISTENCY ENFORCEMENT

We know that a synchronous system is required to solve NVC, and we are equipped with an eventu-
ally perfect PCD for such type of system, illustrated in Figure[5} Considering a synchronous setting
is not unreasonable for most real-world WSNs. Often, deployed systems rely on some form of time
synchronization. This is the case, for example, whenever sensor readings gathered at different nodes
need to be aligned to a common clock [Werner-Allen et al. 2006; |Ceriotti et al. 2009; Kim et al.
2007b]. Time synchronization is nowadays achieved in WSNs through efficient protocols providing
errors in the microsecond range [[Sundararaman et al. 2005; Maroéti et al. 20045 [Ferrari et al. 201 1]];
the corresponding implementations are also quite stable and often part of the standard distribution
of WSN operating systems [Dunkels et al. 2004; Hill et al. 2000]. The synchronized clocks that
such protocols provide can straightforwardly be used to run the system in a synchronous fashion.

First, we present two increasingly weaker specifications of NVC, which capture the impossibility
result for strong NVC in the presence of transient faults and the practical need to inform higher-level
protocols whenever such transient faults occur. Next, we present a global algorithm that solves both
specifications in networks where unidirectional links may be present, and a localized algorithm that
solves the weakest specification in networks with bidirectional links.

6.1. View Consistency Specifications

Strong view consistency. The strong NVC specification of Sectionfd]ensures that the logical view of
the topology is an accurate reflection of the relevant working part of the physical network. Specifi-
cally, the safety specification prohibits a node n from removing a working node m from its neighbor-
hood, whereas the liveness specification states that any pseudocrashed node is eventually removed.

However, as in Figured] in the presence of transient faults it is generally impossible to discern real
pseudocrashes from transient failures, and thus to avoid wrong detections. For instance, a transient
fault may corrupt a node’s memory and make a node believe that communication is not possible
towards another device, even though this is not the case. This is as simple as overwriting some
memory space in a node’s neighbor table because of a software bug, a situation not unlikely in
WSNs [[Chen et al. 2009; |(Cooprider et al. 2007]]. This intuition, which precisely corresponds to the
example of Figure[l] leads to the following.

THEOREM 6.1 (IMPOSSIBILITY OF STRONG NVC). Given a network G = (V, A) where all
nodes are equipped with an eventually perfect PCD, there exists no algorithm providing strong NVC
when both transient faults and pseudocrashes can occur.

The intuition behind this result is based on the ability of transient failures to arbitrarily corrupt
a node’s state. When a pseudocrash is detected, the relevant nodes need to be informed so the
pseudocrashed node can be removed from their logical neighborhoods. However, this notification
may be wrong since the information about which node to inform may be corrupted due to transient
faults. This means that the detecting node may end up informing the wrong nodes; for example,
nodes that do not list the pseudocrashed node among their 1-hop neighbors. This evidently leads to
a violation of the problem specification.

This result applies to both localized and global algorithms, although the intuition above deals with
the localized case. For a global algorithm that has access to complete topology information [Ma-
suzawa 1993]], this information itself may be corrupted due to incorrect information at multiple
processes, and thus strong NVC cannot be achieved even in this case. Additional details and formal
proofs are also available [Jhumka and Mottola 2014.

Stabilizing strong view consistency. To remedy this result, we allow nodes to finitely make mis-
takes by removing working nodes. This leads to the weaker specification of stabilizing strong NVC.

Definition 6.2 (Stabilizing strong view consistency). Given a network G = (V, A), and two
nodes n,m € V, a program provides stabilizing strong NVC for G if every computation of the
program satisfies:

— (Eventual safety): There exists a time after which no working node is removed.
— (Liveness): Every time a node m pseudocrashes, eventually Vn : m € N : n removes m.

Intuitively, stabilizing strong NVC ensures that strong view consistency is eventually established
again. However, the issue with stabilizing strong NVC is that, from the perspective of higher-level
protocols, these protocols cannot adapt their behavior when transient faults occur; for example, to
obtain a sub-optimal, yet efficient configuration. This is because no feedback is provided to the
protocols whenever strong NVC cannot be achieved.

process j

variables
% the network topology returned by the discovery algorithm
top: set of tuples, initially {(j, J)}

% a timer variable for periodic topology discovery
discover: timer init A;

actions
discovery:: timeout(discover)—
top:=topology_discovery();
set(discover,A);

detect:: (3(q,Q) €Etop:FEQN(qE J)) > Vi:i€QAqg€ET:
send(j cannot detect g,7);

remove:: rev(p cannot detect b, j)—
top:= top®{(5, J\ {b}) };

Fig. 7. A global algorithm that solves stabilizing strong NVC in a synchronous system and in the presence of unidirectional
links and transient failures.

