
Got Technical Debt?
Surfacing Elusive Technical Debt in Issue Trackers

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, and Mary Popeck
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

1-412-268-5800
sbellomo, rn, ozkaya, mpopeck@sei.cmu.edu

ABSTRACT
Concretely communicating technical debt and its consequences is
of common interest to both researchers and software engineers. In
the absence of validated tools and techniques to achieve this goal
with repeatable results, developers resort to ad hoc practices. Most
commonly they report using issue trackers or their existing backlog
management practices to capture and track technical debt. In a
manual examination of 1,264 issues from four issue trackers from
open source industry and government projects, we identified 109
examples of technical debt. Our study reveals that technical debt
and its related concepts have entered the vernacular of developers
as they discuss development tasks through issue trackers. Even
when issues are not explicitly tagged as technical debt, it is possible
to identify technical debt items in these issue trackers using a
categorization method we developed. We use our results and data
to motivate an improved definition and an approach to explicitly
report technical debt in issue trackers.

CCS Concepts
Software and its engineering → Software creation and
management → Software post-development issues →
Maintaining software

Keywords
Technical debt; software anomalies; issue tracking; text
categorization; software design.

1. INTRODUCTION
What is technical debt? Why identify technical debt? Shouldn’t
these issues be captured as defects and bugs? The inability to
answer these questions empirically, supported by a software
economics theory, can result in technical debt attaining a legendary
status [31]. We know its value as a metaphor, and we hear stories
from developers and project folklore about its symptoms and their
consequences, but can we see, describe, and hold the thing itself as
a concrete software development artifact? While progress is being
made toward refining our understanding of technical debt
theoretically, data-driven studies to contribute to theoretical
research endeavors lag behind.

Results of our recent, broad practitioner survey of 1,831 software
engineers and managers demonstrate that they share a common
understanding of the concept of technical debt [12]. According to
participants, lack of proven tool support to accurately identify,
communicate, and track technical debt is a key issue and remains a
gap in practice. In the absence of validated tools to concretely
communicate technical debt and its consequences, developers
resort to practices that they are familiar with.

More than half of the participants in our survey reported using issue
trackers to communicate technical debt either explicitly (“technical
debt” is mentioned) or implicitly (the concept of “technical debt” is
discussed but not explicitly mentioned). This is consistent with
anecdotal feedback from our own experiences of working with
organizations as well as case studies represented in literature [34].

Intuitively it makes sense for issue trackers to serve as an entry
point for communicating technical debt since developers use issue
trackers as one tool to manage task priorities. To understand how
issue trackers are used to communicate technical debt by software
developers, we conducted an exploratory study of four issue
trackers, including the Chromium [8] and Connect Health IT
Exchange [10] open source projects and two government IT
projects for which we are aware of technical debt issues.

We address the following questions:

• RQ1: Do developers use the term technical debt explicitly when
discussing issues and tasks in their issue trackers?

• RQ2: Can technical debt items be discovered systematically within
issue trackers?

• RQ3: What are the distinguishing characteristics of technical debt
items discovered in issue trackers?

We identified 109 examples of technical debt from a sample of the
1,264 issues in the issue trackers we studied and evaluated them
with experts and the developers of the systems when applicable. A
summary of our findings include the following:

Finding 1: While technical debt items were not labeled explicitly
in the issue trackers we studied, we identified 58 examples where
developers explicitly use the term technical debt and related
concepts to understand an issue. Concepts related to technical
debt, such as take-on debt, accumulate debt, and pay-back
debt, have entered the developers’ vocabulary, and they are
using issue trackers to communicate technical debt in an ad hoc
manner.

Finding 2: We developed and used a classification approach to find
additional examples where developers articulated concerns related
to technical debt, but did not use the term. Using this approach, we
identified 51 more examples of technical debt. Many issues could
not be classified because developers do not always clearly
identify the consequences of not paying down the debt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MSR'16, May 14-15, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4186-8/16/05…$15.00
DOI: http://dx.doi.org/10.1145/2901739.2901754

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 327

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 327

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories

 327

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2901739.2901754&domain=pdf&date_stamp=2016-05-14

Finding 3: We analyzed the technical debt issues that we found for
generalizable characteristics:

• Studying the characteristics of project indicators recorded in the issue
trackers (time open, number of watchers, priority) demonstrate that
more data analysis is needed to find consistent values that may
show a relationship between these characteristics and technical
debt.

• The examples provide early results for design areas where
technical debt mostly occurs, including consequences of dead code,
duplicate code, and API mismatches.

• The promise of understanding technical debt is to use design choices
strategically to intentionally trade off speed and development effort
with minimal compromise of quality. The reality is that the issues we
found are mostly the result of unintentional design choices and
surface in issue trackers when their unintended consequences become
visible.

Our findings demonstrate that when developers refer to technical
debt and related concepts in the issue trackers they also point their
finger at where the problem is in the code. They are not just talking
about a high-level conversation piece of system quality.
Consequently, technical debt is an artifact of software
development, similar to design, code, and defects. Based on these
findings, we recommend that to take best advantage of technical
debt and pay it back before the debt grows, its definition should
concretely map to development artifacts. We propose the following
definition:

Technical debt is design work relating to software units that have
evidence of present or anticipated accumulation of extra work.

Design work is manifested through implementation and changes to
supporting work products such as code, data, build scripts, and test
suites. Conversely, technical debt is not work related to a non-
software unit (e.g., requirement, documentation, process concern),
nor is it a low-impact, executable artifact change with minimal
consequence if not fixed (e.g., uncommented code).

In this paper, we present our analysis results and recommendations
for how to report a technical debt item.

2. APPROACH
We conducted our study on four projects. The data sets included
subsets of items from the Connect Health IT Exchange (Connect)
[10] and Chromium [8] issue trackers and two government IT
projects, Project A and Project B, as described in Table 1.

During data setup we first looked through the data sets for a
technical debt label. We also searched for the term “technical debt”
and expanded our search for technical debt concepts using terms

we extracted from the vocabulary of a cross-section of developers
who provided 26 exemplar descriptions of technical debt items.

We performed our study in four phases as summarized in Figure 1.

In Phase 1, we extracted recurring technical debt concepts and
created categories to classify issues as technical debt, even if not
explicitly tagged as such by developers. In Phase 2, we used the
categories to manually classify issues as technical debt or not.

In Phase 3, we evaluated whether we were able to systematically
discover technical debt within issues trackers correctly by talking
to the developers of the systems under study. In Phase 4, we looked
across all the identified technical debt examples for distinguishing
characteristics that might serve as consistent indicators of technical
debt.

We selected Connect for the study because it is an active open-
source, open-contribution project with public access to its Jira
repository. Connect aims to enable secure, electronic health data
exchange among health-care providers, insurers, government
agencies, and consumer services in the United States by
establishing a gateway between health information systems and
organizations. It is based on service-oriented architecture design
principles and web service interfaces [9]. It has been in
development and use since 2008.

