
An Object-Oriented Framework for Block
Preconditioning

EDMOND CHOW
Lawrence Livermore National Laboratory
and
MICHAEL A. HEROUX
Silicon Graphics, Inc.

General software for preconditioning the iterative solution of linear systems is greatly lagging
behind the literature. This is partly because specific problems need specific matrix and
preconditioner data structures in order to be solved efficiently, i.e., multiple implementations
of a preconditioner with specialized data structures are required. This article presents a
framework to support preconditioning with various, possibly user-defined, data structures for
matrices that are partitioned into blocks. The main idea is to define data structures for the
blocks, and an upper layer of software which uses these blocks transparently of their data
structure. This transparency can be accomplished by using an object-oriented language. Thus,
various preconditioners, such as block relaxations and block-incomplete factorizations, only
need to be defined once and will work with any block type. In addition, it is possible to
transparently interchange various approximate or exact techniques for inverting pivot blocks,
or solving systems whose coefficient matrices are diagonal blocks. This leads to a rich variety
of preconditioners that can be selected. Operations with the blocks are performed with
optimized libraries or fundamental data types. Comparisons with an optimized Fortran 77
code on both workstations and Cray supercomputers show that this framework can approach
the efficiency of Fortran 77, as long as suitable block sizes and block types are chosen.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Alge-
bra—sparse and very large systems; G.4 [Mathematics of Computing]: Mathematical
Software; D.1.5 [Programming Techniques]: Object-Oriented Programming

General Terms: Design

Additional Key Words and Phrases: Block matrices, preconditioners

This work was supported in part by the National Science Foundation under grant NSF/CCR–
9214116 and in part by Silicon Graphics, Inc. and the Minnesota Supercomputer Institute.
The software is available at http://www.cs.umn.edu/˜chow/bpkit.html.
Authors’ addresses: E. Chow, L-560, Lawrence Livermore National Laboratory, Box 808,
Livermore, CA 94551; email: echow@llnl.gov; M. A. Heroux, Mathematical Algorithms and
Scalable Computing Group, Cray Research, Silicon Graphics, Inc., Eagan, MN 55121; email:
mamh@cray.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0098-3500/98/0600–0159 $5.00

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998, Pages 159–183.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F290200.287639&domain=pdf&date_stamp=1998-06-01

1. INTRODUCTION

In the iterative solution of the linear system

Ax 5 b

a preconditioner M is often used to transform the system into one which
has better convergence properties, for example, in the left-preconditioned
case,

M21Ax 5 M21b.

M21 is referred to as the preconditioning operator for the matrix A and, in
general, is a sequence of operations that somehow approximates the effect
of A21 on a vector.

Unfortunately, general software for preconditioning is seriously lagging
behind methods being published in the literature. Part of the reason is that
many methods do not have general applicability: they are not robust on
general problems, or they are specialized and need specific information
(e.g., general direction of flow in a fluids simulation) that cannot be
provided in a general setting.

Another reason, one that we will deal with in this article, is that specific
linear systems need specific matrix and preconditioner data structures in
order to be solved efficiently, i.e., there need to be multiple implementa-
tions of a preconditioner with specialized data structures. For example, in
some finite-element applications, diagonal blocks have a particular but
fixed sparse structure. A block SSOR preconditioner that needs to invert
these diagonal blocks should use an algorithm suited to this structure. A
block SSOR code that treats these diagonal blocks in a general way is not
ideal for this problem.

When we encounter linear systems from different applications, we need
to determine suitable preconditioning strategies for their iterative solution.
Rather than code preconditioners individually to take advantage of the
structure in each application, it is better to have a framework for software
reuse. Also, a wide range of preconditionings should be available so that we
can choose a method that matches the difficulty of the problem and the
computer resources available.

This article presents a framework to support preconditioning with vari-
ous, possibly user-defined, data structures for matrices that are partitioned
into blocks. The main idea is to define data structures (called block types)
for the blocks, and an upper layer of software which uses these blocks
transparently of their data structure. Thus, various preconditioners, such
as block relaxations and block-incomplete factorizations, only need to be
defined once and will work with any block type. These preconditioners are
called global preconditioners for reasons that will soon become apparent.
The code for these preconditioners is almost as readable as the code for
their pointwise counterparts. New global preconditioners can be added in
the same fashion.

160 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

Global preconditioners need methods (called local preconditioners) to
approximately or exactly invert pivot blocks or solve systems whose coeffi-
cient matrices are diagonal blocks. For example, a block stored in a sparse
format might be inverted exactly, or an approximate inverse might be
computed. Our design permits a variety of these inversion or solution
techniques to be defined for each block type.

The transparency of the block types and local preconditioners can be
implemented through polymorphism in an object-oriented language. Our
framework, called BPKIT, currently implements block-incomplete factor-
ization and block relaxation global preconditioners, a dense and a sparse
block type, and a variety of local preconditioners for both block types. Users
of BPKIT will either use the block types that are available, or add block
types and local preconditioners that are appropriate for their applications.
Users may also define new global preconditioners that take advantage of
the existing block types and local preconditioners. Thus, BPKIT is not
intended to be complete library software; rather it is a framework under
which software can be specialized from relatively generic components.

It is appropriate to make some comments about why we use block
preconditioning. Many linear systems from engineering applications arise
from the discretization of coupled partial differential equations. The block-
ing in these systems may be imposed by ordering together the equations
and unknowns at a single grid point, or those of a subdomain. In the first
case, the blocks are usually dense; in the latter case, they are usually
sparse. Experimental tests suggest it is very advantageous for precondi-
tionings to exploit this block structure in a matrix [Chow and Saad 1997;
Fan et al. 1996; Kolotilina et al. 1991; Jones and Plassmann 1995]. The
relative robustness of block preconditioning comes partly from being able to
solve accurately for the strong coupling within these blocks. From a
computational point of view, these block matrix techniques can be more
efficient on cached and hierarchical memory architectures because of better
data locality. In the dense block case, block matrix data structures also
require less storage. Block data structures are also amenable to graph-
based reorderings and block scalings.

When approximations are also used for the diagonal or pivot blocks (i.e.,
approximations with local preconditioners are used) these techniques are
specifically called two-level preconditioners [Kolotilina and Yeremin 1986]
and offer a middle-ground between accuracy and simpler computations.
Beginning with Underwood [1976] and then Axelsson et al. [1984] and
Concus et al. [1985] more than a decade ago, these preconditioners have
been motivated and analyzed in the case of block tridiagonal incomplete
factorizations combined with several types of approximate inverses, and
have recently reached a certain maturity. Most implementations of these
methods, however, are not flexible: they are often coded for a particular
block size and inversion technique, and further, they are almost always
coded for dense blocks.

The software framework presented here derives its flexibility from the
use of an object-oriented language. We chose to use C11 [Stroustrup 1991]

An Object-Oriented Framework for Block Preconditioning • 161

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

in real, 64-bit arithmetic. Other object-oriented languages are also appro-
priate. The framework is computationally efficient, since all operations
involving blocks are performed with code that employs fundamental types,
or with optimized Fortran 77 libraries such as the Level 3 BLAS [Dongarra
et al. 1990], LAPACK [Demmel 1989], and the sparse BLAS toolkit [Carney
et al. 1994]. By the same token, users implementing block types and local
preconditioners may do so in practically any language, as long as the
language can be linked with C11 by their compilers. BPKIT also has an
interface for Fortran 77 users.

