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ABSTRACT 
Concretely communicating technical debt and its consequences is 
of common interest to both researchers and software engineers. In 
the absence of validated tools and techniques to achieve this goal 
with repeatable results, developers resort to ad hoc practices. Most 
commonly they report using issue trackers or their existing backlog 
management practices to capture and track technical debt. In a 
manual examination of 1,264 issues from four issue trackers from 
open source industry and government projects, we identified 109 
examples of technical debt. Our study reveals that technical debt 
and its related concepts have entered the vernacular of developers 
as they discuss development tasks through issue trackers. Even 
when issues are not explicitly tagged as technical debt, it is possible 
to identify technical debt items in these issue trackers using a 
categorization method we developed. We use our results and data 
to motivate an improved definition and an approach to explicitly 
report technical debt in issue trackers. 

CCS Concepts 
Software and its engineering → Software creation and 
management → Software post-development issues → 
Maintaining software 

Keywords 
Technical debt; software anomalies; issue tracking; text 
categorization; software design. 

1. INTRODUCTION 
What is technical debt? Why identify technical debt? Shouldn’t 
these issues be captured as defects and bugs? The inability to 
answer these questions empirically, supported by a software 
economics theory, can result in technical debt attaining a legendary 
status [31]. We know its value as a metaphor, and we hear stories 
from developers and project folklore about its symptoms and their 
consequences, but can we see, describe, and hold the thing itself as 
a concrete software development artifact? While progress is being 
made toward refining our understanding of technical debt 
theoretically, data-driven studies to contribute to theoretical 
research endeavors lag behind. 

Results of our recent, broad practitioner survey of 1,831 software 
engineers and managers demonstrate that they share a common 
understanding of the concept of technical debt [12]. According to 
participants, lack of proven tool support to accurately identify, 
communicate, and track technical debt is a key issue and remains a 
gap in practice. In the absence of validated tools to concretely 
communicate technical debt and its consequences, developers 
resort to practices that they are familiar with. 

More than half of the participants in our survey reported using issue 
trackers to communicate technical debt either explicitly (“technical 
debt” is mentioned) or implicitly (the concept of “technical debt” is 
discussed but not explicitly mentioned). This is consistent with 
anecdotal feedback from our own experiences of working with 
organizations as well as case studies represented in literature [34]. 

Intuitively it makes sense for issue trackers to serve as an entry 
point for communicating technical debt since developers use issue 
trackers as one tool to manage task priorities. To understand how 
issue trackers are used to communicate technical debt by software 
developers, we conducted an exploratory study of four issue 
trackers, including the Chromium [8] and Connect Health IT 
Exchange [10] open source projects and two government IT 
projects for which we are aware of technical debt issues. 

We address the following questions: 

• RQ1: Do developers use the term technical debt explicitly when 
discussing issues and tasks in their issue trackers? 

• RQ2: Can technical debt items be discovered systematically within 
issue trackers? 

• RQ3: What are the distinguishing characteristics of technical debt 
items discovered in issue trackers? 

We identified 109 examples of technical debt from a sample of the 
1,264 issues in the issue trackers we studied and evaluated them 
with experts and the developers of the systems when applicable. A 
summary of our findings include the following: 

Finding 1: While technical debt items were not labeled explicitly 
in the issue trackers we studied, we identified 58 examples where 
developers explicitly use the term technical debt and related 
concepts to understand an issue. Concepts related to technical 
debt, such as take-on debt, accumulate debt, and pay-back 
debt, have entered the developers’ vocabulary, and they are 
using issue trackers to communicate technical debt in an ad hoc 
manner. 

Finding 2: We developed and used a classification approach to find 
additional examples where developers articulated concerns related 
to technical debt, but did not use the term. Using this approach, we 
identified 51 more examples of technical debt. Many issues could 
not be classified because developers do not always clearly 
identify the consequences of not paying down the debt. 
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Finding 3: We analyzed the technical debt issues that we found for 
generalizable characteristics: 

• Studying the characteristics of project indicators recorded in the issue 
trackers (time open, number of watchers, priority) demonstrate that 
more data analysis is needed to find consistent values that may 
show a relationship between these characteristics and technical 
debt. 

• The examples provide early results for design areas where 
technical debt mostly occurs, including consequences of dead code, 
duplicate code, and API mismatches. 

• The promise of understanding technical debt is to use design choices 
strategically to intentionally trade off speed and development effort 
with minimal compromise of quality. The reality is that the issues we 
found are mostly the result of unintentional design choices and 
surface in issue trackers when their unintended consequences become 
visible. 

Our findings demonstrate that when developers refer to technical 
debt and related concepts in the issue trackers they also point their 
finger at where the problem is in the code. They are not just talking 
about a high-level conversation piece of system quality. 
Consequently, technical debt is an artifact of software 
development, similar to design, code, and defects. Based on these 
findings, we recommend that to take best advantage of technical 
debt and pay it back before the debt grows, its definition should 
concretely map to development artifacts. We propose the following 
definition: 

Technical debt is design work relating to software units that have 
evidence of present or anticipated accumulation of extra work. 

Design work is manifested through implementation and changes to 
supporting work products such as code, data, build scripts, and test 
suites. Conversely, technical debt is not work related to a non-
software unit (e.g., requirement, documentation, process concern), 
nor is it a low-impact, executable artifact change with minimal 
consequence if not fixed (e.g., uncommented code). 

In this paper, we present our analysis results and recommendations 
for how to report a technical debt item. 

2. APPROACH 
We conducted our study on four projects. The data sets included 
subsets of items from the Connect Health IT Exchange (Connect) 
[10] and Chromium [8] issue trackers and two government IT 
projects, Project A and Project B, as described in Table 1. 

During data setup we first looked through the data sets for a 
technical debt label. We also searched for the term “technical debt” 
and expanded our search for technical debt concepts using terms 

we extracted from the vocabulary of a cross-section of developers 
who provided 26 exemplar descriptions of technical debt items. 

