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ABSTRACT

A query Q has a bounded rewriting using a set of views if
there exists a query Q′ expressed in the same language as Q,
such that given a dataset D, Q(D) can be computed by Q′

that accesses only cached views and a small fraction DQ of
D. We consider datasets D that satisfy a set of access con-
straints, a combination of cardinality constraints and asso-
ciated indices, such that the size |DQ| of DQ and the time to
identify DQ are independent of |D|, no matter how big D is.

This paper studies the problem for deciding whether a
query has a bounded rewriting given a set V of views and a
set A of access constraints. We establish the complexity of
the problem for various query languages, from Σp

3-complete
for conjunctive queries (CQ), to undecidable for relational
algebra (FO). We show that the intractability for CQ is
rather robust even for acyclic CQ with fixed V and A, and
characterize when the problem is in PTIME. To make practi-
cal use of bounded rewriting, we provide an effective syntax
for FO queries that have a bounded rewriting. The syntax
characterizes a core subclass of such queries without sacri-
ficing the expressive power, and can be checked in PTIME.

Keywords: Bounded rewriting; big data; complexity

1. INTRODUCTION
To make query answering feasible in big datasets, prac-

titioners have been studying scale independence [4–6]. The
idea is to compute the answers Q(D) to a query Q in a
dataset D by accessing a bounded amount of data in D, no
matter how big the underlying D is.

This idea was formalized in [17,18]. As suggested in [18],
nontrivial queries can be scale independent under a set A
of access constraints, a form of cardinality constraints with
associated indices. A query Q is boundedly evaluable [17] if
for all datasets D that satisfy A, Q(D) can be computed
from a fraction DQ of D, and the time for identifying and
fetching DQ, and hence the size |DQ| of DQ are independent
of |D|. We identify DQ by reasoning about the cardinality
constraints in A, and fetch DQ by using the indices of A.
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Bounded evaluation has proven useful [10–12]. Experi-
menting with real-life data, we find that under a couple
of hundreds of access constraints, 77% of randomly gen-
erated conjunctive queries [12], 67% of relational algebra
queries [10], and 60% of graph pattern queries [11] are
boundedly evaluable. Query plans for such queries outper-
form commercial query engines by 3 orders of magnitude,
and the gap gets larger on bigger data. The results on CDR
(call detail record) queries of one of our industry collabora-
tors are even better: bounded evaluation improves 90% of
their queries from 25 times to 5 orders of magnitude.

As an example of bounded evaluability, consider a Graph
Search query of Facebook [15]: find me all restaurants in
NYC which I have not been to, but in which my friends have
dined in May 2015. A cardinality constraint imposed by
Facebook is that a person can have at most 5000 friends [16].
Given this, we can answer the query by accessing 470000
tuples [10], as opposed to billions of user tuples and trillions
of friend tuples in the Facebook dataset [22].

Still, many queries are not boundedly evaluable. Can we
do better for such queries Q? An approach that has proven
effective by practitioners is by making use of views [6]. The
idea is to select and materialize a set V of small views, and
answer Q in a dataset D by using views V(D) and an ad-
ditional small fraction of D. That is, we cache V(D) with
fast access, and compute Q(D) by using V(D) and by re-
stricting costly I/O operations to (possibly big) D. Many
queries that are not boundedly evaluable can be efficiently
answered using small views and bounded access to D [6].

Example 1: Consider a Graph Search query Q0: find
movies that were released by Universal Studios in 2014, liked
by people at NASA, and were rated 5. The query is defined
over a relational schema R0 consisting of four relations:

• person(pid, name, affiliation),

• movie(mid, mname, studio, release),

• rating(mid, rank) for ranks of movies, and

• like(pid, id, type), indicating that person pid likes item
id of type, including but not limited to movies.

Over R0, Q0 is written as a conjunctive query:

Q0(mid) = ∃xp, x′
p, ym

`

person(xp, x′
p, “NASA”) ∧

movie(mid, ym, “Universal”, “2014”) ∧
like(xp, mid, “movie”) ∧ rating(mid, 5)

´

.

Consider a set A0 of two access constraints: (a) ϕ1 =
movie((studio, release) → mid, N0), stating that each studio
releases at most N0 movies each year, where N0 (≤ 100) is
obtained by aggregating R0 instances; an index is built on
movie such that given any (studio, release) value, it returns



(at most N0) corresponding mids; and (b) ϕ2 = rating(mid

→ rank, 1), stating that each movie has a unique rating; an
index is built on rating to fetch rank as above.

Under A0, query Q0 is not boundedly evaluable: an in-
stance D0 of R0 may have billions of person and like tu-
ples [22], and no constraints in A0 can help us identify a
bounded fraction of these tuples to answer Q0.

Nonetheless, suppose that we are given a view that collects
movies liked by NASA folks, defined as follows:

V1(mid) = ∃xp, x′
p, y′

m, z1, z2

`

person(xp, x′
p, “NASA”) ∧

movie(mid, y′
m, z1, z2) ∧ like(xp, mid, “movie”)

´

.

As will be seen later, Q0 can be rewritten into a conjunctive
query Qξ using V1, such that for all instances D0 of R that
satisfy A0, Q0(D0) can be computed by Qξ that accesses
only V1(D0) and an additional 2N0 tuples from D0, no mat-
ter how big D0 is. Here V1(D0) is a small set, much smaller
than D0 although its size is dependent on D0. 2

To support scale independence using views, practitioners
have developed techniques for selecting views, indexing the
views for fast access and for incrementally maintaining the
views [6]. However, there are still fundamental issues that
call for a full treatment. How should we characterize scale
independence using views? What is the complexity for de-
ciding whether a query is scale independent given a set of
views and access constraints? If the complexity of the prob-
lem is high, is there any systematic way that helps us make
effective use of cached views for querying big data?

Contributions. This paper tackles these questions.

(1) Bounded rewriting. We formalize scale independence
using views, referred to as bounded rewriting (Section 2).
Consider a query language L, a set V of L-definable views
and a database schema R. Informally, under a set A of
access constraints, we say that a query Q ∈ L has a bounded
rewriting Q′ in the same L using V if for each instance D of
R that satisfies A, there exists a fraction DQ of D such that

• Q(D) = Q′(DQ,V(D)), and

• the time for identifying DQ and hence the size |DQ| of
DQ are independent of the size |D| of D.

That is, we compute the exact answers Q(D) via Q′ by
accessing cached V(D) and a bounded fraction DQ of D.
While V(D) may not be bounded, we can select small views
following the methods of [6], which are cached with fast
access. We formalize the notion in terms of query plans in a
form of query trees commonly used in database systems [33],
which have a bounded size M determined by our available
resources such as processors and time constraint.

(2) Complexity. We study the bounded rewriting problem
(Section 3), referred to as VBRP(L) for a query language L.
Given a set A of access constraints, a query Q ∈ L and a
set V of L-definable views, all defined on the same database
schema R, and a bound M , VBRP(L) is to decide whether
under A, Q has a bounded rewriting in L using V with a
query plan no larger than M , referred to as an M-bounded
query plan. The need for studying VBRP(L) is evident: if
Q has a bounded rewriting, then we can find efficient query
plans to answer Q on possibly big datasets D.

We investigate VBRP(L) when L ranges over conjunctive
queries (CQ, i.e., SPC), unions of conjunctive queries (UCQ,
i.e.,SPCU), positive FO queries (∃FO+, select-project-join-
union queries) and first-order logic queries (FO, the full re-
lational algebra). We show that VBRP is Σp

3-complete for

CQ, UCQ and ∃FO+; but it becomes undecidable for FO. In
addition, we explore the impact of various parameters (R,
M , A and V) of VBRP on its complexity.