BPKIT is available at http://www.cs.umn.edu/˜chow/bpkit.html. Other
C11 efforts in the numerical solution of linear equations include LA-
PACK11 [Dongarra et al. 1993] for dense systems, and Diffpack [Bruaset
and Langtangen 1997], ISIS11 [Clay 1997], SparseLib11, and IML11
[Dongarra et al. 1994] for sparse systems. It is also possible to use an
object-oriented style in other languages [Eijkhout 1996; Machiels and
Deville 1997; Smith et al. 1995].

In Section 2, we discuss various issues that arise when designing
interfaces for block preconditioning and for preconditioned iterative meth-
ods in general. We describe the specification of the block matrix, the global
and local preconditioners, the interface with iterative methods, and the
Fortran 77 interface. In Section 3, we describe the internal design of
BPKIT, including the polymorphic operations on blocks that are needed by
global preconditioners. In Section 4, we present the results of some numer-
ical tests, including a comparison with an optimized Fortran 77 code.
Section 5 contains concluding remarks.

2. INTERFACES FOR BLOCK PRECONDITIONING

We have attempted to be general when defining interfaces (to allow for
extensions of functionality), and we have attempted to accept precedents
where we overlap with related software (particularly in the interface with
iterative methods). For concreteness, we describe several methods which
will be used in the numerical tests. Section 2 brings to light various issues
in the software design of preconditioned iterative methods.

2.1 Block Matrices

A matrix that is partitioned into blocks is called a block matrix. Although
with BPKIT any storage scheme may be used to store the blocks that are
not zero, the locations of these blocks within the block matrix must still be
defined. The block matrix class (data type) that is available in BPKIT,
called BlockMat , contains a pointer to each block in the block matrix. The
pointers for each row of blocks (block row) are stored contiguously, with
additional pointers to the first pointer for each block row. This is the
analogy to the compressed sparse row data structure [Saad 1990] for
pointwise matrices; pointers point to blocks instead of scalar entries. The
global preconditioners in BPKIT assume that the BlockMat class is being
used. It is possible for users to design new block matrix classes and to code

162 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

new global preconditioners for their problems, and still use the block types
and local preconditioners in BPKIT.

For the block matrix data structure described above, BPKIT provides
conversion routines to that data structure from the Harwell-Boeing format
[Duff et al. 1989]. There is one conversion routine for each block type (e.g.,
one routine will convert a Harwell-Boeing matrix into a block matrix whose
blocks are dense). However, these routines are provided for illustration
purposes only. In practice, a user’s matrix that is already in block form (i.e.,
the nonzero entries in each block are stored contiguously) can usually be
easily converted by the user directly into the BlockMat form.

To be general, the conversion routines allow two levels of blocking. In
many problems, particularly linear systems arising from the discretization
of coupled partial differential equations, the blockings may be imposed by
ordering together the equations and unknowns at a single grid point and
those of a subdomain. The latter blocking produces coarse-grain blocks, and
the smaller, nested blocks are called fine-grain blocks. Figure 1 shows a
block matrix of dimension 24 with coarse blocks of dimension 6 and fine
blocks of dimension 2.

The blocks in BPKIT are the coarse blocks. Information about the fine
blocks should also be provided to the conversion routines because it may be
desirable to store blocks such that the coarse blocks themselves have block
structure. For example, the variable block row (VBR) [Saad 1990] storage
scheme can store coarse blocks with dense fine blocks in reduced space.
Optimized matrix-vector product and triangular solve kernels for the VBR
and other block data structures are provided in the sparse BLAS toolkit
[Carney et al. 1994; Remington and Pozo 1996]. No local preconditioners or
block operations, however, are defined for fine blocks (i.e., there are not two
levels of local preconditioners).

Fig. 1. Block matrix with coarse and fine blocks.

An Object-Oriented Framework for Block Preconditioning • 163

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

It is apparent that the use of very small coarse blocks will degrade
computing performance due to the overhead of procedure calls. Larger
blocks can give better computational efficiency and convergence rate in
preconditioned iterative methods, and computations with large dense
blocks can be vectorized. In this article, we will rarely have need to
mention fine blocks; thus, when we refer to “blocks” with no distinction, we
normally mean coarse blocks.

To be concrete, we give an example of how a conversion routine is called
when a block matrix is defined. The statement

BlockMat B(“HBfile”, 6, DENSE);

defines B to be a square block matrix where the blocks have dimension 6,
and the blocks are stored in a format indicated by DENSE(which is of a
C11 enumerated type). The other block type that is implemented is CSR,
which stores blocks in the compressed sparse row format. The matrix is
read from the file HBfile , which must be encoded in the standard Harwell-
Boeing format [Duff et al. 1989]. (The dimension of the matrix does not
need to be specified in the declaration, since it is stored within the file.) To
specify a variable block partitioning (with blocks with different sizes), other
interfaces are available which use vectors to define the coarse and fine
partitionings.

2.2 Specifying the Preconditioning

A preconditioning for a block matrix is specified by choosing

(1) a global preconditioner and

(2) a local preconditioner for each diagonal or pivot block to exactly or
approximately invert the block or solve the corresponding set of equa-
tions.

For example, to fully define the conventional block Jacobi preconditioning,
one must specify the global preconditioner to be block Jacobi and the local
preconditioner to be LU factorization.

In addition, the block size of the matrix has a role in determining the
effect of the preconditioning. At one extreme, if the block size is 1, then the
preconditioning is entirely determined by the global preconditioner. At the
other extreme, if there is only one block, then the preconditioning is
entirely determined by the local preconditioner. The block size parameter-
izes the effect and cost between the selected local and global precondition-
ers. The best method is likely to be somewhere between the two extremes.

For example, suppose symmetric successive overrelaxation (SSOR) is
used as the global preconditioner, and complete LU factorization is used as
the local preconditioner. For linear systems that are not too difficult to
solve, SSOR may be used with a small block size. For more challenging
systems, larger block sizes may be used, giving a better approximation to
the original matrix. In the extreme, the matrix may be treated as a single
block, and the method is equivalent to LU factorization.

164 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

A global preconditioner M is specified with a very simple form of declara-
tion. In the case of block SSOR, the declaration is

BSSOR M;

Two functions are used to specify the local preconditioner and to provide
parameters to the global preconditioner:

M.localprecon(LP_LU); // LU factorization for the blocks
M.setup(B, 0.5, 3); // BSSOR(omega 50.5, iterations 53)

Here B is the block matrix defined as in Section 2.1. The setup function
provides the real data to the preconditioner and performs all the computa-
tions necessary for setting up the global preconditioner, for example, the
computation of the LU factors in this case. Therefore, localprecon must
be called before setup . The setup function must be called again if the local
preconditioner is changed. In these interfaces, the same local precondi-
tioner is specified for all the diagonal blocks. In general, however, the local
preconditioners are not required to be the same. In some applications,
different variables (e.g., velocity and pressure variables in a fluids simula-
tion) may be blocked together. It may then make sense to write a special-
ized global preconditioner with an interface that allows different local
preconditioners to be specified for each block.