We performed our study in four phases as summarized in Figure 1.  

In Phase 1, we extracted recurring technical debt concepts and 
created categories to classify issues as technical debt, even if not 
explicitly tagged as such by developers. In Phase 2, we used the 
categories to manually classify issues as technical debt or not. 

In Phase 3, we evaluated whether we were able to systematically 
discover technical debt within issues trackers correctly by talking 
to the developers of the systems under study. In Phase 4, we looked 
across all the identified technical debt examples for distinguishing 
characteristics that might serve as consistent indicators of technical 
debt. 

We selected Connect for the study because it is an active open-
source, open-contribution project with public access to its Jira 
repository. Connect aims to enable secure, electronic health data 
exchange among health-care providers, insurers, government 
agencies, and consumer services in the United States by 
establishing a gateway between health information systems and 
organizations. It is based on service-oriented architecture design 
principles and web service interfaces [9]. It has been in 
development and use since 2008. 

Projects A and B are government-related data sets from ongoing 
clients, selected because they have a history of releases focused on 
rework to address technical debt. Project A is a mission-critical 
compliance tracking system for a large government organization 
that centralizes the data gathered from several sources into one 
nation-wide system. This Oracle client-server system has been in 

 

Figure 1. The four research phases followed. 

Table 1. Projects studied by phase. 

 Data set  Source  Filter criteria # Records 
analyzed 

Setup 
 

Chromium  Google issue tracker Text search “technical debt” 56 

Connect Jira Text search “technical debt” 15 

Technical debt survey Examples (as text) N/A 265 

Phase 1  
Categorization 

Connect  Jira 2012, first 200 records 200 

Phases 2–4 
Classification, 
evaluation, and analysis 
Total: 727 issues 

Connect Jira March 2012 286 

Project A Jira Defects/CRs Sep. 2010 to Dec. 2014  86 

Project B FogBugz All year 2013 193 

Chromium Google issue tracker M(ilestone): 48 OS: All Stars (watchers) > 3 163 

Total 1,264 
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use for over 15 years. Since the initial release, over 1.2 million work 
assignments have been created in the system. Most issues are 
entered into the issue tracker by the product manager. 

Project B is an IT system for federal government employees to 
protect the system environment by monitoring physical and 
environmental conditions against cyberattack. The software has 
been in use for 4 years and serves 125 users. Key technologies used 
include web services, embedded OS on BeagleBone Black, Socket 
IO services, and a customized sensor data communication protocol 
and collection mechanism. Programming languages used include 
Python, JS, HTML, CSS, C, C++, and DB: PostgreSQL. Several 
stakeholders create issues in the issue trackers, but the main person 
entering them is the product owner/manager. 

In all three data sets, we have additional technical information 
about known refactoring activities related to technical debt and 
access to developers who can serve as experts to validate our 
findings. We included Chromium as our fourth and control data set 
due to the relatively robust issue-tracker practices followed. 

The subset of the issues studied from these projects were selected 
randomly to minimize bias. Table 1 summarizes the subsets of the 
issues selected from these projects. The issues were not triaged 
based on any particular classification that the specific project may 
impose, such as bug, defect, and new feature. Some data sets had 
more disciplined issue-tracking practices than others, such as 
tracking priority, release assigned, number of watchers, code 
commits, and the like. All data sets had sufficient description of the 
issues to allow researchers to make classifications and judgments. 

2.1 Phase 1: Creating Categories 
In Phase 1, we extracted concepts related to technical debt 
following the concept extraction approach described in [11]. The 
sample data set was prepared by copying a subset of Connect issues 
into a spreadsheet where each line represented an issue tracker 
record. The record contained both predefined field data (e.g., type, 
priority, duration) and issue descriptions. 

Two researchers acting as technical debt subject-matter experts 
independently tagged each issue. The researchers did not have 
domain knowledge about the project. Three decision outcomes 
were possible: yes, no, or cannot determine. Researchers were 
asked to highlight portions of the issue relevant to their decision, 
capture recurring concepts (e.g., abstract concepts [11] such as 
executable artifact or design concern and specific concepts such as 
duplicate code or incorrect functionality), and provide rationale for 
categorization. After each categorization round, we met to resolve 
discrepancies and improve the categorization. 

We repeated this categorization process three times, each time 
elaborating and refining the categorization method. We conducted 
two rounds of categorization using the first 100 records. Then we 
did a third round of categorization using the second 100 records of 
the Phase 1 data set. We set a target threshold of achieving 80% 
rater consistency before exiting Phase 1 to allow some natural rater 
inconsistencies, mostly arising from cases where one researcher 
thought there was not enough information while another used 
expert judgement. 

A known expert in the field of software engineering and technical 
debt, external to our research team, assessed the results of our Phase 
1 classification. The expert categorized a random sample of our 
issues without knowledge of the software system under study or the 
approach we used to categorize the sample. As he categorized each 

entry, we asked him to discuss his rationale aloud and extracted 
concepts as feedback to inform our categories and guidance. 

The output of Phase 1 is an initial categorization summarized in 
Figure 2. 

2.2 Phase 2: Classifying Issues 
In Phase 2, pairs of researchers manually classified the four selected 
data sets using the categorization developed in Phase 1 (Figure 2) 
and the following steps: 

Step 1. One researcher prepared the data sets by selecting a random subset 
of issues. 

Step 2. Two reviewers independently classified the issues. 
Step 3. One researcher consolidated results into a single spreadsheet that 

highlighted agreements and discrepancies. 
Step 4. Researchers together discussed classification discrepancies and 

extracted recurring concepts. 

The two major outputs of Phase 2 include (1) a data set of issues 
classified as technical debt or not and (2) refined classification 
guidance. 

2.3 Phase 3: Evaluating Results 
In Phase 3, we walked through the identified technical debt records 
with project representatives from Connect, Project A, and Project 
B. We started by asking them whether they were familiar with the 
concept of technical debt and if their project had technical debt. We 
did not offer our definition of technical debt to avoid biasing them, 
but allowed them to offer us theirs to ensure that there was 
sufficient understanding for them to proceed with the task. 