(3) Acyclic conjunctive queries. Worse yet, we show that
the intractability of VBRP is quite robust (Section 4). It
remains intractable for acyclic CQ (denoted by ACQ), when
all parameters M , R, A and V are fixed, and even when
access constraints in the fixed A have restricted forms. In
light of this, we give a characterization for VBRP(ACQ) to
be in PTIME, and identify several sub-classes of ACQ and
CQ for which VBRP is tractable under fixed M , R, A and V.

(4) Effective syntax. To cope with the undecidability of
VBRP(FO) and the robust intractability of VBRP(CQ), we
develop an effective syntax for FO queries that have a
bounded rewriting (Section 5). For any R,V,A and M ,
we show that there exists a class of FO queries, referred to
as queries topped by (R,V,A, M), such that under A,

(a) every FO query that has an M -bounded rewriting us-
ing V is equivalent to a query topped by (R,V,A, M);

(b) every query topped by (R,V,A, M) has an M -
bounded rewriting in FO using V; and

(c) it takes PTIME in M, |Q|, |V|, |R|, |A| to check whether
Q is topped by (R,V,A, M), using an oracle to check
whether views in V have bounded output (see below).

That is, topped queries make a core subclass of FO queries
with a bounded rewriting using V, without sacrificing their
expressive power, along the same lines as rang-safe queries
for safe relational calculus (see, e.g., [1]). This allows us
to reduce VBRP to syntactic checking of topped queries.
Given a query Q, we can check syntactically whether Q is
topped by (R,V,A, M) in PTIME, by condition (c) above;
if so, we can find a bounded rewriting as warranted by
condition (b); moreover, if Q has a bounded rewriting, then
it can be transformed to a topped query by condition (a).

To check topped queries, we need to determine whether
some views of V have bounded output V(D) over all datasets
D that satisfy A, i.e., the size |V(D)| is bounded by a con-
stant. This is to ensure bounded accesses to D, since a query
plan may filter and fetch data from D by using values from
some views in V(D). This problem is, not surprisingly, un-
decidable for FO (Section 3). In light of this, we develop
effective syntax for FO queries with bounded output. That
is, given A and R, we identify a class of FO queries, referred
to as size-bounded queries, such that under A, an FO view
(query) over R has bounded output iff it is equivalent to
a size-bounded FO, and it is in PTIME to check whether a
query is size-bounded. We use this as a PTIME oracle when
checking topped queries (condition (c)) above.

This work is an effort to give a formal treatment of scale
independence with views, an approach that has already been
put in action by practitioners. The complexity bounds re-
veal the inherent difficulty of the problem. The effective
syntax, however, suggests a promising direction for mak-
ing effective use of bounded rewriting. A variety of tech-
niques are used in the proofs, including characterizations,
algorithms and a wide range of reductions.

Related work. We classify related work as follows.

Scale independence. The idea of scale independence origi-
nated from [5], which is to execute the workload in an ap-
plication by doing a bounded amount of work, regardless of
the size of datasets used. The idea was incorporated into



PIQL [4], an extension of SQL by allowing users to spec-
ify bounds on the amount of data accessed. As pointed out
by [6], to make complex PIQL queries scale independent,
precomputed views and query rewriting using views should
be employed. Techniques for view selection, indexing and
incremental maintenance were also developed there.

The idea of scale independence was formalized in [18].
A query Q is defined to be scale independent in a dataset
D w.r.t. a bound Θ if there exists DQ ⊆ D such that
Q(D) = Q(DQ) and |DQ| ≤ Θ. Access constraints, a notion
of x̄-controllability and a set of rules were also introduced
in [18], to deduce dependencies on attributes needed for com-
puting Q(D); these yield a sufficient condition to determine
the scale independence of FO queries when variables x̄ are
instantiated. In addition, it studied the problem to decide
whether for all instances D of a relational schema, we can
compute Q(D) by accessing cached views and at most Θ
tuples, in the absence of access constraints. The problem is
NP-complete for CQ, and undecidable for FO. The notion
of x̄-controllability was extended to views, giving two sim-
ple sufficient conditions to decide the scale independence of
query rewriting using views under access constraints.

This work differs from the prior work in the following.
(a) We formalize bounded rewriting using views in terms
of query plans subject to a bound M determined by avail-
able resources. This is quite different from the notion of
x̄-controllability [18]. (b) We incorporate access constraints
to make the notion more practical; without such constraints,
few queries have a bounded rewriting. Under the con-
straints, however, the analysis of bounded rewriting is more
intriguing. For instance, VBRP(CQ) is Σp

3-complete, in con-
trast to NP-complete [18]. (c) We provide an effective syntax
for FO queries with a bounded rewriting using views under
access constraints, a sufficient and necessary condition. In
contrast, the conditions of [18] via x̄-controllability are suf-
ficient but not necessary. Moreover, the rules of [18] do not
distinguish whether views are used to just validate data or
to fetch data from underlying datasets; this is critical for
VBRP, and demands the bounded output analysis of views.
Effective syntax and VBRP were not studied in [4–6].

Bounded evaluability. The notion of bounded evaluability
was proposed in [17], based on a form of query plans that
conform to access constraints. The problem for deciding
whether a query is boundedly evaluable under access con-
straints is decidable but EXPSPACE-hard for CQ, UCQ and
∃FO+, and is undecidable for FO [17]. A notion of effective
boundedness was studied for CQ [12], based on a restricted
form of query plans that conduct all data fetching before any
relational operations start. It was shown [12] that effective
boundedness is in PTIME for CQ. It was also studied for
graph pattern queries via simulation and subgraph isomor-
phism [11], which are quite different from relational queries.

Bounded rewriting is more challenging than bounded
evaluability. (a) With views comes the need for reasoning
about their output size |V(D)|. (b) We adopt query plans
in a form of query trees as commonly used in database sys-
tems, and allow users to specify a bound on the size of the
plans based on their available resources (see Section 2). In
contrast, [17] considers query plans that are a sequence of
relational and data fetching operations, of length possibly
exponential in the sizes of queries and constraints. After ex-
perimenting with real-life data, we find that the plans of [17]

are not very realistic, and worse yet, their CQ plans may ac-
tually encode non-recursive datalog queries without union,
which yield exponential-size queries when expressed in CQ.
It is because of the different notions of query plans adopted
in this work and [17] that VBRP is Σp

3-complete for CQ,
while bounded evaluability is EXPSPACE-hard [17].

Effective syntax. There has been a host of work on effec-
tive syntax (e.g., [20, 35, 36]), which started decades ago to
characterize safe relational queries up to equivalence. For
bounded query evaluation, an effective syntax was proposed
for CQ [17], and another one for FO [10].

This work develops an effective syntax for bounded rewrit-
ing of FO queries using views under access constraints. Such
a syntax has not been studied before, and is quite different
from their counterparts for bounded evaluability. (a) It is in
PTIME to check whether an FO query is topped for rewrit-
ing, while for bounded evaluability, the syntactic condition
of [17] is in PTIME to check for CQ, but Πp

2-complete for
UCQ, and is not defined for FO. (b) Effective syntax for
query rewriting is more intriguing than its counterpart for
bounded evaluability [10]. As remarked earlier, we have to
reason about the size |V(D)| of cached views. It is further
complicated by user-imposed bound on the size of query
plans, which was not considered in [10]. (c) The class of
effectively bounded queries of [12] does not make an effec-
tive syntax: not every boundedly evaluable CQ is necessarily
equivalent to an effectively bounded CQ.

Query rewriting using views. Query rewriting has been ex-
tensively studied (e.g., [2, 3, 13, 28, 31, 32]; see [23, 27] for
surveys). In contrast to conventional query rewriting using
views, bounded rewriting requires controlled access to the
underlying dataset D under access constraints, in addition
to cached V(D). This makes the analysis more challenging.
For instance, it is Σp

3-complete to decide whether there ex-
ists a bounded rewriting for CQ with CQ views, as opposed
to NP-complete in the conventional setting [28].