2.2.1 Global Preconditioners. The global preconditioners that we have
implemented in BPKIT are listed in Table I, along with the arguments of
the setup function, and any default argument values. General reference
works describing these global preconditioners and many of the local precon-
ditioners described later are Axelsson [1994], Barrett et al. [1994], and
Saad [1995]. See also the BPKIT Reference Manual [Chow and Heroux
1996]. Here we briefly specify these preconditioners and make a few
comments on how they may be applied.

BJacobi , BSOR, and BSSORare block versions of the diagonal, successive
overrelaxation, and symmetric successive overrelaxation preconditioners.
BILUK is a block version of level-based incomplete LU (ILU) factorization.
BTIF is an incomplete factorization for block tridiagonal matrices.

A preconditioner for a matrix A is often expressed as another matrix M
which is somehow an approximation to A. However, M does not need to be
explicitly formed, but instead, only the operation of M21 on a vector is
required. This operation is called the preconditioning operation, or the
application of the preconditioner. For iterative methods based on biorthogo-
nalization, the transposed preconditioning operator M2T is also needed.

Table I. Global Preconditioners

setup Arguments

BJacobi none
BSOR omega 5 1.0, iterations 5 1
BSSOR omega 5 1.0, iterations 5 1
BILUK level
BTIF none

An Object-Oriented Framework for Block Preconditioning • 165

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

It is also possible to apply the preconditioner in a split fashion when the
preconditioner has a factored form. For example, if M is factored as LU,
then the preconditioned matrix is L21AU21, and the operations of L21 and
U21 on a vector are required.

Many preconditioners M can be expressed in factored form. Consider the
splitting of a block matrix A,

A 5 DA 2 LA 2 UA

where DA is the block diagonal of A, 2 LA is the strictly lower block
triangular part, and 2 UA is the strictly upper part. The block SSOR
preconditioner in the case of one iteration is defined by

M 5
1

v~2 2 v!
~DA 2 vLA!DA

21~DA 2 vUA!.

The scale factor 1/v~2 2 v! is important if the iterative method is not
scale invariant. When used as a preconditioner, the relaxation parameter v
is usually chosen to be 1, since selecting a value is difficult. However, if
more than one iteration is used, and the matrix is far from being symmetric
and positive definite, then underrelaxation may be necessary to prevent
divergence. Also, the simpler block SOR preconditioner (with one iteration)

M 5
1

v
~DA 2 vLA!

may be preferable over block SSOR if A is nonsymmetric. If k iterations of
block SOR are used, the preconditioner has the form

M 5
1

v
~DA 2 vLA!F O

i50

k21

@~DA 2 vLA!21~vUA 1 ~1 2 v!DA!#iG21

although it is not implemented this way. Instead, the preconditioner is
applied to a vector v by performing k SOR iterations on the system Aw 5
v starting from the zero vector.

The level-0 block ILU preconditioner for certain structured matrices
including block 5-point matrices can be written in a very similar form

M 5 ~D 2 LA!D21~D 2 UA!

called the generalized block SSOR form. Here, D is the block diagonal
matrix resulting from the incomplete factorization. In general, however, a
level-based block ILU preconditioner is computed by performing Gaussian
elimination and neglecting elements in the factors that fall out of a
predetermined sparsity pattern. Level-based ILU preconditioners are much

166 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

more accurate than relaxation preconditioners, but for general sparse
matrices, have storage costs at least that of the original matrix.

Incomplete factorization of block tridiagonal matrices is popular for
certain structured matrices where the blocks have banded structure. It is a
special case of the generalized block SSOR form, and thus only a sequence
of diagonal blocks needs to be computed and stored. The block partitioning
may be along lines of a 2D grid, or along planes of a 3D grid. In general,
any “striped” partitioning will yield a block tridiagonal matrix. The in-
verse-free form of block tridiagonal factorization is

M 5 ~D21 2 LA!~I 2 DUA!

where D is a block diagonal matrix whose blocks Di are defined by the
recurrence

Di 5 ~Ai, i 2 Ai, i21Di21Ai21, i!
21

starting with D0 5 0. This inverse-free form only requires matrix-vector
multiplications in the preconditioning operation. However, the blocks are
typically very large, and an approximate inverse is used in place of the
exact inverse in the above equation to make the factorization incomplete.
Many techniques for computing approximate inverses are available [Chow
and Saad 1998].

2.2.2 Local Preconditioners. Local preconditioners are either explicit or
implicit depending on whether (approximate) inverses of blocks are explic-
itly formed. An example of an implicit local preconditioner is LU factoriza-
tion.

The global preconditioners that involve incomplete factorization require
the inverses of pivot blocks. For large block sizes, the use of approximate or
exact dense inverses usually requires large amounts of storage and compu-
tation. Thus sparse approximate inverses should be used in these cases.
Implicit local preconditioners produce inverses that are usually dense and
are therefore usually not computationally useful for block-incomplete fac-
torizations. This use of implicit local preconditioners is disallowed within
BPKIT. We also apply this rule for small block sizes, since dense exact
inverses are usually most efficient in these cases. (Note that the explicit
local preconditioner LP_INVERSE for the CSRblock type is meant to be used
for testing purposes only. Also, if an exact factorization is sought, it is
usually most efficient to use an LU factorization on the whole matrix.) The
global preconditioners that involve block relaxation may use either explicit
or implicit local preconditioners, but usually the implicit ones are used.
Explicit local preconditioners can be appropriate for block relaxation when
the blocks are small.

Local preconditioners are also differentiated by the type of the blocks on
which they operate. Not all local preconditioners exist for all block types;
incomplete factorization, for example, is only meaningful for sparse types.

An Object-Oriented Framework for Block Preconditioning • 167

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

Thus, a local preconditioner must be chosen that matches the type of the
block.

BPKIT requires the user to be aware of the restrictions in the above two
paragraphs when selecting a local preconditioner. Due to the dynamic
binding of C11 virtual functions, violations of these restrictions will only
be detected at run-time.

Table II lists the local preconditioners that we have implemented, along
with their localprecon arguments, their block types, and whether the
local preconditioner is explicit or implicit. In contrast to the setup func-
tion, localprecon takes no default arguments. We have included an
explicit exact inverse local preconditioner for the CSRformat for compari-
son purposes (it would be inefficient to use it in block tridiagonal incom-
plete factorizations, for example).

LP_LU is an LU factorization with pivoting. LP_INVERSE is an exact
inverse computed via LU factorization with pivoting. LP_RILUK is level-
based relaxed incomplete LU factorization. LP_ILUT is a threshold-based
ILU with control over the number of fill-ins [Saad 1994], which may be
better for indefinite blocks. The local preconditions prefixed with LP_APINV
are new approximate inverse techniques; see Chow and Saad [1998] and
Chow and Heroux [1996] for details.

