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Databases in real life are often neither entirely closed-world nor entirely open-world. Databases in an
enterprise are typically partially closed, in which a part of the data is constrained by master data that
contains complete information about the enterprise in certain aspects. It has been shown that, despite
missing tuples, such a database may turn out to have complete information for answering a query.

This article studies partially closed databases from which both tuples and attribute values may be missing.
We specify such a database in terms of conditional tables constrained by master data, referred to as c-
instances. We first propose three models to characterize whether a c-instance T is complete for a query
Q relative to master data. That is, depending on how missing values in T are instantiated, the answer to
Q in T remains unchanged when new tuples are added. We then investigate three problems, to determine
(a) whether a given c-instance is complete for a query Q, (b) whether there exists a c-instance that is complete
for Q relative to master data available, and (c) whether a c-instance is a minimal-size database that is
complete for Q. We establish matching lower and upper bounds on these problems for queries expressed in
a variety of languages in each of the three models for specifying relative completeness.
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1. INTRODUCTION

Incomplete information has been a long-standing issue. The scale of the problem is
such that it is common to find critical information missing from databases. For in-
stance, it is estimated that pieces of information perceived as being needed for clinical
decisions were missing 13.6% to 81% of the time [Miller Jr. et al. 2005]. Tradition-
ally, the research community adopts either the Closed-World Assumption (CWA) or
the Open-World Assumption (OWA). The CWA assumes that a database has collected
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all the tuples representing real-world entities, but the values of some attributes in
those tuples are possibly missing. The OWA assumes that some tuples representing
real-world entities may also be missing (see Abiteboul et al. [1995] and van der Meyden
[1998] for surveys).

Real-life databases are, however, often neither entirely closed-world nor entirely
open-world. This is particularly evident in Master Data Management (MDM), one of the
fastest growing software markets [Microsoft 2008; Radcliffe and White 2008]. Master
data is a single repository of high-quality data that provides various applications with
a synchronized, consistent view of the core business entities of an enterprise [Loshin
2008]. It is a closed-world database about the enterprise in certain aspects, for example,
employees and customers. In the presence of master data, databases of the enterprise
are typically partially closed [Fan and Geerts 2009, 2010b]. Whereas some parts of
their data are constrained by the master data, for example, employees and customers,
other parts of the databases are open-world, for example, sales transactions and service
records.

Partially closed databases have recently been studied in Fan and Geerts [2009,
2010b], in the absence of missing values. Certain information in a partially closed
database I is bounded by master data Dm, specified by a set V of containment con-
straints (CCs) from I to Dm. Relative to the master data Dm, the database I is then
said to be complete for a query Q if Q(I) = Q(I ′) for every partially closed extension
I ′ of I, that is, for every I ′ such that I ′ � I and (I ′, Dm) satisfies V . That is, adding
new tuples to I either does not change the query answer or violates the CCs. It is
shown in Fan and Geerts [2009, 2010b] that, despite missing tuples, a partially closed
database may still have complete information for answering queries.

The work of Fan and Geerts [2009, 2010b] has focused on ground instances, namely,
database instances from which tuples are possibly missing, but all the values of the
existing tuples are in place. In practice, however, both tuples and values are commonly
found missing from a database. This introduces new challenges to characterizing and
determining whether a database is complete for a query relative to master data.

Example 1.1. Let us first recall the setting in which only tuples may be missing from
a database. Consider a database D of UK patients, specified by the schema

MVisit(NHS, name, city, yob, GD, Date, Diag, DrID),

of which each tuple records the National Health Service (NHS) number (NHS), name,
address (city), year of birthday (yob) and gender (GD) of a UK patient, as well as the
date of visit to a doctor specified with ID (DrID) and the diagnosis given by the doctor.
Consider a query Q1 to find the names of those patients who were born in 2000 with
NHS number ‘915-15-335’ and live in Edinburgh. One can hardly trust the answer
Q1(D) since tuples may be missing from D even when no attribute values of the tuples
in D are missing.

Not all is lost. Suppose that there is master data Dm available, specified by schema
Patientm(NHS, name, yob, zip, GD), which provides a complete record of those patients
living in Edinburgh and born after 1990. Then, we can conclude that Q1 finds a complete
answer in D provided that Q1(D) returns all the patients p in Dm with p[NHS]=‘915-
15-335’ and p[yob]=2000. In this case, there is no need to add new tuples to D in order
to find complete answers to query Q1 in database D. Relative to master data Dm, the
seemingly incomplete D turns out to be complete for Q1.

In practice, attribute values may also be missing. Following Grahne [1991] and
Imieliński and Lipski Jr. [1984], we use a conditional table (c-table) T to represent such
a database, as shown in Figure 1. In “tuple” t2 of T , the values of t2[name] and t2[yob]
are missing, and the condition t2[cond] tells us that t2[yob] is not 2001; similarly, the
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Fig. 1. A c-table of a Patient.

condition t3[cond] tells us that t3[city] is not Edinburgh (Edi). Missing values introduce
additional challenges. To characterize whether T is complete for Q1, we have to decide
how to fill in the missing values in T in addition to missing tuples.

These suggest that relatively complete databases have to accommodate not only
missing tuples but also missing values. In addition, there are several fundamental
questions that are not only of theoretical interest, but are also important to database
users and developers. For instance, a user may be eager to know whether a database
in use is complete for a query relative to master data. Furthermore, a developer may
want to know what is a minimal amount of information that one has to collect to build a
relatively complete database. These practical needs call for a full treatment of relative
information completeness.

Relative information completeness. To capture missing values and missing tuples,
we extend the notion of partially closed databases [Fan and Geerts 2009, 2010b] to
c-instances. A c-instance is a collection of c-tables [Grahne 1991; Imieliński and Lipski
Jr. 1984] in which certain parts are bounded by master data via a set of CCs [Fan and
Geerts 2009] (see Section 2.1 for their formal definition).

Models. We propose three models to specify whether a c-instance T is complete for a
query Q relative to master data Dm: T is (1) strongly complete if each valuation of T
yields a ground instance that is complete for Q relative to Dm; (2) weakly complete if one
can find in T the certain answers to Q over all partially closed extensions of valuations
of T ; and (3) viably complete if there exists a valuation of T that is a relatively complete
database for Q. A user may choose a model that best serves one’s needs.

Data consistency. We are interested in databases that are both relatively complete and
consistent. The consistency of data is typically specified by integrity constraints, such
that errors and conflicts in the data can be detected as violations of the constraints
[Arenas et al. 1999; Chomicki 2007] (see Fan and Geerts [2012] for a recent survey). We
investigate the impact of integrity constraints on the analysis of relative completeness.
In addition, instead of using a separate language of integrity constraints, we adopt a
class of CCs that is also capable of expressing constraints commonly used in data clean-
ing. More specifically, we consider CCs that can be expressed in terms of conjunctive
queries.

Analysis of c-instances. We provide complexity bounds on basic issues in connection
with c-instances. These problems are to decide, given a c-instance T , whether T is
(a) consistent, that is, whether there is any partially closed database represented by
T ; and (b) extensible, that is, whether there exists any partially closed extension of T .

Main complexity results. We identify three fundamental problems associated with
relative information completeness. Given a query Q and master data Dm,

—the relatively complete database problem (denoted by RCDP) is to decide whether a
given database is complete for Q relative to Dm;
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Table I. Complexity Results in Connection with Relative Completeness

LQ RCDP RCQP MINP

Strong completeness Theorem 4.1 Corollary 4.5 Theorem 4.8
FO, FP undecidable undecidable undecidable

UCQ, ∃FO+, CQ �
p
2 -complete NEXPTIME-c �

p
3 -complete (Dp

2 -c)

Weak completeness Theorem 5.1 Theorem 5.4 Theorem 5.6
FO undecidable ? (undecidable) undecidable
FP coNEXPTIME-c O(1) coNEXPTIME-c

UCQ, ∃FO+ �
p
3 -complete O(1) �

p
4 -complete

CQ �
p
3 -complete O(1) coDP-complete

Viable completeness Theorem 6.1 Corollary 6.2 Corollary 6.3
FO, FP undecidable undecidable undecidable

UCQ, ∃FO+, CQ �
p
3 -complete (�p

2 -c) NEXPTIME-c �
p
3 -complete (Dp

2 -c)

Note: Here, NEXPTIME-c, coNEXPTIME-c, Dp
2 -c and �

p
2 -c are abbreviations for NEXPTIME-

complete, coNEXPTIME-complete, Dp
2 -complete and �

p
2 -complete, respectively.

—the relatively complete query problem (RCQP) asks whether it is possible to build a
database complete for Q relative to Dm; and

—the minimality problem (MINP) is to determine whether a database has a minimal
size among those that are complete for Q relative to Dm.

We investigate these problems with regard to several parameters:

—LQ: the query language in which Q is expressed, ranging over conjunctive queries,
(CQ), union of conjunctive queries (UCQ), positive existential FO queries (∃FO+),
first-order queries (FO), and FP, an extension of ∃FO+with an inflational fix-point
operator;

—c-instances versus ground instances, that is, in the presence or absence of missing
values; and

—different models of relative completeness, that is when a c-instance is required to be
strongly complete, weakly complete, or viably complete for Q, relative to Dm and V .

All these languages allow equality (=) and inequality ( �=), as supported by commercial
DBMS; moreover, with �=, we can express CCs and queries in the same query language
(see Section 2.1 for CCs).

We provide a comprehensive picture of these problems with different combinations
of these parameters. We establish their lower and upper bounds, all matching, ranging
over O(1), coDP, �

p
2 , �

p
2 , Dp

2 , �
p
3 , �

p
3 , �

p
4 , NEXPTIME, coNEXPTIME, and undecidable. We

summarize the main complexity results in Table I, in which the complexity bounds
for ground instances are also listed (enclosed in parentheses) when they differ from
their counterparts for c-instances, annotated with their corresponding theorems. In
addition, we identify tractable special cases of these problems (Section 7).

Our main conclusions are as follows.

(a) All problems are decidable for CQ, UCQ, and ∃FO+, but are mostly undecidable
for FO and FP. However, they are decidable for FP in the weak completeness model.
Moreover, some problems for CQ and UCQ exhibit different behaviors.

(b) The presence of missing values makes our lives harder when RCDP and MINP are
concerned. For example, in the strong completeness model, MINP for CQ is Dp

2 -complete
for ground instances while it is �

p
3 -complete for c-instances; in the viable completeness
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model, RCDP for CQ is �
p
2 -complete for ground instances while it is �

p
3 -complete for

c-instances. In contrast, it does not complicate the analyses of RCQP. That is, the
complexity of RCDP remains the same for ground or c-instances.

(c) The problems have rather diverse complexities in the three different models of
relative completeness. For instance, RCQP for FP is undecidable in the strong com-
pleteness model, but is trivially decidable for weakly complete c-instances. Moreover,
in the strong completeness model, RCQP for c-instances is equivalent to RCQP for
ground instances, but this is no longer the case in the weak completeness model: the
undecidability of RCQP for FO for ground instances cannot show the undecidability
for c-instances (see Example 5.3; the precise complexity bounds of RCQP for FO and c-
instances remain an open problem). On the other hand, RCDP for UCQ is �

p
2 -complete

for the strongly complete c-instances, but it becomes �
p
3 -complete in the weak model.

(d) Master data and CCs do not substantially complicate the analyses of these problems.
From the proofs given in Sections 4 to 6, we can see that all lower bounds of RCDP,
RCQP, and MINP hold when master data and CCs are fixed, except for RCDP(CQ) and
MINP(CQ) in the weak completeness model.

To the best of our knowledge, apart from the conference version of this article [Fan
and Geerts 2010a], this work is a first treatment of relatively complete databases in the
presence of both missing values and missing tuples. We identify important problems
associated with partially closed c-instances, and provide matching complexity bounds
on these problems. A variety of techniques are used to prove these results, including
finite-model theoretic constructions, characterizations of relatively complete databases,
and a wide range of reductions.

Related work. This work extends Fan and Geerts [2009] and Fan and Geerts [2010b]
by dealing with missing tuples and missing values. We propose three models for rel-
atively complete c-instances, which were not considered in these earlier works. For
ground instances in the strong model, RCDP and RCQP have been studied in Fan and
Geerts [2009, 2010b] with several cases left open there, but neither c-instances nor
ground instances and c-instances for MINP have been considered there. The data com-
plexity of RCDP and MINP for ground instances has been studied in Cao et al. [2014].
While we mostly focus on combined complexity in this article, we identify tractable
cases of the three problems for data complexity.

This work is an extended version of the conference version [Fan and Geerts 2010a] by
including the detailed proofs of all results, which were not presented in Fan and Geerts
[2010a], and a variety of tractable cases (data complexity) in Section 7. To keep the arti-
cle within a reasonable page limit, we do not consider the boundedness problem, which
is studied in Fan and Geerts [2010a]. Moreover, we set the record straight by providing
correct lower and upper bounds: (a) in the strong completeness model, RCDP(LQ) for
CQ is �

p
2 -complete instead of �

p
3 -complete for c-instances (see Theorem 4.1); and (b) in

the strong completeness or viable completeness model, MINP(LQ) for CQ is Dp
2 -complete

instead of �
p
3 -complete for ground instances (see Theorem 4.8).

There has been a host of work on incomplete information, notably, representation
systems (see Abiteboul et al. [1995] and van der Meyden [1998] for surveys, and more
recently, Olteanu et al. [2008]). This work adopts c-tables [Grahne 1991; Imieliński
and Lipski Jr. 1984] to represent databases with missing values. Our weak model for
relative completeness is based on the certain answer semantics [Imieliński and Lipski
Jr. 1984], and the strong model has a resemblance to strong representation systems. In
contrast, viably complete c-instances do not find a counterpart in Grahne [1991] and
Imieliński and Lipski Jr. [1984]. The basic issues for c-instances (see Section 3) are
similar to the problems studied in Abiteboul et al. [1991], but in the presence of master
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data. As opposed to prior work in this area, we aim to model partially closed databases
as found in MDM, and to settle their associated decision problems that have not been
studied before.

Several approaches have been proposed for modeling databases with missing tuples
(e.g., Gottlob and Zicari [1988], Levy [1996], Motro [1989], and Vardi [1986]). A notion of
open null was introduced in Gottlob and Zicari [1988] to model locally controlled open-
world databases, in which tuples or values can be marked with open null, while the
rest of the data is closed-world. Complete and consistent extensions of an incomplete
database were studied in Vardi [1986]. There has also been work on modeling negative
information via logic programming (see van der Meyden [1998]). Neither master data
nor the decision problems studied in this work have been considered there.

Closer to this work are partially complete databases studied in Levy [1996] and
Motro [1989], which assume a virtual database Dc that contains complete information
in all relevant aspects, and assume that any database D either contains or is defined
as views of Dc. A notion of answer completeness was proposed there to decide whether
a query posed on Dc can be answered in D. We assume neither the existence of Dc
with entire complete information nor views that define D in terms of Dc. In addition,
neither missing values nor the problems studied here were considered in Levy [1996]
and Motro [1989].

Certain answers have also been studied in data integration and data exchange. In
data integration, for a query Q posed on a global database DG, one wants to find the
certain answers to Q over all data sources that are consistent with DG with regard to
view definitions (e.g., see Abiteboul and Duschka [1998] and Lenzerini [2002]). In data
exchange, one wants to find the certain answers to a query over all target databases
transformed from data sources via schema mapping (see Kolaitis [2005] and Arenas
et al. [2009]). The decision problems studied here are not considered in data exchange
or data integration. There has also been work on answering queries using views to
decide, for example, whether views determine queries [Segoufin and Vianu 2005]. Our
decision problems cannot be reduced to the problems studied there, and vice versa,
because in MDM, one often cannot characterize databases as views of master data.

There has also been work on consistent query answering (e.g., Arenas et al. [1999]
and Chomicki [2007]) to find certain answers to a query over all repairs of a database.
Master data is not considered there, and we do not consider database repairs in this
work. For ground instances in the strong model, RCDP is similar to the problem of
query independence from updates [Elkan 1990; Levy and Sagiv 1993]. However, none
of the results of Elkan [1990] and Levy and Sagiv [1993] carries over to our setting. We
refer to Fan and Geerts [2009, 2010b] for a more detailed discussion of related work on
RCDP and RCQP for ground instances.

Related to this work is that of Libkin [2014], which proposes a new interpretation of
query answers over incomplete data. It treats incomplete databases as logical theories,
and query answering as logical implication (rather than certain answers); it defines
representation systems under the CWA and OWA with respect to an information or-
dering. In contrast to Libkin [2014], we study relative information completeness in the
presence of master data for databases that are neither entirely closed-world not en-
tirely open-world. In this setting, we define three completeness models (strong, weak,
and viable), and investigate associated problems RCDP, RCQP, and MINP for deciding
relative completeness, which are not considered in Libkin [2014]. Note that the models
of completeness and the decision problems studied here are also meaningful under the
new semantics of Libkin [2014], although the complexity bounds may be different.

Complementary to this work is the recent work on assessing partial results, that is,
query answers computed with incomplete input due to failures in data access [Lang
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et al. 2014]. With respect to incomplete data sources, it proposes a framework to classify
partial results (i.e., cardinality and correctness) and to determine the degree of partial
result classification precision. In contrast, we study how to determine whether input
data is complete for our queries relative to available master data. The problems studied
in this work are not considered in Lang et al. [2014], and vice versa. That said, after
the input is found incomplete, the methods of Lang et al. [2014] can be triggered to
evaluate the quality of partial answers computed from the input.

Organization. Section 2 presents three models for specifying relatively complete
c-instances. Section 3 investigates the impact of integrity constraints and basic is-
sues in connection with c-instances. Problems RCDP, RCQP, and MINP are studied
in Sections 4, 5, and 6 for strongly complete, weakly complete, and viably complete c-
instances, respectively. Section 7 identifies special cases with tractable data complexity.
Section 8 summarizes the main results and identifies open problems.

2. RELATIVE INFORMATION COMPLETENESS REVISITED

In Section 2.1, we first review relatively complete ground instances defined in Fan and
Geerts [2009, 2010b]. In Section 2.2, we present three models to characterize relatively
complete c-instances. Finally, in Section 2.3, we state the decision problems associated
with relative information completeness.

2.1. Relatively Complete Ground Instances

A database schema R is a collection (R1, . . . , Rn) of relation schemas. Each Ri is defined
over a set of attributes. Its set of attributes is also denoted by Ri. For each attribute A
in Ri, its finite or infinite domain is a set of constants, denoted by dom(A).

Ground instances and master data. A ground instance I of R is of the form
(I1, . . . , In), where for each i ∈ [1, n], Ii is an instance of Ri without missing values.
That is, for each t ∈ Ii and each A ∈ Ri, t[A] is a constant in dom(A).

Master data Dm is a ground instance of a database schema Rm. It is a consistent and
closed-world database.

Partially closed databases. We specify the relationship between a database and
master data in terms of CCs. A CC φ is of the form q(R) ⊆ p(Rm), where q is a
conjunctive query (CQ) defined over schema R, and p is a projection query over schema
Rm. A ground instance I of R and master data Dm of Rm satisfy φ, denoted by (I, Dm) |=
φ, if q(I) ⊆ p(Dm).

Intuitively, the CWA is asserted for Dm, which imposes an upper bound on the infor-
mation extracted by q(I) from the database I. On the other hand, the OWA is assumed
on the part of I that is not constrained by CCs.

Example 2.1. Recall the database D and master data Dm described in Ex-
ample 1.1. We specify a set V of CCs such that, for each year y in the range
[1991, 2014], V includes the CC qy (MVisit) ⊆ p(Patientm), where qy(n, na, y, g) =
∃d, di, i (MVisit(n, na, c, y, g, d, di, i) ∧ c = ‘EDI’), and p(n, na, y′, g) = ∃z(Patientm(n,
na, y′, z, g)), which ensures that Dm is an upper bound on the information in D about
patients who live in Edinburgh and are born between 1991 and 2014.

Certain integrity constraints can also be expressed as CCs. For example, consider a
functional dependency (FD) φ : (NHS → name, GD), which specifies that, in the UK, the
NHS number determines the name and gender of each patient. Furthermore, assume
that master data contains an empty relation D∅. Then, the FD φ can be enforced by
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including the following two CCs in V : qname ⊆ D∅ and qGD ⊆ D∅, where

qname = ∃ n, na1, na2, c1, c2, y1, y2, g1, g2, d1, d2, di1, di1, i1, i2

(MVisit(n, na1, c1, y1, g1, d1, di1, i1) ∧ MVisit(n, na2, c2, y2, g2, d2, di2, i2)∧n1 �= n2),

which detects violations of the FD NHS → name; similarly, qGD is defined to detect
violations of the FD NHS → GD. Note that we allow inequalities in CQ, hence also in
CCs. It is shown in Fan and Geerts [2009, 2010b] that inclusion dependencies (INDs)
can be expressed as CCs q(R) ⊆ p(Rm) when q is in FO, referred to as CCs in FO (see
more details about INDs in Section 3).

We say that (I, Dm) satisfies a set V of CCs, denoted by (I, Dm) |= V , if (I, Dm) |= φ
for each CC φ in V .

A ground instance I of R is said to be partially closed relative to (Dm, V ) if (I, Dm) |=
V . That is, the information in I is partially bounded by Dm via the CCs in V .

