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ABSTRACT

Source code in software systems has been shown to have a good
degree of repetitiveness at the lexical, syntactical, and API usage
levels. This paper presents a large-scale study on the repetitiveness,
containment, and composability of source code at the semantic level.
We collected a large dataset consisting of 9,224 Java projects with
2.79M class files, 17.54M methods with 187M SLOCs. For each
method in a project, we build the program dependency graph (PDG)
to represent a routine, and compare PDGs with one another as well
as the subgraphs within them. We found that within a project, 12.1%
of the routines are repeated, and most of them repeat from 2—7 times.
As entirety, the routines are quite project-specific with only 3.3% of
them exactly repeating in 1—4 other projects with at most 8 times.
We also found that 26.1% and 7.27% of the routines are contained
in other routine(s), i.e., implemented as part of other routine(s) else-
where within a project and in other projects, respectively. Except for
trivial routines, their repetitiveness and containment is independent
of their complexity. Defining a subroutine via a per-variable slicing
subgraph in a PDG, we found that 14.3% of all routines have all
of their subroutines repeated. A high percentage of subroutines in
a routine can be found/reused elsewhere. We collected 8,764,971
unique subroutines (with 323,564 unique JDK subroutines) as ba-
sic units for code searching/synthesis. We also provide practical
implications of our findings to automated tools.
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1. INTRODUCTION

Source code in software projects has a considerable level of repet-
itiveness [21, 23]. There are several reasons for that. Developers
write their code in programming languages, which have strict, well-
defined syntax and semantics. Syntactic rules in a programming
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language defined by its grammar enforce the presence of certain syn-
tactic structures in the programs. This creates the repeated sequences
of code tokens that include required keywords and separators [21].
Several studies have confirmed such repetitiveness. A study by Hin-
dle et al. [23] has showed that source code has high repetitiveness.
Gabel and Su [21] reported syntactic redundancy at the granular-
ity level of 640 tokens (they treat source code as a sequence of
syntactic tokens with the abstraction on variables’ names).

Naming conventions and style conventions utilized by teams in
software projects are also a reason for repeated code portions within
a project or across multiple ones [6]. Pragmatic software reuse is an-
other reason. The practice of copying-and-pasting source code leads
to cloned code [12, 57]. Software reuse could occur at a higher level
of abstraction, such as the reusable software libraries with APIs,
third-party components, and frameworks, or the reuse of design pat-
terns or structures. Moreover, software engineering (SE) tasks have
commonality, which can be implemented with similar algorithms.
That may lead to similar source code as well. Code portions involv-
ing the usages of related APIs have been shown to be repetitive [52].

Those aforementioned traits are good evidence of similarity in
source code. While there exist prior studies on the similarity at the
lexical and syntactical structure levels in source code [6, 21, 23, 56],
none has shed insights on the repetitiveness, containment, and
composability of source code at a higher level of abstraction such
as the semantic level of routines. A routine is a portion of code
(within a program) that performs a specific task, and independent
and called by the remaining code [55]. In programming languages,
routines are manifested as procedures, functions, methods, etc.

A (new) requirement might drive developers to implement a new
task as well. However, is it possible that a routine that realizes that
task already occurred elsewhere in the same project or a different
one? Is that routine part of a larger routine in the same or a different
project? If not, what portions of the new routine can be reused from
other places? Do some (sub)routines often go together? Can they
be reused together? Are there any parts of a routine with a certain
size or complexity repeated/reused more than others? Those are
fundamental questions in SE towards a more general picture on a
point of convergence: whether all the building blocks (routines) of
projects for all tasks will have been written.

This paper presents a large-scale study towards answering those
questions. The answers for them will not only advance the state of
the knowledge on SE, but also have practical implications on SE
applications. First, the automated program repairing approaches [22,
54] involve searching a large space of programs in the codebase with
the assumption that a fix might already occur in the same program
or other ones [22]. FixWizard [51] assumes that similar fixes often
occur at similar code. Thus, finding a similar routine or its portions
could allow automated program repairing tools to expand their pools
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of potential fixes. Second, in program synthesis research, genetic
programming [19, 32] is used to synthesize a program via genetic
algorithms involving the search space of large code corpus. Our re-
sults will shed insights on the characteristics of routines that should
be explored more in the search space (e.g., with high repetitiveness
and containment). Thus, the genetic programming algorithms would
have higher probability of finding proper code. Automated tools,
e.g., code completion and clone detection can leverage our result to
suggest better code examples by exploring search spaces.

In this paper, we have the following key research questions:

RQ1. How likely a routine for a task is repeated exactly elsewhere
as an entirety;

RQ2. How likely a routine is repeated as part of other routine(s);

RQ3. What percentage of a routine is repeated from other places;

RQ4. How often portions of a routine are repeated or repeated
together; what is the unique set of all of such portions, and

RQS5. How the repetitiveness of (parts of) routines involving
common libraries is.

We used a large data set from SourceForge consisting of 9,224
Java projects with 2.79M class files, 17.54M methods with 187M
SLOCs. We limit our study to Java projects. We collected the last
snapshot (version) of each project. For each project, we collected
all the methods and consider each method as a routine. For each
method, we parse the code and build the program dependency graph
(PDG). The rationale is that a PDG has been shown to represent
the semantics in source code for comparison [20]. We also extend
PDGs with API elements to study Java programs with libraries. In
PDGs, we perform alpha-renaming for variables and literals. Two
routines are considered matched if their PDGs are isomorphic. If a
PDG of a method m is isomorphic to a subgraph of the PDG of a
method m’, we consider m as contained within n'.