LP_DIAG is a diagonal approximation to the inverse, using the diagonal of
the original block, and LP_TRIDIAG is a tridiagonal implicit approximation,
ignoring all elements outside the tridiagonal band of the original block.
LP_SVD uses the singular-value decomposition X 5 USVT to produce a
dense approximate inverse X21 ' VS21UT, where S is S with its singular
values thresholded by a1s1 1 a2, a constant a2 plus a factor a1 of the
largest singular value s1. This may produce a more stable incomplete
factorization if there are many blocks to be inverted that are close to being

Table II. Local Preconditioners

localprecon
Arguments Block Type Explicit/Implicit

LP_LU none DENSE implicit
LP_INVERSE none DENSE explicit
LP SVD alpha1, alpha2 DENSE explicit
LP_LU none CSR implicit
LP_INVERSE none CSR explicit
LP_RILUK level, omega CSR implicit
LP_ILUT lfil, threshold CSR implicit
LP_APINV TRUNC semibw CSR explicit
LP_APINV BANDED semibw CSR explicit
LP_APINV0 none CSR explicit
LP_APINVS lfil CSR explicit
LP_DIAG none CSR explicit
LP_TRIDIAG none CSR implicit
LP_SOR omega, iterations CSR implicit
LP_SSOR omega, iterations CSR implicit
LP_GMRES restart, tolerance CSR implicit

168 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

singular.1 LP_SOR, LP_SSOR, and LP_GMRESare iterative methods used as
local preconditioners.

2.3 Interface with Iterative Methods

An object-oriented preconditioned iterative method requires that matrix
and preconditioner objects define a small number of operations. In BPKIT,
these operations are defined polymorphically and are listed in Table III.

For left and right preconditionings, the functions apply and applyt may
be used to apply the preconditioning operator (M21, or its transpose) on a
vector. Split (also called two-sided, or symmetric) preconditionings use
applyl and applyr to apply the left and right parts of the split precondi-
tioner, respectively. For an incomplete factorization A ' LU, applyl is
the L21 operation, and applyr is the U21 operation. To anticipate all
possible functionality, the applyc function defines a combined matrix-
preconditioner operator to be used, for example, to implement the Eisenstat
trick [Eisenstat 1981]. If the Eisenstat trick is used with flexible precondi-
tionings (described at the end of this section), the right preconditioner
apply also needs to be used.

Two functions not listed here are matrix member functions that return
the row and column dimensions of the matrix, which are useful for the
iterative method code to help preallocate any workspace that is needed.

Not all the operations in Table III may be defined for all matrix and
preconditioner objects, and many iterative methods do not require all these
operations. The GMRES iterative method, for example, does not require the
transposed operations, and the relaxation preconditioners usually do not
define the split operations. This is a case where we violate an object-
oriented programming paradigm and give the parent classes all the special-
izations of their children (e.g., a specific preconditioner may not define
applyl although the generic preconditioner does). This will be seen again
in Section 3.2.4

1Private communication, A. Yu. Yeremin, 1995.

Table III. Operations Required by Iterative Methods

Matrix Operations

mult matrix-vector product
trans_mult transposed matrix-vector product

Preconditioner Operations

apply apply preconditioner
applyt apply transposed preconditioner
applyl apply left part of a split preconditioner
applylt above, transposed
applyr apply right part of a split preconditioner
applyrt above, transposed
applyc apply a combined matrix-preconditioner operator
applyct above, transposed

An Object-Oriented Framework for Block Preconditioning • 169

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

The argument lists for the functions in Table III use fundamental data
types so that iterative methods codes are not forced to adopt any particular
data structure for vectors. The interfaces use blocks of vectors to support
iterative methods that use multiple right-hand sides. The implementation
of these operations use Level 3 BLAS whenever possible. All the interfaces
have the following form:

void mult(int nr, int nc, const double *u, int ldu,
double* v, int ldv) const;

where nr and nc are the row and column dimensions of the (input) blocks of
vectors; u and v are arrays containing the values of the input and output
vectors, respectively; and ldu and ldv are the leading dimensions of these
respective arrays. The preconditioner operations are not defined as const
functions, in case the preconditioner objects need to change their state as
the iterations progress (and spectral information is revealed, for example).

When a nonconstant operator is used in the preconditioning, a flexible
iterative method such as FGMRES [Saad 1993] must be used. In BPKIT,
this arises whenever GMRES is used as a local preconditioner. Users may
wish to write advanced preconditioners that work with the iterative meth-
ods, and which change, for example, when there is a lack of convergence.
This is a simple way of enhancing the robustness of iterative methods. In
this case, the iterative method should be written as a class function whose
class also provides information about convergence history and possibly
approximate spectral information [Wu and Li 1995].

2.4 Fortran 77 Interface

Many scientific computing users are unfamiliar with C11. It is usually
possible, however, to provide an interface which is callable from any other
language. BPKIT provides an object-oriented type of Fortran 77 interface.
Objects can be created, and pointers to them are passed through functions
as Fortran 77 integers. Consider the following code excerpt (most of the
parameters are not important to this description):

call blockmatrix(bmat, n, a, ja, ia, num_block_rows,
partit, btype)

call preconditioner(precon, bmat, BJacobi, 0.d0, 0.d0,
LP_LU, 0.d0, 0.d0)

call flexgmres(bmat, sol, rhs, precon, 20, 600, 1.d-8)

The call to blockmatrix above creates a block matrix from the com-
pressed sparse row data structure, given a number of arguments. This
“wrapper” function is actually written in C11, but all its arguments are
available to a Fortran 77 program. The integer bmat is actually a pointer to
a block matrix object in C11. The Fortran 77 program is not meant to
interpret this variable, but to pass it to other functions, such as precon-
ditioner which defines a block preconditioner with a number of argu-
ments, or flexgmres which solves a linear system using flexible GMRES.
Similarly, precon is a pointer to a preconditioner object. The constant

170 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

parameters BJacobi and LP_LU are used to specify a block Jacobi precon-
ditioner, using LU factorization to solve with the diagonal blocks.

The matrix-vector product and preconditioner operations of Table III also
have “wrapper” functions. This makes it possible to use BPKIT from an
iterative solver written in Fortran 77. This was also another motivation to
use fundamental types to specify vectors in the interface for operations
such as mult (see Section 2.3).

Calling Fortran 77 from C11 is also possible, and this is done in BPKIT
when it calls underlying libraries such as the BLAS. BPKIT illustrates how
we were able to mix the use of different languages.

3. LOCAL MATRIX OBJECTS

A block matrix may contain blocks of more than one type. The best choice
for the types of the blocks depends mostly on the structure of the matrix,
but may also depend on the proposed algorithms and the computer archi-
tecture. For example, if a matrix has been reordered so that its diagonal
blocks are all diagonal, then a diagonal storage scheme for the diagonal
blocks is best. Inversion of these blocks would automatically use the
appropriate algorithm. (The diagonal block type and the local precondition-
ers for it would have to be added by the user.)

To handle different block types the same way, instances of each type are
implemented as C11 polymorphic objects (i.e., a set of related objects
whose functions can be called without knowing the exact type of the object).
The block types are derived from a local matrix class called LocalMat , a
class that defines the common interface for all the block types. The global
preconditioners refer to LocalMat objects. When LocalMat functions are
called, the appropriate code is executed, depending on the actual type of the
LocalMat object (e.g., DENSEor CSR).

In addition, each block type has a variety of local preconditioners. The
explicitness or implicitness of local preconditioners need to be transparent,
since, for example, either can be used in block SSOR. Thus both types of
preconditioners are derived from the same base class. In particular, local
preconditioners for a given block type are derived from the base class which
is that block type (e.g., the LP_SVD local preconditioner for the DENSEtype
is derived from the DENSEblock type). This gives the user the flexibility to
treat explicit local preconditioners as regular blocks.