Relatively complete ground instances. Consider ground instances I = (I1, . . . , In)
and I ′ = (I′

1, . . . , I′
n) of R. We say that the instance I ′ extends I, denoted by I � I ′, if

for all i ∈ [1, n], Ii ⊆ I′
i , and furthermore, there is a j ∈ [1, n] such that Ij � I′

j . The set
of partially closed extensions of I is defined as

Ext(I, Dm, V ) = {I ′ | I � I ′, (I ′, Dm) |= V }.
That is, for each I ′ in the set, (a) I ′ extends I by including new tuples, and (b) I ′ is
partially closed relative to (Dm, V ). We write Ext(I, Dm, V ) as Ext(I) when Dm and V
are clear from the context.

A ground instance I is said to be complete for a query Q relative to (Dm, V ) if (i) it is
partially closed; and (ii) for each I ′ ∈ Ext(I), Q(I) = Q(I ′). In other words, the answer
to Q in I remains unchanged no matter what new tuples are added to I. Intuitively,
I already has complete information for answering Q. The completeness is relative to
(Dm, V ): the extensions must satisfy V .

Example 2.2. Recall the ground instances D, Dm, and the query Q1 from Example 1.1,
and let V be the set of CCs from Example 2.1. Then, as shown in Example 1.1, D is
complete for Q1 relative to (Dm, V ) as long as it returns all relevant tuples in Dm.

Consider another query Q2, which is to find the names of all patients who were born
in 2000 and have NHS number 915-15-321. Suppose that there are such patient records
in Dm, but Q2(D) is empty. Then, D is not complete for Q2. We can make D complete
for Q2, however, by adding to D a single tuple t with t[NHS] = ‘915-15-321’. V includes
the CCs encoding FD φ, which ensures that there exists at most one patient with this
NHS number. Thus, the extended D is complete for Q2 relative to (Dm, V ).

In contrast, consider the query Q3, which is to find the names of all patients who
were diagnosed as diabetics in 2000, no matter where they live. Then, the master
data Dm does not help. It has no information about patients living in cities other than
Edinburgh. In this case, we cannot make D complete for Q3 relative to (Dm, V ).

2.2. Accommodating Missing Values

To specify databases with missing values, we adopt conditional tables (c-tables) that
are specified using variables and local conditions [Grahne 1991; Imieliński and Lipski
Jr. 1984]. To define c-tables, for each relation schema Ri and each attribute A in Ri,
we assume a countably infinite set var(A) of variables such that var(A) ∩ dom(A) = ∅,
var(A) ∩ dom(B) = ∅, and var(A) ∩ var(B) = ∅ for every attribute B distinct from A.
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Partially closed c-instances. A c-table of Ri is a pair (T , ξ ), where (a) T is a tableau
in which for each tuple t and each attribute A in Ri, t[A] is either a constant in dom(A)
or a variable in var(A); and (b) ξ is a mapping that associates a condition ξ (t) with each
tuple t in T . Here, ξ (t) is built up from atoms x = y, x �= y, x = c, x �= c, by closing
under conjunction ∧, where x, y are variables and c is a constant. Denote by (T , true)
the c-table without any conditions. An example of a c-table is shown in Figure 1.

A valuation μ of (T , ξ ) is a mapping such that, for each tuple t in T and each attribute
A in Ri, μ(t[A]) is a constant in dom(A) if t[A] is a variable, and μ(t[A]) = t[A] if t[A] is a
constant. Let μ(t) be the tuple of Ri obtained by substituting μ(x) for each occurrence
of x in t. Then, we define

μ(T ) = {μ(t) | t ∈ T and ξ (μ(t)) evaluates to true}.
Hence, μ(T ) is a ground instance without variables or conditions. More specifically,
(T , ξ ) represents a set of possible worlds μ(T ) when μ ranges over all valuations of
(T , ξ ). We write (T , ξ ) simply as T when ξ is clear from the context.

A c-instance T of R is of the form (T1, . . . , Tn), where for each i ∈ [1, n], Ti is a c-table
of Ri. A valuation μ of T is of the form (μ1, . . . , μn), where μi is a valuation of Ti. We
use μ(T ) to denote the ground instance (μ1(T1), . . . , μn(Tn)) of R. A partially closed
c-instance T represents a nonempty set of partially closed ground instances, denoted
by Mod(T , Dm, V ). That is,

Mod(T , Dm, V ) = {μ(T ) | μ is a valuation and (μ(T ), Dm) |= V }.
We write Mod(T , Dm, V ) as Mod(T ) when Dm and V are clear from the context. We say
that a c-instance T is partially closed if Mod(T , Dm, V ) is not empty.

To simplify the discussion, in the sequel, we consider only c-instance T for which
Mod(T ) is nonempty. The assumption has no impact on the complexity results of this
article. As will be shown by Proposition 3.3, it is in �

p
2 to decide whether Mod(T ) is

nonempty. As we can see from Table I, all the complexity bounds of this article are
higher than �

p
2 -complete except RCDP for CQ, UCQ, and ∃FO+ in the strong complete-

ness model, and MINP(CQ) in the weak completeness model. For these two problems,
we will show that their complexity bounds remain intact without the assumption.

Databases under the CWA or the OWA are special cases of partially closed c-
instances. Recall that the CWA assumes that a database has collected all the tuples
representing real-world entities, but the values of some attributes in those tuples are
possibly missing; the OWA assumes that some tuples representing real-world entities
may also be missing. Thus, a c-instance T is open-world in the absence of master data
and CCs and closed-world if the master data is a possible world represented by T .

Relative completeness. We next define various notions of completeness for c-
instances. We say that, relative to (Dm, V ), a partially closed c-instance T is

—strongly complete for Q if for each I ∈ Mod(T ) and for each I ′ ∈ Ext(I), Q(I) = Q(I ′);
—weakly complete for Q if ⋂

I∈Mod(T )

Q(I) =
⋂

I∈Mod(T ),I ′∈Ext(I)

Q(I ′),

or for all I ∈ Mod(T ), Ext(I) = ∅; and
—viably complete for Q if there exists I ∈ Mod(T ) such that for each I ′ ∈ Ext(I),

Q(I) = Q(I ′).

Intuitively, (a) T is strongly complete if, no matter how missing values in T are filled
in, it yields a ground instance relatively complete for Q; (b) T is weakly complete if the
certain answer to Q over all partially closed extensions of T can already be found in
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T ; and (c) T is viably complete if there exists a way to instantiate missing values in T
that results in a ground instance relatively complete for Q.

We use RCQs(Q, Dm, V ), RCQw(Q, Dm, V ), and RCQv(Q, Dm, V ) to denote the set of
all complete c-instances of R for Q with regard to (Dm, V ), in the strong, weak, and
viable completeness models, respectively. We simply use RCQ(Q, Dm, V ) when there is
no need to distinguish the completeness models.

Example 2.3. Consider the c-instance T shown in Figure 1, master data Dm and
query Q1 of Example 1.1, and the set V of CCs of Example 2.1. Then, T is strongly
complete for Q1 relative to (Dm, V ). By the FD φ encoded as CCs in V , we have that, for
all valuations μ of T , Q1(μ(T )) returns a single tuple (name=‘John’), and the answer
to Q1 does not change for every partially closed extension in Ext(μ(T )).

Consider query Q4 to find the names of patients in Edinburgh who are born in 2000
and visited doctors on 15/03/2015. Suppose that t1

m and t2
m are the only patients in Dm

born in 2000, where t1
m = (915-15-335, John, M, EH8 9AB, 2000) and t2

m = (915-15-336,
Bob, M, EH8 9AB, 2000). Then, relative to (Dm, V ), T is viably complete for Q4, since
there exists a valuation μ of T such that μ(T ) is complete. For instance, this happens
for μ(x) = Bob and μ(z) = 2000. The c-instance T is also weakly complete, since the
certain answer (name = ‘John’) can already be found over Mod(T ). However, T is not
strongly complete for Q4. Consider μ′(T ) with μ′(x) = John and μ′(z) = 2000, and μ(T )
defined as before. Then, clearly, μ′(T ) ⊆ μ(T ); moreover, Q4(μ′(T )) only returns John,
whereas Q4(μ(T )) returns both John and Bob.

We observe the following: (a) If T is strongly complete, then it is both weakly complete
and viably complete. (b) A ground instance I is a c-instance without variables and
conditions. It is strongly complete and viably complete for a query Q if and only if I is
relatively complete for Q, as defined in Section 2.1. However, I may be weakly complete
but not relatively complete.

Minimal complete databases. To decide what data should be collected in a database
to answer a query Q, we want to identify a minimal amount of information that is
complete for Q. For this, we use the following notions of minimality.

A ground instance I is a minimal instance complete for a query Qrelative to (Dm, V ) if
it is in RCQ(Q, Dm, V ). Moreover, for all I ′ � I, we have that I ′ is not in RCQ(Q, Dm, V ).
A c-instance T is a minimal c-instance viably complete (resp. strongly complete) for Q
relative to (Dm, V ) if there exists I ∈ Mod(T ) (resp. for all I ∈ Mod(T )) such that I is a
minimal instance complete for a query Q.

To define minimal instances in the weak model, we write (T , ξ ) � (T ′, ξ ′) if T � T ′
and ξ is the restriction of ξ ′ on T , that is, if for each valuation μ′ of (T ′, ξ ′), μ(T ) � μ′(T ′),
and if μ′(T ′) satisfies ξ ′, then μ(T ) must satisfy ξ , where μ is the restriction of μ′ on T .
For T = (T1, . . . , Tn) and T ′ = (T ′

1, . . . , T ′
n), we write T � T ′ if Ti ⊆ T ′

i for all i ∈ [1, n],
and Tj � T ′

j for some j ∈ [1, n].
A database T is a minimal instance weakly complete for Q relative to (Dm, V ) if T is

in RCQ(Q, Dm, V ) and there exists no T ′ � T such that T ′ is in RCQ(Q, Dm, V ). Note
that T ′ can be either a c-instance or a ground instance.

Example 2.4. Recall Dm, V and Q2 from Example 2.2. As argued there, a ground
instance D is minimally strongly complete for Q2 when D consists of a single tuple t
with t[NHS] =‘915-15-321.’ Hence, minimal complete instances may not be unique. In
contrast, D is a minimal instance weakly complete for Q2 if D is empty. As shown in
Example 2.3, the c-instance T of Figure 1 is strongly complete for Q1. However, it is
not minimal: removing t2 − t5 from T yields a smaller complete database.
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2.3. Deciding Relative Completeness

We study three problems associated with relatively complete databases, parameterized
with a query language LQ.

RCDP(LQ): The relatively complete database problem.
INPUT: A query Q in LQ, master data Dm, a set V of CCs, and a partially closed

c-instance T with regard to (Dm, V ).
QUESTION: Is T in RCQ(Q, Dm, V )?

That is, does T have complete information to answer Q?

RCQP(LQ): The relatively complete query problem.
INPUT: Q, Dm, and V as in RCDP.
QUESTION: Is RCQ(Q, Dm, V ) nonempty?

It is to determine whether there exists a c-instance with complete information to
answer Q.

MINP(LQ): The minimality problem.
INPUT: Q, Dm, V , and T as in RCDP.
QUESTION: Is T a minimal c-instance complete for Q relative to (Dm, V )?

This asks whether T is a minimal-size database complete for Q, that is, removing
any tuple from T makes it incomplete.

We study these problems when LQ ranges over the following query languages (e.g.,
see Abiteboul et al. [1995], for the details):

—CQ, the class of conjunctive queries built up from atomic formulas, that is, relation
atoms in the schema R, equality (=) and inequality ( �=), by closing under conjunc-
tion ∧ and existential quantification ∃;

—UCQ, union of conjunctive queries of the form Q1 ∪ · · · ∪ Qk, where, for each i ∈ [1, k],
Qi is in CQ;

—∃FO+, first-order logic (FO) queries built from atomic formulas, by closing under ∧,
disjunction ∨ and ∃;

—FO queries built from atomic formulas using ∧, ∨, negation ¬, ∃, and universal
quantification ∀; and

—FP, an extension of ∃FO+ with an inflational fix-point operator, that is, queries defined
as a collection of rules p(�x) ← p1(�x1), . . . , pm(�xm), where each pi is either an atomic
formula or an IDB predicate.

We also investigate the special case for ground instances. In this setting, RCQP(LQ)
is to decide, given Q in LQ, Dm, and V , whether there exists a ground instance in
RCQ(Q, Dm, V ). Similarly, RCDP(LQ) and MINP(LQ) can be stated for ground instances.

We study these problems when RCQ(Q, Dm, V ) is the set of instances that are
strongly, weakly, or viably complete, in Sections 4, 5, and 6, respectively.

The notations used in this article are summarized in Table II.

3. ANALYSIS OF PARTIALLY CLOSED DATABASES

Before we study the decision problems for relative completeness, we investigate some
basic problems in connection with integrity constraints and partially closed databases.
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Table II. Notations

Symbols Notations
(T , ξ ) c-table, where T is a tableau and ξ (t) is a condition for ∀t ∈ T
μ(T ) valuation: {μ(t) | t ∈ T and ξ (μ(t)) evaluates to true}
T c-instance (T1, . . . , Tn) of schema R

(I, Dm) |= φ a ground instance I and master data Dm satisfy a CCφ

Ext(I, Dm, V ) partially closed extensions of I: {I ′ | I � I ′, (I ′, Dm) |= V }
Mod(T , Dm, V ) {μ(T ) | μ is a valuation and (μ(T ), Dm) |= V }

RCQs(Q, Dm, V )
the set of all strongly complete c-instances T of R for Q with regard to (Dm, V ):

{T | ∀I ∈ Mod(T ), ∀I ′ ∈ Ext(I) (Q(I) = Q(I ′))}
RCQw(Q, Dm, V )

the set of all weakly complete c-instances T of R for Q with regard to (Dm, V ):⋂
I∈Mod(T ) Q(I) = ⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′)

RCQv(Q, Dm, V )
the set of all viably complete c-instances T of R for Q with regard to (Dm, V ):

∃I ∈ Mod(T ) such that for ∀I ′ ∈ Ext(I), Q(I) = Q(I ′).
RCDPs(LQ) the relatively complete database problem in strong (weak or viable)

(RCDPw(LQ) or RCDPv(LQ)) completeness model
RCQPs(LQ) the relatively complete query problem in strong (weak or viable)

(RCQPw(LQ) or RCQPv(LQ)) completeness model
MINPs(LQ)

the minimality problem in strong (weak or viable) completeness model
(MINPw(LQ) or MINPv(LQ))

LQ CQ, UCQ, ∃FO+, FOor FP

The impact of integrity constraints. Several classes of constraints have been used
to specify data consistency, notably, denial constraints and conditional functional de-
pendencies (CFDs) (see Chomicki [2007] and Fan [2008] for surveys). As shown in Fan
and Geerts [2009, 2010b], denial constraints and CFDs can be expressed as CCs de-
fined in Section 2 when LQ is CQ. Hence, we can enforce both relative information
completeness and data consistency using those CCs.

One might want to adopt a class C of constraints that is more powerful than CCs
defined in CQ. However, such C has an immediate impact on the analysis of relative
completeness. For example, it is shown in Fan and Geerts [2009, 2010b] that inclusion
dependencies (INDs) can be expressed as CCs in FO. We show later that, when C
consists of, for example, FDs and INDs, both RCDP(LQ) and RCQP(LQ) are undecidable
for any language LQ, even in the absence of missing values.

We first introduce a couple of notions. In the presence of a set � of constraints
in C, by a partially closed database I, we mean a database that is partially closed
in the usual sense, and I satisfies �. Similarly, partially closed extensions of I
are also required to satisfy the additional constraints in �. More specifically, con-
sider master data Dm, a set V of CCs, a set � of constraints in C, and a database
schema R.

—A ground instance I ofR is said to be partially closed relative to (Dm, V,�) if (Dm, I) |=
V and I |= �. That is, I is partially bounded by Dm via V and I is consistent with
regard to the CCs in V and the additional constraints in �.

—A ground instance I ′ of R is said to be a partially closed extension of I relative to
(Dm, V,�) if I � I ′, (Dm, I ′) |= V , and I ′ |= �.

—A ground instance I of R is said to be complete for a query Q relative to (Dm, V,�) if
it is partially closed and for each partially closed extension I ′ of I, Q(I) = Q(I ′). We
use RCQ(Q, Dm, V,�) to denote the set of ground instances that are complete for a
query Q relative to (Dm, V,�).
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PROPOSITION 3.1. In the presence of both FDs and INDs, for ground instances, RCDP
and RCQP are undecidable even when LQ is CQ, and master data Dm and the set V of
CCs are both empty.

PROOF. To prove Proposition 3.1, it suffices to show that RCDP(CQ) and RCQP(CQ)
are undecidable, since CQ is contained in LQ, when LQ is UCQ, ∃FO+, FO, or FP.

We verify the undecidability of RCDP(CQ) and RCQP(CQ) by reduction from the
implication problem for FDs and INDs. In particular, we consider instances (�,ϕ)
of the implication problem, where � is a set of FDs and INDs defined on a database
schema R, and ϕ is an FD X → Adefined on a relation schema R in R. It is undecidable
to determine, given such (�,ϕ), whether � |= ϕ, that is, whether, for every instance IR
of R, if IR |= �, then IR |= ϕ (see Abiteboul et al. [1995]).

(1) RCDP(CQ). Given an instance (�,ϕ) of the implication problem, we define a Boolean
query Q in CQ as follows:

Q( ) = ∃�x, �y1, �y2, w,w′(R(�x, w, �y1) ∧ R(�x, w′, �y2) ∧ w �= w′),

where �x corresponds to attributes X in R, w and w′ both correspond to attribute A in R,
as specified by the FD ϕ : (X → A) on R, and �y1 and �y2 encode attributes R \ (X ∪ {A}).
Intuitively, for an instance IR of R, the query Q returns true if IR �|= ϕ, that is, when
there exist tuples t1, t2 in IR such that t1[X] = t2[X] but t1[A] �= t2[A]; otherwise, Q
returns false. Moreover, we set Dm and V both to be empty.

Consider an instance I∅ of R consisting of empty relations only. We show that I∅
is in RCQ(Q, Dm,�, V ) if and only if � |= ϕ. First, assume that � |= ϕ. Then, for all
instances of IR of R, if IR |= �, then IR |= ϕ, hence, Q returns false. Therefore, I∅ is
complete for Qrelative to (Dm, V,�). Conversely, assume that � �|= ϕ. Then, there exists
an instance IR of R such that IR |= � but IR �|= ϕ. Obviously, IR is not empty. Then, Q
returns true, which differs from Q(I∅). In addition, IR is a partially closed extension of
I∅ since V is empty. From these, it follows that I∅ is not in RCQ(Q, Dm, V,�).

(2) RCQP(CQ). Given an instance (�,ϕ) of the implication problem, we define a CQ
query Q and a set �′ of INDs and FDs, such that � |= ϕ if and only if RCQ(Q, Dm, V,�′)
is nonempty, where master data Dm and the set V of CCs are empty.

To define �′ and Q, we use a database schema R′ that extends R by adding a new
attribute G to every relation schema in R, where dom(G) is infinite. The schema R′ also
includes the unary relation E that consists of a single attribute of an infinite domain.
The set �′ consists of FDs and INDs constructed as follows.

—For each FD Y → B in �, the FD ([G, Y ] → B) is in �′.
—For each IND R1[Y1] ⊆ R2[Y2] in �, the IND R1[G, Y1] ⊆ R2[G, Y2] is in �′.

Similarly, we rewrite the FD ϕ : X → A as ϕ′ : ([G, X] → A). Intuitively, for each
instance IR′ of R′, if we group tuples of IR′ by the attribute G, then IR′ is partitioned
into a collection of groups Ig, where g ranges over elements in dom(G) that appear in
the G-attribute of IR′ . One can readily verify that IR′ |= �′ if and only if for each group
Ig, Ig |= �. Similarly, IR′ |= ϕ′ if and only if Ig |= ϕ for each group Ig.

The CQ query Q is similar to its counterpart given these facts. It is defined as follows:

Q(z) = E(z) ∧ ∃g, �x, �y1, �y2, w,w′(R(g, �x, w, �y1) ∧ R(g, �x, w′, �y2) ∧ w �= w′).

This query detects whether there exist tuples t1 and t2 violating the FD ϕ′. That is, it
checks whether there exist t1 and t2 from the same group (with the same value in their
G attributes) such that t1 and t2 violate ϕ. If so, then Q returns the instance IE of E.

We next show that � |= ϕ if and only if RCQ(Q, Dm, V,�′) is nonempty. Assume first
that � |= ϕ. Then, one can readily verify that, for every instance IR′ of R′, if IR′ |= �′,
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then Q(IR′) is empty. As a result, every instance IR′ is in RCQ(Q, Dm, V,�′). Conversely,
assume that � �|= ϕ. Then, there exists an instance IR such that IR |= � but IR �|= ϕ.
Assume, by contradiction, that there exists IR′ ∈ RCQ(Q, Dm, V,�′). We construct a
partially closed extension I ′

R′ , as follows. Let g be a distinct value that does not appear
in any G column of IR′ . Define I ′

R′ such that, for each relation S in R, its instance in I ′
R′

is the union of I′ ∪ ({tg}× I), where I′, I are the instances of S in IR′ and IR, respectively,
and tg is a unary tuple with a single attribute G such that t[G] = g. In addition, the
instance I′

E of schema E in I ′
R′ properly contains its counterpart IE in IR′ . Obviously

I ′
R′ |= �′, that is, I ′

R′ is indeed a partially closed extension of IR′ . However, Q(I ′
R′) is I′

E,
which is by no means equal to the answer to Q in IR′ , since the latter is either ∅ or IE.
This contradicts the assumption that RCQ(Q, Dm, V,�′) is nonempty.