For question 3, we consider the PDG of a method as a composition
of multiple subroutines, each of which is defined by a per-variable
slicing subgraph in a PDG, i.e., a subgraph in the PDG built by
slicing from one variable v to get all the nodes having (in)direct
dependencies with v via its edges. We measure how many subrou-
tines of each method can be found from other places. We define
composability of a method as the percentage of such per-variable
subroutines in it that match a subroutine in the search space. For
question 4, for a pair of per-variable subroutines, we count the
number of methods in which both of them occur and then measure
the Jaccard similarity coefficient between them as the likelihood of
co-occurrences of those two subroutines. For question 5, we limited
to the routines with API usages for Java Development Kit (JDK)
library. We made our experiments parameterized over the variables
on sizes and complexity of the PDGs, the number of APIs used, etc.

Generally, our study has three novel aspects: 1) scalability, 2)
three dimensions of repetitiveness, containment, and compos-
ability, and 3) the semantic level. Our key findings include:

1. Within a project, 12.1% of the routines are repeated with
mostly 2-7 times. The program auto-repair techniques that
are based on the principle “similar code has similar fixes” [51]
should set the threshold of less than 7 for the occurrence fre-
quencies of similar methods in the same project. To increase
the chance to find similar code for similar fixes, the tools need
to explore the code context finer-grained than the method
level. The number 12.1% also reflects the level of cloned
code at the method level in open-source projects.

2. As entirety, the routines are quite project-specific with 3.3%
of them exactly repeating in 1-4 other projects with at most
8 times. The repeated routines across projects often involve
common libraries. The auto-repair tools (e.g., GenProg [22])
have a higher probability to find a fix within the same project.
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Table 1: Collected Dataset

Total projects 9,224
Total classes 2,788,581
Total methods 17,536,628
Total SLOCs 187,774,573
Total extracted PDGs 17,536,628
Total extracted subgraphs | 1,615,050,988

3. 26.1% and 7.27% of the routines are contained in other rou-
tine(s) within a project and in different projects. Thus, 92.73%
of all routines are unique across all projects. The probability
to find a routine in another project is small. This result shows
that we have not reached the point of convergence where all
the routines as the building blocks can be found elsewhere.

4. A very small percentage of routines is contained more than 8
times in other routines. The pattern mining approaches for a
method should not use a threshold of greater than 8.

5. Except for trivial (sub)routines, the complexity of (sub)routines
in terms of sizes, cyclomatic complexity, control units, and
nested structures does not affect much repetitiveness and
containment. Thus, in the empirical studies on repetitive-
ness and containment of (sub)routines, sampling strategies on
(sub)routines can be independent of their sizes and complex-
ity. Moreover, the program auto-repair or synthesis methods
can explore repeated routines with similar likelihoods at any
levels of sizes and complexity if the routines are non-trivial.

6. The routines with no control and nested structure, and no API
call are more likely to repeat than the ones with either of
them. However, among the routines with either of them, the
numbers of occurrences of those do not affect repetitiveness.

7. 14.3% of the routines have all of their subroutines repeated.
15.6% of them have at least 90% of their subroutines repeating
elsewhere. This shows a promising foundation for search-
based code synthesis [19, 32]. We collected 8,764,971 distinct
subroutines (with 323,564 distinct JDK subroutines) as basic
units for code completion/searching/synthesis.

8. Focusing further on JDK, a popular library for Java applica-
tions, we reported that a small percentage (5%) of JDK API
usages are much more frequently used than all other usages
across all sizes, and 25% of other JDK usages are rarely used.
Code completion tools [48] could use our collection of those
commonly used JDK API usages for better recommendation.

2. DATA COLLECTION AND CONCEPTS

We collected source code at the latest revisions of Java projects
on SourceForge (Table 1). We filtered out the toy projects with short
histories (< 50 revisions) and small numbers of files (< 50 files).
Overall, we selected a large number of well-established projects
with long development histories. We kept only the main trunk of the
latest revision of a project since the branches have large portions of
duplicate code. Let us present the concepts used in our study.

A routine is a portion of code that performs a specific task and
independent of and is called by the remaining code within a pro-
gram [55]. In programming languages, a routine is often manifested
as a procedure, function, method, etc. A routine expresses a func-
tionality in a program and is assigned with a name to describe the
task/procedure. A routine can be viewed as the code for a method-
level algorithm (i.e., an algorithm is realized as a method). A routine
is an important level in a program because programmers often break



1 int foo (int i) {
2 int k;

3 int j;

4

5 i=9

6 while (j < i)
7 =itz

8

9 k = add(i,j);

10 return k;

11 }

Figure 1: Example of a routine

Legend:
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Figure 2: Program Dependence Graph (PDG) for code in Figure 1

down their program into classes, each of which in turn are broken
into methods; each of them realizes a complete task. When starting
to write a routine/method, they aim to have it to achieve a complete
functionality. Therefore, we are interested in the repetitiveness of
source code involving this level of method/routine.

2.1 Program Dependence Graph

Prior research has used program dependence graph (PDG) [17]
to model the semantics of source code for comparison [20, 36, 30].
PDG enables an abstraction that represents the relevant statements
and program entities and abstracts away the detailed syntactic differ-
ences. Thus, we use a PDG to represent the semantics of a routine.

A Program Dependence Graph (PDG) is a graph representation
of a routine in which the nodes represent declarations, simple state-
ments, expressions, and control points, and edges represent data or
control dependencies [17].

Those declarations, simple statements, expressions, and control
points are called action points and constructed from source code. A
control point represents a program point where there are branches,
iterations (loops), entering and exiting a routine/method. A control
point is labeled with its associated program predicate.

For example, in the PDG in Figure 2 for the code in Figure 1, the
regular nodes include formal-para for int i, the declaration node decl
for int k, the statement node j=9, the method call add, etc. The while
node is a control point and labeled with the guard expression ‘j < i'.