Projects A and B are government-related data sets from ongoing
clients, selected because they have a history of releases focused on
rework to address technical debt. Project A is a mission-critical
compliance tracking system for a large government organization
that centralizes the data gathered from several sources into one
nation-wide system. This Oracle client-server system has been in

Figure 1. The four research phases followed.

Table 1. Projects studied by phase.

 Data set Source Filter criteria # Records
analyzed

Setup

Chromium Google issue tracker Text search “technical debt” 56

Connect Jira Text search “technical debt” 15

Technical debt survey Examples (as text) N/A 265

Phase 1
Categorization

Connect Jira 2012, first 200 records 200

Phases 2–4
Classification,
evaluation, and analysis
Total: 727 issues

Connect Jira March 2012 286

Project A Jira Defects/CRs Sep. 2010 to Dec. 2014 86

Project B FogBugz All year 2013 193

Chromium Google issue tracker M(ilestone): 48 OS: All Stars (watchers) > 3 163

Total 1,264

328328328

use for over 15 years. Since the initial release, over 1.2 million work
assignments have been created in the system. Most issues are
entered into the issue tracker by the product manager.

Project B is an IT system for federal government employees to
protect the system environment by monitoring physical and
environmental conditions against cyberattack. The software has
been in use for 4 years and serves 125 users. Key technologies used
include web services, embedded OS on BeagleBone Black, Socket
IO services, and a customized sensor data communication protocol
and collection mechanism. Programming languages used include
Python, JS, HTML, CSS, C, C++, and DB: PostgreSQL. Several
stakeholders create issues in the issue trackers, but the main person
entering them is the product owner/manager.

In all three data sets, we have additional technical information
about known refactoring activities related to technical debt and
access to developers who can serve as experts to validate our
findings. We included Chromium as our fourth and control data set
due to the relatively robust issue-tracker practices followed.

The subset of the issues studied from these projects were selected
randomly to minimize bias. Table 1 summarizes the subsets of the
issues selected from these projects. The issues were not triaged
based on any particular classification that the specific project may
impose, such as bug, defect, and new feature. Some data sets had
more disciplined issue-tracking practices than others, such as
tracking priority, release assigned, number of watchers, code
commits, and the like. All data sets had sufficient description of the
issues to allow researchers to make classifications and judgments.

2.1 Phase 1: Creating Categories
In Phase 1, we extracted concepts related to technical debt
following the concept extraction approach described in [11]. The
sample data set was prepared by copying a subset of Connect issues
into a spreadsheet where each line represented an issue tracker
record. The record contained both predefined field data (e.g., type,
priority, duration) and issue descriptions.

Two researchers acting as technical debt subject-matter experts
independently tagged each issue. The researchers did not have
domain knowledge about the project. Three decision outcomes
were possible: yes, no, or cannot determine. Researchers were
asked to highlight portions of the issue relevant to their decision,
capture recurring concepts (e.g., abstract concepts [11] such as
executable artifact or design concern and specific concepts such as
duplicate code or incorrect functionality), and provide rationale for
categorization. After each categorization round, we met to resolve
discrepancies and improve the categorization.

We repeated this categorization process three times, each time
elaborating and refining the categorization method. We conducted
two rounds of categorization using the first 100 records. Then we
did a third round of categorization using the second 100 records of
the Phase 1 data set. We set a target threshold of achieving 80%
rater consistency before exiting Phase 1 to allow some natural rater
inconsistencies, mostly arising from cases where one researcher
thought there was not enough information while another used
expert judgement.

A known expert in the field of software engineering and technical
debt, external to our research team, assessed the results of our Phase
1 classification. The expert categorized a random sample of our
issues without knowledge of the software system under study or the
approach we used to categorize the sample. As he categorized each

entry, we asked him to discuss his rationale aloud and extracted
concepts as feedback to inform our categories and guidance.

The output of Phase 1 is an initial categorization summarized in
Figure 2.

2.2 Phase 2: Classifying Issues
In Phase 2, pairs of researchers manually classified the four selected
data sets using the categorization developed in Phase 1 (Figure 2)
and the following steps:

Step 1. One researcher prepared the data sets by selecting a random subset
of issues.

Step 2. Two reviewers independently classified the issues.
Step 3. One researcher consolidated results into a single spreadsheet that

highlighted agreements and discrepancies.
Step 4. Researchers together discussed classification discrepancies and

extracted recurring concepts.

The two major outputs of Phase 2 include (1) a data set of issues
classified as technical debt or not and (2) refined classification
guidance.

2.3 Phase 3: Evaluating Results
In Phase 3, we walked through the identified technical debt records
with project representatives from Connect, Project A, and Project
B. We started by asking them whether they were familiar with the
concept of technical debt and if their project had technical debt. We
did not offer our definition of technical debt to avoid biasing them,
but allowed them to offer us theirs to ensure that there was
sufficient understanding for them to proceed with the task.

We asked the project representatives to indicate whether they
agreed with our assessment of identified technical debt issues. We
also asked if we had missed any examples of technical debt. We did
not reach out to Chromium developers. The issues we looked at
from Chromium are a representative but small subset of all the
Chromium issues.

We asked a second expert in the field of software engineering and
external to our research team to use our categorization under the
same conditions to see if he would generate the same results. We
did this to ensure that unintentional bias of the researchers did not
influence the integrity of the results and that the classification and
its guidance are understandable, logical, and easy to follow. The
expert received instructions for conducting the study, read through
the guidance, and had an opportunity to ask questions. The expert
tagged a sample data set from Project A. The expert was then given
a post-experiment questionnaire that included questions gauging
quality of the data, ease of use, and quality of guidance for
classifying the issues. We then incorporated several minor
improvements into the guidance document.

Outputs of Phase 3 resulted in our final data set of items classified
as technical debt, 51 from the four project data sets.

2.4 Phase 4: Analyzing Tagged Issues
In Phase 4, we analyzed the selected issues for distinguishing
characteristics that potentially identify technical debt. We
examined structured data in the issue tracker’s predefined fields
such as priority, duration open, number of watchers, and number of
linked issues. Our motivation was to see if we could observe trends.
For example, did technical debt issues take longer to resolve, have
higher priority, or cause changes that rippled through a number of
issues, hence suggesting additional time spent dealing with
consequences?

329329329

We also examined the unstructured text in fields such as summary
and description. A pair of researchers followed an open-coding
approach [11], identified reoccurring design concepts from the
records in which we identified technical debt, and affinity grouped
this data. We discuss these results in Section 5.We also extracted
concepts that signal accumulation of consequences of debt. There
was variation among these concepts such that we could not create
meaningful affinity groups. The implications of this result for
future research are discussed in Section 6.