We asked the project representatives to indicate whether they 
agreed with our assessment of identified technical debt issues. We 
also asked if we had missed any examples of technical debt. We did 
not reach out to Chromium developers. The issues we looked at 
from Chromium are a representative but small subset of all the 
Chromium issues. 

We asked a second expert in the field of software engineering and 
external to our research team to use our categorization under the 
same conditions to see if he would generate the same results. We 
did this to ensure that unintentional bias of the researchers did not 
influence the integrity of the results and that the classification and 
its guidance are understandable, logical, and easy to follow. The 
expert received instructions for conducting the study, read through 
the guidance, and had an opportunity to ask questions. The expert 
tagged a sample data set from Project A. The expert was then given 
a post-experiment questionnaire that included questions gauging 
quality of the data, ease of use, and quality of guidance for 
classifying the issues. We then incorporated several minor 
improvements into the guidance document. 

Outputs of Phase 3 resulted in our final data set of items classified 
as technical debt, 51 from the four project data sets. 

2.4 Phase 4: Analyzing Tagged Issues 
In Phase 4, we analyzed the selected issues for distinguishing 
characteristics that potentially identify technical debt. We 
examined structured data in the issue tracker’s predefined fields 
such as priority, duration open, number of watchers, and number of 
linked issues. Our motivation was to see if we could observe trends. 
For example, did technical debt issues take longer to resolve, have 
higher priority, or cause changes that rippled through a number of 
issues, hence suggesting additional time spent dealing with 
consequences? 
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We also examined the unstructured text in fields such as summary 
and description. A pair of researchers followed an open-coding 
approach [11], identified reoccurring design concepts from the 
records in which we identified technical debt, and affinity grouped 
this data. We discuss these results in Section 5.We also extracted 
concepts that signal accumulation of consequences of debt. There 
was variation among these concepts such that we could not create 
meaningful affinity groups. The implications of this result for 
future research are discussed in Section 6. 

Outputs of Phase 4 include analysis results of predefined fields 
(e.g., priority, opened date, closed date) and text for design 
concerns (organized by affinity grouping) and intentionality. 

3. TECHNICAL DEBT IN ISSUE 
TRACKERS 
None of the four issue trackers used technical debt as a predefined 
label or as an issue type. Consequently, we searched for the key 
word “technical debt” in each data set. Only Chromium and 
Connect returned positive results, a total of 71 (Table 2). Both 
Connect and Chromium include data that dates back several years. 
The use of the term first appears in 2010 in Connect and 2012 in 
Chromium. 

To eliminate false positives, one researcher read all of the issues 
and discarded 7 of the 15 Connect issues and 6 of the 56 Chromium 
issues, resulting in 58 examples where technical debt was explicitly 
used to refer to a concrete system problem that caused rework. 
Reasons for discarding issues included issues that were duplicate 
entries and documentation tasks (e.g., a blog post, a software 
architecture design document). In addition, two issues were 
discarded because the developer discussion indicated that the issue 
did not describe technical debt. 

For example, we discarded the following because it was a 
documentation task, despite explicit reference to technical debt. 
Hereafter, we refer to the issues by the project name followed by 
the issue number: 

[Connect #1650] The brief blog post should describe the detriments 
of technical debt, the balances of keeping vs. jettisoning, and how the 
CONNECT team approached the decision and what we did about it - 
compromise and balance. 

While this issue suggests that the developers are aware of technical 
debt, the issue is a blog post task. It does not reveal where the debt 
was, how it accumulated, and how it was paid; hence it does not 
represent a technical debt item. 

Another example of a discarded issue is one in which the 
developers conclude that the issue is a “legitimate bug”: 

[Chromium #496267] The NCN registers for connectivity messages 
iNetworkChangeNotifierAutoDetect::onApplication, but fails to 

register when the device starts. …This is a legit bug, not 
cleanup/refactoring/technical-debt-reduction. 

Errors that are visible to users and result from coding mistakes are 
bugs or defects and should not be confused with technical debt. In 
this example, Chromium developers demonstrate that they are well 
aware of these concepts and declare that this issue should be 
handled as a defect, not as cleanup or refactoring. 

In issues where technical debt discussions were explicit, we 
observed developers using concepts related to technical debt. For 
example, they referred to “taking on debt” when there was a clear 
design trade-off, “accumulation of debt” when issues were not 
fixed on time, or “paying off technical debt” when the developers 
wanted to act or had acted on issues in the system. The following 
examples demonstrate how developers referred to these related 
concerns: 

[Chromium #402086] The change looks larger and more complex 
than it really is: it’s mostly plumbing and changes to method 
signatures adding to the line count. It’s been in canary for a week 
without issue. Landing this will enable WebView to shed some 
technical debt, which is quite a big benefit for us. 

[Connect #Gateway-1942] To address code added into CONNECT to 
support Deferred Patient Discovery as a Reference Implementation in 
3.0 and enhanced as part of 3.2. This code is now considered technical 
debt since the only approved version … supported in production prior 
to the approved Summer 2011 is version 1.0 which doesn’t include 
functionality for Deferred Patient Discovery. 

[Chromium #500991] However this change is somewhat dwarfed by 
the technical debt that needed to be paid off in order to allow this new 
change to be tested… 

In these examples, developers consciously and correctly refer to 
development and design tasks required to deal with technical debt 
and its consequences in their discussions. They talk about specific 
code snippets, design trade-offs, mapping testing scripts, and their 
alignment and the consequences. In particular, among Chromium 
developers an unspoken process seems to have emerged in dealing 
with technical debt that we could infer from these discussions: 

[Chromium #243948] Paying off technical debt becomes a higher 
priority, not lower, when in those rare cases it must be deferred. Tests 
are not a ‘nice to fix’ feature. Raising to Pri-1. 