The edges in a PDG represent the data and control dependencies
between program points represented by the nodes. A directed data
dependency edge connects two points if the execution of the second
point depends on the data computed directly by the first point. For
example, the node for j=9 connects directly to the node for j=j+2
because the second statement does computation involving a value
that is initialized in the first statement.
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a.
1 Arraylist alist = new ArrayList (); '
2 String str ="John Smith”; :

3 alistadd(str); <'>
‘ ! o r--- while
4 Listlterator iter = aList listlterator(); I
5 ‘ ‘
6 FileWriter writer = new FileWriter(".));| 1
7 while (iterhasNext() { l ‘
8  writerappend(iter.next(); ! .
91
10
11 writer.close();

Figure 3: Enhancing PDG with API nodes and dependency edges

The node for j=j+2; has both a self data dependency edge and
outgoing one because j appears in both sides of the assignment and
the value of j affects the execution of the next statement.

A directed control dependency edge connects from p to g if the
choice to execute g depends on the test in p. For example, the
while node has a control dependency edge to the statement j=j+2
in its body. The while node also has a self control dependency edge
because the test at while affects the next iteration.

In a PDG, a function call has its own node linking to the nodes
for the expressions of the computation of the actual parameters, e.g.,
the node add connects to two actual parameter nodes for i and j with
both types of dependencies. A PDG also represents the assignment
of the returned value to the out parameter, e.g., to the variable k.

Since we are interested in the PDG within a function/method, we
will not use the other types of nodes representing the entry, exit,
function body control points, which are used to connect the PDGs
for methods together to form the system dependency graph.

2.2 Extension with API Nodes

In our study, we also aim to analyze the methods involving soft-
ware libraries with Application Programming Interfaces (APIs), e.g.,
the Java code using JDK. Figure 3 shows a code fragment that uses
the APIs in JDK for the task of reading and writing data to a file. To
do that, developers use API elements (or APIs for short), which are
the API classes, methods, and fields provided by a framework or a
library. A usage of APIs (as in Figure 3), called an API usage, is for
an intended use to achieve a task. An API usage could involve APIs
from multiple libraries or frameworks.

Since we use PDGs within methods and we match an API usage in
one method to another usage in another method, we enhance the tra-
ditional PDG with three types of nodes for three basic API usages: 1)
API object instantiations (e.g., new ArrayList()), 2) API calls (e.g.,
Scanner.next()), and 3) field accesses (e.g., LinkedList.next). Those
three types of nodes are adopted from our prior work, Groum [52],
an extension to PDG to support object-oriented code with libraries
via APIs. Groum is also called API usage graph representation [52].
Note that the data and control dependencies among API variables,
API calls, and field accesses are considered in the same manner as
the dependencies among the other nodes in a traditional PDG.

A usage graph [52] is a graph in which the nodes represent API
object instantiations, API calls, field accesses, and control points
(i.e., branching points of control units, e.g., if, while, for). The edges
represent the control and data dependencies between the nodes. The
nodes’ labels are from the qualified names of APIs and control units.
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Figure 4: Per-variable slicing subgraphs in a PDG

FileWriter.close

Figure 3 illustrates API nodes and their edges. For clarity, we
keep in the figure only the elements’ names. We also keep the
parameters’ types and return type for a method call for matching.

For example, the nodes ArrayList.new and FileWriter.close are
the action nodes representing a constructor and an API call, while
the node while represents the control unit. Both data and control
dependency edges connect ArrayList.new to ArrayList.add because
the former method call must occur before the latter one for the
ArrayList variable to be used in the latter call. Moreover, if a method
call is a parameter of another, e.g., m(n()), the node for the method
call in the parameter will be created before the node for the outside
call (i.e., the node for n comes before that of m). The rationale is
that there is a data dependency from n to m. For example, a data
dependency edge connects Listlterator.next and FileWriter.append,
since the former one has its return value to be used as the argument
for the latter. The while node has control dependency edges to both
API nodes in its body. Note that, Listlterator.hasNext in the condition
of the loop must be executed before the control point while, thus, its
node comes before the while node. More details on usage graphs
and how to build them for methods are available in [52].

In this work, we use those API nodes and their dependency edges
in a usage graph as an extension to PDG to support object-oriented
source code involving APIs in libraries. For a method, we build
an intra PDG. A regular function call is represented as a regular
node. However, if it is an API call, a constructor call, or a field
access, we will create an API node in one of those three types and
its dependency edges. The dependency edges among regular nodes
(e.g., statements, formal inputs, function calls) and API nodes are
built as usual. For example, in Figure 3, a data dependency edge
connects the statement str="John Smith” to API node ArrayList.add.

Slicing on PDG. To answer RQ3 and RQ4, we assume that a PDG
for a routine can be built from subgraphs, each of which has nodes
that have (in)direct data/control dependencies with a single variable
via its edges. We call such a subgraph per-variable slicing subgraph
(PVSG). To build a PVSG, we perform standard static slicing [53] on
a PDG to collect for each variable v the related nodes having data and
control dependencies with v to form that subgraph. Figure 4 shows
the PVSGs for the PDG in Figure 3. The rationale of using PVSG
with slicing is that its nodes will be interrelated via data/control
dependencies, which could form a more meaningful subgraph than
an arbitrary subgraph with any size in a PDG.

Normalization. In different methods, repeated code might have
different variables and literal values. Thus, we need to perform nor-
malization to remove those differences before matching. To do that,
we use the same procedure as in Gabel and Su [20] for clone detec-
tion on PDG. Specifically, each statement is first mapped back to its
AST node. The subtree in AST for the statement is then normalized
by re-labeling the nodes for local variables and literals. For a node
of a local variable, its new label is the node type (i.e., ID) concate-
nated with the name for that variable via alpha-renaming within the
method. For a literal node, its new label is the node type (i.e., LIT)
concatenated with its data type. For a PVSG, we do not need to
maintain the variable’s name since there is only a single variable.