Weak view consistency. To address this shortcoming, we present an even weaker problem spec-
ification, called weak NVC, which informs higher level protocols of a transient fault by raising a
(fault) flag whenever that is possibly detected.

Definition 6.3 (Weak view consistency). Given a network G = (V,A), and two nodes
n,m € V, a program provides weak NVC for G if every computation of the program satisfies:

— (Eventual safety): There exists a time after which no working node is removed.

— (Weak liveness): Every time a node m pseudocrashes, then eventually Vn : m € N : n removes m
or a { fault) flag is raised.

— (Validity): A (fault) flag is raised only if there is a fault in the network.

Weak NVC, in essence, attempts to achieve strong NVC whenever possible. However, state in-
consistencies induced by transient faults may threaten the efficiency of the network. To remedy this
problem, it is beneficial that higher-level protocols are made aware of these inconsistencies. Thus,
we adopt a two-pronged approach: either there is no inconsistency and strong NVC can be achieved
or there is an inconsistency and a fault is detected. Thus, a (fault) flag is raised only if a fault exists
in the network, and higher-level protocols can react to such notification by taking appropriate coun-
termeasures. The specific actions to take are, in general, protocol-specific. Section[8]describes cases
where simple corrections, triggered by the (fault) flag, already provide significant improvements.

6.2. Stabilizing Strong NVC with Unidirectional Links

In WSNs, due to issues such as background noise and interference, links can become unidirec-
tional [Baccour et al. 2012]. This entails that only one of the nodes will be suspected by the other.
This creates an asymmetry in the pseudocrash suspicions that, as far as a node’s neighbors are con-
cerned, cannot be distinguished from a transient failure. We thus seek to understand the impact of
such link asymmetry on NVC.

THEOREM 6.4 (UNIDIRECTIONAL LINKS). There exists no localized algorithm that solves
weak NVC in a network with unidirectional links and using an eventually perfect PCD in the pres-
ence of transient faults.

PROOF. We assume a localized algorithm A that solves the weak view consistency exists and
show a contradiction.

Consider a failure pattern F such that a node i pseudocrashes at time ¢; and to, where t5 > ;.
Assume there is a link (4,) in the network. At ¢1, the link becomes unidirectional, in the sense that
J can transmit to ¢, but not viceversa. Eventually, with the eventual strong completeness of the PCD
atj, (i,1) € Hs(j,t'),t1 < t' <t

Now, consider a computation C of A. Since A satisfies weak NVC, there exists a time ¢/, <
t"” < to where all neighbors of m, such that i € M, remove i by t”. At ts, i crashes and so, as far
as its logical neighbors are concerned, it pseudocrashes again and at t"”” > t5 there will be a node h
that suspects 4, thus 3h.(i, 1) € Hsx(h,t"). Atty, j € I buti ¢ .J, since the link (i, j) becomes
unidirectional at ¢7.

Since A provides weak NVC, there exists a time t3,t3 > to where all nodes m, such thati € M,
will remove 4 or raise a { fault) flag by t3 in C. The suspicion Hx(h,t"") at h has indeed caused all
neighbors of ¢ to do so. However, since j € I but i ¢ .J, node j cannot remove i by t3; j thus raises
a (fault) flag to signal a transient fault. However, there is no transient fault in the computation C'.
Hence a contradiction. O

Theorem incidentally indicates that specifications stronger than weak NVC cannot be solved
in networks with unidirectional links using localized algorithms. To address this problem, all the
neighbor nodes of a pseudocrashed node need to be informed about any potentially unidirectional
links, which cannot be achieved only using localized interactions. This hints at global algorithms,
able to reason on overall knowledge of the network topology.

We provide one such algorithm in Figure[7] which solves stabilizing strong NVC in the pres-
ence of unidirectional links. The algorithm generates notifications for all nodes suspected to have
pseudocrashed, based on a global view of the network topology obtained in action discovery. Such
global topology information, only eventually correct, is processed in action detect to generate pseu-
docrash notifications. We prove the correctness of the algorithm in Figure[7)in an extended technical
report [Jhumka and Mottola 2014]).

Global algorithms are rarely used in practice, in that localized ones tend to be more energy effi-
cient [[Estrin et al. 1999]). Because of this, our interest in the algorithm of Figure[7]is mainly theoret-
ical: it provides evidence that stabilizing strong NVC can be solved in the presence of unidirectional
links. In a system perspective, we focus on localized algorithms, as we illustrate in the following.