These examples show results from a keyword search on “technical 
debt.” We also explored whether other terms that developers used 
might be useful in extracting examples of technical debt from issue 
trackers. To broaden our search terms, we analyzed 265 examples 
from members of a large multinational organization who responded 
to a survey about technical debt [12]. From these examples, we 
created a list of search terms that includes the following: duplicate, 
custom, workaround, inconsistent, hack, legacy, refresh, rewrite, 
cleanup, refactor, and refresh. Section 6.2 summarizes the results 
of this analysis. 

Based on these examples found in Connect and Chromium issue 
trackers, we conclude that 

• while ad hoc, developers use issue trackers to communicate technical 
debt 

• technical debt concepts have entered developers’ vocabulary 
• once developers are aware of the symptoms of technical debt, they 

respond by examining concrete changes that caused the debt to 
accumulate, such as code snippets, design decisions about 
implementation, build and testing scripts, and data models. The 
linkage of technical debt to a concrete artifact leaves less room for 
confusion in high-level technical debt discussions. 

Table 2. TD discussion occurrence. 

Project # Issues 
# Times TD key 
word found 

Date first 
occurred 

Connect 
5,186 since 
July 2009 

15 Jan. 2012 

Project A 86 0 NA 

Project B 193 0 NA 

Chromium >390,000 since 
Sep. 2008 56 Oct. 2010 
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4. TECHNICAL DEBT CLASSIFICATION 
Experts apply unspoken rules and heuristics when determining 
whether an issue represents technical debt. We observe this in the 
results of the examples that we discussed in Section 3 as well as in 
literature [12][14][24][29]. Our goal in developing the technical 
debt classification is to capture the expertise and allow repeatable 
classification of issues. Figure 2 shows the categories that resulted 
from our classification at the end of Phase 1. Complete guidance 
for our classification and selected results can be found in [32]. Here 
we summarize the key decision points with examples. 

Enough information: When an issue did not contain enough 
information, we tagged it as not technical debt to minimize biased 
decision making. These were often one-line issue descriptions that 
required further context, such as the following example: 

[Connect #Gateway-1616] Update AdapterComponentMpiSecured
Service to use PatientDiscoveryFault 

Executable or data related: A major source of confusion in 
dealing with technical debt is overgeneralizing the concept by 
including related project management activities, such as 
documentation, requirements analysis, quality assessment, and 
investigation. For technical debt to be actionable for development 
teams, it must be related to a concrete artifact of the development, 
such as code, implementation units, processing units of the 
executing system, data models, build scripts, and unit tests. We 
tagged any issue that did not mention a concrete development 
artifact as not technical debt. A good example is the following: 

[Project B #2645] Perform web application security assessment. Ran 
Netsparker and found 4 issues, 1 major and 3 minor. 

Running an assessment tool and examining the issues it reveals do 
not represent technical debt. 

Classification from this point on requires articulation of often fuzzy 
concepts such as defect, bug, and design concerns. Defects are 
identified as concerns visible to end users; technical debt tends to 
be invisible system issues. We separated defects from system 
improvement issues [17]. In addition, we separated defects as 
visible incorrect functionality from cases where they were 
symptoms of an underlying design consideration that may be 
related to technical debt. Similarly, we separated system 
improvements as new features from cases where an underlying 
design limitation impacted the feature request. 

Type  Defect type  Incorrect functionality: We found many 
examples of defects in which the system did not work as expected, 
such as a tester discovers that a button doesn’t work in the UI, the 

system crashes, or a wrong classification is added. We classified 
these issues as not technical debt. They are visible to the users and 
represent system errors. Examples include 

[Project A #25] Correct the values for subsystem A to reflect the 
subsystem b values 

[Project B #265] Update alert authoring UI – ‘event window’ should 
be close to ‘any rule’ checkbox 

Type  Defect type  Design consideration: Several defects 
impacted a quality attribute such as availability, security, or 
performance. We classified these as design considerations. We also 
classified as design issues several examples of cleanup activities 
impacting maintainability. If we also found evidence of 
accumulation of unintended side effects, or projection that they 
would accumulate, we then classified these issues as technical debt 
(e.g., duplicate code, nonstandard binding, type mismatch, 
inconsistent implementation, or unused classes). 

An example of a defect that represents a design consideration, but 
not technical debt, is the following: 

[Project B #2722] …rule engine repeats alerts because of event query, 
causes the rule engine to keep dragging over the last query… 

The researchers tagged this as a defect representing a design 
consideration because of the implications for the data model, 
performance implications of the query, and the rule engines. But 
we did not classify this issue as not technical debt because the side 
effects of accumulating rework and refactoring were not clear. 

Type  Improvement type  Feature: New features as system 
improvements, such as adding a new node to a sensor component 
or removing a drop-down box, were classified as not technical debt. 
An example is the following: 

[Project B #1485] Filter alert trigger list by date 

Type  Improvement type  Design limitation: In some cases, 
an issue was not a defect or mistake but a system improvement to 
remedy a design limitation, such as the inability to add a new 
feature quickly, the current technology not supporting the 
improvement needed, maintainability issues, or consequences of 
refactoring. To handle such cases, we introduced the design 
limitation branch. When evidence of side effects were not clear, 
even those that clearly mentioned refactoring to remedy a design 
limitation, we classified the issue as not technical debt. 

[Project B #1513] Refactor onclicks in nodes.html into query events 

Accumulation: 51 issues were design related and showed some 
evidence of accumulation such as increased time to make 

Figure 2. Concepts for classifying technical debt. 
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implementation changes, automated tests not supporting the 
refactored classes, or security vulnerability. We tagged only those 
issues for which we could identify an explicit impact of side 
effects—in other words, accumulating consequences—as technical 
debt. Here is an example from Connect: 

[Connect #Gateway-1631] The re-architecture of the source code to 
support multiple NwHIN specifications has introduced a new Java 
packaging scheme. New and existing classes have been moved into 
these new package folders; however, the previous package folders 
have been left in place with no class files. No impact to functionality; 
however, may lead to confusion for users implementing 
enhancements / modifications to the source code. 