B WN =
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context. select (PDG.GRAPH, PDG.FREQUENCY)
.from(PDG)
.where(CGQLDSL.nSize(PDG.GRAPH).gt(4))
.orderBy(PDG.FREQUENCY .desc()).limit(5).fetch();

Figure 5: Example of gOOQ query

Table 2: Graph operators and functions in gOOQ

Semantics

Number of action nodes of a graph
Number of control nodes of a graph
Number of data nodes of a graph
Number of nodes of a graph
Number of nodes starting with label
Whether a graph contains node
starting with a specific label
Number of different nodes (labels)
Whether a graph is isomorphic of another
Whether a graph contains another

Syntax

nAction(graph)
nControl(graph)
nData(graph)
nSize(graph)
nCCount(graph, label)
IStartWiths(label)

glDistance(graphl, graph2)
gMatch(graphl, graph2)
gContains(GraphDesc)

3. EXPERIMENTAL METHODOLOGY

3.1 Graph Querying Infrastructure

To enable the querying on PDGs, we developed graph-based
Object-Oriented Query infrastructure (g00Q). It was extended from
the Java Object-Oriented Query framework (jJOOQ) [26], to support
querying on PDGs. Generally, jOOQ is an OO framework that
allows a client Java program to place SQL queries via regular Java
method invocations and field accesses. The keywords in SQL are
represented by method calls such as select, from, where, and orderBy
in jOOQ. The tables and fields’ names are specified via objects’
fields or string literals/variables. In our gOOQ, we extended jOOQ
with domain-specific APIs for querying graphs. Figure 5 shows a
query to list top-5 PDGs with more than 4 nodes.

To support PDGs, we added to jOOQ a new set of graph operators
(Table 2). The operators gMatch, glDistance and gContains are used
to search for graphs that exactly match, resemble, or contain a given
graph. To enable the description of a graph in a query, we use dot [1],
a text graph description language. More details can be found in [3].

3.2 Vector Representation

In gOOQ, we use our prior work Exas [50], a vector representa-
tion for graphs. Exas can approximate the structure within a graph. A
(sub)graph is characterized by a vector whose elements are the occur-
rence counts of the selected structural features within the (sub)graph.

Exas considers two kinds of structural information in a (sub)graph,
called (p,q)-node and n-path. A (p,q)-node is a node having p
incoming and ¢ outgoing edges. An n-path is a directed path of
n nodes, i.e. a sequence of n nodes in which any two consecutive
nodes are connected by a directed edge. Structural feature of a
(p,q)-node is the label of the node and two numbers p and g. For an
n-path, it is a sequence of labels of nodes and edges along the path.

We use the occurrence-count vector of the features extracted from
a (sub)graph as its characteristic vector. Table 3 partially shows
the indexes of the features, which are global across all vectors, and
their occurrence counts for the graph in Figure 3b. The vector is
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...). We can choose n as the diameter
of the graph of a method. Thus, the length of a vector is equal to the
number of all possible n-paths and (p, ¢)-nodes. In [50], we proved:

THEOREM 1. If graph edit distance of G| and G; is A, then
[vi—val < [vi —=vali € 2P+4)A with P=YN | 1.6/~ 1.

G1 and G, are two subgraphs of G. b is the maximum degree of
nodes in G (i.e., branching factor), and N is the maximum size of



Table 3: Example of n-path features and indexes

Feature Index | # Feature Index | #
StrDdecl 1 1 ArrDecl-ArrNew 9 1
ArrDecl 2 1 ArrNew-ArrAdd 10 1
LIDecl 3 1 StrDecl-StrAsn 11 1
FWDecl 4 1 StrAsn-ArrAdd 12 1
ArrNew 5 1 ArrAdd-ArrLI 13 |1
StrAsn 6 1 LIDecl-ArrLI 14 1
ArrAdd 7 1 LIDecl-LIhasNext 15 1
ArrLI 8§ |1 FWDecl-FWNew ... 16 | 1

n-paths of certain sizes. This result means that, the vector distance
of two subgraphs is bounded by their edit distance, i.e. similar sub-
graphs (having small edit distance) will have small vector distance.

THEOREM 2. Two isomorphic graphs have the same feature set,
thus, have the same vector.

THEOREM 3. Ifa graph A is a subgraph of a graph B, then the
vector of A is also a sub-vector of the vector of B. A vector v is
called a sub-vector of another vector V' if all occurrence-counts in
all elements of v are smaller than or equal to those of V.

3.3 Matched and Contained Routines

a. Repeated Routines. Tio routines are considered as repeated
if their PDGs are exactly matched after normalization. Unique
routines are those with unique PDGs, which do not match with other
PDGs. The number of repetitions of a routine A is the number of
other repeated routines whose PDGs match with its PDG.

DEFINITION 1 (REPETITIVENESS OF A ROUTINE). Repetitive-
ness is measured by the percentage of the repetitions of that routine
over the total number of routines in the search space under study.

Examples of search spaces are the entire corpus or the set of
routines with a certain size. Repetitiveness of a routine A represents
the percentage of the routines (in the search space) that are the
repeated routines of A. The higher the repetitiveness of A, the higher
chance we can find a repeated routine for A. If A and B are repeated
routines, each will be counted toward the repetitiveness of each
other. We also need a definition for repetitiveness of all routines in
a set to compare the repetitiveness of a set with that of another, e.g.,
a set of routines with control nodes and another set without them.

DEFINITION 2 ((AGGREGATE) REPETITIVENESS OF A SET).
Aggregate repetitiveness of all routines in a set S with a criterion is
measured by the percentage of the routines repeated (at least once)
over all routines in S in the search space.

Two isomorphic graphs have the same vector. However, even
two vectors of two graphs are the same, they still might be different.
Thus, we hash the PDGs with the same vectors into the same bucket
using LSH [7], a vector hashing algorithm. Then, our algorithm
for gMatch compares the graphs in the same bucket by the graph
isomorphism algorithm, Ullman’s [58], to find the matched graphs.

b. Containment. A routine appears as part of another routine if the
PDG of the first one is isomorphic to a subgraph of the PDG of the
second routine. In our containment checking function, we also build
vector representations for PDGs and hash them into buckets using
LSH [7]. The vectors of all the buckets are then compared to find
the pairs of buckets (by,b,) in which the vector for one bucket is a
sub-vector of another bucket. Then, we perform pairwise matching
between every PDG in b and that in b; to find the real isomorphic
subgraphs among PDGs in b; and b; using Ullman’s algorithm [58].