Note that, in these proofs, both master data and the set V of CCs are empty, that is,
they are independent of the instance (�,ϕ) of the implication problem considered.

The undecidability result suggests that we consider integrity constraints that are
expressible as CCs in CQ, to focus on the complexity incurred by the analysis of rela-
tive completeness rather than by integrity constraints. As remarked earlier, CCs are
powerful enough to express constraints often used in data cleaning.

Reasoning about c-instances. As remarked earlier, the analysis of relative complete-
ness requires decision procedures for determining some basic problems in connection
with partially closed c-instances, which are stated as follows.

—The consistency problem is to determine, given master data Dm, a set V of CCs and
a c-instance T , whether Mod(T , Dm, V ) is nonempty.

—The extensibility problem is to determine, given master data Dm, a set V of CCs and
a ground instance I, whether Ext(I, Dm, V ) is nonempty, that is, whether I can be
extended without violating V .

In the sequel, we assume that queries are defined over a single relation. This does
not lose generality due to the following lemma. For a database schema R, we denote
by inst(R) the set of all ground instances of R.

LEMMA 3.2. For every database schema R = (R1, . . . , Rn), there exist a single relation
schema R, a linear-time computable bijective function fD from inst(R) to inst(R), a linear-
time computable function fQ: LQ → LQ, and a linear-time computable function fC from
CCs to CCs, such that

(a) for all instances I of R and any query Q ∈ LQ over R, Q(I) = fQ(Q)( fD(I)); and
(b) for every set V of CCs and master data Dm, (I, Dm) |= V if and only if ( fD(I), Dm) |=

fC(V ), where fC(V ) = { fC(ψ) | ψ ∈ V }.
Here, LQ ranges over CQ, UCQ, ∃FO+, FO, and FP.

PROOF. We assume, without loss of generality, that all relations Ri in R correspond
to the same schema R′. Indeed, one can make the relations Ri uniform by renaming
attributes and adding dummy attributes. Consider a distinct attribute AR that takes
values from dom(A) = [1, n]. Define R to be an extension of R′ by adding attribute
(AR : dom(A)). We define fD, fQ, and fC as follows.

(1) Define fD such that, for every instance I = (I1, . . . , In) of R, fD(I) = ⋃
j∈[1,n] Ij ×

{(AR = j)}. The function fD is clearly bijective.
(2) For a query language LQ, define fQ such that, given a query Q ∈ LQ defined on

R, fQ(Q) substitutes R(AR = i, �x) for every occurrence of Ri(�x) in Q, that is, it
replaces every occurrence of Ri with a Project-Select expression πattr(Ri )(σAR=i(R)),
where attr(Ri) denotes the set of attributes in Ri.
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Fig. 2. Ground relations used in the lower-bound proofs of Proposition 3.3.

(3) Similarly, we define fC such that, for every CC ψ , fC(ψ) substitutes R(AR = i, �x) for
every occurrence of Ri(�x) in ψ .

It is then readily verified that (a) Q(I) = fQ(Q)( fD(I)) and (b) for all master data
Dm, (I, Dm) |= ψ if and only if ( fD(I), Dm) |= fC(ψ), and then (I, Dm) |= V if and only if
( fD(I), Dm) |= fC(V ). Furthermore, fD, fQ, and fC can be computed in linear time.

PROPOSITION 3.3. The consistency and extensibility problems are both �
p
2 -complete.

The complexity is unchanged even in the absence of local conditions in c-instances and
when master data Dm is fixed.

PROOF. We show that the consistency problem and the extensibility problem are both
�

p
2 -complete.

(1) The consistency problem. We show that, given master data Dm, a set V of CCs and
a c-instance T , it is �

p
2 -complete to decide whether Mod(T , Dm, V ) is nonempty.

Lower bound. We show that the complement of the consistency problem, that is, the
problem to decide whether Mod(T , Dm, V ) is empty, is �

p
2 -hard. From this, it follows

that the consistency problem is �
p
2 -hard. We verify the �

p
2 -hardness by reduction from

the ∀∗∃∗3SAT problem, which is known to be �
p
2 -complete (see Papadimitriou [1994]).

The ∀∗∃∗3SAT problem is to determine, given a sentence ϕ = ∀X∃Yψ(X, Y ), whether ϕ
is true. Here X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and ψ is an instance of 3SAT, that is,
ψ = C1 ∧ · · · ∧ Cr and, for each i ∈ [1, r], clause Ci is of the form �i

1 ∨ �i
2 ∨ �i

3, where for
each l ∈ [1, 3], �i

l is either a variable or the negation of a variable in X ∪ Y .
Given ϕ = ∀X∃Yψ(X, Y ), we define a database schema R, a c-instance T of R, master

data Dm, and a set V of CCs, such that ϕ is true if and only if Mod(T , Dm, V ) is empty.
We construct R, T , Dm and V as follows.

(a) The database schema R consists of five relation schemas: R(0,1)(X), R∨(A1, A2, B),
R∧(A1, A2, B), R¬(A, Ā), and RX(X1, . . . , Xn). Intuitively, R(0,1)(X), R∨(A1, A2, B),
R∧(A1, A2, B), and R¬(A, Ā) are to store constant relations encoding truth values, dis-
junction, conjunction, and negation of variables, respectively. We use RX(X1, . . . , Xn) to
generate a truth assignment for variables in X.

(b) We construct a c-instance T = (I(0,1), I∨, I∧, I¬, TX) in which I(0,1), I∨, I∧, and I¬ are
ground relations, as shown in Figure 2, to encode the Boolean domain, disjunction,
conjunction, and negation, respectively, such that ψ can be expressed in CQ in terms of
these relations, while TX = ({(x1, . . . , xn)}, true) is a c-table defined in terms of variables
in X, without any local conditions.

(c) Master data Dm is specified by five relation schemas: Rm
(0,1)(X), Rm

∨ (A1, A2, B),
Rm

∧ (A1, A2, B), Rm
¬ (A, Ā), and Rm

∅ (W). Intuitively, Rm
(0,1), Rm

∨ , Rm
∧ , and Rm

¬ are the same
as R(0,1)(X), R∨(A1, A2, B), R∧(A1, A2, B), and R¬(A, Ā) to store constant relations en-
coding Boolean values, disjunction, conjunction, and negation of variables, respectively
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(denoted by Rm
(0,1) = R(0,1), Rm

∨ = R∨, Rm
∧ = R∧, Rm

¬ = R¬, respectively). The master data
instances consist of Im

(0,1) = I(0,1), Im
∨ = I∨, Im

∧ = I∧, Im
¬ = I¬, and Im

∅ = ∅.

(d) The set V consists of the following CCs:

—R(0,1) ⊆ Rm
(0,1), R∨ ⊆ Rm

∨ , R∧ ⊆ Rm
∧ , R¬ ⊆ Rm

¬ ; that is, the tables in T encoding the
Boolean values and operations are fixed;

—for each i ∈ [1, n], ∃x1 . . . xi−1xi+1 . . . xnRX(x1, . . . , xn) ⊆ Rm
(0,1); these ensure that each

instance of RX encodes a valid truth assignment for X;
—q(w) ⊆ Rm

∅ (w), with q(w) = ∃�x, �y (QX(�x) ∧ QY (�y) ∧ Qψ (�x, �y, w) ∧ w = 1). Here, QX(�x) =
RX(x1, . . . , xn) picks a truth assignment for X, and QY (�y) is R(0,1)(y1) ∧ · · · ∧ R(0,1)(ym)
in CQ, that is, it constructs all possible truth assignments of variables in Y by
means of m− 1 Cartesian Products of I(0,1). Furthermore, given a truth assignment
(μX, μY ) of (X, Y ), the subquery Qψ (μX, μY , w) is to evaluate ψ(μX, μY ) by recording
its truth value in w, which is either 0 or 1. While CQ supports neither disjunction nor
negation, Qψ can encode ψ in CQ by leveraging relations I¬, I∨, and I∧. The query
q(w) returns {(1)} if and only if ψ(μX, μY ) evaluates true, where μX and μY are the
truth assignment selected by QX(�x) and QY (�y), respectively.

Intuitively, for each ground instance I = (I(0,1), I∨, I∧, I¬, IX) of T , (I, Dm) |= V if and
only if, under the truth assignment μX of X variables encoded by IX, there exists no
truth assignment μY of Y variables that makes ψ true.

We next show that ϕ is false if and only if Mod(T , Dm, V ) is not empty.

⇒ First, assume that ϕ is false. Then, there exists a truth assignment μ0
X of X such

that there exists no truth assignment μY that makes ψ(μ0
X, μY ) true. Let Iμ = μ(T ) =

(I(0,1), I∨, I∧, I¬, μ(TX)) such that μ(TX) agrees with μ0
X. As discussed earlier, Iμ is in

Mod(T , Dm, V ). Hence, Mod(T , Dm, V ) is nonempty.

⇐ Conversely, suppose that ϕ is true. Then, for all truth assignments μX of X, there
exists a truth assignment μY such that ψ(μX, μY ) evaluates to true. Hence, for all
ground instances Iμ = (I(0,1), I∨, I∧, I¬, μ(TX)), where μ sets xi to 0 or 1 (thus all possible
truth assignments of X are considered), q(Iμ) returns {(1)}. This violates the CC q(w) ⊆
Rm

∅ (w). Hence, Mod(T , Dm, V ) is empty.

Upper bound. We next provide a �
p
2 algorithm that, given master data Dm, a set V of

CCs and a c-instance T as input, returns “yes” if Mod(T , Dm, V ) is nonempty.
By Lemma 3.2, we assume without loss of generality that R consists of a single rela-

tion schema and T is a c-table (T , ξ ). To develop the algorithm, we need the following
notations.

—We define Adom to be S ∪ New ∪ d f , where (a) S consists of all constants that
appear in T , Dm, or V ; (b) New is a set of fresh values that are not in S, one for
each variable in T or V ; and (c) d f is the set including all the values in the finite
domains of attributes A in the relation schema that have a finite domain. Intuitively,
Adom consists of all constants in the active domains of T , Dm, or V and all constants
appearing in the domains of attributes with finite domain. We will show that, for
consistency checking, it suffices to consider valuations of a c-table drawing values
from Adom only.

—A valuation μ of a c-table (T , ξ ) on Adom is a valuation of (T , ξ ) in which, for each
variable x in T , μ(x) is in Adom and μ is the identity mapping on constants in T .
Furthermore, if x appears in an attribute of finite domain, μ(x) takes values in this
finite domain. Note that finite domain values are included in Adom. We use μ(T ) to
denote the ground instance {μ(t) | t ∈ T , ξ (μ(t)) evaluates to true}.
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—We use ModAdom(T , Dm, V ) to denote the set {μ(T ) | μ is a valuation on Adom, and
(μ(T ), Dm) |= V }. We also write ModAdom(T , Dm, V ) as ModAdom(T ) if Dm and V are
clear from the context.

Using these notations, we give the algorithm as follows. It checks whether there
exists a valuation μ of (T , ξ ) such that (μ(T ), Dm) |= V .

(1) Guess a valuation μ of (T , ξ ) on Adom.
(2) Check whether (μ(T ), Dm) |= V . If so, return “yes”; otherwise, reject the guess.

The algorithm is in �
p
2 since it involves guessing a valuation (in NP) combined with

a call to a coNP oracle in Step 2. Step 2 is in coNP since the CCs in V are defined with
CQ queries; hence, checking whether (μ(T ), Dm) �|= V can be done in NP as follows.

(1) Guess a constraint q(R) ⊆ p(Rm) in V and let (Tq, uq) be the tableau representing
q; guess a valuation μq of variables in Tq that takes values from μ(T ).

(2) Check whether μq(uq) /∈ p(Dm); if so, return “no”; otherwise, reject the guess.

Obviously, the algorithm returns “no” if and only if there exists a constraint that is
not satisfied by μ(T ) and Dm. Moreover, the algorithm is in NP since its second step is
in PTIME. Hence, the consistency problem is in �

p
2 = NPNP = NPcoNP.

The correctness of the algorithm for consistency checking is ensured by the following
property: Mod(T , Dm, V ) is nonempty if and only if ModAdom(T , Dm, V ) is nonempty.
Hence, the algorithm returns “yes” only when Mod(T , Dm, V ) is nonempty.

We next verify the property. If ModAdom(T , Dm, V ) is nonempty, then there exists
a valuation μ of (T , ξ ) on Adom such that (μ(T ), Dm) |= V . Then, obviously μ(T ) is
in Mod(T , Dm, V ); hence, Mod(T , Dm, V ) is nonempty. Conversely, suppose that there
exists an instance I in Mod(T , Dm, V ). Then, there exists a valuation ν of (T , ξ ) such
that I = ν(T ). We next turn ν into a valuation μ of (T , ξ ) on Adom, showing that
ModAdom(T , Dm, V ) is nonempty. More precisely, we define μ such that, for every variable
x in T , μ(x) = ν(x) if ν(x) ∈ Adom; otherwise, μ(x) takes a value in New, such that it
preserves the equality on variables, that is, for all other variables y in T , μ(x) = μ(y) if
and only if ν(x) = ν(y). This is possible since, by the definition of New, this set contains
new constants for every variable in T . We need to verify that (μ(T ), Dm) |= V . Let
q(μ(T )) ⊆ p(Dm) be any CC in V , and (Tq, uq) be the tableau representing q. Then,
for each valuation μ′

q of variables in Tq that draws values from μ(T ), by the definition
of μ(T ), there exists a valuation μq of the variables such that μq agrees with μ′

q on
variables that are not assigned a New-value, but take values from ν(T ) outside of Adom,
for the remaining variables. Recall that ν(T ) ∈ Mod(T , Dm, V ). Thus, μq(uq) is in p(Dm).
One can readily verify that μ′

q(uq) is in p(Dm). As a result, (μ(T ), Dm) |= V ; hence, μ(T )
is in ModAdom(T , Dm, V ).

(2) The extensibility problem. We next show that, given Dm, V , and a ground instance
I, it is �

p
2 -complete to decide whether Ext(I, Dm, V ) is nonempty.

Lower bound. We show that it is �
p
2 -hard to decide whether Ext(I, Dm, V ) is empty.

This is again verified by reduction from the ∀∗∃∗3SAT problem. Given an instance ϕ =
∀X∃Yψ(X, Y ) of ∀∗∃∗3SAT, we use the same R, Dm, and V given in (1), and let I0 =
(I(0,1), I∨, I∧, I¬, I∅

X), where I∅
X is empty.

We next show that ϕ is true if and only if Ext(I0, Dm, V ) is empty.

⇒ First, assume that ϕ is true. Then, for all truth assignments μX of X, there exists
a truth assignment μY of Y such that ψ(μX, μY ) evaluates to true. Hence, for all
extensions I ′

0 = (I′
(0,1), I′

∨, I′
∧, I′

¬, I′
X) of I0, as long as I′

(0,1) = I(0,1), I′
∨ = I∨, I′

∧ = I∧,
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I′
¬ = I¬, and I′

X encodes a truth assignment of X, q(I′
X) returns {(1)}. This, however,

violates the CC q(w) ⊆ Rm
∅ (w); hence, Ext(I0, Dm, V ) is empty.

⇐ Conversely, assume that ϕ is false. Let I ′
0 = (I(0,1), I∨, I∧, I¬, I0

X), where I0
X is an

instance of RX consisting of a single truth assignment μ0
X of X such that ∃Yψ(μ0

X, Y ) is
false. Then, along the same lines as the previous proof, one can easily verify that I ′

0 is
in Ext(I0, Dm, V ).

Upper bound. We now develop a �
p
2 algorithm that takes master data Dm, a set V of

CCs, and a ground instance I as input, and returns “yes” if Ext(I, Dm, V ) is not empty.
To present the algorithm, we assume without loss of generality that I is an instance

of a relation schema R, by Lemma 3.2. Recall the definition of Adom given in the upper
bound proof for the consistency problem, except that T is replaced with the ground
instance I. The algorithm works as follows.

(1) Guess a single tuple t of R with values from Adom that does not belong to I.
(2) Check whether (I ∪ {t}, Dm) |= V . If so, return “yes”; otherwise, reject the guess.

Following the same argument as the upper bound proof for the consistency problem,
one can verify that the algorithm is in �

p
2 . To show that the algorithm is correct, observe

the following. (a) There exists an extension I′ in Ext(I, Dm, V ) if and only if there exists
a single tuple t such that I ∪ {t} is in Ext(I, Dm, V ). This can be easily verified based
on the monotonicity of CQ queries that define the CCs in V . (b) There exists a tuple
t such that I ∪ {t} is in Ext(I, Dm, V ) if and only if there exists a tuple t′ with values
in Adom such that I ∪ {t′} is in Ext(I, Dm, V ). This can be verified along the same lines
as the upper bound proof for the consistency problem given what has been presented.
Putting these together, we conclude that the algorithm returns “yes” if Ext(I, Dm, V ) is
nonempty.

4. STRONG RELATIVE INFORMATION COMPLETENESS

We next study RCDP, RCQP, and MINP for strongly relatively complete databases, that
is, databases in which neither missing values nor missing tuples prevent them from
having complete information for answering queries relative to master data. We refer to
these problems as RCDPs, RCQPs, and MINPs, respectively. Recall that RCQs(Q, Dm, V )
denotes the set of instances that are strongly complete for Q with regard to (Dm, V ).

We establish complexity bounds on these problems for c-instances. For ground in-
stances, we give complexity results for MINPs(LQ) not considered in Fan and Geerts
[2010b], and for the cases of RCQPs(LQ) that were left open in Fan and Geerts [2010b].

Our main conclusion about the strong completeness model is that missing values
make our lives harder, but not too much.

4.1. The Relatively Complete Database Problem in the Strong Model

This problem is to decide whether a given database is relatively complete for a query.
It is known that, for ground instances, RCDPs(LQ) is undecidable when LQ is FO
or FP, and it is �

p
2 -complete when LQ ranges over CQ, UCQ, and ∃FO+ [Fan and

Geerts 2009]. The following result tells us that the presence of missing values does
not complicate the analysis: all the results for ground instances remain the same for
c-instances.

In practice, master data Dm and the set V of CCs are often predefined and fixed,
and only databases and user queries vary. One might think that RCDPs would become
simpler in this setting. This is not the case, however: the complexity bounds remain
intact when Dm and V are fixed.
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THEOREM 4.1. For c-instances, RCDPs(LQ) is

—undecidable when LQ is either FO or FP, and
—�

p
2 -complete when LQ is CQ, UCQ, or ∃FO+.

The complexity bounds remain unchanged when master data Dm and the set V of CCs
are fixed.

PROOF. We first show that RCDPs(LQ) is undecidable when LQ is FO or FP. We then
show that the problem becomes �

p
2 -complete when LQ is CQ, UCQ, or ∃FO+.

(1) When LQ is FO or FP. The RCDPs(FO) and RCDPs(FP) for ground instances have
been proved to be undecidable with fixed Dm and CCs by reduction from the satisfi-
ability problem of FO and the emptiness problem for 2-head DFA, respectively (The-
orem 3.1 [Fan and Geerts 2010b]; see the details of these two problems in the proofs
of Theorem 5.1(2) and Lemma 4.6, respectively). This undecidability carries over to
RCDPs(FO) and RCDPs(FP) for c-instances since ground instances are also c-instances.

(2) When LQ is CQ, UCQ, or ∃FO+. We next show that RCDPs(LQ) is �
p
2 -complete when

LQ is CQ, UCQ, or ∃FO+.

Lower bound. It is known that RCDPs(CQ) for ground instances is �
p
2 -hard with fixed

master data and CCs by reduction from the ∀∗∃∗3SAT problem (Theorem 3.6 [Fan and
Geerts 2010b]; see the details of the latter problem in Proposition 3.3(1)). The lower
bound thus carries over since ground instances are c-instances.

Upper bound. We next show that RCDPs(CQ), RCDPs(UCQ), and RCDPs(∃FO+) are all
in �

p
2 for c-instances. We first provide a �

p
2 algorithm for testing strongly complete

c-instances for CQ queries. Later, we show how the algorithm can be extended to UCQ
and ∃FO+. We first present the algorithm for RCDPs(CQ).

RCDPs(CQ). To show that RCDPs(CQ) is in �
p
2 , we first provide a characterization of c-

instances that are strongly complete for CQ queries. Based on the characterization, we
then provide a �

p
2 algorithm for testing strongly complete c-instances for CQ queries.

Consider a CQ query Q, master data Dm, a set V of CCs and a c-instance T = (T , ξ ).
By Lemma 3.2, we assume, without loss of generality, that Q is defined over a relation
schema R, and T = (T , ξ ) is a c-table of R.

The characterization is defined in terms of the following notations.

—The CQ query Q can be expressed as a tableau query (TQ, uQ), where TQ denotes
atomic formulas in Q and uQ is the output summary (e.g., see Abiteboul et al. [1995]
for details). Observe that TQ can be regarded as a c-table without local conditions.