Further details from project stakeholders on the issues we classified 
as not technical debt may reveal that they represent technical debt. 
However, our goal in this study was to uncover those issues that 
could be classified with available information, then use this output 
to make progress on a concrete definition of technical debt and an 
improved reporting mechanism. Data quality of the issue reports is 
a known concern in such studies; therefore, we erred on the side of 
false negatives rather than false positives. An issue we discarded 
may have been technical debt if a subject-matter expert provided 
further detail, but we aimed to rely on the information available to 
us through the issue tracker. Our samples represent a starting set to 
analyze concrete examples of technical debt and its characteristics 
to help developers communicate and act on such issues. 

Table 3 is the summary of our classification of the four data sets. 
Out of 727 records, we identified 51 as technical debt issues.  

We allowed research team members to identify points where they 
got stuck, represented as S1, S2, and S3 in Figure 2. This surfaced 
12 issues that we discussed for future improvements to the 
classification guidance. 

One example where the researchers got stuck is from Project A. 
There is clearly a design concern about decommissioning a 
database. However, while the proposed remediation suggests web 
service implementation to avoid rework later (future 
accumulation), it is unclear if the current design solution is causing 
accumulation. 

[Project A #21] Request (made by xx) for read only access to the xx 
tables in xx database. Requirements are: 1. Web Service 
implementation a. Since xx is planned for decommission, a database 
view is not a viable solution. We would like to go with implement it 
in Web Services to avoid rework in the future 

We resolved this discrepancy by limiting the scope to evidence on 
current accumulation to avoid biasing the results with researchers’ 
knowledge or interpretation of projects’ technical context. 

As a result of the several iterations of tagging, discussions, and 
analysis of the examples, we conclude that 

• technical debt exists when design decisions cause unintended work 
that potentially increases the time to delivery, which we refer to as 

accumulation. Making accumulation clear is critical in 
communicating technical debt concretely. In its absence, confusion 
about whether or not an issue represents technical debt is inevitable. 

• technical debt is a design-related concept, as confirmed by the 
examples we identified. 

5. CHARACTERISTICS OF TECHNICAL 
DEBT 
We analyzed the 51 examples of technical debt identified in Phase 
2 for generalizable characteristics. We looked at both predefined 
issue fields—including open days, watchers, and priority—and 
analyzed description text for design concerns and intentionality. 
We report our analysis results with the questions that we addressed. 

Do technical debt issues take longer to close? 

We hypothesized that the 51 technical debt issues may take longer 
to resolve than the 656 non-technical debt issues. We analyzed 
average days open using mean plots. We calculated days open for 
each issue in the data set by subtracting closed date from open date. 
For each project, we divided the data sets into technical debt and 
non-technical debt sets of issues. We then created subgroupings of 
100 days (1 to 100, 101 to 200, and so on), and took the average of 
these subgroups, and plotted the results on mean plot line charts. 
These charts allowed us to drill a little deeper in to the data and 
visually compare the patterns in the technical and non-technical 
data sets for each project. When we examined the charts, we found 
that average days open vary widely and do not reveal meaningful 
patterns from the data sets that we analyzed. 

While all projects had large Days Open standard deviations, 
Chromium and Connect were a little tighter (Chromium, σ = 319 
days; Connect, σ = 251; Project A, σ = 456; and Project B, σ = 557). 

Figure 3 shows the cumulative percentage of issues closed for each 
project, revealing subtle differences in pace of issue closure. Both 
Chromium and Connect closed 95% or more issues within 2 years 
compared to Projects A and B, which closed less than 70%. This 
suggests that issue management practices may be slightly stronger 
in Chromium and Connect. In addition, for these two projects we 
found examples in the issue records of language like “technical 
debt” and “accumulation” in the developer vocabulary. 

We conclude that results are not significant to declare days open a 
distinguishing characteristic of technical debt; however, future 
analysis in larger data sets with mature issue management practices 
could yield different results. 

Table 3. Summary of technical debt classification. 

Project TD 
Not 
TD Stuck  

No 
agreement  

 
Total  

Connect 12 265 1 7 285 

Project A 10 74 1 1 86 

Project B 13 171 9 0 193 

Chromium 16 146 1 0 163 

Total 51 656 12 8 727 
 

Figure 3. Time issues remain open. 
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Do technical debt issues have higher numbers of watchers? 

Watcher is a measure of the number of people interested in an issue 
record in the issue tracker. Only Chromium has a fully populated 
data set for “watcher,” so we took a deeper dive into Chromium 
Watchers. Figure 4 shows technical debt issues in orange and non-
technical debt issues in blue. 

The patterns of the number of watchers between the two classes of 
issues are not significantly different. The gap in orange technical 
debt dots between 8 and 60 days open is likely a random occurrence 
due to the size of the data set. Therefore, we conclude that we 
cannot declare a relationship between number of watchers and 
technical debt from this data set. 

Are technical debt issues high priority? 

Table 4 compares the issues by priority (1 = highest priority and 3 
= lowest). The percentages represent counts of issues with that 
priority divided by the total count for that row (e.g., 22% of the 
technical debt issues have a Priority = 1). Both categories have 50–
60% of the issues (the majority) assigned to Priority 2. Given this, 
we do not have evidence to conclude that technical debt issues have 
higher priority than other issues. 

Do the technical debt issues show recurring design concepts? 

We analyzed the textual data from the 51 examples of technical 
debt for recurring design concepts. We created affinity groups 
derived bottom-up from the issue descriptions (contrary to a top-
down approach of creating the concepts first and then classifying 
them). The resulting affinity groups are shown in Figure 5 with the 
number of issues that contained the concept as well as the project(s) 
where we found the concept. If we found the concept in multiple 
projects, the number of times per project is shown. For example, 
for the five instances of event handling, two were found on the 
Chromium project and three were found on Connect. 

Our resulting data set of identified technical debt items is small; 
however, it serves as a starting point to do more in-depth analysis 
of potential issues that may commonly cause unintentional 
consequences. In particular, refactoring-related consequences—

such as dead code, misaligned test and build scripts, and version 
conflicts—are places to start improving unintentional technical 
debt accumulation. 