The degree of containment of a routine and of a set of routines
are defined in the same manner as the repetitiveness except that the
relation considered between routines now is containment, instead of
“repeated” (B contains A, i.e., A is contained in B).
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DEFINITION 3 (CONTAINMENT OF A ROUTINE). The degree
of containment of a routine is measured by the percentage of the
routines contained in other routines elsewhere over the total number
of routines in the current search space.

3.4 Per-variable Slicing for Subroutines

In this study, we consider the PDG of a method as the composition
of multiple portions, each of which is built by slicing the PDG to
get a subgraph for a variable. We call each portion a subroutine.
We measure how many subroutines of each method are repeated.

DEFINITION 4  (COMPOSABILITY). Composability of a rou-
tine r is defined via the percentage of the per-variable subroutines
in r that match a subroutine in the current search space. We also
measure the percentage of a routine repeated elsewhere in term of
the nodes in those subroutines.

For co-occurring subroutines, for each pair of them, we determine
the number of methods in which they co-appear, and the number of
methods in which only one of them appears. We compute the sharing
portion using Jaccard index [24]. It equals O if there is no sharing
and 1 if two subroutines co-occur in all methods using them.

4. REPEATED ENTIRE ROUTINES (RQ1)
4.1 Routines Repeated Within a Project

First, we study the repetitiveness within a project. Figure 6 dis-
plays the repetitiveness of a routine within a project. As seen, 6.7%
of the routines in the dataset repeat exactly once within a project; 2%
of them repeat twice; 1.1% of them repeat 3 times, etc. The percent-
ages of routines repeat more than 7 times are less than 0.1%. Within
a project, 12.1% of the routines are repeated with mostly 2-7 times.
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Figure 9: Repetitiveness by graph size ([V|+ |E|) in PDGs

Implications. The program auto-repair techniques [51] that aim
to find similar fixes from similar code should set the threshold of
less than 7 for the occurrence frequencies of similar methods in
the same project. The result of 12.1% is also consistent with a
report by Roy and Cordy [56] that said cloned code at function level
within a project is 7.2-15%. This shows an opportunity for clone
detection/management tools at the method level.

4.2 Routines Repeated across Projects

Figure 7 shows the percentage of entire routines realized in more
than one project. As seen, 2.53% of all routines in the dataset repeat
in exactly 2 projects. Only 0.43% of the routines repeat in 3 projects.
Figure 8 shows the repetitiveness of routines across projects.

Implications. Despite similar trends in Figure 6 and Figure 8, the ac-
tual percentages of routines repeated across projects are smaller than
those repeated within a project, i.e., as entirety, routines are quite
project-specific. 3.3% of them repeat at most 8 times across projects.

Examining the reasons for such repetitiveness, we found that those
repeated routines across projects often involve the common APIs,
e.g., JDK. We will give examples on such repeated routines in
Section 8. Another type of repeated routines involves common
control flows, e.g., “checking a condition to break out of a loop”:

1 for (init; exprl; update) {

2 if (expr2) break;

3 expr3;

4}

As an implication, the program auto-repair tools could have higher
probability to find a fix within a project. The fixes to incorrect usages
of common API libraries could be found across projects.

4.3 Repetitiveness by Complexity in PDGs

Next, we measure repetitiveness of sets of routines (Definition 2)
by the complexity of PDGs. We consider all routines in all projects.
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4.3.1 Repetitiveness by Graph Properties of PDGs

We measured (aggregate) repetitiveness (Definition 2) of a set of
routines by the size of the PDGs in term of nodes and edges. Figure 9
shows the percentage of repeated routines that have different sizes.
As seen, the routines with small sizes (3-5 nodes and edges), which
correspond to a trivial PDG with a couple of statements and formal
arguments, are more repetitive than the routines with larger sizes.
We found that they correspond to many getters/setters or a routine
whose body contains exactly a method call. Except those trivial
routines, repetitiveness is not affected much by the size of the PDG.

4.3.2  Repetitiveness by Code Complexity

Cyclomatic Complexity. Figure 10 shows the percentage of re-
peated routines by their cyclomatic complexity, which is measured
as M = |E|—|V|+2x|P| where |V|, |[E|, and |P| are the numbers
of nodes, edges, and connected components in the CFG of a routine.
This graph has the same trend as the one in Figure 9. At the smaller
complexity levels, the repetitiveness of routines is higher, however,
the routines themselves are quite trivial. The repetitiveness does not
change much as cyclomatic complexity increases.

Number of Control Nodes. The number of control nodes in a PDG
is also an indicator of a routine’s complexity. Figure 11 shows the
percentages of repeated routines among the routines with one or
multiple control nodes such as for, while, if, etc. For example, about
8% of routines having 6 control nodes of any type are repeated. The
trend of repetitiveness when complexity is measured by the number
of control nodes is the same as the ones when we measure com-
plexity by graph sizes (Figure 9) and by cyclomatic complexity
(Figure 10).

Moreover, as shown in Table 4, the routines having control node(s)
of any type are less likely to be repeated than the ones without
them. The same observation can be made for individual types of
control nodes. However, as shown in Figure 11, the repetitiveness
of routines does not depend much on the number of control nodes.