Access patterns. Related to the work is also query answering
under access patterns, which require a relation to be only
accessed by providing certain combinations of attributes
[8,9,14,29,30,32] (see [7] for a survey). Proof-based methods
for generating low-cost query plans under access patterns
and integrity constraints are studied for CQ and FO. Query
rewriting using views under access patterns has been studied
for CQ [32], and for UCQ and UCQ¬ (with negated relation
atoms) under fixed views and integrity constraints [14].

This work differs from the prior work in the following.
(a) Unlike access patterns, access constraints impose cardi-
nality constraints and controlled data accesses via indices.
(b) Moreover, in an access constraint R(X → Y, N), X ∪ Y
may account for a small set of the attributes of R, while an
access pattern has to cover all the attributes of R. As a re-
sult, we can fetch partial tuples from the underlying dataset
via an access constraint, as opposed to access patterns that
are to fetch entire tuples. This complicates the proofs of
bounded evaluability. (c) Bounded rewriting allows access
to the underlying data with controlled I/O, which is prohib-
ited in [14,32]. As an evidence of the difference, bounded CQ

rewriting using fixed views is C
p
2k+1-complete under fixed ac-

cess constraints (Section 3), as opposed to NP-complete for
rewriting using fixed views under access patterns [14]. (d)
To the best of our knowledge, no prior work has studied
effective syntax for bounded FO rewriting.



2. BOUNDED QUERY REWRITING
In this section we formalize bounded query plans and

bounded query rewriting using views under access con-
straints. We start with a review of basic notations.

Database schema. A relational (database) schema R con-
sists of a collection of relation schemas (R1, . . . , Rn), where
each Ri has a fixed set of attributes. We assume a countably
infinite domain U of data values, on which instances D of R
are defined. We use |D| to denote the size of D, measured
as the total number of tuples in D.

Access schema. Following [17], we define an access
schema A over a database schema R as a set of access
constraints ϕ = R(X → Y, N), where R is a relation schema
in R, X and Y are sets of attributes of R, and N is a
natural number. An instance D of R satisfies ϕ if

• for any X-value ā in D, |DY (X = ā)| ≤ N , where
DY (X = ā) is the set

˘

t[Y ] | t ∈ D, t[X] = ā
¯

; and

• there exists a function (index) that given an X-value
ā, returns DY (X = ā) from D in O(N) time.

Intuitively, an access constraint is a combination of a car-
dinality constraint and an index on X for Y (i.e., the func-
tion). It tells us that given any X-value, there exist at most
N distinct corresponding Y -values, and these Y values can
be efficiently fetched by using the index. For instance, A0

described in Example 1 is an access schema.
Note that functional dependencies (FDs) are a special case

R(X → Y, 1) of access constraints, i.e., when bound N = 1,
provided that an index is built from X to Y . As shown in [10,
12], access constraints can be discovered from instances of
R, by extending mining tools for FDs with aggregates.

An instance D of R satisfies access schema A, denoted by
D |= A, if D satisfies all the constraints in A.

Query classes. We express queries and views in the same
language L, which is one of the following [1]:

• conjunctive queries (CQ), built up from relation atoms
R(x̄) for R ∈ R, and equality atoms x = y or x = c
(for constant c), by closing them under conjunction ∧
and existential quantification ∃;

• unions of conjunctive queries (UCQ) of the form Q =
Q1 ∪ · · · ∪ Qk, where Qi is a CQ for i ∈ [1, k];

• positive existential FO queries (∃FO+), built from re-
lation atoms and equality atoms by closing under ∧,
disjunction ∨ and ∃; and

• First-order logic queries (FO), built from atomic for-
mulas by closing them under ∧, ∨, negation ¬, ∃ and
universal quantification ∀.

Query plans. Following [33], we define evaluation plans
for a query Q using a set V of views, both defined over a
database schema R. To simplify the definition, we write Q in
the relational algebra with projection π, selection σ, Carte-
sian product ×, union ∪, set difference \ and renaming ρ.

A query plan for Q using V, denoted by ξ(Q,V,R), is a
tree Tξ that satisfies the two conditions below.

(1) Each node u of Tξ is labeled Si = δi, where Si denotes
a relation for partial results, and δi is as follows:

(a) {c} for a constant in Q, if u is a leaf of Tξ;

(b) a view V for V ∈ V, if u is a leaf of Tξ;

(c) fetch(X ∈ Sj , R, Y ), if u has a single child v labeled
with Sj = δj , and Sj has attributes X;

Figure 1: A query plan ξ0 for Q0 using view V1

(d) πY (Sj), σC(Sj) or ρ(Sj), if u has a single child v la-
beled with Sj = δj ; here Y is a set of attributes in Sj ,
and C is a condition defined on Sj ; or

(e) Sj × Sl, Sj ∪ Sl or Sj \ Sl, if u has two children v and
v′ labeled with Sj = δj and Sl = δl, respectively.

Intuitively, given an instance D of R, relations Si’s are com-
puted by δi, bottom up in Tξ as usual [33]. More specifically,
δi may (a) extract constants from Q, (b) access cached views
V (D), and (c) access D via a fetch operation, which, for each
ā ∈ Sj , retrieves DXY (X = ā) from D; it may also be a rela-
tional operation ((d) and (e) above). Relation Sn associated
with the root of Tξ is the result of the computation.

(2) For each instance D of R, the result ξ(D) of applying
ξ(Q,V,R) to D is the relation Sn at root of Tξ computed as
above. We require that ξ(D) = Q(D).

The size of plan ξ is the number of nodes in Tξ. We use DQ

to denote the bag of all tuples fetched for computing ξ(D),
i.e., the multiset that collects tuples in DXY (X = ā) for all
fetch(X ∈ Sj , R, Y ) when applying ξ to D. Intuitively, it
measures the amount of I/O operations to access D.

Example 2: A plan ξ0(Q0, V1,R0) for Q0 using view V1

given in Example 1 is depicted in Fig. 1. Given an instance
D of R0, (a) it fetches the set S4 of mids of all movies released
by Universal Studios in 2014, using constants in Q0; (b)
filters S4 with mids in V1(D) via join, to get a subset S8 of
S4 of movies liked by NASA folks; (c) fetches rating tuples
using the mids of S8; and finally, (d) finds the set S11 of
mids, which is precisely the answer Q0(D) to Q0 in D. 2

Bounded plans. To formalize bounded query rewriting,
we bring into play access schema and a bound on the size of
query plans. Consider an access schema A defined over R.

A query plan ξ(Q,V,R) is said to conform to A if
(a) for each fetch(X ∈ Sj , R, Y ) operation in ξ, there ex-

ists an access constraint R(X → Y ′, N) in A such that
Y ⊆ X ∪ Y ′, and

(b) there exists a constant NQ such that for all instances
D of R that satisfy A, |DQ| ≤ NQ.

That is, while ξ can access entire cached views, its access
to the underlying D must be via fetch operations only, by
making use of the indices in the access constraints of A. Plan
ξ tells us how to retrieve DQ from D such that Q(D) is com-
puted by using the data in DQ and V(D) only. Better still,
DQ is bounded: |DQ| is independent of possibly big |D|. The
time for identifying and fetching DQ is also independent of
|D| (assuming that given an X-value ā, it takes O(N) time to
fetch DXY (X = ā) from D via the index for R(X → Y, N)).



Given a natural number M , we say that ξ(Q,V,R) is an
M-bounded plan for Q using V under A if (a) ξ conforms to
A, and (b) the size of ξ is at most M .

Intuitively, M is a threshold picked by users and is de-
termined by available resources. The less resources we have,
the smaller M we can afford. Without the bound M , we find
that rewriting plans are often of exponential length when ex-
perimenting with real-life data, which are not very practical;
indeed, it would be EXPSPACE-hard to decide whether there
exists a bounded rewriting even for CQ, by reduction from
the problem for deciding bounded evaluability for CQ [17].
Hence we opt to let users specify M based on their resources.
If ξ(Q,V,R) is M -bounded under A, then for all datasets D
that satisfy A, we can efficiently answer Q in D by following
ξ and accessing a bounded amount of data from D.