6.3. Weak NVC with Bidirectional Links

In networks of bidirectional links, either a link exists between two nodes or not. If an edge (a, b)
existed at some point in time and then node a appears pseudocrashed to node b; for example, due to
a link failure, then node b will also appear pseudocrashed at a. Therefore, in the absence of transient
faults, the eventually perfect PCDs at these two nodes suspect each other at some time ¢, that is,
(a, A) € Hy(b,t) and (b, B) € Hx(a,t).

As a matter of fact, this is the setting that most WSN protocols base their operation upon. For
example, many of them employ packet retransmission schemes based on Automatic Repeat Request
(ARQ), that is, by sending explicit acknowledgments in case of a successful transmission. Similar
schemes, however, cannot easily work with unidirectional links. This means that such protocols
need to use only bidirectional links, and must rule out unidirectional ones [Ko et al. 2011 |Gnawali
et al. 2009; |[Kim et al. 2007a; Mottola and Picco 2011;Voigt and Osterlind 2008} Burri et al. 2007

WeakC algorithm. Figure[§]describes a localized algorithm that solves weak NVC, using the even-
tually perfect PCD of Figure[3] in networks of bidirectional links. We call this algorithm WeakC.
In action notify the PCD is queried for suspects, and either a {fault) flag is raised if strong NVC
cannot be established due to a transient fault, or a pseudocrash notification is sent to the neighbors
of the suspected process. The notifications are processed in action remove. Depending on the logical
state at the receiver, the notification may indicate a transient fault, signaled by raising a (fault) flag,
or be added to the local suspects. When no more messages are in the incoming queue, the algorithm
enforces NVC in action update by removing the suspects from the local neighborhood.

process j

variables
% logical neighborhoods of j, N[j] implements .J*
N[]: array of set of ids, initially N [j] = J;

% set of pseudocrashed nodes and their 1-hop neighborhood
suspects: set of (id, neighborhood) init 0;

actions
% the PCD returns some suspects
notify:: suspects# 0 —
3(4,0) € suspects: send (fault, BCAST);
V(i,I) € suspects.¥n € I : send (j cannot detect i, n);

% adding the pseudocrashed node as suspects
remove:: rev(p cannot detect b, j)—
if (b € N[j]) then
send (fault, BCAST);
elseif (b & {z|(z, X) € suspects}) then
suspects := suspects U {(b, L)};
fi

% dequeuing fault message
skip:: rev(fault, r)— skip;

% no more message, enforce NVC
update:: rev() — N[j] := N[j]\ {i|(¢,) € suspects};

Fig. 8. WeakC: a synchronous localized algorithm to solve weak NVC in a network of bidirectional links, using the output
of the PCD of Figure[5]

THEOREM 6.5 (ALGORITHM WEAKC). Algorithm WeakC of Figure provides weak NVC.

A formal proof for Theorem[6.5]is included in an extended technical report [Jhumka and Mottola
2014]. Intuitively, the correctness of WeakC descends from the properties of the PCD algorithm in
Figure[5] used here to obtain the list of suspected pseudocrashes. The eventual safety property of
WeakC follows from the eventual strong accuracy property of the PCD. The weak liveness property
of WeakC follows from the strong completeness property of the same PCD. Finally, WeakC only
raises a flag when transient faults are detected in action notify or remove.

Transient faults are detected whenever nodes have conflicting states. Thus, when a state incon-
sistency is detected in WeakC, it is certainly because of a transient fault. The (fault) flag is a way
to inform higher-level protocols of this problem. Then, the protocols can use specific mechanism to
recover from this situation. This is one of the key differences between WeakC and existing solutions
such as periodic un-coordinated beaconing, which cannot discern transient faults from other kinds
of faults, even though they may require different countermeasures.

Despite the increasingly weaker definitions of NVC introduced in Section [6.1] note that the prob-
lem remains memoryless. According to Definition weak NVC indeed only advocates the re-
moval of pseudocrashed nodes from a program’s logical state whenever such faults occur, or the
signalling of a (fault) flag if a transient fault does happen. This operation is independent of past
failures. As a result, algorithm WeakC keeps no history of past faults, and both new nodes joining
and existing nodes recovering are processed the same Wayﬂp

As we show next through sample executions, the processing of WeakC is sufficiently simple to
replace the neighborhood management functionality in many existing WSN protocols, including

41f applications require failure histories to be kept, this information has to be stored separately from WeakC; for example, by
keeping track of the number of times the (fault) flag is raised.