Outputs of Phase 4 include analysis results of predefined fields
(e.g., priority, opened date, closed date) and text for design
concerns (organized by affinity grouping) and intentionality.

3. TECHNICAL DEBT IN ISSUE
TRACKERS
None of the four issue trackers used technical debt as a predefined
label or as an issue type. Consequently, we searched for the key
word “technical debt” in each data set. Only Chromium and
Connect returned positive results, a total of 71 (Table 2). Both
Connect and Chromium include data that dates back several years.
The use of the term first appears in 2010 in Connect and 2012 in
Chromium.

To eliminate false positives, one researcher read all of the issues
and discarded 7 of the 15 Connect issues and 6 of the 56 Chromium
issues, resulting in 58 examples where technical debt was explicitly
used to refer to a concrete system problem that caused rework.
Reasons for discarding issues included issues that were duplicate
entries and documentation tasks (e.g., a blog post, a software
architecture design document). In addition, two issues were
discarded because the developer discussion indicated that the issue
did not describe technical debt.

For example, we discarded the following because it was a
documentation task, despite explicit reference to technical debt.
Hereafter, we refer to the issues by the project name followed by
the issue number:

[Connect #1650] The brief blog post should describe the detriments
of technical debt, the balances of keeping vs. jettisoning, and how the
CONNECT team approached the decision and what we did about it -
compromise and balance.

While this issue suggests that the developers are aware of technical
debt, the issue is a blog post task. It does not reveal where the debt
was, how it accumulated, and how it was paid; hence it does not
represent a technical debt item.

Another example of a discarded issue is one in which the
developers conclude that the issue is a “legitimate bug”:

[Chromium #496267] The NCN registers for connectivity messages
iNetworkChangeNotifierAutoDetect::onApplication, but fails to

register when the device starts. …This is a legit bug, not
cleanup/refactoring/technical-debt-reduction.

Errors that are visible to users and result from coding mistakes are
bugs or defects and should not be confused with technical debt. In
this example, Chromium developers demonstrate that they are well
aware of these concepts and declare that this issue should be
handled as a defect, not as cleanup or refactoring.

In issues where technical debt discussions were explicit, we
observed developers using concepts related to technical debt. For
example, they referred to “taking on debt” when there was a clear
design trade-off, “accumulation of debt” when issues were not
fixed on time, or “paying off technical debt” when the developers
wanted to act or had acted on issues in the system. The following
examples demonstrate how developers referred to these related
concerns:

[Chromium #402086] The change looks larger and more complex
than it really is: it’s mostly plumbing and changes to method
signatures adding to the line count. It’s been in canary for a week
without issue. Landing this will enable WebView to shed some
technical debt, which is quite a big benefit for us.

[Connect #Gateway-1942] To address code added into CONNECT to
support Deferred Patient Discovery as a Reference Implementation in
3.0 and enhanced as part of 3.2. This code is now considered technical
debt since the only approved version … supported in production prior
to the approved Summer 2011 is version 1.0 which doesn’t include
functionality for Deferred Patient Discovery.

[Chromium #500991] However this change is somewhat dwarfed by
the technical debt that needed to be paid off in order to allow this new
change to be tested…

In these examples, developers consciously and correctly refer to
development and design tasks required to deal with technical debt
and its consequences in their discussions. They talk about specific
code snippets, design trade-offs, mapping testing scripts, and their
alignment and the consequences. In particular, among Chromium
developers an unspoken process seems to have emerged in dealing
with technical debt that we could infer from these discussions:

[Chromium #243948] Paying off technical debt becomes a higher
priority, not lower, when in those rare cases it must be deferred. Tests
are not a ‘nice to fix’ feature. Raising to Pri-1.

These examples show results from a keyword search on “technical
debt.” We also explored whether other terms that developers used
might be useful in extracting examples of technical debt from issue
trackers. To broaden our search terms, we analyzed 265 examples
from members of a large multinational organization who responded
to a survey about technical debt [12]. From these examples, we
created a list of search terms that includes the following: duplicate,
custom, workaround, inconsistent, hack, legacy, refresh, rewrite,
cleanup, refactor, and refresh. Section 6.2 summarizes the results
of this analysis.

Based on these examples found in Connect and Chromium issue
trackers, we conclude that

• while ad hoc, developers use issue trackers to communicate technical
debt

• technical debt concepts have entered developers’ vocabulary
• once developers are aware of the symptoms of technical debt, they

respond by examining concrete changes that caused the debt to
accumulate, such as code snippets, design decisions about
implementation, build and testing scripts, and data models. The
linkage of technical debt to a concrete artifact leaves less room for
confusion in high-level technical debt discussions.

Table 2. TD discussion occurrence.

Project # Issues
Times TD key
word found

Date first
occurred

Connect
5,186 since
July 2009

15 Jan. 2012

Project A 86 0 NA

Project B 193 0 NA

Chromium >390,000 since
Sep. 2008 56 Oct. 2010

330330330

4. TECHNICAL DEBT CLASSIFICATION
Experts apply unspoken rules and heuristics when determining
whether an issue represents technical debt. We observe this in the
results of the examples that we discussed in Section 3 as well as in
literature [12][14][24][29]. Our goal in developing the technical
debt classification is to capture the expertise and allow repeatable
classification of issues. Figure 2 shows the categories that resulted
from our classification at the end of Phase 1. Complete guidance
for our classification and selected results can be found in [32]. Here
we summarize the key decision points with examples.

Enough information: When an issue did not contain enough
information, we tagged it as not technical debt to minimize biased
decision making. These were often one-line issue descriptions that
required further context, such as the following example:

[Connect #Gateway-1616] Update AdapterComponentMpiSecured
Service to use PatientDiscoveryFault

Executable or data related: A major source of confusion in
dealing with technical debt is overgeneralizing the concept by
including related project management activities, such as
documentation, requirements analysis, quality assessment, and
investigation. For technical debt to be actionable for development
teams, it must be related to a concrete artifact of the development,
such as code, implementation units, processing units of the
executing system, data models, build scripts, and unit tests. We
tagged any issue that did not mention a concrete development
artifact as not technical debt. A good example is the following:

[Project B #2645] Perform web application security assessment. Ran
Netsparker and found 4 issues, 1 major and 3 minor.

Running an assessment tool and examining the issues it reveals do
not represent technical debt.

Classification from this point on requires articulation of often fuzzy
concepts such as defect, bug, and design concerns. Defects are
identified as concerns visible to end users; technical debt tends to
be invisible system issues. We separated defects from system
improvement issues [17]. In addition, we separated defects as
visible incorrect functionality from cases where they were
symptoms of an underlying design consideration that may be
related to technical debt. Similarly, we separated system
improvements as new features from cases where an underlying
design limitation impacted the feature request.