—Similarly, we define a set of constants as in the proof of Proposition 3.3(1), also
referred to as Adom, including constants in Q, T , Dm or V , new distinct values in
New that are not in Q, T , Dm, and V , one for each variable in Q, T , or V , and a set of
constants d f corresponding to constants in the domains of finite domain attributes.
It differs from its counterpart in the proof of Proposition 3.3 in that it includes
constants in query Q.

—Furthermore, a ground instance I of R is said to be bounded by (Dm, V ) if, for each
I′ ∈ ModAdom(I ∪ TQ, Dm, V ), Q(I) = Q(I′) [Fan and Geerts 2010b].

The following lemma characterizes the strongly complete c-instances for CQ queries.

LEMMA 4.2. For every query Q in CQ, master data Dm, set V of CCs, and c-instance
(T , ξ ), (T , ξ ) is in RCQs(Q, Dm, V ) if and only if, for each I ∈ ModAdom(T , Dm, V ), I is
bounded by (Dm, V ).
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PROOF. It suffices to show the following. (1) For each ground instance I of R, I is in
RCQs(Q, Dm, V ) if and only if it is bounded by (Dm, V ). (2) The c-instance (T , ξ ) is in
RCQs(Q, Dm, V ) if and only if, for each I ∈ ModAdom(T , Dm, V ), I is in RCQs(Q, Dm, V ).
(1) We first show that I is in RCQs(Q, Dm, V ) if and only if , for each I′ ∈ ModAdom(I∪TQ),
Q(I) = Q(I′). First, suppose that I is complete for Q. Then, for every I′ ∈ Ext(I),
Q(I) = Q(I′). In particular, for every I′ ∈ ModAdom(I ∪ TQ), Q(I) = Q(I′) since I′ is also
in Ext(I). Conversely, suppose that I is not complete for Q. Then, there must exist an
I′ ∈ Ext(I) such that Q(I) �= Q(I′). More specifically, since Q is monotonic, there must
exist a valuation ν of TQ that draws values from I′, such that Q(ν(TQ)) �⊆ Q(I). Define a
valuation ν ′ such that, for every variable x in TQ, ν ′(x) is a distinct value in New if ν(x)
is not in Adom, and ν ′(x) = ν(x) otherwise. Observe the following. (a) The valuation ν ′
draws values from Adom. (b) Q(ν ′(TQ)) �⊆ Q(I), by the choice of the values in New and
the assumption that Q(ν(TQ)) �⊆ Q(I). (c) (I ∪ ν ′(TQ), Dm) |= V . This follows from the
assumption that I′ ∈ Ext(I), I ∪ ν(TQ) ⊆ I′, and (I′, Dm) |= V . We then also have that
(I ∪ ν(TQ), Dm) |= V since the CCs in V are defined in terms of monotonic CQ queries.
Then, again by the choice of the values in New, (I ∪ ν ′(TQ), Dm) |= V . Putting (a), (b),
and (c) together, we have that I ∪ ν ′(TQ) is in ModAdom(I ∪ TQ) but Q(I) �= Q(I ∪ ν ′(TQ)).

(2) We next show that (T , ξ ) is in RCQs(Q, Dm, V ) if and only if, for each I ∈ ModAdom(T ,
Dm, V ), I is in Mod(T , Dm, V ). First, assume that (T , ξ ) is in RCQs(Q, Dm, V ). Then, by
the definition of strongly complete c-instances, all ground instances in Mod(T , Dm, V )
are complete for Q relative to (Dm, V ), including those in I ∈ ModAdom(T , Dm, V ).
Conversely, assume that (T , ξ ) is not in RCQs(Q, Dm, V ). Then, there exists a valuation
μ of T such that I1 = μ(T ), I1 ∈ Mod(T , Dm, V ), and there exists I2 ∈ Ext(I1) such that
Q(I1) � Q(I2). Then, along the same lines as the argument given for (1), one can verify
that there exist valuations μ′ and ν ′ that draw values from Adom such that I′

1 = μ′(T ),
I′
1 ∈ Mod(T , Dm, V ), I′

2 = I′
1 ∪ ν ′(TQ), I′

2 ∈ Ext(I′
1), but Q(I′

1) � Q(I′
2). The valuations

μ′ and ν ′ are constructed by leveraging the choice of the values in New. That is, there
exists an I ∈ ModAdom(T , Dm, V ) such that I is not complete for Q relative to (Dm, V ).

With this characterization in place, we now present a �
p
2 algorithm for the comple-

ment of our problem: given (T , ξ ), Dm, V , and CQ query Q, it returns “yes” if there exists
a database I ∈ ModAdom(T , Dm, V ) and a tuple s such that s �∈ Q(I) but s ∈ Q(I′) for
some I′ ∈ ModAdom(I ∪ TQ); otherwise, it returns “no.” More specifically, the algorithm
does the following:

(1) Guess a valuation μ of (T , ξ ) on Adom, a valuation ν for TQ taking values from
Adom, and a tuple s of RQ, where RQ is the schema of the query result Q(D).

(2) Check:
(a) whether μ(T ) ∈ Mod(T , Dm, V ); if so, continue; otherwise, reject the current

guess; this test can be done in coNP;
(b) whether (μ(T ) ∪ ν(TQ)) ∈ Ext(μ(T ), Dm, V ); if so, continue; otherwise, reject the

current guess; this test can be done in coNP;
(c) whether s /∈ Q(μ(T )); if so, continue; otherwise, reject the current guess; this

test can be done in coNP;
(d) whether s ∈ Q(μ(T ) ∪ ν(TQ)); if so, return “yes”; otherwise, reject the current

guess; this test can be done in NP

The complexity of the algorithm is thus in �
p
2 ; hence, RCDPs(CQ) is in �

p
2 . We

now verify the correctness of the algorithm. Clearly, the algorithm returns “yes” if a
counterexample to the strong completeness of (T , ξ ) for Q is found. The counterexample
consists of I = μ(T ) and I′ = I ∪ ν(TQ), where μ and ν are the guesses that lead to
a successful run of the algorithm. Conversely, we show that if (T , ξ ) is incomplete
for Q relative to (Dm, V ), then the algorithm returns “yes.” By Lemma 4.2, if (T , ξ ) is
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incomplete, then there exist a valuation μ of T with Adom and a valuation ν of TQ with
Adom, such that I = μ(T ), I′ = I ∪ ν(TQ), I ∈ ModAdom(T , Dm, V ), and I′ ∈ ModAdom(I ∪
ν(TQ), Dm, V ), but there exists a tuple s ∈ Q(I′) and s �∈ Q(I). Such valuations μ and ν
can be guessed by the algorithm. That is, the algorithm is able to find a counterexample.

RCDP(UCQ). We next show that it is in �
p
2 to decide whether a c-instance is strongly

complete for queries in UCQ. Consider a query Q in UCQ: Q1 ∪ · · · ∪ Qk, where Qi is
a query in CQ for each i ∈ [1, k]. Consider master data Dm, a set V of CCs, and a
c-instance (T , ξ ). We represent Qi as a tableau query (Ti, ui) for i ∈ [1, k]. We revise
the notion of bounded databases for UCQ queries as follows: a ground instance I of R
is said to be bounded by (Dm, V ) if, for each i ∈ [1, k] and each I′ ∈ ModAdom(I ∪ Ti),
Q(I) = Q(I′).

Along the same lines as Lemma 4.2, we have the following characterization for
strongly complete c-instances for UCQ queries.

LEMMA 4.3. For every query Q in UCQ, master data Dm, any set V of CCs, and any c-
instance (T , ξ ), (T , ξ ) is in RCQs(Q, Dm, V ) if and only if, for each I ∈ ModAdom(T , Dm, V ),
I is bounded by (Dm, V ).

PROOF. It suffices to show that, for a UCQ query Q = Q1 ∪ · · · ∪ Qk, (1) for each
ground instance I of R, I is complete for Q relative to (Dm, V ) if and only if it is
bounded by (Dm, V ), that is, for each i ∈ [1, k] and each I′ ∈ ModAdom(I ∪ Ti), Q(I) =
Q(I′), where (Ti, ui) is the tableau representation of Qi; and (2) the c-instance (T , ξ )
is in RCQs(Q, Dm, V ) if and only if, for each I ∈ ModAdom(T , Dm, V ), I is complete
for Q relative to (Dm, V ). These can be verified along the same lines as the proof of
Lemma 4.2.

With this characterization, we extend the �
p
2 algorithm given earlier to UCQ queries.

More specifically, the algorithm presented earlier needs only a minor modification: In
Step 2, we additionally guess one of the component queries Qi in Q and a valuation
νi of Qi ’s tableau Ti; furthermore, Steps 2(b) and 2(d) use νi(Ti) rather than ν(T ). In
other words, the algorithm tries to find a Qi and instances I ∈ ModAdom(T , Dm, V ) and
I′ ∈ ModAdom(I ∪ νi(Ti), Dm, V ) for which Q(I) � Q(I′). That is, the algorithm verifies
whether there is an I ∈ ModAdom(T , Dm, V ) that is not bounded by (Dm, V ).

This modification does not affect the complexity of the algorithm; thus, it remains
in �

p
2 . Steps 2(c) and 2(d) remain in coNP and NP, respectively, for UCQ queries. The

correctness of the algorithm can be verified along the same lines as its counterpart
for RCDPs(CQ), based on Lemma 4.2. This shows that it is in �

p
2 time to determine

whether a c-instance is strongly complete for a query in UCQ with regard to (Dm, V ).

RCDP(∃FO+). We show that the �
p
2 algorithm given earlier can be extended to

∃FO+queries. A query Q in ∃FO+ is equivalent to a possibly exponentially long union
of CQ queries. Therefore, an unfolding of the query will bring us beyond �

p
2 . However,

we can avoid unfolding Q by replacing the guess in Step 2 by obtaining a single CQ by
guessing disjunctions in Q. As before, this modification does not affect the complexity,
as Steps 2(c) and (d) remain in coNP and NP, respectively, for ∃FO+queries. Putting
these together, we have a �

p
2 algorithm for checking RCDPs(∃FO+).

This completes the proof of Theorem 4.1.

Theorem 4.1 is verified for c-instances T for which Mod(T ) is nonempty. We next
show that the complexity bounds remain unchanged without assuming that Mod(T )
is nonempty. This obviously holds when LQ is FO or FP, for which RCDPs is unde-
cidable. For CQ, UCQ, and ∃FO+, we need an extra step to check whether Mod(T ) is
empty; if so, the algorithm terminates with “yes”; otherwise, it checks RCDPs in �

p
2 . By
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Proposition 3.3, the initial step is also in �
p
2 . Hence, RCDPs remains in �

p
2 for CQ,

UCQ, and ∃FO+. In other words, the assumption has no impact on the complexity of
RCDPs.

4.2. The Relatively Complete Query Problem in the Strong Model

This problem is to determine whether a given query has a relatively complete database
at all. For RCQPs(LQ), we do not have to worry about missing values. RCQPs(LQ) for
c-instances and its counterpart for ground instances coincide.

LEMMA 4.4. For every schema R, query Q, master data Dm, set V of CCs, and number
K, there exists a c-instance T of R such that |T | ≤ K and T ∈ RCQs(Q, Dm, V ) if and
only if there exists a ground instance I of R such that |I| ≤ K and I ∈ RCQs(Q, Dm, V ).

PROOF. First, assume that there exists a c-instance T ∈ RCQs(Q, Dm, V ), with
|T | ≤ K. Then, by the definition of strongly complete c-instances, Mod(T , Dm, V ) �= ∅;
moreover, for each instance I ∈ Mod(T , Dm, V ), I is complete for Q relative to (Dm, V ).
Furthermore, |I| ≤ K since I = μ(T ) for a valuation of T . Conversely, assume that
there exists an instance I in RCQs(Q, Dm, V ) with |I| ≤ K. Then, I is also a c-instance
itself, which is complete for Q relative to (Dm, V ).

Consequently, one needs to consider only RCQPs(LQ) for ground instances. Neverthe-
less, for ground instances, the complexity bounds on RCQPs(LQ) were left open in Fan
and Geerts [2009] when LQ is FO or FP, and when CCs are expressed in CQ. RCQP(LQ)
was shown undecidable in Fan and Geerts [2009] by using CCs expressed as fixed FO
or FP queries. We settle these cases here.

THEOREM 4.5. For c-instances, RCQPs(LQ) is

—undecidable when LQ is FO or FP; and
—NEXPTIME-complete when LQ is CQ, UCQ, or ∃FO+.

The complexity bounds remain unchanged when Dm and V are fixed.

PROOF. In light of Lemma 4.4, it suffices to consider ground instances of R.

(1) When LQ is FO. We show that RCQPs(FO) is undecidable by reduction from the sat-
isfiability problem for FO, which is undecidable (see Trakhtenbrot [1950] and Abiteboul
et al. [1995]). Given an FO query q, we construct master data Dm, a set V of CCs, and
an FO query Q, such that q is satisfiable if and only if RCQs(Q, Dm, V ) is empty.

We now define Dm, V , and Q. The reduction does not rely on master data, that is, V
and Dm are empty. To define Q, by Lemma 3.2, assume without loss of generality that
q is defined over a relation schema R. We define another schema R′, where R′ extends
R by adding an extra attribute A with an infinite domain. We define Q as the following
query over R′:

Q(I) =
{∅ if ∀a(q(πR(σA=a(I))) = ∅)

I otherwise.

We show that q is satisfiable if and only if RCQs(Q, Dm, V ) is empty.

⇒ First, suppose that q is satisfiable, and let I be an instance of R such that q(I) �= ∅.
For each instance I1 of R′, define I2 = I1 ∪ ({A = b} × I) ∪ {t}, where b is a distinct
constant not appearing in I1, and t is a tuple not in I1 and with t[A] �= b. Here, t ensures
that I1 �= I2 even when I is empty. Then, I2 is a partially closed extension of I1 but
Q(I1) �= Q(I2). Q(I2) = I2, but Q(I1) �= I2 no matter whether Q(I1) = I1 or Q(I1) = ∅.
Thus, I1 is not in RCQs(Q, Dm, V ); hence, RCQs(Q, Dm, V ) is empty.
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⇐ Conversely, if q is not satisfiable, then Q(I) = ∅ for every instance I of R′. Thus,
RCQs(Q, Dm, V ) is not empty, since every instance of R′ is relatively complete for Q.

(2) When LQ is FP. To show that RCQPs(FP) is undecidable, we first prove the unde-
cidability of the following problem, from which we will give a reduction to RCQPs(FP).

The satisfiability problem for FP in the presence of FDs is to determine, given an FP
query p defined on schema R and a set � of FDs defined on R, whether there exists
an instance I of R such that I |= � and p(I) is nonempty. The undecidability of this
problem was claimed in Levy et al. [1993]. We now provide a proof for a stronger result
in that the set � of FDs can be assumed to be fixed.

LEMMA 4.6. The satisfiability problem of FP is undecidable in the presence of a fixed
set of FDs.

PROOF. We show the undecidability by reduction from the emptiness problem for
deterministic finite 2-head automata, which is known to be undecidable Spielmann
[2000]. Our proof closely follows the reduction presented in Spielmann [2000, Theo-
rem 3.3.1], which shows that the satisfiability of the existential fragment of transitive-
closure logic, E+TC, is undecidable over a schema having at least two nonnullary relation
schemas, one being a function symbol. Although E+TC allows the negation of atomic ex-
pression as opposed to FP, the undecidability proof only uses a very restricted form of
negation, which can be simulated using �= and a fixed set of FDs.

We start with a review of necessary definitions from Spielmann [2000].
A deterministic finite 2-head automaton (2-head DFA) is a quintuple A =

(S, �,�, s0, sacc), consisting of a finite set of states S, an input alphabet � = {0, 1},
an initial state s0, an accepting state sacc, and a transition function � : S × �ε × �ε →
S × {0,+1} × {0,+1}, where �ε = � ∪ {ε}.

A configuration of A is a triple (s, w1, w2) ∈ S × �∗ × �∗, representing that A is in
state s, and the first and second head of A are positioned on the first symbol of w1
and w2, respectively. On an input string w ∈ �∗, A starts from the initial configuration
(s0, w,w); the successor configuration is defined as usual.

A 2-head DFA A accepts w if it can reach a configuration (sacc, w1, w2) from the initial
configuration for w; otherwise, A rejects w. The language accepted by A is denoted by
L(A).

The emptiness problem for 2-head DFAs is to determine, given a 2-head DFA A,
whether L(A) is empty.

Given a 2-head DFA A = (S, �, δ, s0, sacc), we define a schema R, an FP-query �, and
a fixed set � of FDs over R. We show that L(A) is nonempty if and only if there exists
an instance I of R such that (i) I |= � and (ii) �(I) is nonempty.

(a) The database schema R consists of two relations P(V, A) and S(W, A1, A2). Intu-
itively, P(V, A) and S(W, A1, A2) are to store constant relations, encoding a word w in
�∗. More specifically, an instance I = (IP, IS) of R represents a string w ∈ �∗ such
that (i) elements in σV=1(IP) represent the positions in w where a 1 occurs; (ii) σV =0(IP)
records those positions in w that are 0; and (iii) IS encodes a successor relation over
these positions in w by πA1,A2 (σA1 �=A2 (IS)) ∪ πA1,A2 (σA1=A2∧W=1(IS)), in which the last part
identifies the final position in the successor relation.

We denote σV=1(P) ∪ σV=0(P) by FP query �P and πA1,A2 (σA1 �=A2 (S)) ∪
πA1,A2 (σA1=A2∧W=1(S)) by FP query �S.

(b) We will use three FDs to ensure that we only consider those instances of P and
S that represent a word in �∗, called well-formed instances of P and S. An instance
I = (IP, IS) is well formed if (i) σV=1(IP) and σV=0(IP) are disjoint (i.e., a string can have
only one letter at each position); and πA1,A2 (σA1 �=A2 (IS))∪ πA1,A2 (σA1=A2∧W=1(IS)) must (ii)
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be a function and (iii) contain a unique tuple of the form (k, k) for some constant k
indicating the final position.

To ensure this, we require the presence of a tuple (1, k, k) in IS. We also require
that any instance IS of S contains a tuple of the form (w, 0, i), where 0 represents the
initial position and i is some constant. The latter two requirements will be ensured by
FP-queries �ini and �fin, respectively, to be defined shortly.

More specifically, the conditions (i) through (iii) will be enforced by the following set
� of FDs:

—A → V , enforcing that, for every instance I ′ = (I′
P, I′

S) of R such that I ′ |= �,
condition (i) is satisfied for I′

P .
—A1 → A2, ensuring that πA1,A2 (I

′
S) encodes a function; hence, condition (ii) is satisfied.

—W → A1, A2, ensuring that there can be at most one tuple with its W-attribute set to
1 in I′

S. As a result, πA1,A2 (σA1=A2∧W=1(I′
S)) contains at most one tuple, and condition

(iii) is satisfied.

In summary, any instance I ′ = (I′
P, I′

S) of R that satisfies � is well formed, with the
exception that we still need to check for the existence of an initial and a final position
in the instance I′

S of S in I ′.

(c) Before we define the query �, we show, following Spielmann [2000], how the
nonemptiness of L(A) can be expressed in terms of an E+TC-formula over R. Consider a
transition δ ∈ � of the form δ = (s, in1, in2) → (s′, move1, move2). Such a transition can
be encoded by means of the conjunctive query

ϕδ(x, y, z, x′, y′, z′) = (x = s ∧ x′ = s′ ∧ α1(y) ∧ α2(z) ∧ β1(y, y′) ∧ β2(z, z′)).

Intuitively, α1(y) is to represent the position of y based on the value of in1; similarly
for α2(z) and in2; and β1(y, y′) is to decide whether y and y′ are consecutive positions or
not. More specifically,

—α1(y) = ∃y′(�S(y, y′) ∧ y �= y′ ∧ �P(1, y)) if in1 = 1;
—α1(y) = ∃y′(�S(y, y′) ∧ y �= y′ ∧ �P(0, y)) if in1 = 0; and
—α1(y) = �S(y, y) if ini = ε;

similarly for α2(z). Furthermore,

—β1(y, y′) = �S(y, y′) if movei = +1 and
—β1(y, y′) = (y = y′) if movei = 0;

similarly for β2(z, z′). That is, α1(y) enforces y to be a position in the string coded
by �P(1, y) or �P(0, y) that has a successor, unless y is the final position, where
α1(y) demands �S(y, y); similarly for α2(z). Moreover, β1(y, y′) ensures that y and
y′ are consecutive positions when A makes a move (with head 1) and y = y′ oth-
erwise; similarly for β1(z, z′). Then, following Spielmann [2000], one can show that
� = ∃y1y2[TCx,y,z;x′,y′,z′

∨
δ∈� ϕδ](s0, 0, 0, sacc, y1, y2) is satisfiable if and only if L(A) �= ∅.

Clearly, we can compute � using a query �� in FP. Recall that we still need to ensure
the existence of an initial and a final position in well-formed instances of IS. The final
FP-query � is therefore defined as �� ∧ �ini ∧ �fin, where �ini = ∃w x �S(w, 0, x) and
�fin = ∃x �S(1, x, x).

This concludes the construction of R, �, and �. One can verify that L(A) is nonempty
if and only if there exists an instance I of R such that I |= � and �(I) �= ∅. Note that
the set � of FDs is fixed, independent of the 2-head DFA L(A).