A removes B from the PCD atA

its logical neighborhood suspects B
AV v
-
beaconing period

\

v

>
detect timer " |\

- g
neighborhoods ! |5
o
1)

N timer ' g
B F--ho - ------- »> B rg2-—-—-- - >
~2 ~Ii%
B crashes B crashes “
i
c > c >
'1‘ 4‘ time time
C removes B from C enforces NVC by removing B
its logical neighborhood from its logical neighborhood
(a) Periodic un-coordinated beaconing. (b) WeakC.

Fig. 9. Comparison of periodic un-coordinated beaconing with WeakC in case of a node crash (times not to scale).

A removes B from

3 N S the PCD at A
\l, its logical neighborhood \l, suspects B
A » A ‘1’ >
< > D ST TE—
beaconing period detect timer
neighborhoods|
B o noNVE- - - - > s timer IS | -
B crashes B crashes
c > c >
f F— 4 . >
N . ime . : : time
a transient failure occurs a transient failure occurs C raises
that masks B crash that masks B crash the fault flag
(a) Periodic un-coordinated beaconing. (b) WeakC.

Fig. 10. Comparison of periodic un-coordinated beaconing with WeakC in case of a masking failure (times not to scale).

those we discuss in Section[2] We design the APIs of the corresponding implementations, described
in Section[7] aiming at facilitating the integration of WeakC in existing code bases.

Sample executions. Figure[9] compares (simplified) executions of periodic un-coordinated beacon-
ing and WeakC in the case of a node crash with no transient faults, whereas Figure[I0] shows the
same comparison in case of a transient fault. Node B is a shared neighbor of both node A and C.

Figure[(a)| shows a case with no transient faults. Node A and node C can remove node B from
their logical neighborhoods only at the end of the beaconing period, once they realize they miss the
beacon from node B. As the two beaconing periods may be arbitrarily aligned, the time the system
runs in the absence of NVC—shown by the shaded area in the picture—is upper bound by the
beaconing period. In contrast, once the detect timer of Figure[5|expires at node A in Figure[(b)] the
PCD at A starts suspecting node B, together with its logical neighborhood including both node A and
C. As a result, this makes the guard in action notify of Figure[§|evaluate to true, thus node A sends
a message “A cannot detect B” to node C and to itself. Because of the synchronous operation, both
nodes realize that no more messages are coming and execute action update. Thus, they remove node
B from their logical neighborhoods. The time the system spends in the absence of NVC is upper
bound by the message transmission time. This is likely orders of magnitude lower than the beaconing
period, which is typically set to tens of seconds or even minutes for saving energy [Gnawali et al.
2009; Mottola and Picco 2011 Dunkels et al. 2011; |[Hansen et al. 2011} [Levis et al. 2004]].

In a case of transient failures, shown Figure[I0(a)l node A removes node B from its logical neigh-
borhood similar to Figure[9(a)] However, node C is subject to a transient fault that masks the pseu-
docrash of node B; for example, the identifier of node B in node C’s program state is rewritten so
that, as far as node C is concerned, node B never existed. Thus, node B cannot be removed from
node C’s logical neighborhood. From the point in time when node A removes B, the system is run-

ning without NVC. This condition persists until the transient fault on node C eventually clears and
the periodic un-coordinated beaconing eventually restores the correct neighborhoods. In contrast,
in Figure WeakC executes the same as in Figure[9(b)| at node A. However, whenever node C
receives “A cannot detect B”, it recognizes a state inconsistency: node C is not aware of any node
B, and it raises a (fault) flag. Node C proactively reacts to redress the problem. Thus, the time the
system spends in the absence of NVC is upper bound by the message transmission time plus the
time to react to the fault.

Unlike Figure[9] a direct comparison between the times spent in the absence of NVC is more dif-
ficult for Figure However, let us consider the most benign transient fault, that is, one that clears
already at the next round of beaconing. In this case, it would take again tens of seconds or even min-
utes until periodic un-coordinated beaconing redresses the situation in Figure[IO(a)] In contrast, let
us consider the most elementary fault handling mechanism, that is, rebooting the node, even though
more sophisticated mechanisms already exist [Chen et al. 2009]]. Upon rebooting, techniques such
as Trickle timers used in many modern protocols, will acquire complete neighborhood information
in a few seconds [[Levis et al. 2004f|. In the most unfavorable case for WeakC, again the time the
system spends in the absence of NVC is one order of magnitude smaller. This reasoning applies
also to the example of Figure[I(b)] if the data collection protocol at all chooses to route through
node D because WeakC has not reacted yet, it will be for a very short amount of time. As a matter
of fact, in Section[§]we observe that transient faults rarely clear so quickly.