Type  Defect type  Incorrect functionality: We found many
examples of defects in which the system did not work as expected,
such as a tester discovers that a button doesn’t work in the UI, the

system crashes, or a wrong classification is added. We classified
these issues as not technical debt. They are visible to the users and
represent system errors. Examples include

[Project A #25] Correct the values for subsystem A to reflect the
subsystem b values

[Project B #265] Update alert authoring UI – ‘event window’ should
be close to ‘any rule’ checkbox

Type  Defect type  Design consideration: Several defects
impacted a quality attribute such as availability, security, or
performance. We classified these as design considerations. We also
classified as design issues several examples of cleanup activities
impacting maintainability. If we also found evidence of
accumulation of unintended side effects, or projection that they
would accumulate, we then classified these issues as technical debt
(e.g., duplicate code, nonstandard binding, type mismatch,
inconsistent implementation, or unused classes).

An example of a defect that represents a design consideration, but
not technical debt, is the following:

[Project B #2722] …rule engine repeats alerts because of event query,
causes the rule engine to keep dragging over the last query…

The researchers tagged this as a defect representing a design
consideration because of the implications for the data model,
performance implications of the query, and the rule engines. But
we did not classify this issue as not technical debt because the side
effects of accumulating rework and refactoring were not clear.

Type  Improvement type  Feature: New features as system
improvements, such as adding a new node to a sensor component
or removing a drop-down box, were classified as not technical debt.
An example is the following:

[Project B #1485] Filter alert trigger list by date

Type  Improvement type  Design limitation: In some cases,
an issue was not a defect or mistake but a system improvement to
remedy a design limitation, such as the inability to add a new
feature quickly, the current technology not supporting the
improvement needed, maintainability issues, or consequences of
refactoring. To handle such cases, we introduced the design
limitation branch. When evidence of side effects were not clear,
even those that clearly mentioned refactoring to remedy a design
limitation, we classified the issue as not technical debt.

[Project B #1513] Refactor onclicks in nodes.html into query events

Accumulation: 51 issues were design related and showed some
evidence of accumulation such as increased time to make

Figure 2. Concepts for classifying technical debt.

331331331

implementation changes, automated tests not supporting the
refactored classes, or security vulnerability. We tagged only those
issues for which we could identify an explicit impact of side
effects—in other words, accumulating consequences—as technical
debt. Here is an example from Connect:

[Connect #Gateway-1631] The re-architecture of the source code to
support multiple NwHIN specifications has introduced a new Java
packaging scheme. New and existing classes have been moved into
these new package folders; however, the previous package folders
have been left in place with no class files. No impact to functionality;
however, may lead to confusion for users implementing
enhancements / modifications to the source code.

Further details from project stakeholders on the issues we classified
as not technical debt may reveal that they represent technical debt.
However, our goal in this study was to uncover those issues that
could be classified with available information, then use this output
to make progress on a concrete definition of technical debt and an
improved reporting mechanism. Data quality of the issue reports is
a known concern in such studies; therefore, we erred on the side of
false negatives rather than false positives. An issue we discarded
may have been technical debt if a subject-matter expert provided
further detail, but we aimed to rely on the information available to
us through the issue tracker. Our samples represent a starting set to
analyze concrete examples of technical debt and its characteristics
to help developers communicate and act on such issues.

Table 3 is the summary of our classification of the four data sets.
Out of 727 records, we identified 51 as technical debt issues.

We allowed research team members to identify points where they
got stuck, represented as S1, S2, and S3 in Figure 2. This surfaced
12 issues that we discussed for future improvements to the
classification guidance.

One example where the researchers got stuck is from Project A.
There is clearly a design concern about decommissioning a
database. However, while the proposed remediation suggests web
service implementation to avoid rework later (future
accumulation), it is unclear if the current design solution is causing
accumulation.

[Project A #21] Request (made by xx) for read only access to the xx
tables in xx database. Requirements are: 1. Web Service
implementation a. Since xx is planned for decommission, a database
view is not a viable solution. We would like to go with implement it
in Web Services to avoid rework in the future

We resolved this discrepancy by limiting the scope to evidence on
current accumulation to avoid biasing the results with researchers’
knowledge or interpretation of projects’ technical context.

As a result of the several iterations of tagging, discussions, and
analysis of the examples, we conclude that

• technical debt exists when design decisions cause unintended work
that potentially increases the time to delivery, which we refer to as

accumulation. Making accumulation clear is critical in
communicating technical debt concretely. In its absence, confusion
about whether or not an issue represents technical debt is inevitable.

• technical debt is a design-related concept, as confirmed by the
examples we identified.

5. CHARACTERISTICS OF TECHNICAL
DEBT
We analyzed the 51 examples of technical debt identified in Phase
2 for generalizable characteristics. We looked at both predefined
issue fields—including open days, watchers, and priority—and
analyzed description text for design concerns and intentionality.
We report our analysis results with the questions that we addressed.

Do technical debt issues take longer to close?

We hypothesized that the 51 technical debt issues may take longer
to resolve than the 656 non-technical debt issues. We analyzed
average days open using mean plots. We calculated days open for
each issue in the data set by subtracting closed date from open date.
For each project, we divided the data sets into technical debt and
non-technical debt sets of issues. We then created subgroupings of
100 days (1 to 100, 101 to 200, and so on), and took the average of
these subgroups, and plotted the results on mean plot line charts.
These charts allowed us to drill a little deeper in to the data and
visually compare the patterns in the technical and non-technical
data sets for each project. When we examined the charts, we found
that average days open vary widely and do not reveal meaningful
patterns from the data sets that we analyzed.

While all projects had large Days Open standard deviations,
Chromium and Connect were a little tighter (Chromium, σ = 319
days; Connect, σ = 251; Project A, σ = 456; and Project B, σ = 557).

Figure 3 shows the cumulative percentage of issues closed for each
project, revealing subtle differences in pace of issue closure. Both
Chromium and Connect closed 95% or more issues within 2 years
compared to Projects A and B, which closed less than 70%. This
suggests that issue management practices may be slightly stronger
in Chromium and Connect. In addition, for these two projects we
found examples in the issue records of language like “technical
debt” and “accumulation” in the developer vocabulary.

We conclude that results are not significant to declare days open a
distinguishing characteristic of technical debt; however, future
analysis in larger data sets with mature issue management practices
could yield different results.

Table 3. Summary of technical debt classification.

Project TD
Not
TD Stuck

No
agreement

Total

Connect 12 265 1 7 285

Project A 10 74 1 1 86

Project B 13 171 9 0 193

Chromium 16 146 1 0 163

Total 51 656 12 8 727

Figure 3. Time issues remain open.

332332332

Do technical debt issues have higher numbers of watchers?

Watcher is a measure of the number of people interested in an issue
record in the issue tracker. Only Chromium has a fully populated
data set for “watcher,” so we took a deeper dive into Chromium
Watchers. Figure 4 shows technical debt issues in orange and non-
technical debt issues in blue.