In light of Lemma 4.6, we show that RCQPs(FP) is undecidable by reduction from
the satisfiability problem for FP in the presence of FDs. Given an FP query p(�z) and
a fixed set � of FDs, we construct a database schema R′, master data Dm, a set V of
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CCs, and a FP query Q, such that p is satisfiable in the presence of � if and only if
RCQs(Q, Dm, V ) is empty.

Suppose that p and � are defined over a database schema R. By Lemma 3.2,
we assume without loss of generality that R consists of a single relation schema
R(A1, . . . , Am).

(a) We define a database schema R′ = (R′, E), where R′(G, A1, . . . , Am) extends R by
adding a new attribute G with an infinite domain, and E(C) is a unary relation that
consists of a single attribute C with an infinite domain.

(b) We define CCs as follows. Note that, for each FD X → A in �, (G, X) → A is an FD
defined over R′. Denote by �′ the set of all such FDs over R′ deduced from FDs in �.
For each FD (G, X) → A in �′, we express it as a CC: pv(R′) ⊆ ∅, where

pv(g) = ∃�x, y, y′, �z1, �z2 (R′(g, �x, y, �z1) ∧ R′(g, �x, y′, �z2) ∧ y �= y′),

�x, y and �z1 correspond to attributes X, A, and R′ \ (X ∪ {A}), respectively; similarly for
�x, y′ and �z2. That is, pv(R′) extracts tuples that violate the FD (G, X) → A. We define V
to be the set of all CCs constructed from FDs in �′ as delineated earlier. Intuitively, we
group tuples of R′ by the attribute G, such that FDs in � are imposed on each group
individually. By Lemma 4.6, � is fixed; hence, so is V .

(c) The master data Dm is assumed to be an empty relation ∅.

(d) We define Q as follows. We first construct a query p′ by substituting R′(g, �y) for each
occurrence of R(�y) in each rule of p, where g is a variable corresponding to attribute G,
and is shared across all the rules in p′. One can verify that the following are equivalent:

—there exists an instance I of R such that I |= � and p(I) is nonempty,
—there exists an instance I′ of R′ such that there exists g ∈ dom(G), I′

g |= � and p(I′
g)

is nonempty, where I′
g is the subset of I′ consisting of tuples t with t[G] = g.

We define Q(x) : −E(x), p′(g, �y), that is, Q(I′, E) returns the E relation if there exists g
such that I′

g |= � and p(I′
g) is nonempty.

We next show that p is satisfiable in the presence of � if and only if RCQs(Q, Dm, V )
is empty.

⇒ First, assume that p is not satisfiable in the presence of �, that is, there exists no
instance I of R such that I |= � and p(I) is nonempty. Then, (∅,∅) is in RCQs(Q, Dm, V ),
that is, the empty instance of R′ and the empty instance of E make a database that is
complete for Q relative to (Dm, V ). For all instances (I′, E), if there exists g ∈ dom(G)
such that I′

g |= �, then p(I′
g) is empty; hence, Q(I′, E) = ∅.

⇐ Conversely, assume that p is satisfiable. Then, there exists an instance I of R
such that I |= � and p(I) is nonempty. We next show that RCQs(Q, Dm, V ) is empty.
That is, we need to prove that, for each instance (I′, E) of R′, (I′, E) /∈ RCQs(Q, Dm, V )
when ((I′, E), Dm) |= V . We construct an extension I′′ of I′ such that, for each tuple t
in I, (g, t) is in I′′, for a constant g ∈ dom(G) that does not appear in the G column
of I′. Let E′ be an extension of E. Obviously, (I′′, E′) is partially closed since (I′, E) is
partially closed, I′′

g |= �, and the CCs in V apply to tuples with the same G-attribute
value. Furthermore, p′(I′′) is nonempty. Hence, (I′′, E′) is a partially closed extension of
(I′, E). However, Q(I′′, E′) = E′ �= E = Q(I′, E). Hence, (I′, E) is not in RCQs(Q, Dm, V ).

(3) When LQ is CQ, UCQ, or ∃FO+. It is known [Fan and Geerts 2010b] that RCQPs

(∃FO+) is in NEXPTIME and that RCQPs(CQ) is NEXPTIME-hard when Dm and V are fixed.

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 10, Publication date: May 2016.



10:26 T. Deng et al.

From this and Lemma 4.4, it follows that RCQP(LQ) is NEXPTIME-complete when LQ is
CQ, UCQ, or ∃FO+.

Note that, in these proofs, only fixed master data Dm and fixed CCs are used. Hence,
the complexity bounds remain intact when V and Dm are fixed.

4.3. The Minimality Problem in the Strong Model

This problem is to decide whether a database is relatively complete and does not contain
excessive data. The following lemma tells us how to check this when ground instances
are concerned.

LEMMA 4.7. For every ground instance I, query Q, master data Dm, and set V of
CCs, (a) if (I, Dm) |= V , then, for every I′ � I, (I′, Dm) |= V ; and (b) if I is in
RCQs(Q, Dm, V ), then I is not minimal if and only if there exists a tuple t ∈ I such
that I\{t} ∈ RCQs(Q, Dm, V ).

PROOF. Consider query Q, master data Dm, and a set V of CCs. By Lemma 3.2, we
assume without loss of generality that Q is defined over a single relation schema R.
Given an instance I of R, we show the following.

(a) If (I, Dm) |= V , then, for every I′ ⊆ I, (I′, Dm) |= V . We show that, for every φ ∈ V ,
(I′, Dm) |= φ. Let φ be q(R) ⊆ p(Dm), where q is a CQ query. Since I′ ⊆ I, q(I′) ⊆ q(I)
because CQ queries are monotonic. By (I, Dm) |= V , q(I) ⊆ p(Dm); hence, q(I′) ⊆ p(Dm),
that is, (I′, Dm) |= φ.

(b) Suppose that I is in RCQs(Q, Dm, V ). Then, I is not minimal if and only if there
exists a tuple t ∈ I such that I\{t} ∈ RCQs(Q, Dm, V ). To see this, first assume that
I\{t} ∈ RCQs(Q, Dm, V ). Then, obviously, I is not minimal by the definition of minimal
instances. Conversely, suppose that I is not minimal, that is, there exists I1 � I such
that for each I2 ∈ Ext(I1, Dm, V ), Q(I1) = Q(I2). Note that I ∈ Ext(I1, Dm, V ). Then,
there must exist I2 = I\{t} for some t ∈ I such that I1 ⊆ I2 and Q(I1) = Q(I2). By (a),
(I2, Dm) |= V . In addition, for all I′ ∈ Ext(I2, Dm, V ), I′ is also in Ext(I1, Dm, V ); hence,
Q(I′) = Q(I1) = Q(I2). Thus, I2 is in RCQs(Q, Dm, V ).

Capitalizing on this lemma, next, we provide complexity bounds on MINPs(LQ). Here,
the presence of missing values again makes the problem a little harder: MINPs(CQ) is
Dp

2 -complete for ground instances, but it is �
p
3 -complete for c-instances. Here, Dp

2 is the
class of languages recognized by oracle machines that make a call to a �

p
2 oracle and

a call to a �
p
2 oracle. That is, L is in Dp

2 if there exist languages L1 ∈ �
p
2 and L2 ∈ �

p
2

such that L = L1 ∩ L2 [Wooldridge and Dunne 2004].

THEOREM 4.8. When LQ is FO or FP, MINPs(LQ) is undecidable both for ground
instances and for c-instances. When LQ is CQ, UCQ, or ∃FO+, MINPs(LQ) is

—�
p
3 -complete for c-instances, and

—Dp
2 -complete for ground instances.

The complexity is unchanged when Dm and V are fixed.

PROOF. We first show that MINPs(LQ) is undecidable when LQ is either FO or FP.
We then verify that, when LQ is CQ, UCQ, or ∃FO+, MINPs(LQ) is �

p
3 -complete for c-

instances but is Dp
2 -complete for ground instances. In the proofs for undecidability and

lower bounds to be given later, we use fixed Dm and V .

(1) When LQ is FO or FP. To show that MINPs(LQ) is undecidable when LQ is either
FO or FP, it suffices to show that these problems are undecidable for ground instances,
since ground instances are c-instances themselves. In addition, it suffices to show it
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is undecidable to determine, given a query Q, master data Dm, and a set of V of CCs,
whether a special instance I∅ is in RCQs(Q, Dm, V ), where I∅ is the empty instance of
the schema over which Q is defined. If I∅ is in RCQs(Q, Dm, V ), then it is a minimal
instance complete for Q relative to (Dm, V ).

MINPs(FO). We verify the undecidability of MINPs(FO) by reduction from the satis-
fiability of FO queries. Given an FO query q, we assume without loss of generality by
Lemma 3.2 that q is defined over a single relation R. Consider the FO query Q defined
in the proof of Theorem 4.5 (1), and let Dm and V both be empty. It has been shown there
that if q is not satisfiable, then I∅ is in RCQs(Q, Dm, V ). Conversely, if q is satisfiable,
then RCQs(Q, Dm, V ) is empty; hence, I∅ is not in RCQs(Q, Dm, V ). Thus, q is satisfiable
if and only if I∅ is minimal in RCQs(Q, Dm, V ).

MINPs(FP). Along the same lines as the proof for MINPs(FO), it suffices to show that,
given Q in FP, Dm, and V , it is undecidable to determine whether the special instance
I∅ is in RCQs(Q, Dm, V ). This has already been verified by the proof of Theorem 4.5 (2).
It has been shown that deciding nonemptiness of RCQs(Q, Dm, V ) is undecidable. In
particular, RCQs(Q, Dm, V ) �= ∅ if and only if I∅ ∈ RCQs(Q, Dm, V ).

(2) When LQ is CQ, UCQ, or ∃FO+. We prove that MINPs(LQ) is �
p
3 -complete for c-

instances and Dp
2 -complete for ground instances.

(2.1) For c-instances. To show that MINPs(LQ) is �
p
3 -complete for c-instances when

LQ is CQ, UCQ, or ∃FO+, it suffices to verify that MINPs(CQ) is �
p
3 -hard and that

MINPs(∃FO+) is in �
p
3 .

Lower bound. We show that MINPs(CQ) is �
p
3 -hard by reduction from the comple-

ment of the ∃∗∀∗∃∗3SAT problem, which is known to be �
p
3 -complete (see Papadimitriou

[1994]). The ∃∗∀∗∃∗3SAT problem is to determine, given a sentence ϕ = ∃X∀Y∃Zψ ,
whether or not ϕ is true. Here, X = {x1, . . . , xn}, Y = {y1, . . . , ym}, Z = {z1, . . . , zk}, and
ψ is an instance of 3SAT.

Given an instance ϕ = ∃X∀Y∃Zψ of the ∃∗∀∗∃∗3SAT problem, we define a database
schema R, a c-instance T of R, master data Dm, a set V of CCs, and a query Q in CQ,
such that ϕ is true if and only if T is not a minimal c-instance in RCQs(Q, Dm, V ).

(a) The database schema R consists of six relation schemas: R(0,1)(A), R¬(A, Ā),
R∨(A1, A2, B), R∧(A1, A2, B), RX(id, X), and Rs(W), where R(0,1), R¬, R∨, and R∧ are
the same as their counterparts in the proof of Proposition 3.3. The relation RX(id, X) is
to encode a truth assignment for variables in X; Rs(W) is used to inspect query answers,
as will become clear shortly.

(b) We construct a c-instance T = (I(0,1), I¬, I∨, I∧, TX, Is), in which I(0,1), I¬, I∨, I∧ are
ground relations, as shown in Figure 2, while TX = ({(1, x1), (2, x2), . . . , (n, xn)}, true) is a
c-table, consisting of the variables in X, without any local condition. Finally, Is consists
of two tuples, (0) and (1). Intuitively, we use T to encode basic Boolean operations,
truth assignments for variables of X, and possible truth values of ψ in the reduction.

(c) Master data Dm is specified by five relation schemas: Rm
(0,1) = R(0,1), Rm

¬ = R¬,
Rm

∨ = R∨, Rm
∧ = R∧, and Rm

∅ (X). The master data instances consist of Im
(0,1) = I(0,1),

Im
¬ = I¬, Im

∨ = I∨, Im
∧ = I∧, and Im

∅ = ∅.

(d) The set V consists of the following CCs:

—R(0,1) ⊆ Rm
(0,1), R¬ ⊆ Rm

¬ , R∨ ⊆ Rm
∨ , R∧ ⊆ Rm

∧ , and Rs ⊆ Rm
(0,1);

—∃idRX(id, x) ⊆ Rm
(0,1)(x); and

—qid(x) ⊆ Rm
∅ (x), where qid(x) = ∃y, y′ RX(x, y) ∧ RX(x, y′) ∧ (y �= y′). This is to ensure

that id is a key for RX.
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The last two CCs ensure that each instance of RX is indeed a truth assignment of
variables in X.

(e) We next define the query Q, such that ϕ is true if and only if (i) there exists a ground
instance I of T that encodes a truth assignment μX of X variables by an instance of TX
in I, and (ii) Q(I) returns tuples representing all truth assignments μY of Y variables
when ψ is true under (μX, μY , μZ); here, μZ is a truth assignment of Z variables, which
is encoded by a tuple returned by a subquery of Q on I (if it exists). More specifically,
query Q is defined as follows.

Q(�y) = ∃�x, �z (QX(�x) ∧ QY (�y) ∧ QZ(�z) ∧ Qψ (�x, �y, �z, w) ∧ Rs(w) ∧ Qall),

where QX is a CQ query QX(x1, . . . , xn) = ∧
i∈[1,n] RX(i, xi), that is, it selects from RX

the truth assignments for X. The query QY (�y) = R(0,1)(y1) ∧ · · · ∧ R(0,1)(ym) constructs
all possible truth assignments of variables in Y ; similarly for QZ(�z) and Z. Given a
truth assignment (μX, μY , μZ) of (X, Y, Z), the subquery Qψ (μX, μY , μZ, w) is to evaluate
ψ(μX, μY , μZ), and it records its truth value in w, which is either 0 or 1. Obviously, Qψ

can be defined in CQ by leveraging relations I¬, I∨, and I∧. The query Qall is to ensure
that all the tuples in I(0,1), I¬, I∨, I∧, and tuple (1) in Is are in place. More specifically, it
is defined as

Qall = Q(0,1) ∧ Q¬ ∧ Q∨ ∧ Q∧ ∧ Qs,

where Q∨ = R∨(0, 0, 0) ∧ R∨(0, 1, 1) ∧ R∨(1, 0, 1) ∧ R∨(1, 1, 1) asserts that the removal
of any of the four tuples in I∨ makes Q(�y) empty; similarly for Q(0,1), Q¬, and Q∧. In
addition, Qs = Rs(1), asserting that the removal of (1) makes Q(�y) empty. Intuitively,
query Q returns all tuples encoding truth assignments μY of Y such that, for the truth
assignment μX of X encoded by TX, ∃Zψ(μX, μY , Z) evaluates to a truth value in Is.

We show that ϕ is false if and only if T is a minimal c-instance in RCQs(Q, Dm, V ),
that is, for each ground instance I of T , I is minimal in RCQs(Q, Dm, V ). The
argument is based on the following observations: for every ground instance I =
(I(0,1), I∧, I∨, I¬, IX, Is) of T , (i) I has no extensions by the definition of V , that is, V
enforces an upper limit on the potential valuations of T ; (ii) removing any tuple from
IX, I(0,1), I¬, I∨, or I∧, or removing tuple (1) from Is would make Q empty, by the defini-
tions of Q and Qall; that is, Qall imposes a lower limit on which tuples must exist.

⇒ First, assume that ϕ is false. Then, for each truth assignment μX of X, there exists
a truth assignment μY of Y such that ∃Zψ(μX, μY , Z) is false. It is easy to see that, for
all ground instances I = (I(0,1), I∧, I∨, I¬, IX, Is) ∈ Mod(T ) of T , Q(I) returns all truth
assignments of Y since Is consists of (0) and (1). As argued in (i) earlier, there exists no
extension to I; thus, I ∈ RCQs(Q, Dm, V ). We next show that I is minimal. As argued
in (ii) earlier, we only need to consider the instance I ′ = (I(0,1), I∧, I∨, I¬, IX, I′

s), where
I′
s = {(1)}. Obviously, Q(I ′) does not contain all truth assignments of Y since ϕ is false,

making it different from Q(I). Hence, T is a minimal c-instance.

⇐ Conversely, suppose that ϕ is true. Then, there exists a truth assignment μ0
X of

X such that, for every truth assignment μY of Y , ∃Zψ(μ0
X, μY , Z) is true. We show

that there exists a ground instance in Mod(T , Dm, V ) that is not minimal. Let I0
X be a

ground instance of TX that agrees with μ0
X, and I0 = (I(0,1), I∧, I∨, I¬, I0

X, Is). As before,
Q(I0) consists of all truth assignments of Y . However, I0 is not minimal. Consider
I ′ = (I(0,1), I∧, I∨, I¬, I0

X, I′
s) with I′

s = {(1)}. Then, since ϕ is true and I0
X encodes μ0

X, Q(I ′)
consists again of all truth assignments of Y . Hence, I0 is not minimal; thus, T is not a
minimal c-instance in RCQs(Q, Dm, V ).
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Upper bound. We next show that MINPs(∃FO+) is in �
p
3 for c-instances. The proof makes

use of Lemma 4.7 and the �
p
2 algorithm [Fan and Geerts 2009] for checking whether a

ground instance is not in RCQs(Q, Dm, V ).
We give an �

p
3 algorithm for the complement of MINPs(∃FO+): given a c-instance T ,

a query Q in ∃FO+, master data Dm, and a set V of CCs, the algorithm returns “yes” if
and only if T is not a minimal c-instance in RCQs(Q, Dm, V ). By Lemma 3.2, we assume
without loss of generality that T consists of a single c-table T . Assume that T consists
of k tuples τ1, . . . , τk. Recall the notion of Adom given in the proof of Theorem 4.1. The
algorithm works as follows.

(1) Guess a valuation μ of (T , ξ ) with Adom and guess an index i ∈ [1, k]. Let I = μ(T ).
(2) Test the following:

(a) whether I �∈ Mod(T , Dm, V ); if not, continue; otherwise, reject the current guess;
(b) whether I is not a complete ground instance; if so, return “yes”;
(c) whether μ(τi) ∈ I and I\μ(τi) is in RCQs(Q, Dm, V ). If so, return “yes”; otherwise,

reject the current guess.

The algorithm is in �
p
3 . It invokes an NP oracle to check whether an instance is in

Mod(T , Dm, V ) in Step (2)(a), invokes an �
p
2 oracle to check whether I �∈ RCQs(Q, Dm, V )

in Step (2)(b), and a �
p
2 oracle to check whether I\μ(τi) ∈ RCQs(Q, Dm, B) (see the proof

of Theorem 4.1). Hence, the algorithm is in NP �
p
2 , that is, in �

p
3 .

The algorithm returns “yes” when a counterexample is found that dispels T as a
minimal c-instance in RCQs(Q, Dm, V ). Conversely, suppose that T is not a minimal
c-instance in RCQs(Q, Dm, V ). Then, along the same lines as the proofs of Lemmas 4.2
and 4.3 and the upper bound proof of Theorem 4.1 for RCDPs(∃FO+), one can show that
there must be a ground instance I ∈ ModAdom(T , Dm, V ) such that I is not a minimal
ground instance in RCQs(Q, Dm, V ), that is, either I is not in RCQs(Q, Dm, V ) or I is
in RCQs(Q, Dm, V ), but there exists I′ � I such that I′ is also in RCQs(Q, Dm, V ). The
former is checked by the �

p
2 oracle in Step (2)(b). The latter is inspected by Step (2)(c)

of the algorithm, which tests whether there exists a tuple t = μ(τi) in I such that I\{t}
is in RCQs(Q, Dm, V ). This suffices by Lemma 4.7. Hence, the algorithm is able to find
a counterexample I and, hence, returns “yes.”

(2.2) For ground instances. When it comes to ground instances, we show that MINPs(LQ)
is Dp

2 -complete, when LQ is CQ, UCQ, or ∃FO+. It suffices to prove that, in this setting,
MINP(CQ) is Dp

2 -hard and that MINPs(∃FO+) is in Dp
2 .

Lower bound. We first show that MINPs(CQ) is Dp
2 -hard by reduction from the ∃∗∀∗3DNF-

∀∗∃∗3CNF problem, which is Dp
2 -complete [Wooldridge and Dunne 2004]. An instance

of ∃∗∀∗3DNF-∀∗∃∗3CNF is a pair of ∀∗∃∗3SAT instances ϕ1 = ∀X1∃Y1ψ1(X1, Y1) and
ϕ2 = ∀X2∃Y2ψ2(X2, Y2). It is to decide whether ϕ1 is true and ϕ2 is false. Given (ϕ1, ϕ2),
we define R, I, Dm, V , and Q, such that ϕ1 is true and ϕ2 is false if and only if I is a
minimal instance in RCQs(Q, Dm, V ).

(a) The database schema R consists of six relation schemas: R(0,1)(A), R¬(A, Ā),
R∨(A1, A2, B), and R∧(A1, A2, B), the same as their counterparts in the proof of Propo-
sition 3.3, as well as R1(W1) and R2(W2) to encode relations that will be used to select
appropriate truth values, as will be detailed later.