Is technical debt used strategically? 

The appeal of technical debt is that it allows development teams to 
make intentional design trade-offs to accelerate development and 
revisit them as needed. Yet, 49 of the 51 issues were unintentional 
design decisions. We provide an example from each of the four 
affinity groupings from Figure 5. 

Deployment & Build: Out-of-sync build dependencies 

[Connect #Gateway-1623] The CONNECT 3.3 release is to be 
deployed against the 2.1.1 version of the Metro Web Stack. Therefore, 
the compilation and build dependencies should reference the 2.1.1 
version of the Metro libraries… Impact to the users enhancing / 
modifying CONNECT is that they will not have the correct version of 
the Metro Web Stack library for development. 

The reference to “will not have correct version” describes the 
impact of not maintaining accurate build dependencies in the build 
scripts. The word “should” suggests unintentionality. 

Code Structure: Event handling 

[Chromium #294388] The |code| attribute specified in UI Events is 
intended to accurately identify the physical key associated with a key 
event. The legacy attribute |keyCode| was previously used by 
developers for this purpose, but it has problems in that it was never 
completely specified and thus it is not consistently implemented across 
browsers … add a new |code| attribute to WebKeyboardEvent. 

The words “not consistently implemented” imply design 
complexity, and “never completely specified” suggests 
unintentionality. 

Figure 4. Chromium by number of watchers and days 
open. 

Table 4: Analysis of priority. 

Issue Type Priority 1 Priority 2 Priority 3 

Technical debt 22% 56% 22% 

Not technical debt  24% 50% 26% 

Deployment 
& Build 

Out-of-sync build 
dependencies 

3 CN 

Version conflict 1 CN 
Dead code in build scripts 1 CN 

Code 
Structure

Event handling 5 2CH, 3PB 
API/interfaces 5 2CH, 1CN, 2PB
Unreliable output or 
behavior 

5 4CH, 1PA 

Type conformance issue 3 CN 
UI design 3 PB 
Throttling 2 1CH, 1PB 
Dead code 2 CN 
Large file processing or 
rendering 

2 CH 

Memory limitation 2 CH 
Poor error handling 1 PA 
Performance appending 
nodes 

1 CH 

Encapsulation 1 PB 
Caching issues 1 CN 

Data Model Data integrity 6 PA 
Data persistence 3 PB 
Duplicate data 2 PA 

Regression 
Tests

Test execution 1 CH 
Overly complex tests 1 CH 

a CH = Chromium, PA = Project A, PB = Project B, CN = CONNECT 

Figure 5. Affinity groups of design concerns. 
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Data Model: Data integrity 

[Project A #18] approximately 340 records exist in the database twice 
… so much time had elapsed in some cases the duplicate was 
endorsed. 

In this example, “340 records exist in the database twice” implies 
maintenance complexity, and “so much time has elapsed” suggests 
unintentionality. 

Regression Tests: Overly complex test 

[Chromium #367158] Currently, we have a lot of duplicate/boilerplate 
code in this test. We should try to simplify this test so that it’s easier 
to maintain and read. 

Here, “easier to maintain” implies maintenance complexity, and 
“we should try to simplify” suggests unintentionality. 

Only two issues among the 51 hint at intentionality; however, we 
would not go so far as to call them strategic. The two “intentional” 
decision examples are shown below: 

[Project B #1393] Add “disabled” class to sensor tabs – it’s a little bit 
hacky – disabled tab is still active. But it’ll do for this version. 

[Connect #Gateway-1771] Setting Guidance at the Adapter layer is 
an idea that we documented and designed, however … we quickly 
realized some pitfalls and decided not to go through with the 
implementation such as: 1) There were many error cases which we 
would have to handle… 

In the first example, “for this version” suggests that the developer 
is making an intentional decision to take on technical debt with 
hopes of refactoring later. In the second example, “Setting 
Guidance at the Adapter layer” implies a design limitation in the 
adapter, and “decided not to go through with the implementation” 
suggests an intentional decision to defer the rework. The issue 
description does not contain enough information to determine the 
impact of not making the change (such as increased accumulation 
in the form of complexity or maintainability). 

Do groups of issues suggest technical debt? 

When we asked project stakeholders to evaluate the results of our 
technical debt classification, we uncovered cases in which an issue 
by itself did not represent technical debt; however, when two or 
more issues were analyzed together, they suggested design 
limitations with accumulating side effects. 

The Project A stakeholder confirmed that he would have also 
classified 9 of the 10 issues that we tagged as technical debt. In 
addition, he pointed out that several of the issues we found point to 
neglecting the data architecture, causing reliability, complexity, 
and data integrity issues. As shown in Figure 5, 72% of the 
technical debt issues in the Data Model group were found on 
Project A (8 of 11). 

The Project B stakeholder positively confirmed 100% of the 
technical debt examples that we found. The project stakeholder 
revealed that lack of a robust and extensible UI framework had 
caused significant rework on the project. He said he would also 
include some other issues that we did not tag as technical debt due 
to their dependence on the UI framework. All three of the UI design 
issues shown in Figure 5 were from Project B. 

The Connect stakeholder (one of the architecture evaluation leads) 
was able to positively confirm only 42% of the technical debt 
examples because he said the issue description lacked enough detail 
to make a determination. However, of the 42% positively 
confirmed technical debt examples (5 of 12 examples), he said that 
several issues were consistent with maintainability risks discovered 

during the architecture evaluation. For example, all four of the 
issues in the Deployment & Build group shown in Figure 5 were 
related to design concerns about the Connect build script 
maintainability. 

Analysis of the technical debt issues that we identified allows us to 
conclude that 

• issue data such as priority, duration open, and number of watchers 
does not imply accumulation, so it does not help identify technical 
debt historically. 

• while our data set is small, we identify a starting set of recurring issues 
in technical debt. Post-refactoring alignment of unit test, build scripts, 
and versions and removal of dead code emerge as obvious technical 
debt-related concerns. 