Example 3: Plan ξ0 shown in Fig. 1 is 11-bounded for
Q0 using V1 under A0. Indeed, (a) both fetch operations
(S4 and S9) are controlled by the access constraints of A0,
and (b) for any instance D of R0, ξ0 accesses at most 2N0

tuples from D, where N0 is the constant in ϕ1 of A0, since
|S4| ≤ N0 by ϕ1, and |S9| ≤ N0 by S8 ⊆ S4 and constraint
ϕ2 on rating in A0; and (c) eleven operations are conducted
in total. Note that rating tuples in D are fetched by using S8,
which is obtained by relational operations on V1(D) and S4.
While V1 is not boundedly evaluable under A0, the amount
of data fetched from D is independent of |D|. 2

Bounded query rewriting. We now formalize this notion.
Consider a query Q in a language L, a set V of L-definable
views, and an access schema A, all over the same database
schema R. For a bound M , we say that Q has an M-bounded
rewriting in L using V under A, or simply a bounded rewrit-
ing using V when M and A are clear from the context, if
it has an M -bounded query plan ξ(Q,V,R) under A such
that ξ is a query plan in L, i.e., in each label Si = δi of ξ,

• if L is CQ, then δi is a fetch, π, σ, × or ρ operation;

• if L is UCQ, δi can be fetch, π, σ, ×, ρ or ∪, and
moreover, for any node labeled ∪, all its ancestors in
the tree Tξ of ξ are also labeled with ∪; that is, ∪ is
conducted at “the top level” only;

• if L is ∃FO+, then δi is fetch, π, σ, ×, ∪ or ρ; and

• if L is FO, δi can be fetch, π, σ, ×, ∪, \ or ρ.
One can verify that if ξ is a plan in L, then there exists

a query Qξ in L such that for all instances D of R, ξ(D) =
Qξ(D) and moreover, the size |Qξ| of Qξ is linear in the size
of ξ. Such query Qξ is unique up to equivalence. We refer
to Qξ as the query expressed by ξ.

Example 4: The CQ Q0 of Example 1 has an 11-bounded
rewriting in CQ using V1 under A0. Indeed, ξ0 of Fig. 1 is
such a bounded plan, which expresses
Qξ(mid) = ∃ym

`

movie(mid, ym, “Universal”, “2014”)
∧ V1(mid) ∧ rating(mid, 5)

´

.
It is a rewriting of Q0 using V1 in CQ. 2

Notations used in this paper are summarized in Table 1.

3. DECIDING BOUNDED REWRITING
To make effective use of bounded rewriting, we need to

settle the bounded rewriting problem, denoted by VBRP(L)
for a query language L and stated as follows.

• INPUT: A database schema R, a natural number M
(in unary), an access schema A, a query Q ∈ L and a
set V of L-definable views all defined on R.

symbols notations
R, R database schema R and relation schema R ∈ R
A access schema

D |= A an instance D of R satisfies access schema A
Q ∈ L query Q in a query language L
V, V a set V of views and a view V ∈ V

ξ(Q,V,R) a query plan ξ for Q using V over instances of R
Tξ plan ξ represented as a query tree

ξ(D) the result of applying ξ to D

VBRP(L) the bounded rewriting problem for queries in L
Q ≡A Q′ A-equivalence
Q ⊑A Q′ A-containment

QPQ the set of all possible query plans of a bounded size
ξ ⊑A Q Qξ ⊑A Q, query Qξ expressed by ξ

Table 1: Notations

• QUESTION: Under A, does Q have an M -bounded
rewriting in L using V?

While VBRP(L) is important, it is nontrivial.

Theorem 1: Problem VBRP(L) is

(1) Σp
3-complete when L is CQ, UCQ or ∃FO+; and

(2) undecidable when L is FO. 2

Below we first reveal the inherent complexity of VBRP(L)
by investigating problems embedded in it, and outline a
proof of Theorem 1 for various L (Section 3.1). We then
investigate the impact of parameters R, A, V and M on the
complexity of VBRP(L) (Section 3.2).

3.1 The Bounded Rewriting Problem
To understand where the complexity of VBRP(L) arises,

consider a problem embedded in it. Given an access schema
A, a query Q, a set V of views, and a query plan ξ of length
M , it is to decide whether ξ is a bounded plan for Q using
V under A. This requires that we check the following: (a) Is
the query Qξ expressed by ξ equivalent to Q under A? (b)
Does ξ conform to A? None of these questions is trivial. To
simplify the discussion, we focus on CQ for examples.

A-equivalence. Consider a database schema R. Under an
access schema A over R, we say that two queries Q1 and
Q2 defined over R are A-equivalent, denoted by Q1 ≡A Q2,
if for all instances D of R that satisfy A, Q1(D) = Q2(D).
This is a notion weaker than the conventional notion of query
equivalence Q1 ≡ Q2. The latter is to decide whether for all
instances D of R, Q1(D) = Q2(D), regardless of whether
D |= A. Indeed, if Q1 ≡ Q2 then Q1 ≡A Q2, but the
converse does not hold. It is known that query equivalence
for CQ is NP-complete (cf. [1]). In contrast, it has been
shown that A-equivalence is harder (unless P = NP).

Lemma 2 [17]: Given access schema A and two queries
Q1 and Q2, it is Πp

2-complete to decide whether Q1 ≡A Q2,
for Q1 and Q2 in CQ, UCQ or ∃FO+. 2

Coming back to VBRP, for a query plan ξ and a query
Q, we need to check whether ξ is a query plan for Q, i.e.,
whether Qξ ≡A Q, where Qξ is the query expressed by ξ.
This step is Πp

2-hard for CQ. It is easy to show that the
problem is undecidable when it comes to FO.

Bounded output. Another complication is introduced by
views in V. To decide whether a query plan ξ is bounded
for a query Q using V under A, we need to verify that ξ
conforms to A. This may require us to check whether a
view V ∈ V has “bounded output”.



Example 5: Consider database schema R0, query Q0, and
access schema A0 defined in Example 1.

(a) Suppose that instead of V1, a CQ view V2 is given:

V2(pid) = ∃x′
p person(pid, x′

p, “NASA”).

Given an instance D of R0, V2(D) consists of people
who work at NASA. Extend A0 to A1 by including ϕ3 =
like((pid, id) → (pid, id, type), 1), i.e., (pid, id) is a key of re-
lation like. Then Q0 has a rewriting Q2 using V2:

Q2(mid) = ∃xp, ym

`

V2(xp) ∧ like(xp, mid, “movie”) ∧
movie(mid, ym, “Universal”, “2014”) ∧ rating(mid, 5)

´

.

One can verify that Q2 is a bounded rewriting of Q0 using
V2 under A1 iff there exists a constant N1 such that for all
instances D of R, if D |= A1, then |V2(D)| ≤ N1; that
is, NASA has at most N1 employees. For if it holds, then
we can extract a set S of at most N0 mids by leveraging
constraint ϕ1 of A1 on movie, and select pairs (pid, mid)
from V2(D)×S that are in a tuple (pid, mid, “movie”) in the
like relation, by making use of constraint ϕ3 given above.
For each mid that passes the test, we check its rating via
the index in ϕ2, by accessing at most N0 tuples in rating.
Putting these together, we access at most N1 ·N0+N0 tuples
from D. Conversely, if the output of V2(D) is not bounded,
then Q has no bounded rewriting using V2 under A1.