Table 4: Repetitiveness without and without control nodes

for  while do if switch | any
With 85% 9.1% 92% 102% 9.0% |10.1%
Without 16.2% 15.7% 15.4% 17.7% 15.5% |18.3%

Table 5: Repetitiveness by number of nested control structures
#nestedstruct| 0 1 2 3 4 5 6 7 8 910
Percentage%| 15.6 9.3 10.7 7.6 94 84 89 79 72 72 7.1

Repetitiveness by Number of Nested Structures. Nested struc-
tures of control units are a good indicator for code complexity. As
seen in Table 5, the routines with no nested structure are repeated
the most (15.6% among all such routines). Similar to the cases of
other complexity metrics, repetitiveness decreases abruptly and then
does not change much as the number of nested structures increases.
Overall, 9.2% of the routines with nested structures are repeated.

4.3.3 Repetitiveness by Method Calls

We also found that 11.8% of routines with method calls are re-
peated, while 29.4% of routines without method calls are repeated.

4.3.4 Implications to SE Applications

An interesting observation is that despite using different metrics to
measure code and graph structure complexity of routines, the trend
on their repetitiveness is the same (Figures 9-11). First, for the sim-
ple routines with a couple of statements in their bodies and a couple
of formal arguments (graph size is less than 5), their repetitiveness
is higher than more complex ones. However, except for those simple
routines, the complexity does not affect much repetitiveness for
other routines. Thus, as an implication, a program auto-repair tool
can explore repeated routines with the similar likelihoods at any
levels of sizes and complexity if the routines are non-trivial (i.e., a
PDG has more than 5 nodes and edges). Moreover, in the empirical
studies concerning the repetitiveness, the sampling strategies on
routines can be independent of their sizes and complexity if the
chosen routines are non-trivial.

As seen in Tables 4 and 5, the routines without nested structures
or without control nodes are more likely to be repeated than the
ones having them. However, among the routines with either of them,
the repetitiveness does not depend much on the number of nested
structures nor the number of control nodes in the PDGs. Thus, in
the empirical studies concerning repetitiveness, the strategies for
sampling the routines need to distinguish the cases of having or not
nested structures and control nodes. However, it does not need to do
so for different numbers of nested structures and control nodes.

S. ROUTINE CONTAINMENT (RQ2)

In this study, we are interested in degree of containment, i.e., to
see how likely a routine is repeated as part of other routines.

5.1 Containment Within and Across Projects

Figure 12 displays the percentage of routines that are implemented
with a PDG that is a sub-graph of a PDG of another routine(s) in
some other places within the same project. There are 26.1% of the
routines that are contained in some routines elsewhere in the same
project. 12.8% of them are contained in exactly one routine.

Figure 13 shows the percentage of routines that are implemented
as a PDG that is a subgraph of another PDG of a routine in other
project(s). In total, there are only 7.27% of the routines that are
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contained in other routine(s) in more than one projects. There
are 4.3% of routines that are contained in exactly one routine in a
different project. Almost all of the contained routines occur within
1-6 routines in different projects.

5.2 Containment by Complexity

We also aim to study the containment of routines by their com-
plexity. We consider all routines in all projects.

Figure 14 shows the percentage of routines (over all routines)
with different sizes that are contained in other routine(s). Figure 15
shows the percentage of routines that are contained within another
one by different levels of their cyclomatic complexity.

As seen, the graphs for containment in Figures 14 and 15 exhibit
the same trend as the graphs for repetitiveness. Thus, the implica-
tions listed Section 4.3.4 are also applicable to containment. For
example, except for trivial routines, containment of routines is not
affected much by their sizes and complexity. Thus, a program auto-
repair tool could explore similar code with similar PDG with the
similar likelihoods at any sizes and complexity levels if non-trivial
routines are considered. In the empirical studies for containment,
sampling strategies can be independent of the sizes and complexity.

5.3 Implications

First, a high percentage of routines (92.73%) are unique across all
projects. That is, only 7.27% of them are contained in other routines
in other projects. Thus, as developers, we have not reached the point
of convergence where all the routines as the building blocks can be
found elsewhere. This suggests us to explore a finer-grained unit
than a routine as building blocks (Section 6).

Second, a very small percentage of routines (0.01%) is contained
more than 8 times in other routines. Thus, pattern mining approaches
[52] for a method should use a threshold of less than 8 occurrences.

Third, comparing Figures 6 and 12, Figures 8 and 13, we can see
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that repetitiveness and containment have the same trend (with the
percentage for contained routines is higher). Moreover, there is a
notable percentage of routines that are contained, but not exactly
matched in other projects. This suggests that the automated tools to
find a similar fix should search for the similar routines, rather than
for the exactly matched ones.

6. COMPOSABILITY OF ROUTINES (RQ3)

In this experiment, we measured the percentage of subroutines in
aroutine that are repeated in other places. In Figure 16, 13.5% of the
routines have no subroutine repeated elsewhere, i.e., 86.5% of them
have at least one subroutine repeated. 84.4% of the routines have
less than or equal 90% of their subroutines having been repeated
elsewhere, i.e., 15.6 % of the routines have at least 90% of their
subroutines repeated elsewhere. Interestingly, there are 14.3% of
the routines having 100% of their subroutines repeated.

Implications. In the previous sections, we see that the probability
to find an entire routine elsewhere (as exactly or as part of others)
in the same and different project(s) is small. That suggested us to
explore the subroutine level. This result at the subroutines provides
a promising foundation on which the program synthesis approaches
can rest. That is, a reasonable percentage of subroutines in terms of
PDG’s subgraphs of a routine can be found in existing code. Thus,
in many cases, a large percentage of a routine might be construct-
ed/synthesized from the subroutines elsewhere. In Section 8, we
will explain our study on the repetitiveness/uniqueness of subrou-
tines, and the synthesis approaches could use our collected unique
subroutines as basic units for searching and synthesizing.

7. REPEATED AND CO-OCCURING SUB-
ROUTINES (RQ4)

Next, we study the repetitiveness of subroutines, defined as PVSG
and built by slicing via individual variables on a PDG. We used
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similar measurements as in the previous experiments except that
each PVSG is a basic unit, instead of a routine. Figure 17 shows the
percentage of repeated subroutines over the total subroutines with
respect to different sizes.