(b) We construct a ground instance I = (I(0,1), I¬, I∨, I∧, I1, I2), in which I(0,1), I¬, I∨, and
I∧ are ground relations, as shown in Figure 2, I1 = {(1)} and I2 = {(0), (1)}.
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(c) Master data Dm is specified by six relation schemas: Rm
(0,1) = R(0,1), Rm

¬ = R¬,
Rm

∨ = R∨, Rm
∧ = R∧, Rm

1 = R1, and Rm
2 = R2. The master data instance consists of

Im
(0,1) = I(0,1), Im

¬ = I¬, Im
∨ = I∨, Im

∧ = I∧, and Im
1 = Im

2 = {(0), (1)}.
(d) The set V consists of the following CCs: R(0,1) ⊆ Rm

(0,1), R¬ ⊆ Rm
¬ , R∨ ⊆ Rm

∨ , R∧ ⊆ Rm
∧ ,

R1 ⊆ Rm
1 , and R2 ⊆ Rm

2 .

(e) The CQ query Q(�x1, �x2) is defined as Q1(�x1)∧ Q2(�x2)∧ Qall, where �x1 and �x2 correspond
to the X-variables in ϕ1 and ϕ2, respectively. The query Qall is used to ensure that (i) all
tuples in I01, I¬, I∨, and I∧ are present; and (ii) that I1 and I2 contain (1). Otherwise,
Qall returns false (empty set). The queries Qi(�xi) for i = 1, 2 are defined as

Qi(�xi) = ∃�yi, wi (QXi (�xi) ∧ QYi (�y) ∧ Qψi (�xi, �yi, wi) ∧ Ri(wi)),

where QXi (resp. QYi ) generates all truth assignments for Xi (resp. Yi) by means of
Cartesian products of R01; and Qψi is a CQ query encoding ψi by leveraging relations
I¬, I∨, and I∧. More specifically, for given truth assignments μXi and μYi of Xi and Yi,
respectively, Qψi (μXi , μYi , 0) is true if ψi(μXi , μYi ) is false, and Qψi (μXi , μYi , 1) is true
if ψi(μXi , μYi ) is true. The final conjunct in Qi controls what kind of truth values are
returned. We consider the following cases: (a) If Ii = {(1)}, then Qi(�xi) returns all truth
assignments μXi for Xi for which there exists a truth assignment μYi of Yi that satisfies
ψi; and (b) if Ii = {(0), (1)}, then Qi(�xi) returns all possible truth assignments of Xi.

We next verify that ϕ1 is true and ϕ2 is false if and only if I is a minimal instance in
RCQ(Q, Dm, V ).

⇒ Suppose that ϕ1 is true and ϕ2 is false. Observe that Q(I) = FX1 × FX2 , where
FXi consists of all possible truth assignments for Xi. Q1(I) = FX1 because ϕ1 is true,
whereas Q2(I) = FX2 because I2 consists of both (0) and (1). Furthermore, observe
that I is also complete. The only possible extension of I is I ′ = (I(0,1), I¬, I∨, I∧, I′

1, I2),
with I′

1 = {(0), (1)}. Clearly, Q(I ′) = Q(I) since Q(I) already generates the largest
possible query result. That is, I ∈ RCQs(Q, Dm, V ). We next show that I is also mini-
mal. For this, it suffices to observe that, among all possible subsets of I, the instance
I ′′ = (I(0,1), I¬, I∨, I∧, I1, I′′

2 ) with I′′
2 = {(1)} is the only one that can possibly lead to

Q(I ′′) �= ∅. All other subinstances of I make Qall return empty; thus, these cannot be
complete because Q(I) �= ∅. It remains to show that Q(I ′′) � Q(I), thus I ′′ is not in
RCQs(Q, Dm, V ). To see this, recall that ϕ2 is false. This implies that there exists a
truth assignment μ0

X2
of X2 for which all truth assignments μY2 of Y2 make ψ false.

Since I′′
2 = {(1)}, Q2(I ′′) will not return μ0

X2
. On the other hand, μ0

X2
∈ Q2(I). Since

Q1(I) = Q1(I ′′), we can conclude that Q(I ′′) � Q(I).

⇐ Suppose that ϕ1 is false or ϕ2 is true. We distinguish between the following two
cases: (i) ϕ1 is false and (ii) both ϕ1 and ϕ2 are true. For case (i), we immediately
have that I is not in RCQs(Q, Dm, V ), thus cannot be minimal. Consider the unique
extension I ′ of I described earlier. Clearly, Q(I ′) = FX1 × FX2 . However, since ϕ1 is false
and I1 contains only (1), Q1(I) will not include at least one truth assignment of X1.
Hence, Q(I) � Q(I ′). For case (ii), since ϕ1 and ϕ2 are both true, Q(I) = FX1 × FX2 ; thus,
Q(I ′) = Q(I) since no more result tuples can be added. That is, I is in RCQs(Q, Dm, V ).
We show that I is not minimal. Consider the subinstance I ′′ described earlier with
I′′
2 = {(1)}. We claim that I ′′ is in RCQs(Q, Dm, V ). To see this, observe that the only

extensions of I ′′ are I, I ′, and I ′′′ = (I(0,1), I¬, I∨, I∧, I′
1, I′′

2 ). Since ϕ1 is true, adding (0)
to I1 (as done in the extensions I ′ and I ′′′) does not affect Q1(I ′′). Similarly, adding (0)
to I′′

2 (as done in the extensions I and I ′) does not affect Q2(I ′′) since ϕ2 is true. Hence,
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Q(I ′′) = Q(I) = Q(I ′) = Q(I ′′′) and I ′′ is indeed in RCQs(Q, Dm, V ); this shows that I is
not minimal.

Upper bound. We show that, for ground instances, MINP(∃FO+) is in Dp
2 . By Lemma 4.7,

the set of yes-instances to MINP(∃FO+) is L1 ∩ L2, where

—L1 = {(I, Q, Dm, V ) | I ∈ RCQs(Q, Dm, V )}; and
—L2 = {(I, Q, Dm, V ) | for all t ∈ I, I\{t} /∈ RCQ(Q, Dm, V )}.
It now suffices to show that L1 ∈ �

p
2 and L2 ∈ �

p
2 . Clearly, L1 ∈ �

p
2 follows from

Theorem 4.1. To show that L2 ∈ �
p
2 , we modify the algorithm for the complement

problem of RCDP(∃FO+) given in the proof of Theorem 4.1. More specifically, consider
(I, Q, Dm, V ) and assume that I = {t1, . . . , tk}. Let Ii = I\{ti} for i ∈ [1, k]. We then apply
the �

p
2 -algorithm for each (Ii, Q, Dm, V ) “in parallel,” that is, the algorithm guesses k

tuples si (by means of a valuation of the query Q) such that si ∈ Q(I′
i )\Q(Ii) for some

partially closed extension I′
i of Ii (also identified by the valuation of the query Q). We can

make such k guesses at the same time since there are only polynomially many (k = |I|)
instances Ii. The algorithm rejects a guess as long as any of the guessed si ∈ Q(Ii) or I′

i
is not partially closed for some i ∈ [1, k]. However, when guesses are accepted, we have
found k witnesses showing that none of the Iis are in RCQs(Q, Dm, V ). In other words,
(I, Q, Dm, V ) ∈ L2.

5. WEAK RELATIVE INFORMATION COMPLETENESS

We next investigate RCDP, RCQP, and MINP for weakly complete databases, denoted
by RCDPw, RCQPw, and MINPw, respectively. We consider the databases from which
one can find the certain answers to a query over their partially closed extensions. Here,
we denote by RCQw(Q, Dm, V ) the set of instances that are weakly complete. In the
weak completeness model, none of these problems has been studied before, neither for
c-instances nor ground instances. We provide their complexity bounds here.

Compared to their counterparts in the strong model, the complexity results in the
weak model are more diverse. On the one hand, the certain-answer semantics simplifies
the analysis of some problems; for example, all these problems become decidable for
FP, in contrast to their undecidability in the strong model. On the other hand, it
makes certain problems harder; for example, MINPw becomes �

p
4 -complete for UCQ, as

opposed to �
p
3 for MINPs. In addition, some problems even have different bounds for

CQ and UCQ; for example, MINPw is coDP-complete for CQ, while it is �
p
4 -complete for

UCQ.

5.1. The Relatively Complete Database Problem in the Weak Model

As opposed to Theorem 4.1, RCDPw is decidable for FP. In addition, RCDPw for c-
instances and RCDPw for ground instances are both �

p
3 -complete when LQ is CQ, UCQ

or ∃FO+, while their counterparts in the strong model are �
p
2 -complete (Theorem 4.1).

THEOREM 5.1. For c-instances and for ground instances, RCDPw(LQ) is

—undecidable when LQ is FO,
—coNEXPTIME-complete when LQ is FP, and
—�

p
3 -complete when LQ is CQ, UCQ or ∃FO+.

PROOF. We show that, in the weak model, RCDPw(LQ) is undecidable when LQ is FO,
coNEXPTIME-complete when LQ is FP, and it becomes �

p
3 -complete when LQ is CQ, UCQ,

or ∃FO+. The lower bounds hold even when only ground instances are considered, and
when Dm and V are fixed.
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(1) When LQ is FO. To prove the undecidability, it suffices to consider ground instances
without variables only. Indeed, a ground instance is also a c-instance.

We prove the undecidability by reduction from a variant of the satisfiability problem
for FO. It is to decide, given an FO query q such that q(∅) = ∅ (i.e., q is not satisfied by
the empty instance), whether q is satisfiable. It is easy to verify that this variant of FO
satisfiability is also undecidable by reduction from FO satisfiability.

Consider an FO query q such that q(∅) = ∅. Assume without loss of generality by
Lemma 3.2 that the given FO query q is defined on a single relation R. Then, we define
Q over R such that, for every instance I of R, Q(I) = {()} if q(I) = ∅, and Q(I) = ∅
otherwise. We define Dm to be an empty instance, and V to be the empty set. We show
that q is not satisfiable if and only if the empty instance ∅ is in RCQw(Q, Dm, V ).

⇒ First, assume that q is not satisfiable, that is, for all instances I of R, q(I) = ∅.
Then, for all I ∈ Ext(∅), Q(I) = {()}; hence,

⋂
I∈Ext(∅) Q(I) = {()} = Q(∅). Thus, ∅ is in

RCQ(Q, Dm, V ).

⇐ Conversely, assume that q is satisfiable, that is, there exists an instance I0 of R
such that q(I0) is not empty. Then, by the definition of Q, Q(I0) = ∅ = ⋂

I∈Ext(∅) Q(I) �=
Q(∅) = {()}, since q(∅) = ∅. Hence, ∅ is not in RCQ(Q, Dm, V ).

We remark that, in this proof, the master data Dm and the set V of CCs are fixed,
independent of the input query q. In fact, they are even absent.

(2) When LQ is FP. We show that RCDPw(FP) is coNEXPTIME-complete. That is, we show
that RCDPw(FP) is already coNEXPTIME-hard for ground instances, and is in coNEXPTIME

for arbitrary c-instances.

Lower bound. We show that, for ground instances, RCDPw(FP) is coNEXPTIME-hard
by reduction from the SUCCINCT-TAUT problem, which is coNEXPTIME-complete (see
Papadimitriou [1994]). An instance of SUCCINCT-TAUT is defined by a Boolean circuit C
consisting of a finite set of gates {gi = (ai, j, k) | 1 ≤ i ≤ M}, where ai ∈ {∧,∨,¬, in} is
the type of the gate gi, gj and gk for j, k < i are the inputs of the gate (unless gi is an
in-gate, in which case j = k = 0, or unless gi is a ¬-gate, in which case j = k). Suppose
that C has n input gates; then, C defines the Boolean function fC : {0, 1}n → {0, 1},
where fC(w̄) = 1 if and only if C evaluates to true on input w̄. The SUCCINCT-TAUT

problem is to decide whether for all w̄ ∈ {0, 1}n, fC(w̄) = 1, that is, whether C is a
tautology.

Given an instance of the latter problem, we define database schemas R and Rm, a
ground instance I of R, a set V of CCs, master data Dm of Rm, and an FP query Q. We
show that C is a tautology if and only if I is a minimal instance in RCQw(Q, Dm, V ).

(a) The database schema R consists of a single relation R(A0, A1, . . . , A30), where, for a
tuple t of R, t[A1, A2] is to encode I(0,1); t[A3, . . . , A14] encodes I∨; t[A15, . . . , A26] encodes
I∧, and t[A27, . . . , A30] encodes I¬.

(b) A ground instance I of R consists of a single tuple t that is formed by juxtaposing
instances I(0,1), I∨, I∧, and I¬ in t[A1, . . . , A30], with t[A0] = 1. Here, I(0,1), I∨, I∧, and I¬
are given in Figure 2.

(c) The master data Dm and CCs in V ensure that every tuple t of R satisfies the
following: (i) t[A1, . . . , A30] encodes the instances mentioned earlier; and (ii) t[A0] only
takes values from {0, 1}.
(d) The query Q in FP uses an (n+1)-ary IDB predicates Gi, one for each gate gi = (ai, j, k)
in C, a unary IDB I to encode I(0,1), and an n-ary IDB RX to encode all possible n-ary binary
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tuples. That is, we include the following FP rules in Q:

I(x) ← R(A0, x, A2, . . . , A30);
I(x) ← R(A0, A1, x, A3, . . . , A30);

RX(�x) ← I(x1), . . . , I(xn);
If ai = in, then Gi(B, �x) ← RX(�x), B = xi;
If ai = ∨, then Gi(B, �x) ← Gj(B1, �x), Gk(B2, �x), R(A0, A1, A2, B1, B2, B, A6, . . . , A30);

...
...

If ai = ∨, then Gi(B, �x) ← Gj(B1, �x), Gk(B2, �x), R(A0, . . . , A11, B1, B2, B, A15, . . . , A30);
If ai = ∧, then Gi(B, �x) ← Gj(B1, �x), Gk(B2, �x), R(A0, . . . , A14, B1, B2, B, A18, . . . , A30);

...
...

If ai = ∧, then Gi(B, �x) ← Gj(B1, �x), Gk(B2, �x), R(A0, . . . , A23, B1, B2, B, A27, . . . , A30);
If ai = ¬, then Gi(B, �x) ← Gj(B1, �x), R(A0, . . . , A26, B1, B, A29, A30);
If ai = ¬, then Gi(B, �x) ← Gj(B1, �x), R(A0, . . . , A28, B1, B);

and, finally, two more rules:

G(�x) ← GM(B, �x), R(0, A1, . . . , A30),
G(�x) ← GM(B, �x), B = 1,

where GM is the IDB corresponding to the output gate gM. Intuitively, Q(I) will return
all w̄ ∈ {0, 1}n for which fC(w̄) = 1.

We show that C is a tautology if and only if I ∈ RCQw(Q, Dm, V ).

⇒ First, assume that C is a tautology. We show that I is weakly complete for Q
relative to (Dm, V ). Since for all w̄ ∈ {0, 1}n, fC(w̄) = 1, Q(I) will return all w̄ ∈ {0, 1}n.
Observe that the only extension I ′ of I is {t, t′}, where t is in I and t′ is the same
as t except that t′[A0] = 0 while t[A0] = 1. Obviously, we have that Q(I ′) returns all
w̄ ∈ {0, 1}n as well. Hence, I is weakly complete.

⇐ Conversely, suppose that C is not a tautology but I is weakly complete. Note
again that the ground instance I ′ mentioned earlier is the only extension of I and,
furthermore, that Q(I ′) contains all w̄ ∈ {0, 1}n. Hence, in order for I to be weakly
complete, Q(I) must contain all w̄ ∈ {0, 1}n. This, however, contradicts the assumption
that C is not a tautology since Q(I) contains only those w̄ ∈ {0, 1}n for which fC(w̄) = 1
(recall that t[A0] = 1). Hence, I cannot be weakly complete.

Upper bound. We show that RCDPw(FP) is in coNEXPTIME by providing an NEXPTIME

algorithm that decides the complement problem. That is, given a c-instance T , master
data Dm, a set V of CCs, and an FP query Q, the algorithm returns “yes” if T is not
weakly complete for Q relative to (Dm, V ), and “no” otherwise.

To do this, we first give a sufficient and necessary condition for characterizing weak
completeness by the following lemma. By Lemma 3.2, we assume without loss of gen-
erality that R consists of a single relation schema R and T is a c-table (T , ξ ). Recall
the notion of Adom given in the proof of Theorem 4.1.

LEMMA 5.2. For every Q in FP, master data Dm, set V of CCs, and any c-instance
T = (T , ξ ), let T ′ = (T ∪ {(x1, . . . , xn), ξ}), that is, T extended with a single tuple
consisting of (new) variables only. Then, (T , ξ ) is not in RCQw(Q, Dm, V ) if and only if
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there exist a tuple t and an instance I ∈ ModAdom(T ) such that t ∈ ⋂
I ′∈ModAdom(T ′) Q(I ′)

and t /∈ Q(I).

PROOF. First, assume that (T , ξ ) is not in RCQw(Q, Dm, V ). Then,
⋂

I∈Mod(T ) Q(I) �=⋂
I∈Mod(T ),I ′∈Ext(I) Q(I ′). By the monotonicity of FP, we have that

⋂
I∈Mod(T ) Q(I) ⊆⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′). Thus, there must exist a tuple t′ = (a1, . . . , an) such that
t′ ∈ ⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′) and t′ /∈ ⋂
I∈Mod(T ) Q(I). In other words, there exists

an I ∈ Mod(T ) such that t′ ∈ ⋂
I∈Mod(T ),I ′∈Ext(I) Q(I ′) and t′ /∈ Q(I). Note that⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′) ⊆ ⋂
I ′∈Mod(T ′) Q(I ′), and then t′ ∈ ⋂

I ′∈Mod(T ′) Q(I ′). Construct a
tuple t = (b1, . . . , bn) from t′ that takes values from Adom, such that, for each i ∈ [1, n],
bi = ai if ai is a constant appearing in T , Dm, V , or Q; otherwise, bi takes values from
new constants in Adom defined early. One can readily verify that t is in

⋂
I ′∈Mod(T ′) Q(I ′)

and then in
⋂

I ′∈ModAdom(T ′) Q(I ′), but t is not in Q(I).
Conversely, suppose that there exist a tuple t and an instance I ∈ ModAdom(T ) such

that t ∈ ⋂
I ′∈ModAdom(T ′) Q(I ′) and t /∈ Q(I). Observe that t ∈ ⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′). In-
deed, suppose otherwise. Then there exist I1 ∈ Mod(T ) and I2 ∈ Ext(I) such that
t �∈ Q(I2). By the monotonicity of FP, t �∈ Q(I3) for every I3 = I1 ∪ {s} with s ∈ I2\I1.
Pick such an I3 and let ν ′ be the corresponding valuation of T ′ taking values from I3.
This induces a valuation μ′ of T ′ with values in Adom such that t �∈ Q(μ′(T ′)), contra-
dicting the assumption that t ∈ ⋂

I ′∈ModAdom(T ′) Q(I ′). Thus, T is not weakly complete.
Capitalizing on the characterization, we next present the NEXPTIME algorithm.

(1) Guess a tuple t of the (output) schema of Q with values from Adom.
(2) Check whether t /∈ Q(μ(T )) for some valuation μ of T taking values from Adom; if

so, continue; otherwise, reject the guess. Since the valuations range over a finite
domain, each μ(T ) is of polynomial size, and evaluating FP queries takes EXPTIME,
the total cost of this process is EXPTIME.

(3) For T ′ = T ∪ {(x1, . . . , xn)}, we test whether t ∈ Q(μ′(T ′)) for each valuation μ′ of
T ′ such that (μ′(T ′), Dm) |= V , (μ′(T ), Dm) |= V and μ′(T ) � μ′(T ′). If successful,
the algorithm returns “yes.” Otherwise, the current guess is rejected. For the same
reason as outlined earlier, this process takes EXPTIME.

The overall complexity of the algorithm is NEXPTIME; hence, RCDPw(FP) is in coNEXPTIME.
Obviously, the algorithm is correct, by Lemma 5.2. The algorithm returns “yes”
if and only if there exists a tuple t and instance I ∈ ModAdom(T ) such that t ∈⋂

I ′∈ModAdom(T ′) Q(I ′) and t /∈ Q(I).

(3) When LQ is CQ, UCQ, or ∃FO+. It suffices to show that RCDPw(CQ) is �
p
3 -hard for

ground instances and RCDPw(∃FO+) is in �
p
3 for c-instances.

Lower bound. We show that, for ground instances, RCDPw(CQ) is �
p
3 -hard by reduc-

tion from the complement of the ∃∗∀∗∃∗3SAT-problem. Given a formula ϕ = ∃X∀Y∃Zψ ,
∃∗∀∗∃∗3SAT is to determine whether ϕ is true. Here, X = {x1, . . . , xn}, Y = {y1, . . . , ym},
and Z = {z1, . . . , zl}, which are sets of variables; and ψ = C1 ∧ · · · ∧ Cr is an instance of
3SAT. It is known that ∃∗∀∗∃∗3SAT is �

p
3 -complete (see Papadimitriou [1994]).

Given an instance ϕ = ∃X∀Y∃Zψ of ∃∗∀∗∃∗3SAT, we define database schemas R and
Rm, a ground instance I, a set V of CCs, master data Dm, and a CQ query Q. We show
that ϕ is true if and only if I is not weakly complete for Q relative to (Dm, V ).

(a) The database schema R consists of five relation schemas: R(0,1)(A), R¬(A, Ā),
R∨(A1, A2, B), and R∧(A1, A2, B), which are the same as their counterparts given in
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the proof of Proposition 3.3, respectively. In addition, R contains one extra relation
RY (Y1, . . . , Ym) to generate truth assignments of Y variables.