Implicit local preconditioners are not derived separately because logically
they are related to explicit local preconditioners. All block operations that
apply to explicit preconditioners also apply to local preconditioners; how-
ever, many of these operations are inefficient for local preconditioners, and
their use has been disallowed to prevent improper usage. Implicit precon-
ditioners cannot be derived separately from explicit preconditioners be-
cause of their similarity from the point of view of global preconditioners.
The LocalMat hierarchy is illustrated in Figure 2, showing the derivation
of block types and the subsequent derivation of local preconditioners.

An Object-Oriented Framework for Block Preconditioning • 171

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

These LocalMat classes form the “kernel” of BPKIT and allow global
preconditioners to be implemented without knowledge of the type of blocks
or local preconditioners that are used. Users may also add to the kernel by
deriving their own specific classes.

The challenge of designing the LocalMat class was to determine what
operations are required to implement block preconditioners and to give
these operations semantics that allow an efficient implementation for all
possible block types. The operations are implemented as C11 virtual
functions. The following subsections describe these operations.

3.1 Allocating Storage

An important difference between dense and sparse blocks is that the
storage requirement for sparse blocks is not always known beforehand.
Thus, in order to treat dense and sparse blocks the same way, storage is
allocated for a block when it is required. As an optimization, if it is known
that dense blocks are used (e.g., conversion of a sparse matrix to a block
matrix with dense blocks), storage may be allocated beforehand by the
user. Functions are provided to set the data pointers of the block objects.
Thus it is possible to allocate contiguous storage for an array of dense
blocks.

3.2 Local Matrix Functions

Table IV lists the functions that we have determined to be required for
implementing the block preconditioners listed in Table I. The functions are
invoked by a block object represented by A. B and C are blocks of the same
type as A; b and c are components from a block vector object; and a and b

are scalars. The default value for a is 1 and for b is 0.
CreateEmpty() creates an empty block (0 by 0 dimensions) of the same

class as that of A. This function is useful for constructing blocks in the

Fig. 2. LocalMat hierarchy.

172 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

preconditioner without knowing the types of blocks that are being used.
SetToZero(dim1, dim2) sets A to zero, resetting its dimensions if neces-
sary. This operation is not combined with CreateEmpty() because it is not
always necessary to zero a block when creating it, and zeroing a block could
be relatively expensive for some block types. MatCopy(B) copies its argu-
ment block to the invoking block. The original data held by the invoking
block are released, and if the new block has a different size, the allocated
space is resized. CreateInv(lprecon) provides a common interface for
creating local preconditioners. lprecon is of a type that describes a local
preconditioner with its arguments from Table II. The exact or approximate
inverse (explicit or implicit) of A is generated. The CreateEmpty and
CreateInv functions create new objects (not just the real data space).
These functions return pointers to the new objects to emphasize this point.

Overloading of the arithmetic operators such as 1 for blocks and local
preconditioners has been sacrificed, since chained operations such as C 5
aAB 1 bC would be inefficient if implemented as a sequence of elemen-
tary operations. Additionally, these operators are difficult to implement
without extra memory copying (for A 5 B 1 C, the 1 operator will first
store the result into a temporary before the result is copied into A by the
5 operator).

These are the functions that we have found to be useful for block
preconditioners. For example, C 5 A 1 aB is used in BTIF ; C 5 aAB 1
bC is used in BILUK ; and other functions are useful, for example, in
matrix-vector product and triangular solve operations. Note in particular
that Mat_Trans_Mat_Mult is not a useful function here and has not been
defined.

Note that local preconditioner objects also inherit these functions, al-
though they do not need them all. For objects that are implicit local
preconditioners, no matrix is formed, and operations such as addition
(Mat_Mat_Add) do not make sense. For blocks for which no local precondi-
tioner has been created, solving a system with that block (Mat_Vec_Solve)
is not allowed. Here, again, we had to give the parent classes all the
specializations of their derived classes. Table V indicates when the func-

Table IV. Functions for LocalMat Objects

B 5 A.CreateEmpty() B 5 @ #
A.SetToZero(dim1,dim2) A 5 0
A.MatCopy(B) A 5 B
B 5 A.CreateInv(lprecon) B 5 Ã21

A.Mat_Trans(B) B 5 AT

A.Mat_Mat_Add(B, C, alpha) C 5 A 1 aB
A.Mat_Mat_Mult(B, C, alpha, beta) C 5 aAB 1 bC
A.Mat_Vec_Mult(b, c, alpha, beta) c 5 aAb 1 bc
A.Mat_Trans_Vec_Mult(b, c, alpha, beta) c 5 aATb 1 bc
A.Mat_Vec_Solve(b, c) c 5 A21b
A.Mat_Trans_Vec_Solve(b, c) c 5 A2Tb

An Object-Oriented Framework for Block Preconditioning • 173

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

tions are allowed. An error condition is raised at run-time if the functions
are used incorrectly.

Given these operations, a one-step block SOR code could be implemented
as shown below. Ap is a pointer to a block matrix object which stores its
block structure in CSRformat (the ia array stores the block row pointers,
and the ja array stores the block column indices). The pointers to the
diagonal elements in idiag and the inverses of the diagonal elements diag
were computed during the call to setup . V is a block vector object that
allows blocks in a vector to be accessed as individual entries. The rest of the
code is self-explanatory.
1. for (i 50; i ,Ap- .numrow(); i 11)
2. {
3. for (j 5ia[i]; j ,idiag[i]; j 11)
4. {
5. // V(i) 5 V(i) - omega*a[j]*V(ja[j])
6.
7. Ap- .val(j).Mat_Vec_Mult(V(ja[j]), V(i), -omega, 1.0);
8. }
9.
10. diag[i]- .Mat_Vec_Solve(V(i), V(i));
11. }

A block matrix that mixes different block types must be used very
carefully. First, the restrictions for the different block types (Section 2.2.2)
must not be violated. Second, unless we define arithmetic operations
between blocks of different types, the incomplete factorization precondi-
tioners cannot be used.

Our main design alternative was to create a block matrix class for each
block type. The classes would be polymorphic and define a set of common
operations that preconditioners may use to manipulate their blocks. A
significant advantage of this design is that it is impossible to use local
preconditioners of the wrong type (e.g., use incomplete factorization on a
dense block). A disadvantage is that different block types (e.g., specialized
types created for a particular application) cannot be used within the same
block matrix.

Table V. The Types of Objects that May be Used with Each Function

Explicit Implicit
Coarse Local Local

Function Blocks Preconditioner Preconditioner

CreateEmpty * *
SetToZero * *
MatCopy * *
CreateInv * *
Mat_Trans * *
Mat_Mat_Add * *
Mat_Mat_Mult * *
Mat_Vec_Mult * *
Mat_Trans_Vec_Mult * *
Mat_Vec_Solve * *
Mat_Trans_Vec_Solve * *

174 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

Another alternative was to implement metamatrices, i.e., blocks are
nested recursively. It would be complicated, however, for users to specify
these types of matrices and the levels of local preconditioners that could be
used. In addition, there is very little need for such complexity in actual
applications, and the two-level design (coarse and fine blocks) described in
Section 2.1 should be sufficient.