(b) In contrast, for rewriting some queries, we do not have
to check whether a view has bounded output. Consider a
rewriting Q(x) = Q3(x) ∧ V3(x) of query Q over a database
schema R, where V3 is a view, and Q3 has a bounded query
plan under an access schema A and does not use any view.
Then Q has a bounded rewriting under A no matter whether
|V3(D)| is bounded or not for instances D of R. Indeed, all
fetching operations are conducted by Q3; for each x-value a
computed by Q3(x), we only need to validate whether a ∈
V (D). This involves only cached V3(D), without accessing
D, and hence, |V3(D)| does not need to be bounded. 2

To check whether views have a bounded output when it
is necessary, we study the bounded output problem, denoted
by BOP(L) and stated as follows:

• INPUT: A database schema R, an access schema A
and a query V ∈ L, both defined over R.

• Question: Is there a constant N such that for all in-
stances D of R, if D |= A then |V (D)| ≤ N?

The analysis of bounded output is also nontrivial.

Theorem 3: Problem BOP(L) is

(1) coNP-complete when L is CQ, UCQ or ∃FO+; and

(2) undecidable when L is FO.

When database schema R and access schema A are both
fixed, BOP remains coNP-hard for CQ, UCQ and ∃FO+, and
is still undecidable for FO. 2

Proof sketch: (1) We show that BOP is in coNP for
∃FO+and is coNP-hard for CQ. The upper bound proof
is a little involved, and demands a characterization of
∃FO+queries with bounded output, in terms of notions of
element queries and covered variables. Informally, (a) an
element query Qe of a query Q is a CQ obtained from Q and
an access schema A such that its tableau representation sat-
isfies A. Intuitively, we do not have to worry about A when
dealing with Qe. We show that under A, each query Q in
∃FO+is A-equivalent to Qe1

∪ · · · ∪ Qen , where each Qei is
an element query. (b) A variable of Q is covered by A if its

use is controlled by A and hence, the number of its possible
valuations is bounded by the cardinality constraints of A.
Based on these, we give the characterization as follows:

Lemma 4: For an ∃FO+query Q(x̄) and an access schema
A, Q(x̄) has bounded output iff for every element query
Qe(x̄

′) of Q(x̄), all variables in x̄′ are in cov(Qe,A), which
is the set of variables in Qe covered by A. 2

Capitalizing on the characterization, we can readily de-
velop a coNP algorithm to check whether an ∃FO+query has
bounded output under an access schema A.

The lower bound is verified by reduction from the com-
plement of the 3SAT problem to BOP(CQ). Given a propo-
sitional formula ψ, 3SAT is to decide whether ψ is satisfi-
able. It is NP-complete (cf. [19]). The reduction uses fixed
database schema R and access schema A, i.e., they do not
depend on 3SAT instance ψ. As a result, BOP(CQ) remains
coNP-hard even under fixed R and A.

(2) We show that BOP(FO) is undecidable by reduction from
the complement of the satisfiability problem for FO. The lat-
ter is to decide, given an FO query Q defined over a database
schema R, whether there exists an instance D of R such that
Q(D) 6= ∅. It is undecidable even when R is fixed (cf. [1]).
The reduction uses A = ∅ and a fixed relational schema R′.
Given Q, we define an FO query Q′ such that Q′ has bounded
output over all instances of R′ iff Q is not satisfiable. 2

Using Lemma 2 and Theorem 3, we prove Theorem 1.

Proof of Theorem 1. The proof has three parts.

(1) We show that VBRP is in Σp
3 for ∃FO+, by develop-

ing an algorithm for checking whether an ∃FO+query Q
has a bounded rewriting. The algorithm works as follows:
(a) guess a query plan ξ in ∃FO+of size at most M ; (b)
check whether ξ conforms to A; if so, continue; otherwise
reject the current guess; (c) check whether Qξ ≡A Q for
the ∃FO+query Qξ expressed by ξ; if so, return “yes”. The
algorithm is in Σp

3 since step (b) is in ∆p
2 (PcoNP) as it has

to check whether the polynomially many fetch operations in
ξ have bounded output, and checking each fetch is in coNP

by Theorem 3(1); moreover, step (c) is in Πp
2 by Lemma 2.

(2) The lower bound proof is more involved. We show that
VBRP is Σp

3-hard for CQ, by reduction from the ∃∗∀∗∃∗3CNF

problem, which is Σp
3-complete [34]. The latter is to decide,

given a sentence ϕ = ∃X∀Y ∃Z ψ, whether ϕ is true, where
ψ is an instance of 3SAT defined over variables in X∪Y ∪Z.

Given such a ϕ, the reduction employs fixed database
schema R and access schema A that do not vary for dif-
ferent instances ϕ, and a fixed constant M = 6. We define a
CQ Q and a set V consisting of a single view V in CQ. The
encoding of V is quite intricate; it assures that whenever
V is used in a bounded rewriting of Q, it must occur in the
corresponding query plan ξ in the form of σX=µX

(V ), where
µX denotes a truth-assignment of X. When V is used in any
other form in a query plan ξ′, it is shown that either ξ′ does
not conform to A, or it does not help us in answering Q,
and thus can be dispelled. Moreover, the access constraints
in A and query Q are such defined that from D |= A and
Q(D) 6= ∅, we can derive that D encodes a truth assignment
µY of Y . Hence, Q has a bounded rewriting using V iff ξ
“corresponds” to a truth assignment µX for X, and when
ranging over all instances D of R for which D |= A and
Q(D) 6= ∅ (to simulate all truth assignments µY for Y ), we



have that Q(D) = ξ(D). By ensuring that ξ(D) = ∅ when
∃Z ψ(µX , µY , Z) is false, we show that Q(D) = ξ(D) when-
ever ∃Z ψ(µX , µY , Z) is true. Since µX is fixed in ξ, and
all µY are considered (since Q(D) = ξ(D) must hold for all
D |= A), this implies that Q ≡A ξ iff ∀Y ∃Z ψ(µX , Y, Z) is
true, where µX is the chosen truth-assignment for V .

(3) We show that VBRP(FO) is undecidable also by reduc-
tion from the complement of the satisfiability problem for
FO. Given an FO query Q, we define an FO query Q′ such
that Q′ has an M -bounded rewriting iff Q is not satisfiable.
We use fixed A, V and M in the reduction. 2

3.2 The Impact of Various Parameters
One might be tempted to think that fixing some parame-

ters of VBRP would simplify the analysis of VBRP. As will
be seen in Section 4, in practice we often have predefined
database schema R, access schema A, bound M and views
V, while queries Q and instances D of R vary.

Unfortunately, fixing R, A, M and V does not simplify
the analysis of VBRP for FO.

Corollary 5: There exist fixed R, A, M and V such that
it is undecidable to decide, given an FO query Q, whether
Q has an M -bounded rewriting in FO using V under A. 2

Proof sketch: It is undecidable to decide, given an FO

query Q over a fixed database schema R, whether there
exists an instance D of R such that Q(D) 6= ∅. Indeed,
a proof is by reduction from the the Post Correspondence
Problem using a fixed R (see e.g., [1]). Hence the reduction
given in the proof of Theorem 3 for FO suffices to show
Corollary 5, which employs A = V = ∅ and M = 1. 2

We now study the impact of parameters on VBRP for CQ,
UCQ and ∃FO+. Our main conclusion is that fixing R, A
and M does not simplify the analysis of VBRP. When the
set V of views is also fixed, VBRP becomes simpler for these
classes of positive queries, but only to an extent.

Fixing R, A and M . Fixing database schema, access
schema and plan size does not help us. Indeed, the Σp

3 lower
bound for CQ is verified by using fixed R, A and M (Theo-
rem 1). From this the corollary below follows.