Implications. As seen, the small subroutines are repeated more.
However, when considering non-trivial subroutines with 10 or more
nodes and edges in their PDGs, we can see that their repetitiveness
does not change much when size varies. That is, such subroutines
have equally repeated in term of percentages over the total subrou-
tines at certain sizes. This phenomenon for subroutines is similar
to that of the repetitiveness and containment of entire routines (Sec-
tions 4 and 5). Thus, the implications listed in Section 4.3.4 are
applicable to subroutines.

Compared to repetitiveness of entire routines (Figure 9), that of
subroutines is smaller due to the much larger numbers of subroutines
at certain sizes. The average size of repeated subroutines is 4.3.

Among 9,269,635 subroutines, 5.4% of them are repeated. The
program synthesis tools could use our collection of 8,764,971 dis-
tinct subroutines as basic units for searching and combining. Ex-
amining the repeated ones, we found that they are mostly involved
common libraries such as JDK. Some examples on repeated subrou-
tines are shown in Table 6 and Figure 20. Thus, the code completion
tools could explore those subroutines for better recommendations.

Figure 18 shows the repetitiveness of subroutines involving JDK.
As seen, subroutines (with JDK APIs) with smaller sizes are more
repetitive. For larger sizes (>10), the repetitiveness of subroutines
just slightly changes. In general, the percentages of repeated subrou-
tines with JDK are higher than the ones for all subroutines shown
in Figure 17. The average size of repeated JDK subroutines is 8.7.
Generally, 28.6% of JDK subroutines are repeated; that number is
much higher than that of general subroutines. Our collection of
distinct 323,564 JDK subroutines can be used as basic ones for
synthesis and code completion tools.
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We are also interested in the subroutines that frequently go to-
gether. If a pair of subroutines occurs in the same routine frequently,
they can be used to improve efficiency of code search and suggestion
tools. Figure 19 shows the cumulative distribution of co-occurring
pairs according their Jaccard indexes. As seen, in 87% of the pairs,
Jaccard indexes are less than 10%, i.e., the pairs of subroutines
co-occur in a small number of routines, in comparison to the total
number of routines containing each subroutine. Only 6.1% of the
pairs have Jaccard indexes higher than or equal to 50%. 4% of
them (115,034 pairs) have Jaccard indexes of 100%, i.e., those
pairs of subroutines always co-occur in all methods using them.
Thus, if seeing one routine, a tool can suggest the other routine.

We wrote a tool to check them and found that in 101,792 pairs, the
two subroutines in a pair are used together in only one method. In-
terestingly, 13,242 pairs always go together in multiple methods.
Table 6 lists some pairs with high Jaccard indexes. For example,
the first subroutine involves a XMLStreamWriter variable with its
functions to get/set a prefix and write the namespace. Thus, the sub-
routine for that variable has been used with the subroutine that uses
NamespaceContext in 2,125 methods.

8. REPETITIVENESS OF JDK APIS (RQS5)

This section describes our study on the repetitiveness of the code
involving JDK. First, we collected the subgraphs involving JDK
APIs by performing slicing on a PDG to get JDK elements and
dependent nodes/edges with one or multiple variables. Then, we
collected the connected subgraphs in those subroutines with different
sizes. Let us call such subgraphs JDK usages since they involve
JDK APIs. Table 7 shows the statistics on the frequencies of JDK
usages. A row shows the percentage of JDK usages. For example,
25% of all JDK usages with size 2 have occurred at least 8 times.
Implications. First, comparing the first row to others, we can see
that a small percentage (5%) of JDK usages are much more fre-
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Table 6: Frequent (Sub)routines and Co-occurring Routines

Subroutine |Co-occuring Subroutine |Freq
XMLStreamWriter#var NamespaceContext#var 2,125
XMLStreamWriter.getPrefix NamespaceContext
XMLStreamWriter.getNamespaceContext|.getNamespaceURI
XMLStreamWriter.writeNamespace

XMLStreamWriter.setPrefix IF

XMLStreamWriter.getNamespaceContext

org.omg.CORBA TypeCode#var org.omg.CORBA.INTERNAL#var (300
org.omg.CORBA.TypeCode.equivalent |org.omg.CORBA.INTERNAL.new
Jjava.security.cert. X509Certificate java.security.Principal#var 188
.checkValidity java.security.Principal.equals IF

Table 7: Statistics on frequencies of JDK API usages

Size
1 2 3 4 5 6 71819110
5% 1,832 [ 94 [ 35|18 |12 (10 ({8 [8[6 (5
25% | 53 8 5 4 3 2 2121212
50% | 8 3 2 2 2 2 21211
75% | 2 2 1 1 1 1 1111
95% | 1 1 1 1 1 1 1111

The cell ¢ at k% row means k% of usages occurring at least ¢ times

quently used than all other JDK usages across all sizes. Figure 20
displays a sample set of those popular JDK usages. The result im-
plies that the tools such as auto-completion, pattern mining, auto-
patching, could focus on that small percentage of heavily used JDK
usages, rather than evenly selecting from the entire pool of usages.

Second, we can see that for that those 5% popular JDK usages
are quite highly repeated even at larger sizes. For example, 5% of
the usages with size 6 have repeated at least 10 times. Finally, in
contrast to the 5% popular JDK usages, there are another set of least
popularly used usages: about 25% of JDK usages occur only once
or twice (repeat once or no repetition). This least frequently used
set requires more investigation from library designers (Figure 20).

Figure 21 shows the percentage of JDK usages repeated at various
average numbers (per project) of their frequent occurrences. The
shapes of graphs for different usage sizes exhibit the same trends.
For each size, a reasonably large percentage (42-80%) of JDK
usages occur once per project. Moreover, the percentage of usages
repeated twice over the total number of usages (with the same size)
in a project is smaller (12-22%), and that for more than 3 times
is very small. Thus, API suggestion tools should also rely on the
usages across projects, rather than on one project.