4. NUMERICAL TESTS

The numerical tests were carried out on the matrices listed in Table VI.
SHERMAN1 is a reservoir simulation matrix on a 10 3 10 3 10 grid,
with one unknown per grid point. This is a simple symmetric problem
which we solve using partitioning by planes. WIGTO966 is from an Euler
equation model and was supplied by Larry Wigton of Boeing. FIDAP019
models an axisymmetric 2D developing pipe flow with the fully coupled
Navier-Stokes equations using the two-equation k-e model for turbulence.
The BARTHT1A and BARTHT2A matrices were supplied by Tim Barth of
NASA Ames and are from a 2D, high Reynolds number aerofoil problem,
with a one-equation turbulence model. The BARTHT2A model is solved
with a preconditioner based on the less accurate but sparser BARTHT1A
model.

Tables VII and IX show the results for SHERMAN1 with the block
relaxation and incomplete factorization global preconditioners, using vari-
ous local preconditioners. The arguments given for the global and local
preconditioners in these tables correspond to those displayed in Tables I
and II respectively. A block size of 100 was used. Since the matrix is block
tridiagonal, BILUK and BTIF are equivalent. The tables show the number of
steps of GMRES (FGMRES, if appropriate) that were required to reduce
the residual norm by a factor of 1028. A dagger (†) is used to indicate that
this was not achieved in 600 steps. Right preconditioning, 20 Krylov basis
vectors, and a zero initial guess were used. The right-hand side was
provided with the matrix.

Since the local preconditioners have different costs, Tables VIII and IX
show the CPU timings (system and user times) for BSSOR(1.,3) and BTIF .
The tests were run on one processor of a Sun Sparcstation 10. For this
particular problem and choice of partitioning, the ILU local preconditioners
required the least total CPU time with BSSOR(1.,3) . With BTIF , an exact
solve was most efficient (i.e., the preconditioner was an exact solve).

Table VI. Test Matrices, Listed with Their Dimensions and Numbers of Nonzeros

Matrix n Number of Nonzeros

SHERMAN1 1 000 3 750
WIGTO966 3 864 238 252
FIDAP019 12 005 259 879

BARTHT1A 14 075 481 125
BARTHT2A 14 075 1 311 725

An Object-Oriented Framework for Block Preconditioning • 175

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

Tables X and XI show the number of GMRES steps for the BARTHT2A
matrix. A random right-hand side was used, and the initial guess was zero.
The GMRES tolerance was 1028, and 50 Krylov basis vectors were used. In
Table X, block-incomplete factorization was used as the global precondi-
tioner, and LU factorization was used as the local preconditioner. In Table
XI, block SSOR with one iteration and v 5 1 were used as the global
preconditioner, and level-3 ILU was used as the local preconditioner.

Table VII. Number of GMRES Steps for Solving the SHERMAN1 Problem with Block
Relaxation Global Preconditioners and Various Local Preconditioners

BJacobi BSOR(1.,1) BSOR(1.,3) BSSOR(1.,1) BSSOR(1.,3)

LP_INVERSE 88 40 17 24 13
LP_RILUK(0,0.) 93 71 53 402 48
LP_RILUK(1,0.) 89 43 24 41 20
LP_ILUT(2,0.) 85 63 46 319 44
LP_TRIDIAG 138 115 98 † 99
LP_SOR(1.,1) † 541 † † 491
LP_SSOR(1.,1) 508 408 395 † 411
LP_GMRES(150,0.1) 91 45 21 36 19
LP_APINVS(5) 108 70 57 274 56
LP_APINV0 171 130 122 † 121

Table VIII. Number of GMRES Steps and Timings for Solving the SHERMAN1 Problem
with BSSOR(1.,3) and Various Local Preconditioners

CPU Time (in seconds)

BSSOR(1.,3) Preconditioner Solve Total

LP_INVERSE 13 0.63 3.86 4.49
LP_RILUK(0,0.) 48 0.01 1.86 1.87
LP_RILUK(1,0.) 20 0.02 0.87 0.89
LP_ILUT(2,0.) 44 0.03 1.73 1.76
LP_TRIDIAG 99 0.01 3.87 3.88
LP_SOR(1.,1) 491 0.00 20.80 20.80
LP_SSOR(1.,1) 411 0.00 19.40 19.40
LP_GMRES(150,0.1) 19 0.00 29.23 29.23
LP_APINVS(5) 56 0.27 2.48 2.75
LP_APINV0 121 0.51 5.21 5.72

Table IX. Number of GMRES Steps and Timings for Solving the SHERMAN1 Problem with
Block-Incomplete Factorization and Various Local Preconditioners

CPU Time (in seconds)

BTIF Preconditioner Solve Total

LP_INVERSE 1 1.44 0.15 1.59
LP_DIAG † 0.01 † †
LP_APINV0 123 0.52 3.73 4.25
LP_APINVS(5) 64 0.32 1.98 2.30
LP_APINVS(10) 33 1.14 1.08 2.22

176 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

Tables XII and XIII show the results for WIGTO996 using block-incom-
plete factorization. The right-hand side was the vector of all ones, and the
GMRES tolerance was 1028. The other parameters were the same as those
in the previous experiment. The failures in Table XII are due to inaccuracy
for low fill levels, and instability for high levels. In Table XIII,
LP_SVD(0.1,0.) used as the local preconditioner gave the best results.
LP_SVD(0.1,0.) indicates that the singular values of the pivot blocks
were thresholded at 0.1 times the largest singular value.

Now we show some results with block tridiagonal incomplete factoriza-
tion preconditioners using general sparse approximate inverses. The ma-
trix FIDAP019 was partitioned into a block tridiagonal system using a
constant block size of 161 (the last block has size 91). Since the matrix

Table XII. Number of GMRES Steps for Solving the WIGTO966 Problem with BILUK-
LP_INVERSE

BILUK Level

Block Size 0 1 2 3

4 † † † †
8 † † 94 75

16 † 77 400 †

Table XIII. Number of GMRES Steps for Solving the WIGTO966 Problem with BILUK-
LP_SVD(0.1,0.)

BILUK Level

Block Size 0 1 2 3

4 50 42 39 35
8 44 35 32 30

16 40 36 32 30

Table X. Number of GMRES Steps for Solving the BARTHT2A Problem with BILUK-LP_LU

BILUK Level

Block Size 0 1 2

5 436 183 130
10 184 118 95
15 141 100 94

Table XI. Number of GMRES Steps for Solving the BARTHT2A Problem with
BSSOR(1.,1)-LP_RILUK(3,0.)

Block Size GMRES Steps

60 266
120 273
240 210

An Object-Oriented Framework for Block Preconditioning • 177

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

arises from a finite-element problem, a more careful selection of the
partitioning could have yielded better results.

The rows of the system were scaled by their 2-norms, and then their
columns were scaled similarly, since the matrix contains different equa-
tions and variables. A Krylov subspace size of 50 for GMRES was used. The
right-hand side was constructed so that the solution is the vector of all
ones. We compare the result with the pair of global-local preconditioners
BILUK(0)-LP_SVD(0.5,0.) , using a block size of 5 (LP_SVD(0.5,0.)
gave the best result after several trials). Table XIV shows the number of
GMRES steps to convergence, timings for setting up the preconditioner and
for the iterations, and the number of nonzeros in the preconditioner. The
experiments were carried out on one processor of a Sun Sparcstation 10.