The patterns of the number of watchers between the two classes of
issues are not significantly different. The gap in orange technical
debt dots between 8 and 60 days open is likely a random occurrence
due to the size of the data set. Therefore, we conclude that we
cannot declare a relationship between number of watchers and
technical debt from this data set.

Are technical debt issues high priority?

Table 4 compares the issues by priority (1 = highest priority and 3
= lowest). The percentages represent counts of issues with that
priority divided by the total count for that row (e.g., 22% of the
technical debt issues have a Priority = 1). Both categories have 50–
60% of the issues (the majority) assigned to Priority 2. Given this,
we do not have evidence to conclude that technical debt issues have
higher priority than other issues.

Do the technical debt issues show recurring design concepts?

We analyzed the textual data from the 51 examples of technical
debt for recurring design concepts. We created affinity groups
derived bottom-up from the issue descriptions (contrary to a top-
down approach of creating the concepts first and then classifying
them). The resulting affinity groups are shown in Figure 5 with the
number of issues that contained the concept as well as the project(s)
where we found the concept. If we found the concept in multiple
projects, the number of times per project is shown. For example,
for the five instances of event handling, two were found on the
Chromium project and three were found on Connect.

Our resulting data set of identified technical debt items is small;
however, it serves as a starting point to do more in-depth analysis
of potential issues that may commonly cause unintentional
consequences. In particular, refactoring-related consequences—

such as dead code, misaligned test and build scripts, and version
conflicts—are places to start improving unintentional technical
debt accumulation.

Is technical debt used strategically?

The appeal of technical debt is that it allows development teams to
make intentional design trade-offs to accelerate development and
revisit them as needed. Yet, 49 of the 51 issues were unintentional
design decisions. We provide an example from each of the four
affinity groupings from Figure 5.

Deployment & Build: Out-of-sync build dependencies

[Connect #Gateway-1623] The CONNECT 3.3 release is to be
deployed against the 2.1.1 version of the Metro Web Stack. Therefore,
the compilation and build dependencies should reference the 2.1.1
version of the Metro libraries… Impact to the users enhancing /
modifying CONNECT is that they will not have the correct version of
the Metro Web Stack library for development.

The reference to “will not have correct version” describes the
impact of not maintaining accurate build dependencies in the build
scripts. The word “should” suggests unintentionality.

Code Structure: Event handling

[Chromium #294388] The |code| attribute specified in UI Events is
intended to accurately identify the physical key associated with a key
event. The legacy attribute |keyCode| was previously used by
developers for this purpose, but it has problems in that it was never
completely specified and thus it is not consistently implemented across
browsers … add a new |code| attribute to WebKeyboardEvent.

The words “not consistently implemented” imply design
complexity, and “never completely specified” suggests
unintentionality.

Figure 4. Chromium by number of watchers and days
open.

Table 4: Analysis of priority.

Issue Type Priority 1 Priority 2 Priority 3

Technical debt 22% 56% 22%

Not technical debt 24% 50% 26%

Deployment
& Build

Out-of-sync build
dependencies

3 CN

Version conflict 1 CN
Dead code in build scripts 1 CN

Code
Structure

Event handling 5 2CH, 3PB
API/interfaces 5 2CH, 1CN, 2PB
Unreliable output or
behavior

5 4CH, 1PA

Type conformance issue 3 CN
UI design 3 PB
Throttling 2 1CH, 1PB
Dead code 2 CN
Large file processing or
rendering

2 CH

Memory limitation 2 CH
Poor error handling 1 PA
Performance appending
nodes

1 CH

Encapsulation 1 PB
Caching issues 1 CN

Data Model Data integrity 6 PA
Data persistence 3 PB
Duplicate data 2 PA

Regression
Tests

Test execution 1 CH
Overly complex tests 1 CH

a CH = Chromium, PA = Project A, PB = Project B, CN = CONNECT

Figure 5. Affinity groups of design concerns.

333333333

Data Model: Data integrity

[Project A #18] approximately 340 records exist in the database twice
… so much time had elapsed in some cases the duplicate was
endorsed.

In this example, “340 records exist in the database twice” implies
maintenance complexity, and “so much time has elapsed” suggests
unintentionality.

Regression Tests: Overly complex test

[Chromium #367158] Currently, we have a lot of duplicate/boilerplate
code in this test. We should try to simplify this test so that it’s easier
to maintain and read.

Here, “easier to maintain” implies maintenance complexity, and
“we should try to simplify” suggests unintentionality.

Only two issues among the 51 hint at intentionality; however, we
would not go so far as to call them strategic. The two “intentional”
decision examples are shown below:

[Project B #1393] Add “disabled” class to sensor tabs – it’s a little bit
hacky – disabled tab is still active. But it’ll do for this version.

[Connect #Gateway-1771] Setting Guidance at the Adapter layer is
an idea that we documented and designed, however … we quickly
realized some pitfalls and decided not to go through with the
implementation such as: 1) There were many error cases which we
would have to handle…

In the first example, “for this version” suggests that the developer
is making an intentional decision to take on technical debt with
hopes of refactoring later. In the second example, “Setting
Guidance at the Adapter layer” implies a design limitation in the
adapter, and “decided not to go through with the implementation”
suggests an intentional decision to defer the rework. The issue
description does not contain enough information to determine the
impact of not making the change (such as increased accumulation
in the form of complexity or maintainability).

Do groups of issues suggest technical debt?

When we asked project stakeholders to evaluate the results of our
technical debt classification, we uncovered cases in which an issue
by itself did not represent technical debt; however, when two or
more issues were analyzed together, they suggested design
limitations with accumulating side effects.

The Project A stakeholder confirmed that he would have also
classified 9 of the 10 issues that we tagged as technical debt. In
addition, he pointed out that several of the issues we found point to
neglecting the data architecture, causing reliability, complexity,
and data integrity issues. As shown in Figure 5, 72% of the
technical debt issues in the Data Model group were found on
Project A (8 of 11).

The Project B stakeholder positively confirmed 100% of the
technical debt examples that we found. The project stakeholder
revealed that lack of a robust and extensible UI framework had
caused significant rework on the project. He said he would also
include some other issues that we did not tag as technical debt due
to their dependence on the UI framework. All three of the UI design
issues shown in Figure 5 were from Project B.

The Connect stakeholder (one of the architecture evaluation leads)
was able to positively confirm only 42% of the technical debt
examples because he said the issue description lacked enough detail
to make a determination. However, of the 42% positively
confirmed technical debt examples (5 of 12 examples), he said that
several issues were consistent with maintainability risks discovered

during the architecture evaluation. For example, all four of the
issues in the Deployment & Build group shown in Figure 5 were
related to design concerns about the Connect build script
maintainability.