Corollary 6: There exist fixed R, A and M such that it
is Σp

3-complete to decide, given a query Q in L and a set V
of L-definable views over R, whether Q has an M -bounded
rewriting in L using V under A L is CQ, UCQ or ∃FO+. 2

Fixing R, A, M and V. Suppose that besides R, A and
M , the set V of views is also predefined. This puts VBRP

in C
p
2k+1 for CQ, UCQ and ∃FO+, where C

p
2k+1 is the com-

plexity class defined as coNP ∨
Wk

i=1(NP ∧ coNP) [38]. Here

NP∧coNP is also known as DP, where a languages L′ is in DP

iff there exist two languages L′
1 ∈ NP and L′

2 ∈ coNP such
that L′ = L′

1∩L′
2. A language L′ is in C1∨C2 for complexity

classes C1 and C2 if there exist two languages L′
1 ∈ C1 and

L′
2 ∈ C2 such that L′ = L′

1 ∪ L′
2. Hence, C

p
2k+1 consists of

languages that can be written as the union of k DP languages
and a coNP language. It resides in the Boolean NP-hierarchy
and is contained in ∆p

2 = P NP. More specifically, it is known
that a language L is in CP

2k+1 iff there exist 2k+1 languages
L0, L1, . . . , L2k, such that each Li is in NP, L0 ⊇ L1 ⊇ L2 ⊇
· · · ⊇ L2k and L = L̄0 ∪

Sk

i=1(L2i−1 ∩ L̄2i) [38].

Theorem 7: For each natural number k, there exist fixed
R, A, M , V such that it is C

p
2k+1-complete to decide, given a

query Q in L over R, whether Q has an M -bounded rewrit-
ing in L using V under A, for L as CQ, UCQ or ∃FO+. 2

To verify Theorem 7, we need the following notations,
which will also be used in Section 4.

(a) A query Q1 is A-contained in query Q2, denoted by
Q1 ⊑A Q2, if for all instances D of R that satisfy A,
Q1(D) ⊆ Q2(D), for Q1 and Q2 defined over R.

(b) For a query Q, denote by QPQ the set of all candidate
query plans using V that are no larger than M .

(c) For ξ ∈ QPQ, we write ξ ⊑A Q if Qξ ⊑A Q, where Qξ

denotes the query expressed by ξ (recall Qξ from Section 2);
similarly we write Q ⊑A ξ if Q ⊑A Qξ, and ξ ⊑A ξ′ for
ξ′ ∈ QPQ if Qξ ⊑A Qξ′ . We write ξ ≡A ξ′ if ξ ⊑A ξ′ and
ξ′ ⊑A ξ, and ξ <A ξ′ if ξ ⊑A ξ′ but ξ 6≡A ξ′.

Proof sketch: (1) Upper bound. A query Q in ∃FO+ has
an M -bounded rewriting using V under A iff either (a) Q
is not satisfiable by any instance D |= A of R, i.e., Q ≡A

Q∅, where Q∅ denotes a query that returns ∅ on all D, or
(b) Q is satisfiable and Q ≡A ξ for a non-empty ξ ∈ QPQ.
We show that condition (a) can be checked in coNP. For
each non-empty ξ ∈ QPQ, condition (b) is to check whether
ξ ⊑A Q and Q ⊑A ξ, which can be decided in NP and coNP,
respectively, for fixed R,A, M and V. Here k denotes the
number of non-empty plans in QPQ, a constant here.

In contrast, if M is fixed while R,A or V is not, there
are possibly exponentially many query plans in QPQ. As
an example, when V is not fixed, consider a view V (x̄) with
|x̄| = m. Then, depending on how the variables in V are
instantiated in a query plan ξ with constants, i.e., how V is
used in ξ, there are at least 2m different plans in QPQ. That
is why VBRP(CQ) remains Σp

3-hard when only M,R and A
are fixed but V is not (Corollary 6).

(2) Lower bound. For any k, take any language L = L̄0 ∪
Sk

i=1(L2i−1 ∩ L̄2i) in CP
2k+1. We build fixed R, A, V and

M = 1, i.e., they depend on k only, not on L. We show that
deciding whether a string σ̄ ∈ L can be reduced to checking
whether a CQ has an 1-bounded rewriting using V under A.

The reduction uses the following properties. (a) Since
each Li is in NP, we have reductions fi from Li to 3SAT

such that for each string σ̄, σ̄ ∈ Li iff fi(σ̄) is a satisfiable
3SAT instance. Hence if fi+1(σ̄) is satisfiable then so is
fi(σ̄), by Li ⊇ Li+1. We use this property to ensure that
only k + 1 possible query plans need to be considered. (b)
Following [38], it can be verified that σ̄ ∈ L iff

|{i | fi(σ̄) is satisfiable, i ∈ [0, 2k]}|

is an even number. We show that determining the latter
condition is equivalent to deciding whether a CQ Q has an
1-bounded rewriting using V under A. In the reduction, we
use Q to encode the 2k+1 3SAT instances fi(σ̄), and employ
k unary fixed views and the empty view corresponding to the
k + 1 even number 0, 2, 4, . . . , 2k above. 2

A simple characterization. We next give a sufficient and
necessary condition for query Q to have a bounded rewriting.
This condition is generic: Q is not necessarily a CQ, and
R, M,A and V do not have to be fixed.

We use the following notations. For candidate plan ξ ∈
QPQ, we say that ξ is a maximum plan with (A,V) if (a)



ξ ⊑A Q, and (b) there exists no ξ′ ∈ QPQ such that ξ′ ⊑A Q
and ξ <A ξ′. We say that ξ is unique in QPQ if there exists
no another maximum plan ξ′ ∈ QPQ such that ξ 6≡A ξ′.

Lemma 8: A query Q has an M -bounded rewriting under
A using V iff there exists a unique maximum plan ξ ∈ QPQ

up to A-equivalence such that Q ⊑A ξ. 2

Proof sketch: Query Q has an M -bounded rewriting under
A using V iff there exists a query plan ξ ∈ QPQ such that
Q ≡A ξ. We show that when such a plan ξ exists, it is
maximum and unique up to A-equivalence. 2

4. BOUNDED REWRITING FOR ACQ
To further understand the inherent complexity of VBRP,

we study VBRP under two practical conditions.

(1) Acyclic conjunctive queries, denoted by ACQ. A CQ

Q is acyclic if its hypergraph has hypertree-width 1 [21].
The hypergraph of Q is a hypergraph (Vh, Eh) in which Vh

consists of variables in Q and Eh has an edge for each set
of variables that occur together in a relation atom in Q.
Acyclic conjunctive queries are commonly used in practice.
As an example, query Q0 of Example 1 is an ACQ.

(2) Fixed R,A, M and V. We consider predefined database
schema R, access schema A, bound M and views V. Af-
ter all, for an application, R is designed first, M is deter-
mined by our available resources (e.g., processors and time
constraints), access constraints are discovered from sample
instances of R, and views are selected based on the appli-
cation [6]. These are determined before we start answering
queries. Thus it is practical to assume fixed R, A, M , and V.

In this setting, we study bounded rewriting of ACQ.
Given an ACQ Q, we want to find an M -bounded query
plan ξ(Q,V,R) under A in CQ (Section 2) such that the
query Qξ expressed by ξ is an ACQ. Our main conclusion
is that the intractability of VBRP is robust, even for ACQ

under fixed R,A, M and V. However, we characterize when
VBRP(ACQ) is tractable and identify tractable special cases.

Intractability. One might think that VBRP would become
simpler for ACQ, since query evaluation and containment
for ACQ are in PTIME, not to mention fixed R, A, M and
V. Unfortunately, VBRP remains intractable in this setting,
even under quite restrictive access constraints in a fixed A.

Theorem 9: Given fixed R, A, M and V, VBRP(ACQ) is
coNP-hard when A has one of the following forms:

(1) when A consists of a single access constraint of the
form R(A → B, N) and N ≥ 2;

(2) when A consists of two constraints R(A → B, 1) and
R′(∅ → (E, F ), N), and N ≥ 6; or

(3) when A consists of two constraints R((A, B) → C, 1)
and R′(∅ → E, N), and N ≥ 2.