The timings show that some combinations of the BTIF global precondi-
tioner with the APINVS local preconditioner are comparable to BILUK(0)-
LP_SVD(0.5,0.) , but use much less memory, since only the approximate
inverses of the pivot blocks need to be stored. Although the actual number
of nonzeros in the matrix is 259 879, there were 39 355 block nonzeros
required for BILUK , and therefore almost a million entries which were
needed to be stored. The APINVS method produced approximate inverses
that were sparser than the original pivot blocks. See Chow and Saad [1998]
for more details.

There is often heated debate over the use of C11 in scientific computing.
Ideally, C11 and Fortran 77 programs that are coded similarly should
perform similarly. However, by using object-oriented features in C11 to
make a program more flexible and maintainable, researchers usually
encounter a 10 to 30% performance penalty [Jiang and Forsyth 1995]. If
optimized kernels such as the BLAS are called, then the C11 performance
penalty can be very small for large problems, as a larger fraction of the
time is spent in the kernels.

Since C11 and Fortran 77 programs will usually be coded differently, a
practical comparison is made when a general code such as BPKIT is
compared to a specialized Fortran 77 code. Here we compare BPKIT to an
optimized block SSOR preconditioner with a GMRES accelerator. This code
performs block relaxations of the form

d d Aii
21ri

xi d xi 1 d

r d r 2 A:, id

Table XIV. Test Results for the FIDAP019 Problem

GMRES
CPU Time (in seconds)

Nonzeros in
Steps Preconditioner Solve Total Preconditioner

BILUK(0)_LP SVD(0.5,0.) 87 15.98 143.18 159.16 983 875
BTIF_LP APINVS(10) 186 56.20 113.41 169.61 120 050
BTIF_LP APINVS(5) 328 44.58 186.34 230.92 60 025

178 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

for a block row i, where Aii is the ith diagonal block of A, A :, i is the ith
block column of A, xi is the ith block of the current solution, and r is the
current residual vector. Notice that the update of the residual vector is very
fast if A is stored by sparse columns and not by blocks. Since BPKIT stores
the matrix A by blocks for flexibility, it is interesting to see what the
performance penalty would be for this case.

Tables XV and XVI show the timings for block SSOR on a Sun Sparcsta-
tion 10 and a Cray C90 supercomputer, for the WIGTO966 matrix. In this
case, the right-hand side was constructed so that the solution is a vector of
all ones; the other parameters were the same as before. All programs were
optimized at the highest optimization level; clock was used to measure
CPU time (user and system) for the C11 programs, and etime and timef
were used to measure the times for the Fortran 77 programs on the Sun
and Cray computers, respectively. One step of block SSOR with v 5 0.5
was used in the tests. The local preconditioner was an exact LU factoriza-
tion. Results are shown for a large range of block sizes, and in the case of
BPKIT, for both DENSEand CSRstorage schemes for the blocks. The last
column of each table gives the average time to perform one iteration of
GMRES.

Table XV. WIGTO966: BSSOR(0.5,1)-LP_LU , Sun Sparc 10 Timings

Specialized Fortran 77 Program

Block GMRES
Time (in seconds)

Size Steps Preconditioner Solve Total Average

4 500 1.87 193.09 194.96 0.3899
8 240 1.21 91.47 92.68 0.3862

16 306 1.04 118.78 119.82 0.3916
32 300 1.21 124.41 125.63 0.4188
64 221 1.79 103.85 105.65 0.4781

128 212 3.86 124.15 128.02 0.6039

BPKIT, Dense Blocks

4 500 0.25 305.97 306.22 0.6124
8 240 0.25 119.16 119.41 0.4975

16 306 0.38 193.97 194.35 0.6351
32 300 0.73 303.10 303.83 1.0128
64 221 1.27 376.02 377.29 1.7072

128 212 3.66 559.05 562.71 2.6543

BPKIT, Sparse Blocks

4 500 0.24 284.69 284.93 0.5699
8 240 0.34 106.67 107.01 0.4459

16 306 0.62 129.96 130.58 0.4267
32 300 1.06 137.50 138.56 0.4619
64 221 1.87 123.34 125.21 0.5666

128 212 4.42 162.58 167.00 0.7877

An Object-Oriented Framework for Block Preconditioning • 179

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

The results show that the specialized Fortran 77 code has better perfor-
mance over a wide range of block sizes. This is expected because the update
of the residual, which is the most major computation, is not affected by the
blocking.

If dense blocks are used, BPKIT can be competitive on the Cray by using
large block sizes, such as 128. Blocks of this size contain many zero entries
which are treated as general nonzero entries when a dense storage scheme
is used. However, vectorization on the Cray makes operations with large
dense blocks much more efficient.

If sparse blocks are used, BPKIT can be competitive on the workstation
with moderate block sizes of 8 or 16. Operations with smaller sparse blocks
are inefficient, while larger blocks imply larger LU factorizations for the
local preconditioner.

This comparison using block SSOR is dramatic, since two very different
data structures are used. Comparisons of level-based block ILU in C11
and Fortran 77 show very small differences in performance, since the data
structures used are similar [Jiang and Forsyth 1995].

In conclusion, the types and sizes of blocks must be chosen carefully in
BPKIT to attain high performance on a particular machine. The types and
sizes of blocks should also be chosen in conjunction with the requirements

Table XVI. WIGTO966: BSSOR(0.5,1)-LP_LU , Cray C90 Timings

Specialized Fortran 77 Program

Block GMRES
Time (in seconds)

Size Steps Preconditioner Solve Total Average

4 500 0.075 13.92 14.00 0.0280
8 240 0.065 5.57 5.64 0.0235

16 306 0.065 7.02 7.09 0.0232
32 300 0.089 7.00 7.09 0.0237
64 221 0.140 6.03 6.17 0.0279

128 212 0.296 7.23 7.53 0.0355

BPKIT, Dense Blocks

4 500 0.115 183.92 184.04 0.3681
8 240 0.080 36.07 36.15 0.1506

16 306 0.072 26.75 26.83 0.0877
32 300 0.079 16.79 16.87 0.0563
64 221 0.127 8.24 8.37 0.0379

128 212 0.290 6.73 7.03 0.0332

BPKIT, Sparse Blocks

4 500 0.27 282.32 282.59 0.5652
8 240 0.39 92.27 92.67 0.3861

16 306 0.83 106.72 107.56 0.3515
32 300 1.38 110.42 111.80 0.3727
64 221 2.44 99.15 101.59 0.4597

128 212 5.39 132.92 138.31 0.6524

180 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

of the preconditioning algorithm and the block structure of the matrix.
Based on the above experiments, Table XVII gives an idea of the approxi-
mate block sizes that should be used for BPKIT, given no other constraints.

5. CONCLUDING REMARKS

This article has described an object-oriented framework for block precondi-
tioning. Polymorphism was used to handle different block types and differ-
ent local preconditioners. Block types and local preconditioners form a
“kernel” on which the block preconditioners are built. Block preconditioners
are written in a syntax comparable to that for nonblock preconditioners,
and they work for matrices containing any block type. BPKIT is easily
extensible, as an object-oriented code would allow. We have distinguished
between explicit and implicit local preconditioners, and deduced the opera-
tions and semantics that are useful for polymorphically manipulating
blocks. Timings against a specialized and optimized Fortran 77 code on
both workstations and Cray supercomputers show that this framework can
approach the efficiency of such a code, as long as suitable block sizes and
block types are chosen. We believe we have found a suitable compromise
between Fortran 77-like performance and C11 flexibility. A significant
contribution of BPKIT is the collection of high-quality preconditioners
under a common, concise interface.