These simplified examples highlight one of the key differences between periodic un-coordinated
beaconing and WeakC. Once a fault is detected by the PCD of Figure[5] WeakC acts proactively.
Differently, periodic un-coordinated beaconing simply proceeds the same, eventually restoring NVC
if possible at all. This is the origin of most of the performance gains we observe in Section [8] The
corresponding impact becomes larger as more complex fault patterns and transient faults emerge.

7. IMPLEMENTATION

In a system perspective, we focus on algorithm WeakC in that, com- Applications

pared to the global algorithm of Figure its localized nature en- Higher-level protocols
ables its integration with most existing WSN protocols. We imple- Woake <

ment WeakC as in Figure[§] including the eventually perfect PCD of :

Figure[5] on top of both the Contiki [Dunkels et al. 2004] and the Pco

TinyOS [Hill et al. 2000] operating systems. For Contiki, we inte- MAC

grate our implementation with both Contiki’s IPv6 [Ko et al. 2011] Radio

and the Rime [Dunkels et al. 2007a] stacks. In TinyOS, our WeakC

implementation targets the ActiveMessage stack. Fig. 11. Network stack when

Our implementations are lightweight. In Contiki, they occupy WeakC is integrated with higher-
1.3 KBytes of program memory and 352 bytes of data memory when level protocols.
used with the IPv6 stack, or 1.2 KBytes of program memory and 312 bytes of data memory with
Contiki’s Rime stack. Our TinyOS implementation takes 1.45 KBytes of program memory and 328
bytes of data memory. The amount of data to keep track of a neighbor is 12 bytes in all cases but
in the IPv6 stack, where it is 18 bytes due to larger addresses. This allows our implementations to
scale efficiently also in dense networks.

Layering and APIs. Independently of the platform, WeakC sits between the higher-level protocols
that rely on NVC and the MAC layer, as shown in Figure[TT] We choose this layering because of
two reasons. By sitting atop the MAC layer, the periodic exchange of neighborhood information
required by the PCD as well as the messages generated by WeakC can take advantage of the ra-
dio duty-cycling and collision avoidance mechanisms the MAC layer offers. As we demonstrate in
Section 8] a simple CSMA schema with random back-off suffices to handle packet collisions possi-
bly caused by and between our algorithms. In other words, randomly staggering the transmissions
in time makes collisions occur sparingly and, most importantly, not systematically that they can
be misinterpreted as pseudocrashes by the PCD. As a result, their impact on the performance be-

comes negligible. This layering also minimizes the disruption due to the network traffic generated
by WeakC against other concurrently-running protocols on the same node, as access to the radio
remains mediated by a single MAC protocol [Polastre et al. 2005]].

Designing the API for higher-level protocols to rely on WeakC needs to strike a balance between
minimality—motivated by the resource-scarcity of the target devices—and ease of integration. We
eventually settle on six primitives:

uint8_t getCurrentViewId();

uint8_t getNeighborhood (uint8_t view_id, uintl6_tx node_ids);

bool isNeighbor (uint8_t view_id, uintlé_t id);

void setPeriod(uintl6_t period);

void setPayload(uint8_t size, uint8_t»* data);

void registerNeighborhoodInfo (void (xcallback) (uintlé6_t neighbor,
uintl6_t number, uintl6_tx node_ids, uint8_t« data));

The first three operations are used to manage neighborhood views. Function getCurrentViewId
returns an identifier of the current neighborhood view. Higher-level protocols use this to detect
neighborhood view changes and as parameter to getNeighborhood and isNeighbor. The
former is used to query a neighborhood view; our WeakC implementation caches the current and
the past T neighborhoods views, T being a compile-time parameter. This is provided merely as a
convenience to higher-level protocols, as they often need to keep track of past neighborhoods views;
for example, to identify nodes that joined or disappeared. Rather than delegating this functionality
to the protocols, possibly duplicating it across concurrently-executing components, we choose to
implement it within WeakC and to make it available through our API. However, WeakC makes no
use of it, as the NVC problem is memoryless, as discussed in Section@

The last three operations serve to use WeakC as a replacement of the neighborhood management
functionality in existing protocols. These call setPeriod to control the rate of neighborhood in-
formation exchange, that is, to dynamically set the value of A in the PCD of Figure[5] This is funda-
mental whenever a protocol uses adaptive beacon timers [|Gnawali et al. 2009j Ko et al. 2011} |Levis
et al. 2004]. Any additional data th