2

Proof sketch: We prove the statements by reductions from
coNP-complete problems L. In the reductions we construct
database schema R, access schema A and query Q with care
such that they do not depend on the instances φ of L, and
φ is a “yes” instance of K iff Q ≡A ∅, a query over R that
returns empty for any instances D |= A of R. In light of
these, the proofs remain intact when M is any predefined
number and V is any predefined set of ACQ queries.

The proofs tell us that there is intricate interaction be-
tween ACQ and access constraints, and the forms of access
constraints in A have impact on the complexity of VBRP.

(Case 1) We verify the coNP lower bound by reduction from
the complement of the precoloring extension problem, which
is NP-complete [26]. The latter is to decide, given an undi-
rected graph G = (VG, E) and a 3-coloring µ of leaves of G,
whether µ is extendable to a color ci (ci ∈ {r, g, b}) for all
nodes vi in VG such that for each edge (vi, vj) ∈ E, ci 6= cj .

The reduction is a little complicated since we need to en-
code a cyclic graph with ACQ. It uses an access schema
A consisting of a single φ = R(A → B, 2), and a database
schema R with a single binary relation R(A, B). To ensure
that query Q is acyclic, we represent the two vertices of each
edge with distinct variables, and use access constraint φ to
enforce necessary “equality” on the variables and thus, “re-
store”the original graph G. That is, the reduction makes use
of the interaction between the access constraint and ACQ.

(Case 2) We show this case by reduction from the comple-
ment of the 3-Colorability problem, which is NP-complete
(cf. [19]). The latter problem is to decide, given an undi-
rected graph G = (VG, E), whether there exists a color ci

(ci ∈ {r, g, b}) for each vertex vi in VG such that for every
edge (vi, vj) ∈ E, ci 6= cj . Again the challenge is to encode
cyclic G with ACQ. The reduction uses a set A with two ac-
cess constraints R(A → B, 1) and R′(∅ → (E, F ), 6), and a
database schema R of two relations R(A, B) and R′(E, F ).

(Case 3) We show this by reduction from the complement
of the 3SAT problem. We use an access schema A having
R((A, B) → C, 1) and R′(∅ → E, 2), and database schema R
of a ternary relation R(A, B, C) and a unary relation R′(E).

The complication is introduced by encoding Boolean oper-
ations disjunction, conjunction and negated variables given
the limited facility of ACQ, and restricted relations of R
and constraints of A. Hence the reduction is quite delicate.
Given an instance ψ(X) of 3SAT, we define Q to encode each
clause in ψ with distinct copies of variables of X, and en-
code the Boolean operations in terms of distinct constants to
represent their truth values. Together with the constraints,
these ensure that Q correctly encodes ψ and is an ACQ.

We show that the proofs for cases (1), (2), (3) can be
extended to N > 2, N > 6, N > 2, respectively. 2

Characterization. In light of Theorem 9, we next charac-
terize when VBRP(C) is tractable for sub-classes C of ACQ,
and give an upper bound for VBRP(ACQ).

Theorem 10: When R, A, M and V are fixed, (1) for
any sub-class C of ACQ, VBRP(C) is in PTIME if and only
if for each query Q ∈ C, it is in PTIME to check whether
Q ⊑A ξ, where ξ is a query plan of size at most M , and (2)
VBRP(ACQ) is in coNP. 2

The result tells us that ACQ and fixed parameters, when
taken together, simplify the analysis of VBRP (unless P =
NP), to an extent, as opposed to the Σp

3-completeness of
Theorem 1 and C

p
2k+1-completeness of Theorem 7. Putting

Theorems 9 and 10 together, we can see that the cases of
VBRP(ACQ) stated in Theorem 9 are coNP-complete.

The proof of Theorem 10 is based on Lemma 8 and the
lemma below, which gives the complexity of basic operations
that are needed for computing maximum query plans.



Lemma 11: When R, A, M and V are fixed, given a CQ

Q and query plans ξ, ξ′ ∈ QPQ, it is in
(a) PTIME to check whether ξ conforms to A,

(b) PTIME to check whether ξ ⊑A Q if Q is an ACQ,

(c) NP to check whether Q 6⊑A ξ, and

(d) PTIME to check whether ξ′ ⊑A ξ for ξ′ ∈ QPQ. 2

Based on the lemmas, we prove Theorem 10.

Proof sketch of Theorem 10. We develop an algorithm
that, given an ACQ Q, checks whether Q has a bounded
rewriting. The algorithm first computes the unique max-
imum plan ξ ∈ QPQ (up to A-equivalence) if it exists. It
then checks whether Q ⊑A ξ. Its correctness is warranted by
Lemma 8. For its complexity, we show that it is in PTIME

to check whether QPQ has a unique maximum plan when
R, M , A and V are fixed, by Lemma 11 (a), (b) and (d).
Hence, the algorithm is in PTIME for any sub-class C of
ACQ as long as it is in PTIME to check whether Q ⊑A ξ
for all Q ∈ C. Note that when C is the entire class of ACQ

queries, the algorithm is in coNP since it needs to call an
NP oracle to check whether Q ⊑A ξ, by Lemma 11(c). 2

Theorem 10 helps us identify sub-classes of ACQ for which
VBRP is tractable, such as ACQ under “FDs”, i.e., when all
the access constraints in A are of the form R(X → Y, 1). As
remarked earlier, FDs with associated indices are common
access constraints, and can be automatically discovered by
using existing tools for mining FDs. (e.g., [24]).

Corollary 12: When R,A, M and V are fixed, VBRP is in
PTIME for ACQ if A consists of FDs only. 2

Proof sketch: By Theorem 10, to prove Corollary 12, it
suffices to show that Q ⊑A ξ is in PTIME. Observe the
following. (a) When A consists of FDs only, we can “chase”
the tableau of Q by access constraints of A in PTIME [1], and
get a unique query QA such that the tableau of QA satisfies
A and Q ≡A QA. (b) Checking Q ⊑A ξ is equivalent to
checking QA ⊑ ξ. Hence we can use the conventional notion
of query containment and the Homomorphism Theorem for
CQ [1]. (c) The proof of Lemma 11 shows that QA ⊑ Qξ

can be checked in PTIME for fixed R,A, M and V. Putting
these together, we have that Q ⊑A ξ is in PTIME. 2

In contrast to Corollary 12, VBRP remains intractable for
CQ under FDs, although the analysis is simpler compared
with Theorem 7 (unless P = NP).

Proposition 13: For fixed R,A, M and V, VBRP(CQ)
is NP-complete if A consists of FDs only. It remains NP-
complete when none of R,A, M and V is fixed. 2

Proof sketch: We show that VBRP is NP-hard by reduc-
tion from 3SAT, using fixed R,A, M and V, with A con-
sisting of FDs. In contrast to Corollary 12, for a CQ Q, we
can no longer compute its maximum query plan in QPQ in
PTIME; instead, it is an NP process.

For the upper bound, we give an algorithm to check
VBRP(CQ) under FDs, which is in NP even when none of
R,A, M and V is fixed. It uses the following lemma.

Lemma 14: If A consists of FDs only, it is in PTIME to
decide whether a plan ξ ∈ QPQ conforms to A. 2

We give a PTIME algorithm to verify the lemma. 2

Along the same lines as Corollary 12, one can easily verify
that for fixed R,A, M and V, VBRP is in PTIME for the sub-

class of ACQ queries such that their tableau representations
satisfy the cardinality constraints in A. A special case of
this is when A = ∅, e.g., the setting of [6], when access
constraints are not employed at all.

Theorem 10 remains intact on any class C of queries as
long as it is in PTIME to compute a maximum plan in QPQ

for all queries in C. Examples include (a) self-join-free CQ,
i.e., the class of CQ queries that contain no repeated relation
names [25], and (b) CQ with a fixed number of variables, i.e.,
for each constant k, the class of CQ queries that have at most
k free variables [37]. Using Theorem 10 and Lemma 11, one
can show that VBRP is also in PTIME in these two cases.