Analysis of the technical debt issues that we identified allows us to
conclude that

• issue data such as priority, duration open, and number of watchers
does not imply accumulation, so it does not help identify technical
debt historically.

• while our data set is small, we identify a starting set of recurring issues
in technical debt. Post-refactoring alignment of unit test, build scripts,
and versions and removal of dead code emerge as obvious technical
debt-related concerns.

• technical debt is mostly the result of unintentional design choices; we
were unable to find evidence of intentional technical debt being
explicitly discussed in issue trackers.

• groups of issues that appear not to be technical debt when assessed
individually can reveal underlying technical debt issues when
assessed together.

6. IMPLICATIONS FOR PRACTICE AND
RESEARCH
Issue trackers serve as an entry point for communicating technical
debt since developers use them to manage task priorities. Anecdotal
feedback from developers tells us that even when technical debt is
included in the issue tracker, it may languish as it is not given
priority or the symptoms are addressed but not the underlying issue.
Our findings offer some practical improvements to bring better
visibility to technical debt and ideas for future work.

6.1 Practice Improvements
Technical debt fosters dialogue between business and technical
actors. Classifying technical debt issues allows developers to
justify budgeting project resources for technical debt in a similar
manner to allocate a discretionary budget for defects.

There are standards for providing bug reports with enough
information so they may be reproduced and fixed [17][18]. These
essential properties are encoded in predefined fields in issue
trackers. These fields are necessary but not sufficient for describing
technical debt. Recent research on technical debt has offered
templates for reporting technical debt [34][24]. These contributions
have similar goals to our work; however, templates recommend
concepts that are at too high a level to overlap with daily routines
and tasks of developers, such as estimated interest probability or
principal and interest that are directly driven from the financial
analogy.

Our analysis and examples demonstrate that technical debt
becomes concrete when it relates to software units, as opposed to
software process artifacts such as requirements or documentation.
This refined scope leads to an understanding of technical debt as
the collection of technical debt items associated with a system.

A technical debt item is a single element of technical debt
connecting a set of development artifacts; with consequences for
the quality, value, and cost of the system; and triggered by some
causes related to process, management, context, and business goals.
An item can be described using the properties in Table 5 based on
the concepts for classifying technical debt (shown in bold),
supplementing a typical issue report.

Introducing these properties can help developers understand trade-
offs and the longer term consequences of technical debt when
discussing an issue among themselves. It can also help make the

334334334

case for additional resources when communicating to management.
We suggest that developers use the properties shown here to write
better descriptions and perhaps to increase the degree of automation
possible in classifying them.

Table 6 shows an example of organizing the text according to these
properties from a CONNECT issue.

The properties can also help parse the issues and identify what is
ambiguous or missing. For example, without explicit information
about debt accumulation, the issue cannot be properly classified nor
the trade-offs understood. Developers may need this information to
justify paying down the debt as an alternative to paying ongoing
costs associated with addressing the symptoms.

6.2 Future Research
Our results suggest that by using automated text analysis and
machine-learning techniques, technical debt issues can be more
systematically discovered. To explore this, we ran a manual search
against the 727 issues with the following words: duplicate, custom,
workaround, inconsistent, hack, legacy, rewrite, cleanup, refactor,
and refresh. We hypothesized that there would be a statistically
significant difference between the percentage of issues that contain
a key word AND are technical debt and the percentage of issues

that contain a key word but are not technical debt. We found that
67% of the issues contained one of the key words and were tagged
as carrying debt. Only 8% fall in the latter category. These findings
suggest that automated word searches of key concepts related to
technical debt may hold promise, but more experimentation is
needed with large data sets.

Assessing accumulation was one of the biggest challenges we faced
with systematically classifying technical debt issues in this study.
Disagreement stemmed from two major sources. First, the language
used by developers to describe accumulation is even less explicit
than the design issue description. For example, developers made
accumulation statements like “so much time has passed that now
we have duplicate data,” “this may lead to confusion for users,” or
“we should try to simplify so it is easier to maintain.” The implicit,
unstructured nature of accumulation language makes it difficult for
reviewers to classify consistently, developers to assess impact, and
researchers to study how to automate technical debt classification.
Second, issues often included three types of accumulation
information: (1) existing accumulation related to the current
problem, (2) future recurring accumulation related to the current
problem, and (3) accumulation related to the potential solution of
the current problem, which we refer to a remediation. As discussed
in Section 3.1, our response to confusion about this as we classified
was to update the classification guidance to limit the scope of
accumulation to type (1) for this study. Future research is needed
to better define and model accumulation in terms of the costs
associated with not fixing the problem and the added costs of fixing
the problem at a later time.

Several examples, particularly in the more mature issue trackers
(e.g., Chromium, Connect), included extensive developer
discussion accompanied by significant code file check-in/check-out
activity. A natural next step for this work is to analyze patterns
found in the developer text discussion with references to technical
debt and commit and change histories.

Our findings indicate several fruitful future research activities, and
our plans include the following:

• Evaluate other techniques for mining unstructured data (e.g., pattern
matching, island/lake parsers, information retrieval methods, and
word categories) to locate technical debt in software repositories.

• Trace technical debt in the developer text discussion to code through
the commit log to evaluate efficacy of self-reported debt in issue
trackers.

• Model dimensions of accumulation in terms of cost to fix (paying
down the principal), cost to not fix (paying interest), and the influence
of time (current and future costs) to improve guidelines for describing
technical debt.

• Build on the investment in the Chromium data set to conduct
correlation studies with defects and software vulnerabilities to better
understand the relationships among these kinds of software anomalies.

6.3 Threats to Validity
We identified the following threats to the validity of our study and
took steps to minimize them.

Manual inspection: Manual inspection is crucial, especially in an
exploratory study like ours that serves as input for creating key
concepts. To counter the threat of making classification and
interpretation mistakes, we included steps in our study to cross-
check and discuss items. We also set a high inter-rater reliability
threshold and had multiple researchers classify and code issues. In
order to minimize researcher bias, we also had both developers of
the system and experts external to the research team classify
random samplings of the issues.

Table 5. Properties of technical debt items.

Name Shorthand designation

Development
artifact

Executable element of the system or the
supporting work products: design, code, data,
build scripts, test suites, etc.

Symptoms Observable qualitative or measurable
consequence (type of issue and analysis
implications of design)

Consequences Effect on value, quality, or cost of the system
in the form of accumulation: additional costs
due to reduced productivity, induced defects, or
loss of quality incurred by software depending
on an element of technical debt

Analysis Degree to which the development approach
(design consideration/limitation) meets
stakeholder needs or expectations

Table 6. Example of a technical debt item.

Name Connect #Gateway-1631: Empty Java package
(dead code)

Development
artifact

The re-architecture of the source code to
support multiple NwHIN specifications has
introduced a new Java packaging scheme.