• technical debt is mostly the result of unintentional design choices; we 
were unable to find evidence of intentional technical debt being 
explicitly discussed in issue trackers. 

• groups of issues that appear not to be technical debt when assessed 
individually can reveal underlying technical debt issues when 
assessed together. 

6. IMPLICATIONS FOR PRACTICE AND 
RESEARCH 
Issue trackers serve as an entry point for communicating technical 
debt since developers use them to manage task priorities. Anecdotal 
feedback from developers tells us that even when technical debt is 
included in the issue tracker, it may languish as it is not given 
priority or the symptoms are addressed but not the underlying issue. 
Our findings offer some practical improvements to bring better 
visibility to technical debt and ideas for future work. 

6.1 Practice Improvements 
Technical debt fosters dialogue between business and technical 
actors. Classifying technical debt issues allows developers to 
justify budgeting project resources for technical debt in a similar 
manner to allocate a discretionary budget for defects. 

There are standards for providing bug reports with enough 
information so they may be reproduced and fixed [17][18]. These 
essential properties are encoded in predefined fields in issue 
trackers. These fields are necessary but not sufficient for describing 
technical debt. Recent research on technical debt has offered 
templates for reporting technical debt [34][24]. These contributions 
have similar goals to our work; however, templates recommend 
concepts that are at too high a level to overlap with daily routines 
and tasks of developers, such as estimated interest probability or 
principal and interest that are directly driven from the financial 
analogy. 

Our analysis and examples demonstrate that technical debt 
becomes concrete when it relates to software units, as opposed to 
software process artifacts such as requirements or documentation. 
This refined scope leads to an understanding of technical debt as 
the collection of technical debt items associated with a system. 

A technical debt item is a single element of technical debt 
connecting a set of development artifacts; with consequences for 
the quality, value, and cost of the system; and triggered by some 
causes related to process, management, context, and business goals. 
An item can be described using the properties in Table 5 based on 
the concepts for classifying technical debt (shown in bold), 
supplementing a typical issue report. 

Introducing these properties can help developers understand trade-
offs and the longer term consequences of technical debt when 
discussing an issue among themselves. It can also help make the 
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case for additional resources when communicating to management. 
We suggest that developers use the properties shown here to write 
better descriptions and perhaps to increase the degree of automation 
possible in classifying them.  

Table 6 shows an example of organizing the text according to these 
properties from a CONNECT issue. 

The properties can also help parse the issues and identify what is 
ambiguous or missing. For example, without explicit information 
about debt accumulation, the issue cannot be properly classified nor 
the trade-offs understood. Developers may need this information to 
justify paying down the debt as an alternative to paying ongoing 
costs associated with addressing the symptoms. 

6.2 Future Research 
Our results suggest that by using automated text analysis and 
machine-learning techniques, technical debt issues can be more 
systematically discovered. To explore this, we ran a manual search 
against the 727 issues with the following words: duplicate, custom, 
workaround, inconsistent, hack, legacy, rewrite, cleanup, refactor, 
and refresh. We hypothesized that there would be a statistically 
significant difference between the percentage of issues that contain 
a key word AND are technical debt and the percentage of issues 

that contain a key word but are not technical debt. We found that 
67% of the issues contained one of the key words and were tagged 
as carrying debt. Only 8% fall in the latter category. These findings 
suggest that automated word searches of key concepts related to 
technical debt may hold promise, but more experimentation is 
needed with large data sets. 

Assessing accumulation was one of the biggest challenges we faced 
with systematically classifying technical debt issues in this study. 
Disagreement stemmed from two major sources. First, the language 
used by developers to describe accumulation is even less explicit 
than the design issue description. For example, developers made 
accumulation statements like “so much time has passed that now 
we have duplicate data,” “this may lead to confusion for users,” or 
“we should try to simplify so it is easier to maintain.” The implicit, 
unstructured nature of accumulation language makes it difficult for 
reviewers to classify consistently, developers to assess impact, and 
researchers to study how to automate technical debt classification. 
Second, issues often included three types of accumulation 
information: (1) existing accumulation related to the current 
problem, (2) future recurring accumulation related to the current 
problem, and (3) accumulation related to the potential solution of 
the current problem, which we refer to a remediation. As discussed 
in Section 3.1, our response to confusion about this as we classified 
was to update the classification guidance to limit the scope of 
accumulation to type (1) for this study. Future research is needed 
to better define and model accumulation in terms of the costs 
associated with not fixing the problem and the added costs of fixing 
the problem at a later time. 

Several examples, particularly in the more mature issue trackers 
(e.g., Chromium, Connect), included extensive developer 
discussion accompanied by significant code file check-in/check-out 
activity. A natural next step for this work is to analyze patterns 
found in the developer text discussion with references to technical 
debt and commit and change histories. 

Our findings indicate several fruitful future research activities, and 
our plans include the following: 

• Evaluate other techniques for mining unstructured data (e.g., pattern 
matching, island/lake parsers, information retrieval methods, and 
word categories) to locate technical debt in software repositories. 

• Trace technical debt in the developer text discussion to code through 
the commit log to evaluate efficacy of self-reported debt in issue 
trackers. 

• Model dimensions of accumulation in terms of cost to fix (paying 
down the principal), cost to not fix (paying interest), and the influence 
of time (current and future costs) to improve guidelines for describing 
technical debt. 

• Build on the investment in the Chromium data set to conduct 
correlation studies with defects and software vulnerabilities to better 
understand the relationships among these kinds of software anomalies. 

6.3 Threats to Validity 
We identified the following threats to the validity of our study and 
took steps to minimize them. 

Manual inspection: Manual inspection is crucial, especially in an 
exploratory study like ours that serves as input for creating key 
concepts. To counter the threat of making classification and 
interpretation mistakes, we included steps in our study to cross-
check and discuss items. We also set a high inter-rater reliability 
threshold and had multiple researchers classify and code issues. In 
order to minimize researcher bias, we also had both developers of 
the system and experts external to the research team classify 
random samplings of the issues. 