Block preconditioners can be more efficient and more robust than their
nonblock counterparts. The block size parameterizes between a local and
global method and is valuable for compromising between accuracy and cost,
or combining the effect of two methods. The combination of local and global
preconditioners leads to a variety of useful methods, all of which may be
applicable in different circumstances.

ACKNOWLEDGMENTS

We wish to thank Yousef Saad, Kesheng Wu, and Andrew Chapman for
their codes and for helpful discussions. We also wish to thank Larry Wigton
and Tim Barth for providing some of the test matrices, and Tim Peck for
helping us with editing. This article has benefited substantially from the
comments and suggestions of one of the anonymous referees, and we are
grateful for his time and patience.

REFERENCES

AXELSSON, O. 1994. Iterative Solution Methods. Cambridge University Press, New York, NY.
AXELSSON, O., BRINKKEMPER, S., AND IL’IN, V. P. 1984. On some versions of incomplete

block-matrix factorization iterative methods. Lin. Alg. Appl. 58, 3–15.

Table XVII. Recommended Block Sizes

Block Type Sun Cray

DENSE 8 128
CSR 16 16

An Object-Oriented Framework for Block Preconditioning • 181

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

BARRETT, R., BERRY, M., CHAN, T., DEMMEL, J., DONATO, J., DONGARRA, J., EIJKHOUT, V., POZO,
R., ROMINE, C., AND VAN DER VORST, H. 1994. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA.

BRUASET, A. M. AND LANGTANGEN, H. P. 1997. Object-oriented design of preconditioned
iterative methods in Diffpack. ACM Trans. Math. Softw. 23, 1 (Mar.), 50–80.

CARNEY, S., HEROUX, M. A., LI, G., AND WU, K. 1994. A revised proposal for a sparse BLAS
toolkit. Tech. Rep. 94-034. Army High Performance Computing Research Center, Minneap-
olis, MN.

CHOW, E. AND HEROUX, M. A. 1996. BPKIT block preconditioning toolkit. Tech. Rep.
96/183. Minnesota Supercomputer Institute, Univ. of Minnesota, Minneapolis, MN.

CHOW, E. AND SAAD, Y. 1997. Approximate inverse techniques for block partitioned
matrices. SIAM J. Sci. Comput. 18, 1657–1675.

CHOW, E. AND SAAD, Y. 1998. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM J. Sci. Comput. 19, 995–1023.

CLAY, R. L. 1997. ISIS1: Iterative scalable implicit solver (in C11). Sandia National
Laboratories, Livermore, CA.

CONCUS, P., GOLUB, G. H., AND MEURANT, G. 1985. Block preconditioning for the conjugate
gradient method. SIAM J. Sci. Stat. Comput. 6, 309–332.

DEMMEL, J. 1989. LAPACK: A portable linear algebra library for supercomputers. In
Proceedings of the 1989 IEEE Control Systems Society Workshop on Computer-Aided Control
System Design. IEEE Press, Piscataway, NJ.

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 1990. A set of level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw. 16, 1 (Mar.), 1–17.

DONGARRA, J. J., LUMSDAINE, A., NIU, X., POZO, R., AND REMINGTON, K. 1994. A sparse matrix
library in C11 for high performance architectures. In Proceedings of the Object Oriented
Numerics Conference (Sun River, OR).

DONGARRA, J. J., POZO, R., AND WALKER, D. W. 1993. An object oriented design for high
performance linear algebra on distributed memory architectures. In Proceedings of the
Object Oriented Numerics Conference (Snowbird, CO).

DUFF, I. S., GRIMES, R. G., AND LEWIS, J. G. 1989. Sparse matrix test problems. ACM Trans.
Math. Softw. 15, 1 (Mar.), 1–14.

EIJKHOUT, V. 1996. ParPre: A parallel preconditioners package. Manuscript.
EISENSTAT, S. C. 1981. Efficient implementation of a class of preconditioned conjugate

gradient methods. SIAM J. Sci. Stat. Comput. 2, 1–4.
FAN, Q., FORSYTH, P. A., MCMACKEN, J. R. F., AND TANG, W.-P. 1996. Performance issues for

iterative solvers in device simulation. SIAM J. Sci. Stat. Comput. 17, 100–117.
JIANG, H. AND FORSYTH, P. A. 1995. Robust linear and nonlinear strategies for solution of the

transonic Euler equations. Comput. Fluids 24, 753–770.
JONES, M. T. AND PLASSMANN, P. E. 1995. BlockSolve95 users manual: Scalable library

software for the parallel solution of sparse linear systems. Tech. Rep.
ANL-95/48. Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL.

KOLOTILINA, L. Y. AND YEREMIN, A. YU. 1986. On a family of two-level preconditioning of the
incomplete block factorization type. Sov. J. Numer. Anal. Model. 1, 293–320.

KOLOTILINA, L. Y., KAPORIN, I. E., AND YEREMIN, A. YU. 1991. Block SSOR preconditionings for
high-order 3D FE systems. Incomplete BSSOR preconditionings. Lin. Alg. Appl. 154-156,
647–674.

MACHIELS, L. AND DEVILLE, M. O. 1997. Fortran 90: An entry to object-oriented programming
for solution of partial differential equations. ACM Trans. Math. Softw. 23, 1 (Mar.), 32–49.

REMINGTON, K. A. AND POZO, R. 1996. NIST sparse BLAS user’s guide. Tech. Rep. National
Institute of Standards & Tech., Gaithersburg, MD.

SAAD, Y. 1990. SPARSKIT: A basic tool for sparse matrix computations. Tech. Rep.
90-20. RIACS, NASA Ames Research Center, Moffett Field, CA.

SAAD, Y. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput. 14, 2 (Mar.), 461–469.

182 • E. Chow and M. A. Heroux

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

SAAD, Y. 1994. ILUT: A dual threshold incomplete ILU factorization. Num. Lin. Alg. Appl. 1,
4, 387–402.

SAAD, Y. 1995. Iterative Methods for Sparse Linear Systems. PWS Pub. Co., Boston, MA.
SMITH, B., GROPP, W., AND MCINNES, L. C. 1995. PETSc 2.0 user’ manual. Tech. Rep.

ANL-95/11. Argonne National Laboratory, Argonne, IL.
STROUSTRUP, B. 1991. The C11 Programming Language. 2nd ed. Addison-Wesley, Reading,

MA.
UNDERWOOD, R. R. 1976. An approximate factorization procedure based on the block Cholesky

decomposition and its use with the conjugate gradient method. Tech. Rep.
NEDO-11386. Nuclear Energy Division, General Electric, San Jose, CA.

WU, K. AND LI, G. 1995. BKAT: An object-oriented block Krylov accelerator
toolkit. Presentation at Cray Research, Inc. Cray Supercomputers, Chippewa Falls,
MN. Available from kewu@kjwu.lbl.gov.

Received: October 1995; revised: September 1996 and September 1997;
accepted: September 1997

An Object-Oriented Framework for Block Preconditioning • 183

ACM Transactions on Mathematical Software, Vol. 24, No. 2, June 1998.