Symptoms Numerous empty Java package folders present
across multiple projects.

Consequences No impact to functionality; however, may lead
to confusion for users implementing
enhancements or modifications to the source
code.

Analysis New and existing classes have been moved into
these new package folders; however, the
previous package folders have been left in place
with no class files.

335335335

Study subjects: Software development management and issue
tracking practices of the organizations whose data we used affect
the quality of our results. The systems we selected may not have
been representative. We aimed to minimize skewing of our results
by selecting a variety of data sets from both open and closed
systems, representative types of issue trackers, and established
empirical analysis approaches.

Data quality and size: Technical debt represents only a small
subset of all issues in a system, although its impact may be
significant. Technical debt may not have been significantly
represented in the data we selected, especially given the varying
quality of the issue tracker data. We aimed to minimize this by
randomizing the issues we selected, including both projects where
we knew technical debt existed as well as others where we had no
prior knowledge.

7. RELATED WORK
In empirical software engineering, it has become commonplace to
mine data from change request and bug databases to detect where
issues have occurred in the past and use that information for
improved definitions, quality analysis, development management,
and predictive models. Examples include but are not limited to
manual and automated mining of issue trackers for
misclassification [15], duplicates [5], and correlations of
vulnerabilities and bugs [6]. Issue trackers also serve as historical
data to help identify patterns to assist with predicting current or
future events, such as risks [7]. To our knowledge, our study is the
first one that extensively looks at issue databases through the lens
of technical debt.

A key challenge in mining software repositories is data quality and
missing data [28]. A number of studies look at the quality of
reported data and ways to improve it, such as ensuring that missing
links between bugs and bug-fix commits are included [4] and
studying bug report quality [16][35]. These studies suggest that
reports that contain key information get addressed sooner. Our
results are consistent with these studies when it comes to reporting
issues related to technical debt as well. To our knowledge, our study
is the first one that provides key fields that need to be included in
an issue report on technical debt.

The ability to accurately create an issue report communicating
technical debt assumes a concrete understanding of technical debt.
Numerous researchers have proposed a definition of technical debt,
including McConnell [27], Li [23], Shull [30], and Kniberg [21].
To date these definitions stay at a conceptual level. Our study is the
first that grounds an improved understanding of technical debt in
actual software artifacts supported by extensive empirical data,
contributing to the envisioned future for an improved data analysis
and practice for managing technical debt [3] .

To understand implications of technical debt, systematic literature
reviews have created categories and concept ontologies [19][1] or
related debt to different stages in the development life cycle [2][23]
[33]. Small-scale interview studies on understanding how
developers talk about technical debt have focused on sources of
technical debt [14][25][31]. These categories and classifications of
technical debt rely on limited literature reviews and single-case
studies. Our study is the first that demonstrates empirically that a
significant amount of data is needed to talk about technical debt
classification.

A number of studies have looked for relationships between
software metrics and technical debt [13][26]. This work has applied
existing code smells, coupling and cohesion, and dependency

analysis to identifying areas of technical debt. Other work has
looked at extracted examples of technical debt using keywords
from developers’ comments in code as self-admitted technical debt
[29]. All of these stay at the level of code analysis, associating local
code changes with technical debt. The work by Kazman et al. [20]
relates architectural modularity violations to number of bugs to
detect technical debt. This study is closest in its spirit to our
findings that systematic issues hint at underlying technical debt.

8. CONCLUSIONS
Our study contributes to research on mining software repositories
by looking at issue trackers from the perspective of early
representations of technical debt. Our findings tell us the following:

• Technical debt concepts (e.g., taking on, accumulating, and paying
back debt) have entered the vernacular of developers. But now they
need a simple and formal approach to communicate the most crucial
information. We offer the technical debt item and examples as a step
toward that goal.

• Our data and analysis weakly support that issues where developers
discuss certain classes of changes such as refactoring and cleanup
are more likely to contain references to accumulation of technical
debt.

• Technical debt conceptually is about conscious design trade-offs.
However, the majority of technical debt that developers deal with is
a consequence of unintentional design choices. Issue trackers carry
information that can assist in uncovering the hidden technical debt.

We suggest that developers adopt a simple practice of concretely
tagging and reporting technical debt and its consequences with
accumulating side effects as they discover debt or take it on. This
practice will help development teams start communicating about
these issues more concretely and create a valuable resource for
research. This contribution could help increase the sample size and
quality of the data to make future research possible, since ambiguity
led us to discard many issues in the existing data sets.

The past decade has seen significant progress in the mining
software repositories community with substantial outcomes in
robust automated analysis and correction tools as well as sound
research approaches. Our exploratory study demonstrates that
technical debt has become a ripe area in practice where mining
software repositories research can be put to use to further improve
our understanding, communication, and analysis of technical debt.

9. ACKNOWLEDGMENTS
Copyright 2016 ACM. This material is based upon work funded
and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded
research and development center.

References herein to any specific commercial product, process, or
service by trade name, trade mark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University or its
Software Engineering Institute.

[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution. DM-0003242

We thank Felix Bachmann, Phil Bianco, Philippe Kruchten,
Tamara Marshall-Keim, Timothy Palko, and Hasan Yasar for their
valuable feedback and expert input.

336336336

10. REFERENCES
[1] Alves, N. S. R., Ribeiro, L. F., Caires, V., Mendes, T. S., and

Spínola, R. O. 2014. Towards an ontology of terms on
technical debt. ACM SIGSOFT 40, 2 (Mar. 2015), 32-34.

[2] Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., and
Avgeriou, P. 2015. The financial aspect of managing
technical debt: A systematic literature review. Inform.
Software Tech. 64 (Aug. 2015), 52-73.

[3] Avgeriou, P., Kruchten, P., Nord, R., Ozkaya, I., and
Seaman, C. 2016. Reducing friction in software
development. IEEE Software 33, 1 (Jan./Feb. 2016), 66-73.

[4] Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and
Bernstein, A. 2010. The missing links: bugs and bug-fix
commits. In Proceedings of the 18th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (Santa Fe, NM, Nov. 7-11, 2010). FSE ’18.
ACM, New York, NY, 97-106.

[5] Bettenburg, N., Premraj, R., Zimmermann, T., and Kim, S.
2008. Duplicate bug reports considered harmful … really? In
IEEE International Conference on Software Maintenance
(Beijing, China, Sep. 28-Oct. 4, 2008). ICSM ’08. IEEE
Press, Piscataway, NJ, 337-345.

[6] Camilo, F., Meneely, A., and Nagappan, M. 2015. Do bugs
foreshadow vulnerabilities? A study of the Chromium
Project. In IEEE/ACM 12th Working Conference on Mining
Software Repositories (Florence, Italy, May 16-17, 2015).
MSR ’15. IEEE Press, Piscataway, NJ, 269-279.