(b) The ground instance I is given by (I(0,1), I¬, I∨, I∧, IY ). Here, I(0,1), I¬, I∨, and I∧ are
the instances shown in Figure 2, and IY is an empty instance of RY .

(c) The schema Rm of master data contains Rm
(0,1) = R(0,1), Rm

¬ = R¬, Rm
∨ = R∨, Rm

∧ = R∧,
and R∅(W, W ′). The master data instance Dm consists of Im

(0,1) = I(0,1), Im
¬ = I¬, Im

∨ = I∨,
Im
∧ = I∧, and Im

∅ = ∅.

(d) The set V of CCs consists of the following CCs:

—R(0,1) ⊆ Rm
(0,1), R∨ ⊆ Rm

∨ , R∧ ⊆ Rm
∧ , R¬ ⊆ Rm

¬ ;
—φi : qi(yi) ⊆ R(0,1), where qi(yi) = ∃y1 . . . yi−1yi+1 . . . ym(RY (y1, . . . , ym)), i ∈ [1, m]; and
—φ′

i : q′
i(yi, y′

i) ⊆ R∅, where, for i ∈ [1, m], q′
i(yi, y′

i) = ∃y1y′
1 . . . yi−1y′

i−1yi+1y′
i+1 . . . ymy′

m
(RY (y1, . . . , ym) ∧ RY (y′

1, . . . , y′
m) ∧yi �= y′

i).

It is easy to see that, for each extension I′
Y of IY , I′

Y |= ∧
i∈[1,m](φi ∧ φ′

i) if and only if I′
Y

consists of a single tuple that encodes a valid truth assignment of Y .

(e) We define the CQ query Q as follows:

Q(�x) = ∃�y, �z QX(�x) ∧ RY (�y) ∧ QZ(�z) ∧ Qψ (�x, �y, �z, w) ∧ w = 1,

where �x = (x1, . . . , xn), �y = (y1, . . . , ym), and �z = (z1, . . . , zl). The subqueries QX(�x) =∧m
i=1 R01(xi) and QZ(�z) = ∧l

i=1 R01(zi) generate all valid truth assignments of X vari-
ables and Z variables, respectively, by means of Cartesian products of R01. Given
truth assignments (μX, μY , μZ) of (X, Y, Z), query Qψ is to encode the truth value of
ψ(μX, μY , μZ) as the value of w. Obviously, Qψ can be expressed in CQ in terms of R∨,
R∧, and R¬. Intuitively, query Q returns all truth assignments μX of X if there exists
truth assignments μY and μZ of Y and Z, respectively, that make ψ true.

We next show that the reduction is correct, that is, ϕ is true if and only if I is not
weakly complete for Q relative to (Dm, V ).

⇒ First, assume that ϕ is true. Then, there exists a truth assignment μ0
X of X such

that, for each truth assignment μY of Y , there exists a truth assignment μZ of Z
such that ψ(μX, μY , μZ) is true. We next show that I is not weakly complete for Q
relative to (Dm, V ). That is, we need to show that Q(I) �= ⋂

I ′∈Ext(I) Q(I ′). Observe the
following: (i) Q(I) = ∅ since IY is empty; and (ii) for each instance I ′ in Ext(I), I ′ =
(I(0,1), I¬, I∨, I∧, I′

Y ), where I′
Y encodes a valid truth assignment of Y , and (�x0) ∈ Q(I ′)

represents the truth assignment μ0
X. Thus, (�x0) ∈ ⋂

I ′∈Ext(I) Q(I ′). Hence, I is not weakly
complete for Q relative to (Dm, V ).

⇐ Conversely, if ϕ is false, then there exists no truth assignment μX of X such that,
for all truth assignments of Y , there exists a truth assignment of Z that makes ψ
true. Recall that, for each partially closed extension I ′ of I, I ′ can only be the form of
(I(01), I¬, I∨, I∧, I′

Y ), where I′
Y encodes a truth assignment of Y . By the definition of Q,

if there exists a tuple t in
⋂

I ′∈Ext(I) Q(I ′), t must encode a truth assignment of X such
that, for every truth assignment of Y , there exists a truth assignment of Z that makes
ψ true. Thus, ϕ is true, which contradicts the assumption that ϕ is false. As a result,⋂

I ′∈Ext(I) Q(I ′) must be empty, and I is weakly complete for Q relative to (Dm, V ).

Upper bound. It suffices to show that RCDPw(∃FO+) is in �
p
3 . To do this, we use the same

algorithm given for RCDPw(FP). We show the algorithm is in �
p
3 ; then, RCDPw(∃FO+)

is in �
p
3 . Step (2) of the algorithm can be done in �

p
2 by the following procedure.
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(1) Guess a valuation μ of T by taking values from Adom.
(2) Check whether μ(T ) satisfies ξ . If so continue; otherwise, reject the guess.
(3) Check whether t /∈ Q(μ(T )). If so, return “yes”; otherwise reject the guess.

Obviously, it returns “yes” if and only if there exists a valuation of T such that t /∈
Q(μ(T )). It is in �

p
2 since Step (2) is in PTIME and Step (3) is in coNP for CQ.

Moreover, Step (3) of the algorithm is also in �
p
2 for ∃FO+. We give a �

p
2 procedure for

the complement of Step (3), that is, it returns “no” if and only if t /∈ ⋂
I′∈ModAdom(T ′) Q(I′).

(1) Guess a valuation μ′ of (T ′, ξ ′) by taking values from Adom.
(2) Check whether μ′(T ′) satisfies ξ ′. If so, continue; otherwise, reject the guess.
(3) Check whether (μ′(T ′), Dm) |= V and whether (μ′(T ), Dm) |= V . If so, continue;

otherwise, reject the guess.
(4) Check whether μ′(T ) � μ′(T ′). If so, continue; otherwise, reject the guess.
(5) Check if t /∈ Q(μ′(T ′)). If so, return “no”; otherwise, reject the guess.

It returns “no” if and only if t /∈ ⋂
I′∈ModAdom(T ′) Q(I′). It is in �

p
2 since Step (2) is in PTIME,

Step (3) is in NP, and Steps (4) and (5) are both in coNP, for ∃FO+queries.

5.2. The Relatively Complete Query Problem in the Weak Model

Recall that RCQPs for c-instances is equivalent to RCQPs for ground instances, as
verified by Lemma 4.4. However, the following example tells us that it is no longer the
case in the weak completeness model.

Example 5.3. Consider an FO query Q defined on a pair of relations: Q(I1, I2) = {(a)}
if I1 ⊆ I2, and it is {(b)} otherwise, where a and b are distinct constants. For empty Dm
and V , no ground instances are in RCQw(Q, Dm, V ) since Q(I1, I2) �= ∅ for all (I1, I2),
while

⋂
I ′∈Ext(I1,I2) Q(I ′) = ∅. In contrast, consider a c-instance T = (T1, T2), where

T1 = ({(x)},∅) and T2 = ({(y)},∅). Obviously, T is in RCQw(Q, Dm, V ) since Q(T ) =⋂
I∈Mod(T ) Q(I) = ∅ = ⋂

I∈Mod(T ),I ′∈Ext(I) Q(I ′).

This tells us that, from the undecidability of RCQPw(FO) for ground instances, we
cannot conclude the undecidability for c-instances. Nevertheless, RCQPw(LQ) becomes
trivially decidable when LQ is FP, CQ, UCQ, or ∃FO+, for c-instances and for ground
instances, in contrast to Theorem 4.5.

THEOREM 5.4. RCQPw(LQ) is

—undecidable for ground instances if LQ is FO, and
—decidable in O(1)-time for c-instances and ground instances when LQ is FP, CQ, UCQ,

or ∃FO+.

The complexity is unchanged when Dm and V are fixed.

PROOF. We refer to Appendix A for the proof of this Theorem. In a nutshell, we show
that RCQPw(FO) is undecidable for ground instances by reduction from the satisfiabil-
ity problem for FO, and give a constructive proof showing that there always exists a
database (ground instance) that is weakly complete for Q relative to (Dm, V ) when Q is
an FP query. From this, it follows that RCQPw(FP) is trivially decidable.

5.3. The Minimality Problem in the Weak Model

In contrast to the strong completeness model, Lemma 4.7 no longer holds in the weak
completeness model, that is, to decide whether an instance I is minimal, it does not
suffice to inspect I\{t} only.
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Example 5.5. Consider a CQ query Q defined on a pair of unary relations (R1, R2):
Q(x) = ∃y z(R1(y) ∧ R2(z) ∧ x = a). That is, on an instance (I1, I2) of (R1, R2), Q returns
{(a)} if I1 and I2 are both nonempty. Consider an instance I0 = ({(0)}, {(1)}), an empty
set V of CCs, and any master data Dm. Then, I0 is in RCQw(Q, Dm, V ). Nevertheless, it
is not minimal: the empty instance (∅,∅) of (R1, R2) is also in RCQw(Q, Dm, V ). Indeed,
({0},∅) is a partially closed extension of (∅,∅) and Q({0},∅) = ∅. Then,

⋂
I′∈Ext((∅,∅)) = ∅;

thus, (∅,∅) is in RCQw(Q, Dm, V ). However, removing one tuple from I0 does not make
it a weakly complete instance, that is, a counterexample to the minimality of I0 cannot
be found by removing only one tuple from I0.

In the weak model, the minimality analysis is quite different from its counterpart in
the strong model (Theorem 4.8). (a) The absence of missing values does not simplify the
analysis, as opposed to their counterparts in the strong model (Dp

2 for ground instances
vs. �

p
3 for c-instances). (b) It is much easier to check MINPw(CQ) than MINPw(UCQ)

(coDP-complete vs. �
p
4 -complete), whereas MINPs(CQ) and MINPs(UCQ) have the same

complexity. Recall that coDP = NP ∪ coNP (see Papadimitriou [1994]).

THEOREM 5.6. For c-instances and ground instances. MINPw(LQ) is

—undecidable when LQ is FO,
—coNEXPTIME-complete when LQ is FP,
—�

p
4 -complete when LQ is UCQ or ∃FO+, and

—coDP-complete when LQ is CQ.

PROOF. We show that MINPw(LQ) is undecidable when LQ is FO, coNEXPTIME-complete
when LQ is FP, and �

p
4 -complete when LQ is UCQ or ∃FO+. When LQ is CQ, the

problem is shown to be coDP-complete. All lower bounds remain intact when only
ground instances are considered.

(1) When LQ is FO. It suffices to show that MINPw(FO) is undecidable for ground in-
stances. More specifically, it suffices to show that it is undecidable to determine, given
an FO query Q, master data Dm and a set V of CCs, whether I∅ is in RCQw(Q, Dm, V ),
where I∅ is the empty database instance of the schema over which Q is defined. This
is because if I∅ is in RCQw(Q, Dm, V ), then it is a minimum instance complete for Q
relative to (Dm, V ). The undecidability of this problem has already been verified in the
proof of Theorem 5.4.

(2) When LQ is FP. We show that MINPw(FP) is coNEXPTIME-hard for ground instances
and provide a coNEXPTIME algorithm for deciding MINPw(FP) for c-instances.

Lower bound. We show that, for ground instances, MINPw(FP) is coNEXPTIME-hard by
reduction from the SUCCINCT-TAUT problem (see a description of the problem in the
proof of Theorem 5.1 (2)). Given an instance of the latter problem, we define the same
database schemas R and Rm, ground instance I of R, set V of CCs, master data Dm
of Rm, and FP query Q as their counterparts in the proof of Theorem 5.1 (2). We show
that C is a tautology if and only if I is the minimal in RCQw(Q, Dm, V ).

⇒ Suppose that C is a tautology. We first show that I ∈ RCQw(Q, Dm, V ), that is,
Q(I) = ⋂

I ′∈Ext(I) Q(I ′). As shown in the proof of Theorem 5.1 (2), Q(I) returns all
�w ∈ {0, 1}n since C is a tautology. Moreover, the only extension I ′ of I is {t, t′}, where t is
in I and t′ is the same as t except that t′[A0] = 0 while t[A0] = 1, and Q(I ′) returns all
�w ∈ {0, 1}n as well. Then, I ∈ RCQw(Q, Dm, V ). One can verify that ∅ /∈ RCQw(Q, Dm, V ).
Indeed, as discussed earlier,

⋂
(I ′,Dm)|=V Q(I ′) = {0, 1}n. Hence, I is weakly complete and

minimal.
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⇐ Conversely, if C is not a tautology, then, by the proof of Theorem 5.1 (2), I is not
even in RCQw(Q, Dm, V ), hence is not minimal.

Upper bound. We provide a coNEXPTIME algorithm that, given a c-instance T , master
data Dm, an FP query Q, and a set V of CCs, the algorithm returns “yes” if T is weakly
complete and minimal. The algorithm works as follows:

(1) Check whether T ∈ RCQw(Q, Dm, V ). This is a coNEXPTIME process by Theorem 5.1(2).
If so, continue; otherwise, return “no.”

(2) For each � ⊆ T , � �= ∅, check whether T \� ∈ RCQw(Q, Dm, V ). If such a � is
found, return “no”; otherwise, return “yes.” The enumeration of the subsets � and
checking whether T \� ∈ RCQw(Q, Dm, V ) are again in coNEXPTIME.

Hence, MINPw(FP) is in coNEXPTIME. The correctness of the algorithm is immediate.

(3) When LQ is UCQ or ∃FO+. We next show that MINPw(LQ) is �
p
4 -complete when LQ

is UCQ or ∃FO+. It suffices to show that MINPw(UCQ) is �
p
4 -hard, and MINPw(∃FO+) is

in �
p
4 . The lower bound holds when considering ground instances only.

Lower bound. We show the �
p
4 -hardness by reduction from the ∀∗∃∗∀∗∃∗3SAT problem,

which is known to be �
p
4 -complete (see Papadimitriou [1994]). The ∀∗∃∗∀∗∃∗3SAT problem

is to determine, given a sentence ϕ = ∀X∃Y∀Z∃Wψ , whether ϕ is true. Here, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, Z = {z1, . . . , zk}, W = {w1, . . . , wp}, and ψ is an instance
of 3SAT. Given an instance ϕ = ∀X∃Y∀Z∃Wψ of the ∀∗∃∗∀∗∃∗3SAT problem, where ψ =
C1 ∧ · · · ∧ Cr, we define a database schema R, a ground instance I0 of R, master data
Dm, a set V of CCs, and a query Q in UCQ, such that ϕ is true if and only if either I0 is
not in RCQw(Q, Dm, V ) or I0 ∈ RCQw(Q, Dm, V ), but it is not minimal.

(a) The database schema R consists of the following six relation schemas: R(0,1)(X),
R∨(A1, A2, B), R∧(A1, A2, B), R¬(A1, A2), RX(id, X), and RZ(Z1, . . . , Zk). Instances of
RX(id, X) are to encode truth assignments of X, and instances of RZ are singleton
sets, each encoding a truth assignment of Z. We let I0 = (IX, I(0,1), I∨, I∧, I¬, IZ), where
IX = {(1, 0), (1, 1), . . . , (n, 0), (n, 1)}, IZ = ∅, and I(0,1), I∨, I∧, and I¬ are as shown in
Figure 2.

(b) The master data Dm and CCs V ensure the following: (i) any instance I′
X of RX

satisfies I′
X ⊆ IX; (ii) any instance I′

Z of RZ consists of a single tuple with values taken
from {0, 1}; and (iii) instances of R(0,1), R∨, R∧, and R¬ are subsets of I(0,1), I∨, I∧, and
I¬, respectively. Clearly, (I, Dm) |= V .

(c) The query Q is defined as Q1 ∪ · · · ∪ Q2n+12 ∪ P1 ∪ P2 ∪ P3, where the Qis guar-
antee the existence of certain tuples in the query result when the input instance
consists of at least i tuples, for i ∈ [1, 2n + 12]; query P1 generates an additional
tuple when the instance of RX contains a proper truth assignment of X; query P2 is
to eliminate the effect on the certain answers of extensions that do not correspond
to proper truth assignments of X; and, finally, P3 generates truth assignments of Y
that satisfy certain properties related to ϕ. As we will see here, I0 ∈ RCQw(Q, Dm, V ),
but it is only minimal when there does not exist a proper subset I−

X of IX such that
I−

0 = (I−
X , I(0,1), I∨, I∧, I¬,∅) ∈ RCQw(Q, Dm, V ). Furthermore, Q is defined in such a way

that only I−
X that encode valid truth assignments of X need to be considered. In partic-

ular, I−
0 ∈ RCQw(Q, Dm, V ) if and only if the truth assignment μX encoded in I−

X is such
that there does not exist a μY of Y such that, for every μZ of Z, ∃Wψ(μX, μY , μZ, W)
evaluates to true. In other words, I−

0 ∈ RCQw(Q, Dm, V ) if and only if ϕ is false. Conse-
quently, I0 is minimal if and only if ϕ is true. In the rest of the lower bound proof, we use

ACM Transactions on Database Systems, Vol. 41, No. 2, Article 10, Publication date: May 2016.



Capturing Missing Tuples and Missing Values 10:39

I and I ′ to range over the instances of R, I−, and (I ′)− to denote subinstances (proper
subsets) of I and I ′, and I+ and (I ′)+ to denote extensions of I and I ′, respectively.

We next explain the disjuncts in Q in more detail. All queries have output arity m, the
number of variables in Y . Observe that the maximal size of partially closed instances
is 2n + 13, that is, there are at most 2n tuples in instances of RX, 12 tuples in the
instances corresponding to R(0,1), R∨, R∧, and R¬, and at most one tuple in instances of
RZ.

For i ∈ [1, 2n + 12], we define Qi(�u) as a UCQ that returns �ai = (ai, . . . , ai) whenever
the input instance has size at least i. Here, ai is a fresh new constant not used anywhere
else. Clearly, such a query can be expressed in UCQ by using �=.

Consider Q′ = Q1 ∪ · · · ∪ Q2n+12 and any instance I of R of size i. Then, Q′(I) =
{�a1, . . . , �ai}. However, for any extension I+ of I (i.e., for I+ ∈ Ext(I)), we have that
Q′(I) � Q′(I+) since the latter surely contains {�a1, . . . , �ai, �ai+1}. In other words,
if we were to use only Q′ instead of Q, no strict subinstance I− of I0 can be in
RCQw(Q′, Dm, V ). We will see shortly how the additional query P1 in Q provides the
opportunity for specific subinstances of I, that is, those that correspond to valid truth
assignments of X, to be in RCQw(Q, Dm, V ). Observe that Q′(I0) = {�a1, . . . , �a2n+12}.
Similarly, Q′(I+

0 ) = {�a1, . . . , �a2n+12} for any extension I+
0 of I0. Indeed, Q′ stops adding

fresh tuples to the query result once the instance grows in size beyond 2n+ 12. Hence,
Q′ helps us ensure that I0 ∈ RCQw(Q′, Dm, V ).

We next define the queries P1, P2, and P3. First, we let

P1(�u) = (∃�x
∧

i∈[1,n]

RX(i, xi)) ∧ Qall ∧ �u = �an+13,

where Qall is to ensure that all the tuples in I(0,1), I¬, I∨, and I∧ are in place. That is,
query P1 puts �an+13 into the query result on instances I ′ of R for which I′

X contains a
truth assignment μX of X, that is, when I′

X contains tuples of the form (i, v) for each
i ∈ [1, n], and when all instances encoding Boolean domain and operations are present.
Observe that P1 has an effect only when I ′ has size n+12 (when its RX instance encodes
a valid truth assignment for X). �an+13 is already in the query result for larger instances
because of the Qjs described earlier. On the other hand, it cannot affect instances I ′ of
smaller size. I′

X must contain at least n tuples and all 12 tuples in I(0,1), I∨, I∧, and I¬
must be present.

It is easily verified that, for Q′′ = Q′ ∪ P1, I−
0 ∈ RCQw(Q′′, Dm, V ) if and only if either

(a) I = I0 or (b) I−
0 consists of precisely n + 12 tuples and satisfies the condition in P1.

We refer to such subinstances I−
0 of I0 as weakly complete candidates. That is, we use

Q′ and P1 to distinguish weakly complete candidates. Observe that the certain answers
of Q′′ on extensions of I−

0 is equal to {�a1, . . . , �an+12, �an+13}, which equals Q′′(I−
0 ).

What remains to show is that no weakly complete candidates can be weakly complete
if and only if ϕ is true. For if this holds, I0 is minimal in RCQw(Q, Dm, V ) if and only if
ϕ is true, as desired. To show this, we need the two additional queries P2 and P3, which
are defined as follows.

Query P2 is to ensure that, for any extension (I−
0 )+ of weakly complete candidates

I−
0 , if its RX instance (I′

X)+ does not encode a truth assignment of X, then (I−
0 )+ does

not affect the certain-answer result. More specifically, P2 is a disjunction of n queries
P2,i(�y) = RX(i, 0)∧ RX(i, 1)∧ R(0,1)(y1)∧· · ·∧ R(0,1)(ym). That is, whenever P2 is applied on
an instance (I−

0 )+ such that (I′
X)+ contains two possible values for a variable xi (encoded

by (i, 0) and (i, 1)), it puts all truth assignments of Y in the query result. We denote by
FY the set of all possible truth assignments of Y .