Table 5. Properties of technical debt items. 

Name Shorthand designation 

Development 
artifact 

Executable element of the system or the 
supporting work products: design, code, data, 
build scripts, test suites, etc. 

Symptoms Observable qualitative or measurable 
consequence (type of issue and analysis 
implications of design) 

Consequences Effect on value, quality, or cost of the system 
in the form of accumulation: additional costs 
due to reduced productivity, induced defects, or 
loss of quality incurred by software depending 
on an element of technical debt 

Analysis Degree to which the development approach 
(design consideration/limitation) meets 
stakeholder needs or expectations  

 

Table 6. Example of a technical debt item. 

Name Connect #Gateway-1631: Empty Java package 
(dead code) 

Development 
artifact 

The re-architecture of the source code to 
support multiple NwHIN specifications has 
introduced a new Java packaging scheme. 

Symptoms Numerous empty Java package folders present 
across multiple projects. 

Consequences No impact to functionality; however, may lead 
to confusion for users implementing 
enhancements or modifications to the source 
code. 

Analysis New and existing classes have been moved into 
these new package folders; however, the 
previous package folders have been left in place 
with no class files. 
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Study subjects: Software development management and issue 
tracking practices of the organizations whose data we used affect 
the quality of our results. The systems we selected may not have 
been representative. We aimed to minimize skewing of our results 
by selecting a variety of data sets from both open and closed 
systems, representative types of issue trackers, and established 
empirical analysis approaches. 

Data quality and size: Technical debt represents only a small 
subset of all issues in a system, although its impact may be 
significant. Technical debt may not have been significantly 
represented in the data we selected, especially given the varying 
quality of the issue tracker data. We aimed to minimize this by 
randomizing the issues we selected, including both projects where 
we knew technical debt existed as well as others where we had no 
prior knowledge. 

7. RELATED WORK 
In empirical software engineering, it has become commonplace to 
mine data from change request and bug databases to detect where 
issues have occurred in the past and use that information for 
improved definitions, quality analysis, development management, 
and predictive models. Examples include but are not limited to 
manual and automated mining of issue trackers for 
misclassification [15], duplicates [5], and correlations of 
vulnerabilities and bugs [6]. Issue trackers also serve as historical 
data to help identify patterns to assist with predicting current or 
future events, such as risks [7]. To our knowledge, our study is the 
first one that extensively looks at issue databases through the lens 
of technical debt. 

A key challenge in mining software repositories is data quality and 
missing data [28]. A number of studies look at the quality of 
reported data and ways to improve it, such as ensuring that missing 
links between bugs and bug-fix commits are included [4] and 
studying bug report quality [16][35]. These studies suggest that 
reports that contain key information get addressed sooner. Our 
results are consistent with these studies when it comes to reporting 
issues related to technical debt as well. To our knowledge, our study 
is the first one that provides key fields that need to be included in 
an issue report on technical debt. 

The ability to accurately create an issue report communicating 
technical debt assumes a concrete understanding of technical debt. 
Numerous researchers have proposed a definition of technical debt, 
including McConnell [27], Li [23], Shull [30], and Kniberg [21]. 
To date these definitions stay at a conceptual level. Our study is the 
first that grounds an improved understanding of technical debt in 
actual software artifacts supported by extensive empirical data, 
contributing to the envisioned future for an improved data analysis 
and practice for managing technical debt [3] . 

To understand implications of technical debt, systematic literature 
reviews have created categories and concept ontologies [19][1] or 
related debt to different stages in the development life cycle [2][23]
[33]. Small-scale interview studies on understanding how 
developers talk about technical debt have focused on sources of 
technical debt [14][25][31]. These categories and classifications of 
technical debt rely on limited literature reviews and single-case 
studies. Our study is the first that demonstrates empirically that a 
significant amount of data is needed to talk about technical debt 
classification. 

A number of studies have looked for relationships between 
software metrics and technical debt [13][26]. This work has applied 
existing code smells, coupling and cohesion, and dependency 

analysis to identifying areas of technical debt. Other work has 
looked at extracted examples of technical debt using keywords 
from developers’ comments in code as self-admitted technical debt 
[29]. All of these stay at the level of code analysis, associating local 
code changes with technical debt. The work by Kazman et al. [20] 
relates architectural modularity violations to number of bugs to 
detect technical debt. This study is closest in its spirit to our 
findings that systematic issues hint at underlying technical debt. 

8. CONCLUSIONS 
Our study contributes to research on mining software repositories 
by looking at issue trackers from the perspective of early 
representations of technical debt. Our findings tell us the following: 

• Technical debt concepts (e.g., taking on, accumulating, and paying 
back debt) have entered the vernacular of developers. But now they 
need a simple and formal approach to communicate the most crucial 
information. We offer the technical debt item and examples as a step 
toward that goal. 

• Our data and analysis weakly support that issues where developers 
discuss certain classes of changes such as refactoring and cleanup 
are more likely to contain references to accumulation of technical 
debt. 

• Technical debt conceptually is about conscious design trade-offs. 
However, the majority of technical debt that developers deal with is 
a consequence of unintentional design choices. Issue trackers carry 
information that can assist in uncovering the hidden technical debt. 

We suggest that developers adopt a simple practice of concretely 
tagging and reporting technical debt and its consequences with 
accumulating side effects as they discover debt or take it on. This 
practice will help development teams start communicating about 
these issues more concretely and create a valuable resource for 
research. This contribution could help increase the sample size and 
quality of the data to make future research possible, since ambiguity 
led us to discard many issues in the existing data sets. 

The past decade has seen significant progress in the mining 
software repositories community with substantial outcomes in 
robust automated analysis and correction tools as well as sound 
research approaches. Our exploratory study demonstrates that 
technical debt has become a ripe area in practice where mining 
software repositories research can be put to use to further improve 
our understanding, communication, and analysis of technical debt. 
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