[7] Choetkiertikul, M., Dam, H. K., Tran, T., and Ghose, A.
2015. Characterization and prediction of issue-related risks in
software projects. In Proceedings of the 12th Working
Conference on Mining Software Repositories (Florence,
Italy, May 16-17, 2015). MSR ’15. IEEE Press, Piscataway,
NJ, 280-291.

[8] Chromium Issues.
https://code.google.com/p/chromium/issues/list

[9] CONNECT Health IT Exchange, U.S. Health and Human
Services. 2009-2015 [open source project].
http://www.connectopensource.org/

[10] Connect Health IT Exchange Issue Tracker.
https://connectopensource.atlassian.net/secure/Dashboard.jsp
a

[11] Corbin, J. and Strauss, A. 2008. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory, 3rd ed. Sage, Thousand Oaks, CA, 2008.

[12] Ernst, N., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I.
2015. Measure it? Manage it? Ignore it? Software
practitioners and technical debt. In Proceedings of the 10th
Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (Bergamo, Italy, Aug.
30-Sep. 4, 2015). ESEC/FSE ’15. ACM, New York, NY, 50-
60.

[13] Fontana, F., Ferme, V., and Spinelli, S. 2012. Investigating
the impact of code smells debt on quality code evaluation. In
Third International Workshop on Managing Technical Debt
(Zurich, Switzerland, June 5, 2012). IEEE Press, Piscataway,
NJ, 15-22.

[14] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G.,
DaSilva, F., Santos, A., and Siebra, C. 2011. Tracking
technical debt: An exploratory case study. In Proceedings of
the 27th International Conference on Software Maintenance
(Williamsburg, VA, Sep. 25-30, 2011). ICSM ’11. IEEE
Press, Piscataway, NJ, 528-531.

[15] Herzig, K., Just, S., and Zeller. A. 2013. It’s not a bug, it’s a
feature: How misclassification impacts bug prediction. In
Proceedings of the 2013 International Conference on
Software Engineering (San Francisco, May 18-26, 2013).
ICSE ’13. IEEE Press, Piscataway, NJ, 392-401.

[16] Hooimeijer, P. and Weimer, W. 2007. Modeling bug report
quality. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (Atlanta,
GA, Nov. 5-9, 2007) ASE ’07. ACM, New York, NY, 34-43.

[17] IEEE Std 1044-2009: IEEE Standard Categorization for
Software Anomalies. 2009. IEEE Computer Society,
Washington, DC.

[18] ISO/IEC 14764:2006(E): Software Engineering – Software
Life Cycle Processes – Maintenance. 2006. ISO/IEC, Geneva
Switzerland.

[19] Izurieta, C., Vetro, A., Zazworka, N., Cai, Y., Seaman, C.,
and Shull, F. 2012. Organizing the technical debt landscape.
In Third International Workshop on Managing Technical
Debt (Zurich, Switzerland, June 5, 2012). IEEE Press,
Piscataway, NJ, 23-26.

[20] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S.,
Fedak, V., and Shapochka, A. 2015. A case study in locating
the architectural roots of technical debt. In Proceedings of
the 37th IEEE International Conference on Software
Engineering (Florence, Italy, May 16-24). ICSE ’15. IEEE
Press, Piscataway, NJ, 179-188.

[21] Kniberg, H. 2013. Good and bad technical debt (and how
TDD helps. Oct. 2013.
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-
technical-debt.

[22] Kruchten, P., Nord, R. L., and Ozkaya, I. 2012. Technical
debt: From metaphor to theory and practice. IEEE Softw.
Spec. Issue Tech. Debt 29, 6 (Nov.-Dec. 2012), 18-21.

[23] Li, Z., Avgeriou, P., and Liang, P. 2015. A systematic
mapping study on technical debt and its management. J. Syst.
Softw. 101 (Mar. 2015), 193-220.

[24] Li, Z., Liang, P., and Avgeriou, P. 2014. Architectural debt
management. In Economics-Driven Software Architecture, I.
Mistrik, R. Bahsoon, Y. Zhang, K. Sullivan, and R. Kazman,
Eds. Elsevier, San Diego, CA, 2014, 183-204.

[25] Lim, E., Taksande, N., and Seaman, C. 2012. A balancing
act: What software practitioners have to say about technical
debt. IEEE Software 29, 6 (Nov./Dec. 2012), 22-27.

[26] Marinescu, R. 2012. Assessing technical debt by identifying
design AWS in software systems. IBM Journal of Research
and Development 56, 5 (Sep./Oct. 2012), 9:1-9:13.

[27] McConnell, S. 2007. Technical debt. Construx, Nov. 1, 2007.
http://www.construx. http://www.construx.com/10x_
Software_Development/Technical_Debt/

[28] Mockus, A. 2008. Missing data in software engineering. In
Guide to Advanced Empirical Software Engineering, F.

337337337

Shull, J. Singer, and D. Sjoberg, Eds. Springer Verlag, New
York, NY, 185-200.

[29] Potdar, A. and Shihab, E. 2014. An exploratory study on
self-admitted technical debt. In Proceedings of the 2014
IEEE International Conference on Software Maintenance
and Evolution (Victoria, BC, Canada, Sep. 29-Oct. 3, 2014).
ICSME ’14. IEEE Press, Piscataway, NJ, 91-100.

[30] Shull, F., Falessi, D., Seaman, C., Diep, M., and Layman, L.
2013. Technical debt: Showing the way for better transfer of
empirical results. In Perspectives on the Future of Software
Engineering. Springer, Berlin, Germany, 179-190.

[31] Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C., and
Shull, F. 2012. Investigating technical debt folklore:
shedding some light on technical debt opinion. Third
International Workshop on Managing Technical Debt
(Zurich, Switzerland, June 5, 2012). IEEE Press, Piscataway,
NJ, 1-7.

[32] Technical Debt Classification Approach Document and
Technical Debt Issue Examples. 2016 Sample Data Set
http://sei.cmu.edu/architecture/research/arch_tech_debt/got-
technical-debt.cfm

[33] Tom, E., Aurum, A., and Vidgen, R. T. 2013. An exploration
of technical debt. J. Syst. Softw. 86, 6 (June 2013), 1498-
1516.

[34] Zazvorka, N., Spínola, R., Vetro’, A., Shull F., and Seaman
C. 2013. A case study on effectively identifying technical
debt. In 17th International Conference on Evaluation and
Assessment in Software Engineering (Porto de Galinhas,
Brazil, April 14-16, 2013). EASE ’13. ACM, New York,
NY, 42-47.

[35] Zimmermann, T., Premraj, R., Bettenburg, N., Just, S.,
Schröter, A., and Weiss, C. 2010. What makes a good bug
report? IEEE Trans. Software Eng. 36, 5 (Sep. 2010), 618-
643.

338338338