Consider Q′′′ = Q′′ ∪ P2. Observe that Q′′′(I0) = {�a1, . . . , �a2n+12} ∪ FY = Q′′′(I+
0 ) for any

extension of I+
0 of I0. Hence, I0 ∈ RCQw(Q′′′, Dm, V ). Similarly, for a weakly complete
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candidate I−
0 , Q′′′(I−

0 ) = {�a1, . . . , �an+13} = ⋂
(I−

0 )+∈Ext(I−
0 ) Q′′′((I−

0 )+). This follows from the
fact that Ext(I−

0 ) contains at least one instance I1 of size n + 13 on which P2 does not
produce FY . For example, I1 could be I−

0 extended with an additional tuple in its RZ

instance I′
Z. Since Q′′′(I1) = Q(I−

0 ) = {�a1, . . . , �an+13} ⊆ ⋂
I ′∈Ext(I−

0 ) Q′′′(I ′) and I1 ∈ Ext(I−
0 ),

we may conclude that P2 alone does not prevent weakly complete candidates to be in
RCQw(Q′′′, Dm, V ). The relevance of P2 comes only in play together with query P3, which
we define next.

More specifically,

P3(�y) = ∃�x, �z, �w (QX(�x) ∧ QY (�y) ∧ RZ(�z) ∧ QW ( �w) ∧ Qψ (�x, �y, �z, �w, 1)),

where QX(�x) = ∧
i∈[1,n] RX(i, xi), and QY (�y) and QW ( �w) generate all k and p binary tuples

by means of Cartesian products of R(0,1). Furthermore, Qψ (�x, �y, �z, �w, v) is a CQ query
that encodes the truth value of ψ(μX, μY , μZ, μW , v) for given truth assignment μX of
X, μY of Y , μZ of Z, and μW of W as encoded by �x, �y, �z, and �w, respectively. In other
words, v = 1 if ψ(μX, μY , μZ, μW , v) holds and v = 0 otherwise. Query Qψ is encoded by
means of R(0,1), R∨, R∧, and R¬, as before.

We now have that Q = Q′′′ ∪ P3. Observe that Q(I0) = Q′′′(I0). Furthermore, since
Q′′′(I0) already contains FY , no further tuples can be added to the query result in any
extension of I0. Hence, I0 remains a weakly complete database for Q, Dm, and V .

We next investigate the impact of P3 on weakly complete candidates I−
0 . Since IZ = ∅

in I0, I′
Z = ∅ in any weakly complete candidate I−

0 ; therefore, P3 does not add additional
tuples to Q′′′(I−

0 ), that is, Q(I−
0 ) = Q′′′(I−

0 ). On the other hand, consider an extension
(I−

0 )+ of I−
0 on which P2 does not apply (otherwise, P2 would already have added FY

to the query result, hence P3 does not have an impact). Recall that such extensions
exist by simply adding a tuple to I′

Z. Then, P3((I−
0 )+) is either (a) empty, in which

case
⋂

(I−
0 )+∈Ext(I−

0 ) Q((I−
0 )+) = {�a1, . . . , �an+13} = Q(I−

0 ), or (b) P3((I−
0 )+) returns F ′

Y , where
F ′

Y consists of all truth assignments of Y that satisfy the condition in P3. It is easily
verified that

⋂
(I−

0 )+∈Ext(I−
0 ) Q((I−

0 )+) = {�a1, . . . , �an+13} ∪ CY , where CY denotes the set of
truth assignments returned by P3 on all extensions (I−

0 )+ of I−
0 . Hence, the weakly

complete candidate I−
0 is weakly complete if and only if CY is empty. Recall that

Q(I−
0 ) = {�a1, . . . , �an+13}. That is, for the truth assignment μX encoded in I′

X, there is
no truth assignment μY of Y such that, for all truth assignments μZ of Z (note that
all μZ are considered as a tuple in I′′

Z in some extension (I−
0 )+ of I−

0 ), there exists a
truth assignment μW of W that makes ψ true. That is, a weakly complete candidate
is actually in RCQw(Q, Dm, V ) if and only if ϕ is false, as desired. As a result, I is a
minimal instance in RCQw(Q, Dm, V ) if and only if ϕ is true.

Upper bound. We show that MINPw(∃FO+) is in �
p
4 by providing an �

p
4 -algorithm that

decides the complement problem. That is, the algorithm returns “yes” if, for a given
c-instance T , master data Dm, a set V of CCs, and an ∃FO+query Q, T is not a minimal
c-instance that is weakly complete for Q relative to (Dm, V ), and “no” otherwise. The
algorithm does the following:

(1) Check whether T �∈ RCQw(Q, Dm, V ). If so, then return “yes.” Otherwise, continue.
By Theorem 5.1(3), this step is in �

p
3 .

(2) We guess � ⊆ T and make a call to a �
p
3 -oracle, to check whether T \� ∈

RCQw(Q, Dm, V ). If not, reject the current guess. Otherwise, return “yes.”

Hence, the overall complexity of the algorithm is NP�
p
3 or �

p
4 ; therefore, MINP(∃FO+) is

in �
p
4 . The correctness of the algorithm is immediate.
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(4) When LQ is CQ. We show that MINPw(CQ) is coDP-complete for ground instances.
By Lemma 3.2, we assume without loss of generality that T is defined over a single
relation schema. When LQ is CQ, the minimal weakly complete databases are rather
restrictive, as verified by the following lemma:

LEMMA 5.7. Given a CQ query Q, master data Dm, a set V of CCs, and a c-
instance T , T is a minimal instance in RCQw(Q, Dm, V ) if and only if either T = ∅
is in RCQw(Q, Dm, V ), or when ∅ �∈ RCQw(Q, Dm, V ), |T | is a singleton set, and
Mod(T , Dm, V ) �= ∅.

PROOF. Let (TQ, uQ) denote the tableau representation of Q. We distinguish between
the following two cases: (i) ∅ ∈ RCQw(Q, Dm, V ) and (ii) ∅ �∈ RCQw(Q, Dm, V ). Clearly,
in case (i), T is a minimal instance in RCQw(Q, Dm, V ) if and only if T = ∅. Suppose
that case (ii) holds. We then show that {τ } ∈ RCQw(Q, Dm, V ) for every τ ∈ T , where
Mod(τ, Dm, V ) �= ∅. Hence, one can readily verify that in case (ii), T is a minimal
instance in RCQw(Q, Dm, V ) if and only if |T | = 1 and Mod(T , Dm, V ) �= ∅.

Suppose that ∅ �∈ RCQw(Q, Dm, V ). Then,
⋂

({t},Dm)|=V Q({t}) �= ∅. Once
⋂

({t},Dm)|=V
Q({t}) = ∅, then

⋂
I ′∈Ext(∅) Q(I ′) = ∅ = Q(∅); thus, ∅ ∈ RCQw(Q, Dm, V ), which con-

tradicts the assumption. Moreover, it is easy to verify that Q({t}) consists of a sin-
gle tuple, and all Q({t}) must return the same answer tuple, say, u. Let τ be a tu-
ple in T such that Mod(τ, Dm, V ) �= ∅. First, note that Mod(τ, Dm, V ) is a subset of
{t | ({t}, Dm) |= V } and, for each t ∈ Mod(τ, Dm, V ), we have that Q({t}) = u. We show
that {τ } is in RCQw(Q, Dm, V ). We only need to show that the intersection of Q({t, s}),
where t ∈ Mod(τ, Dm, V ) and ({t, s}, Dm) |= V , is equal to u. In fact, we show a stronger
result: Q({t, s}) = u for each t and s as before. Suppose, by contradiction, that there
exists a valuation μ′ of TQ with values from t and s such that μ′(uQ) �= u. However,
every variable x ∈ uQ such that μ′(x) �= u[x] is witnessed by an attribute either in t
or s (or both), as specified by μ′. Observe, however, that also ({s}, Dm) |= V , thus also
Q({(s)}) = u. This implies, in turn, that μ′(x) is already witnessed by a valuation of Q
with values in t, or by a valuation of Q with values in s, both of which result in u. Thus,
μ′(uQ) �= u cannot be true. A contradiction.

From this lemma, it follows that we only need to consider c-instances T such that
either T = ∅ or |T | = 1. Furthermore, for T with |T | ≤ 1, the problem of testing
minimality reduces to testing whether ∅ ∈ RCQw(Q, Dm, V ).
Lower bound. We show that, for ground instances, MINPw(CQ) is coDP-hard by re-
duction from the complement of the SAT-UNSAT problem, which is DP-complete (see
Papadimitriou [1994]). An instance of SAT-UNSAT is to determine whether, for a pair of
3SAT-instances (φ, φ′), φ is satisfiable and φ′ is not satisfiable. Here, φ = C1 ∧ · · · ∧ Cr
and φ′ = C ′

1 ∧ · · · ∧ C ′
s, that is, for each i ∈ [1, r] (resp. i ∈ [1, s]), clause Ci (resp. C ′

i) is
of the form �i

1 ∨ �i
2 ∨ �i

3, where, for each l ∈ [1, 3], �i
l is either a variable or the negation

of a variable in X = {x1, . . . , xn}.
Given an instance of the latter problem, we define a database schema R, a ground

instance I of R, master data Dm, a set V of CCs, and a CQ query Q such that I is
a minimal weakly complete instance for Q relative to (Dm, V ) if and only if φ is not
satisfiable or φ′ is satisfiable.
(a) The database schema R consists of a single relation R(X1, . . . , Xn, X′

1, . . . , X′
n, Y ),

and we set the instance I to be the empty set.
(b) The master data Dm consists of two relations (I(0,1) = {(0), (1)}, I∅ = ∅).
(c) The set V of CCs consists of the following: (i) a constraint enforcing that every
attribute in R takes values from I(0,1); (ii) for each clause Ci, for i ∈ [1, r], and each
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truth assignment μX of the variables in Ci that makes Ci false, we add a selection
condition of the form σμX(R) ⊆ I∅, ensuring that the projection of R on X1, . . . , Xn
contains no tuples satisfying the selection condition. For example, for C = x̄1 ∨ x̄2 ∨ x3
and μX = {x1 �→ 1, x2 �→ 1, x3 �→ 0}, we have the constraint σX1=1∧X2=1∧X3=0(R) ⊆ I∅;
and, finally, (iii) for each C ′

i, for i ∈ [1, s], we add similar constraints to ensure that
no tuples in R satisfy C ′

i. In addition, these constraints always include Y = 1. For
example, for C ′

i = x3 ∨ x4 ∨ x̄5 and μX = {x3 �→ 1, x4 �→ 0, x5 �→ 1}, we have the
constraint σY=1∧X3=1∧X4=0∧X5=1(R) ⊆ I∅; note that there are r + s such CC’s. Observe the
following: (i) {t[Y ] | ({t}, Dm) |= V } is empty if and only if φ is not satisfiable; (ii) it is
{(0)} if φ is satisfiable and φ′ is unsatisfiable; and (iii) it is {(0), (1)} if both φ and φ′ are
satisfiable. Moreover, clearly, I = ∅ is partially closed relative to (Dm, V ).

(d) Finally, the CQ query Q simply returns πY (R).

We next show that I = ∅ is in RCQw(Q, Dm, V ) if and only if φ is unsatisfiable or φ′ is
satisfiable. Note that I = ∅ is in RCQw(Q, Dm, V ) if and only if

⋂
I′ �=∅,(I′,Dm)|=V Q(I′) = ∅.

Since Q is monotonic, the latter is equivalent to
⋂

({t},Dm)|=V Q({t}) = ∅, which happens
only when either {t[y] | ({t}, Dm) |= V } = ∅, meaning that φ is not satisfiable, or
when {t[y] | ({t}, Dm) |= V } �= ∅ and there exist two elements in this set. In this case,
Q({t1}) = {t1} �= {t2} = Q({t2}). Hence, the only case in which I �∈ RCQw(Q, Dm, V ) is
when φ is satisfiable and φ′ is not satisfiable.

Upper bound. Based on Lemma 5.7, the following algorithm decides whether a given
c-instance T is a minimal instance weakly complete for a CQ query Q relative to
(Dm, V ):

(1) Check whether |T | > 1. If so, return “no”; otherwise, continue.
(2) Check whether ∅ ∈ RCQw(Q, Dm, V ) and T = ∅. If so, return “yes.”
(3) Check whether ∅ /∈ RCQw(Q, Dm, V ) and |T | = 1. If so, return “yes”; otherwise,

return “no.”

It is in NP to check whether ∅ /∈ RCQw(Q, Dm, V ). ∅ /∈ RCQw(Q, Dm, V ) if and only if⋂
I′∈Ext(∅) Q(I′) �= ∅. One can verify that the latter holds if and only if

⋂
({t},Dm)|=V Q({t}) �=

∅. As discussed before, we have that ∅ /∈ RCQw(Q, Dm, V ) if and only if, for every pair of
tuples t1 and t2 that possibly refer to the same tuple, Q(t1) = Q(t2) if ({t1}, Dm) |= V and
({t2}, Dm) |= V . Accordingly, we give a coNP algorithm for its complement problem, that
is, checking whether ∅ ∈ RCQw(Q, Dm, V ), which returns “no” if and only if there exist
a pair of tuples t1 and t2 such that Q(t1) �= Q(t2) if ({t1}, Dm) |= V and ({t2}, Dm) |= V .
More specifically, the algorithm works as follows.

(1) Guess one pair of tuples (t1, t2) with values in Adom.
(2) Check whether ({t1}, Dm) |= V and ({t2}, Dm) |= V . If so, continue; otherwise, reject

the guess. This can be done in PTIME for one-tuple instances.
(3) Check whether Q(t1) �= Q(t2). If so, return “no”; otherwise, reject the guess. This

can be done again in PTIME for one-tuple instances.

It is in coNP to check whether ∅ ∈ RCQw(Q, Dm, V ); thus, it is in NP to check whether
∅ /∈ RCQw(Q, Dm, V ). Thus, the algorithm for deciding MINPw(CQ) is in coDP =NP
∪coNP.

In this proof, we consider only those T such that Mod(T , Dm, V ) �= ∅. However,
without assuming Mod(T , Dm, V ) �= ∅, MINPw(CQ) is still in coDP. It is in NP to check
whether Mod(T , Dm, V ) �= ∅ since |T | = 1. That is, adding an extra step to check
whether Mod(T , Dm, V ) �= ∅ to the algorithm will not complicate the analysis.
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6. VIABLE RELATIVE INFORMATION COMPLETENESS

We next investigate RCDP, RCQP, and MINP for viably complete c-instances, denoted by
RCDPv, RCQPv, and MINPv, respectively. That is, we now focus on databases that can be
made relatively complete when their missing values are correctly instantiated. In this
model, we provide complexity results for these problems for various query languages.
The results tell us that missing values complicate the analysis of these problems to
an extent. As opposed to their counterparts in the weak model, the complexity bounds
are not very diverse (we defer the proofs of the results of this section to the electronic
appendix). We use RCQv(Q, Dm, V ) to represent the set of all viably complete instances.

In contrast to Theorem 4.1, RCDPv(CQ) for c-instances is �
p
3 -complete rather than

�
p
2 -complete. Here, RCDPv(FP) remains undecidable, as opposed to its counterpart in

the weak model (Theorem 5.1).

THEOREM 6.1. For c-instances, RCDPv(LQ) is

—undecidable when LQ is FO or FP, and
—�

p
3 -complete when LQ is CQ, UCQ, or ∃FO+.

The complexity is unchanged when Dm and V are fixed.

In contrast to Theorem 5.1, RCQPv(LQ) is no longer trivial for viably complete c-
instances when LQ is FP. One can verify that Lemma 4.4 still holds in this setting.
As a result, RCQPv for relatively viably complete c-instances coincides with RCQPv

for ground instances. For the latter, the complexity results are already established by
Theorem 4.5. From these, this corollary follows.

COROLLARY 6.2. For c-instances, RCQPv(LQ) is

—undecidable when LQ is FO or FP, and
—NEXPTIME-complete when LQ is CQ, UCQ, or ∃FO+.

The complexity is unchanged when Dm and V are fixed.

For c-instances, MINPv(LQ) becomes �
p
3 -complete for CQ, UCQ, or ∃FO+, rather than

�
p
3 -complete, as in the strong model. The complexity bound is rather robust: it is the

same for CQ, UCQ, and ∃FO+, as opposed to their counterparts in the weak model.

COROLLARY 6.3. MINPv(LQ) is

—undecidable for c-instances and for ground instances when LQ is FO or FP, and
—�

p
3 -complete for c-instances and Dp

2 -complete for ground instances, when LQ is CQ,
UCQ or ∃FO+.

The complexity is unchanged when Dm and V are fixed.

7. TRACTABLE SPECIAL CASES

The results of Sections 4, 5, and 6 tell us that RCDP, RCQP, and MINP have rather
high complexity. For practical use to emerge from the study of relative information
completeness, we need to develop effective and efficient heuristic algorithms RCDP,
RCQP, and MINP, and to identify their special cases that are practical and tractable.

In practice, we often deal with fixed sets of queries and constraints. That is, the
queries and CCs are predefined in advance, and only the underlying databases and
master data may vary. We often have a fixed query load, for example, in e-commerce,
certain fixed Web forms are used, which are fixed queries in which some designated
variables may take various value parameters. Moreover, people typically first design
constraints based on schemas, then populate and maintain database instances. This
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highlights the need for studying the data complexity of relative information complete-
ness (see Abiteboul et al. [1995] for details about data complexity).

In this section, we identify tractable cases for RCDP, RCQP, and MINP when queries
Q and CCs V are fixed, while the underlying databases D and master data Dm vary,
for c-instances in the strong, weak, and viable completeness models. That is, we study
their tractable cases under data complexity (the proofs of the results are given in
the electronic appendix). In contrast, Sections 4, 5, and 6 have studied the combined
complexity of the problems when data, queries, and CCs may all vary.

One might be tempted to think that the data complexity analyses of these problems
would be much simpler. The study of data complexity is nontrivial, however. For ground
instances in the strong completeness model, the data complexity of RCDP and MINP
has recently been studied [Cao et al. 2014]. It is shown that RCDP and MINP remain
undecidable for FO even in the absence of CCs, and for FP when V is a set of FDs.
These undecidability results obviously carry over to c-instances in the strong model.
While these problems are in PTIME for CQ, UCQ, and ∃FO+ when ground instances are
considered, the PTIME algorithms of Cao et al. [2014] no longer work on c-instances. To
the best of our knowledge, no previous work has studied RCQP for ground instances or
c-instances, or RCDP and MINP for c-instances.

The relatively complete database problem. To get tractable cases for c-instances,
we consider c-instances with a constant number of variables, that is, when our
databases have a small number of missing (null) values. Under this condition and
data complexity, RCDP becomes tractable for most positive query languages.

COROLLARY 7.1. For c-instances with a constant number of variables, and for fixed
query Q and a fixed set V of CCs,

—RCDPs and RCDPv are in PTIME for CQ, UCQ, and ∃FO+; and
—RCDPw is in PTIME for CQ, UCQ, ∃FO+, and FP.

The relatively complete query problem. When we use INDs as CCs, that is, for
CCs of the form q ⊆ p when q and p are both projection queries, RCQPs and RCQPv

become much simpler. The positive results hold even when the set V of CCs is not
fixed. Moreover, RCDPw is in constant time for FP for general CCs defined in CQ, by
Theorem 5.4.

COROLLARY 7.2. For fixed queries,

—RCQPs and RCQPv are in PTIME for CQ, UCQ, and ∃FO+ when CCs are INDs; and
—RCQPw is in O(1) time for CQ, UCQ, ∃FO+, and FP.

The minimality problem. Similar to RCDP, we get tractable cases of MINP, when
queries and CCs are fixed, for c-instances with a constant number of variables.

COROLLARY 7.3. For c-instances with a constant number of variables, and for fixed
query Q and a fixed set V of CCs,

—MINPs and MINPv are in PTIME for CQ, UCQ, and ∃FO+; and
—MINPw is in PTIME for CQ.

8. CONCLUSIONS

We have proposed three models to specify the relative information completeness of
databases in the presence of both missing values and missing tuples. We have stud-
ied the interaction between the analysis of relative completeness and the analysis
of data consistency. We have also identified three problems associated with relative
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completeness: RCQP, RCDP, and MINP. For a variety of query languages, we have es-
tablished upper and lower bounds on these problems, all matching, in each of the three
completeness models, both for c-instances and for ground instances. We have also iden-
tified tractable cases of these problems under data complexity. We expect that these
results will help database users decide whether their queries can find complete an-
swers in a database, and will help developers of MDM or databases identify a minimal
amount of information to collect in order to answer queries commonly issued.

The main complexity results are summarized in Table I, annotated with their cor-
responding theorems. From the table we can see that different combinations of query
languages, completeness models, and the presence and the absence of missing values
lead to a spectrum of decision problems with different complexity bounds.

The study of relative information completeness is still in its infancy. An open issue
concerns the complexity of RCQP for FO in the weak model. We only know that it
is undecidable for ground instances; our conjecture is that it is also undecidable for
c-instances. Another open issue concerns whether the complexity bounds remain intact
when master data and CCs are fixed. A third topic is to develop representation systems
for relatively complete databases, possibly under the semantics introduced by Libkin
[2014]. A fourth topic is to figure out the impact of other constraints on the analysis of
relative completeness, such as tuple-generating dependencies. Finally, to make practi-
cal use of the study, we need to develop efficient heuristic algorithms for the problems
with certain performance guarantees.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library
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