Importantly, we found that on average, the number of repeated
JDK usages for each size is from 2-4 times per project (not shown).
From the large numbers of popularly used usages from Table 7, we
can see that the set of most popular JDK API usages (5%) has been
used in multiple projects, rather than in only a few ones.

We also studied the usages of different JDK packages (Figure 22).
As seen, some packages (java.lang, java.util, java.awt, java.io) have
been more frequently used than others (java.rmi, java.applet).

Threats to Validity. Regarding construct validity, our dataset does
not represent all code in existence. We used a large corpus in hope
that it provides an accurate estimation. Our dataset is large enough
since we report quite similar trends with very little fluctuation de-
spite of different metrics. Our methodology does not consider the
time of creation of routines and the reasons of repetitions. However,
we just aim to study repetitiveness, rather than actual code reuse.
Moreover, we use only intra PDG. We argue that a method with its
PDG is a basic unit to achieve a task in a program. Another point
is that to measure composability, we break a PDG into subgraphs
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Most Frequently Used APls in JDK
Size 1

java.lang. String . equals; java.io.PrintStream. println ;
java.lang. StringBuffer .append; java.awt.Container.add ;...
Size 2

java.lang. StringBuilder #var java.lang. StringBuilder .append;
java. util . Iterator #var java. util . Iterator .next;

java. util .Map#var java.util . Map.get;

java.lang.Object#var java.lang.Object. getClass ;

java. util . Map#tvar java.util.Map.put; ...

Size 3

java.lang. String .equals IF RETURN;

java. util . Iterator .hasNext WHILE java.util. Iterator .next;
java. util . Iterator .hasNext FOR java.util . Iterator .next;
java.io. File #var java.io. File . exists IF; ...

Least Frequently Used APls in JDK

java. util .Scanner. locale ; java.sql.SQLInput.readAsciiStream;
java.sql .SQLInput.readRef; javax. persistence .OneToOne.optional;
org.omg.CORBA WrongTransactionHelper.read;

javax.time. calendar .format.DateTimeFormatterBuilder. parseStrict ;...

Figure 20: Most and least frequently used JDK APIs
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Figure 21: Percentage of JDK usages repeated at various average
numbers from 1-10 (per project) of their frequent occurrences

built by slicing for a variable. Such subgraphs might not represent
well the basic units in a method for program synthesis. However,
we aim to study the repetitiveness of parts of routines, rather than
the feasibility to synthesize a routine. Regarding external validity,
we studied only Java projects and those in other languages might
exhibit different repetitiveness. The characteristics of open-source
projects in terms of code reuse might affect repetitiveness.

9. RELATED WORK

There are several empirical studies on the repetitiveness of source
code. Early research shows that a significant percentage (7-23%) of
the source code in a project has been cloned [8]. Roy and Cordy [56]
studied on 15 open-source projects and reported that 7.2—-15% of
code is clones at the function level. Our study is in a much larger
scale. Moreover, we look at the PDG, rather than comparing only
syntactic units as in their study. At the file level, Mockus er al. [45,
46] study on 13.2M source files, and report more than 50% of the
files being used in multiple projects. At a finer granularity, Kapser
and Godfrey [28] reported that up to 10-15% of source code in a
project can be code clones. Gabel and Su [21] conducted a large
study on uniqueness of source code at the token level. They reported
that at the granularity level of 6 tokens, 50-100% of the code of a
project is repeated. Hindle er al. [23] compute the cross-entropy for
source code to show that code is repetitive at the lexical level. Barr
et al. [10] reported a high degree of graftability of code changes,
providing a foundation for program auto-repairing.
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Our prior study on repetitiveness of changes is at the AST
level [49]. Our API usage graph (Section 2.2) and vector repre-
sentation (Section 3.2) are re-used from our prior work [52, 50].
The graph query infrastructure (Section 3.1) was built for this study.

Our study is also related to clone detection [57, 12]. Clone de-
tection approaches are classified based on their code representations.
The typical categories are text-based [16, 38], token-based [9, 27,
34, 42], tree-based [11, 25, 18], and graph-based [31, 36]. Many
clone detection tools focus on individual projects, rather than across
projects as in our study. There have been several studies on clone
changes [29], cloning across projects [5], API usages [59, 35, 47].

GPLAG [36] detects cloned code via mining from the PDGs with
an approximated subgraph searching with a statistical lossy filter to
prune the search space. Duplix [33] finds similar subgraphs in the
PDGs to detect clones. Their approximated algorithm was run on
13 projects with 2K-24KLOCs. Komondoor and Horwitz [31] use
program slicing and graph matching on PDGs. To scale up, we used
hashing on vectors before pairwise comparison. In contrast, Gabel
and Su [20] map the PDG subgraphs to structured syntax and reuse
Deckard [25] to detect clones in AST. Portfolio [40] is a tool to find
relevant functions and their usage. Mendez et al. [43] studied the
diversity in how classes in API libraries are used.

Several approaches use the data structures such as pairs, sets, trees,
and graphs to model abstractions in code and then detect patterns in
API usages and examples [41, 47, 44, 14, 39]. Deterministic pattern
mining methods are used, e.g., mining frequent pairs, subsequences
[60, 4, 61], item sets [13], subgraphs [52, 15], association rules [37].

10. CONCLUSION

This paper presents a large-scale study on the repetitiveness, con-
tainment, and composability of source code at the routine level. We
found that within a project, 12.1% of the routines are repeated. As
entirety, the routines are quite project-specific with only 3.3% of
them being exactly repeated. We also found that 26.1% and 7.27%
of the routines that are implemented as part of others within and in
other projects, respectively. Except the trivial ones, the complexity
of the routines does not affect much their repetitiveness and con-
tainment. Moreover, 14.3% of routines have all of their subroutines
repeated. We provide implications and practical use of our findings
to the automated tools. Our data and results are available at [2].
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