5. AN EFFECTIVE SYNTAX
We have seen that the undecidability of VBRP for FO and

the intractability for CQ are rather robust. Can we still make
practical use of bounded rewriting analysis when querying
big data? We next show that the answer is affirmative.

We develop effective syntax for FO queries that have a
bounded rewriting. For any database schema R, views V,
access schema A and bound M , we identify two classes of FO

queries, (a) a class of queries topped by (R,V,A, M), which
“covers” all queries defined over R that have an M -bounded
rewriting using V under A, up to equivalence, and (b) a class
of size-bounded queries, which“covers”all the views of V that
have bounded output for all instances of R that satisfy A.
The second class helps us effectively check bounded output
when deducing topped queries. It is in PTIME to decide
whether a query is topped or size-bounded.

Below we first present the main results of the section in
Section 5.1. We then define topped queries and size-bounded
queries in Sections 5.2 and 5.3, respectively.

5.1 Practical Use of Bounded Rewriting
The main results of the section are as follows.

Theorem 15: For any R, V and M , and under any A,

(a) each FO query Q with an M -bounded rewriting using
V is A-equivalent to a query topped by (R,V,A, M);

(b) every FO query topped by (R,V,A, M) has an M -
bounded rewriting in FO using V under A; and

(c) it takes PTIME in M, |R|, |Q|, |V| and |A| to check
whether an FO query Q is topped by (R,V,A, M),
which uses an effective syntax that checks whether FO

views in V have bounded output in PTIME in |Q|.

Here A, Q and V are all defined over the same R. 2

That is, topped queries are a core sub-class of FO queries
with a bounded rewriting, and can be effectively checked.
To check bounded output of queries, we show the following.

Theorem 16: For any R and under any A,

(a) each FO query Q over R that has bounded output is
A-equivalent to a size-bounded query under A;

(b) each size-bounded query has bounded output under A;

(c) it takes PTIME in |Q| to check whether an FO query
Q is a size-bounded query.

Here A and Q are defined over the same R. 2

Before we define topped and size-bounded queries, we re-
mark the following. (1) Theorems 15 and 16 just aim to
demonstrate the existence of effective syntax for FO queries



with bounded rewriting. There are other forms of effective
syntax for such FO queries. (2) Theorem 15 does not contra-
dict to Corollary 5 due to the requirement of A-equivalence
in its condition (a), which is undecidable for FO.

Practical use. Capitalizing on the effective syntax, we can
develop algorithms (a) to check whether a given FO query Q
is topped by (R,V,A, M) in PTIME; and if so, (b) to gen-
erate a bounded query plan ξ for Q using V. The existence
of these algorithms are warranted by Theorems 15 and 16.

We can then support bounded rewriting using views on
top of commercial DBMS as follows. Given an application,
a database schema R and a resource bound M are first de-
termined, based on the application and available resources,
respectively. Then, a set V of views can be selected fol-
lowing [6], and a set A of access constraints can be discov-
ered [10]. After these are in place, given an FO query Q
posed on a dataset D that satisfies A, we check whether Q
is topped by (R,V,A, M). If so, we generate a bounded
query plan ξ for Q using V, by using the algorithms de-
scribed above. Then we can compute Q(D) by executing
ξ with the existing DBMS. Moreover, incremental methods
for maintaining the views [6] and (the indices of) access con-
straints [10] have already been developed, in response to
updates to D. Putting these together, we can expect to ef-
ficiently answer a number of FO queries Q in (possibly big)
D by leveraging bounded rewriting.

5.2 Topped Queries for Bounded Rewriting
We next define topped queries and prove Theorem 15. It

is nontrivial to define an effective syntax, as shown below.

Example 6: Consider a database schema R1 with two rela-
tions R(A, B) and T (C, E), an access schema A2 consisting
of R(A → B, N) and T (C → E, N), and V3 with a single
view V3(x, y) = ∃R(y, y) ∧ T (x, y). Consider FO query:

Q3(z) = Q4(z) ∧ ¬∃w R(z, w), where
Q4(z) = ∃y∃x (V3(x, y) ∧ (x = 1)) ∧ R(y, z)

Then Q3 has a 13-bounded rewriting as shown in Fig. 2.
The plan is actually developed for an equivalent query:

Q
′
3(z) = Q4(z) ∧ ¬(Q4(z) ∧ ∃w R(z, w)).

Observe the following. (1) Query Q′
3 becomes bounded be-

cause it propagates z-values from Q4 to “¬∃w R(z, w)”. (2)
Such propagated values allow us to fetch bounded data for
relation atoms, i.e., R(y, z) and R(z, w). (3) A plan for a
sub-query of Q3 may have to embed a plan for another sub-
query. For instance, (i) Q4 has a 5-bounded rewriting in Q3;
(ii) ∃w R(w, z) has a 7-bounded rewriting, which embeds the
5-bounded plan for Q4; and (iii) the size of the plan for Q3

is the sum of the sizes of plans for Q4 and ∃w R(w, z). 2

Example 6 shows that to cover queries such as Q3, topped
queries have to support value propagation among sub-
queries, and keep track of the sizes of plans for sub-queries.

Topped queries. This motivates us to define two functions.

• Boolean function cov(Qs(x̄), Q(z̄)) to ensure that if
Qs(x̄) has a bounded rewriting and cov(Qs(x̄), Q(z̄))
= true, then Qs(x̄)∧Q(z̄) also has a bounded rewriting.

• Function size(Qs(x̄), Q(z̄)) to compute a natural num-
ber, which is an upper bound of the size of minimum
sub-plans for sub-query Q(z̄) in Qs(x̄) ∧ Q(z̄).

The intuition behind these functions is as follows.

Figure 2: A bounded plan for Q3 of Example 6

(a) Intuitively, Q(z̄) indicates a (sub-)query we are inspect-
ing, and Qs(x̄) keeps track of sub-queries from which values
are propagated to Q(z̄), to make Q(z̄) bounded.

(b) Function cov(Qs, Q) is to check whether we can propa-
gate values from Qs to Q, and get a bounded rewriting of
Q. In particular, Qs may include views from V. When com-
puting cov(Qs, Q), we distinguish views that need to have
bounded output from those that do not have to.

For instance, cov(Q4, ∃w R(w, z)) = true for Q3 in Exam-
ple 6, in which Q4 is Qs and ∃w R(w, z) is Q. It indicates
that by propagating values from bounded Q4, we can have
a bounded rewriting for sub-query ∃w R(w, z).

(c) Function size(Qs, Q) helps us ensure that our query plans
do not exceed a given bound M . In Example 6, size(Q4,
∃w R(w, z)) = 7, which is the size of the plan for evaluating
∃w R(w, z) in Q3 by using values propagated from Q4.

Using the functions, we now define topped queries. An FO

query Q over R is in topped by (R,V,A, M) if

(1) cov(Qε, Q) = true; and

(2) size(Qε, Q) ≤ M .

Here Qε is a “tautology query” such that for any query Q,
Qε ∧ Q = Q, cov(Qε, Qε) = true and Qε has a 0-bounded
rewriting. That is, we compute cov(Qs, Q) and size(Qs, Q)
starting with Qs = Qε, and conclude that Q is topped by
(R,V,A, M) if the two conditions above are satisfied.

Functions cov(Qs(x̄), Q(z̄)) and size(Qs(x̄), Q(z̄)). We next
define the two functions inductively, based on the structure
of FO query Q. In the process, we also give a bounded query
plan. We will ensure that if cov(Qs(x̄), Q(z̄)) = true and
Qs(x̄) has a size(Qε, Qs(x̄))-bounded rewriting, then Qs(x̄)∧
Q(z̄) has a size(Qε, Qs(x̄) ∧ Q(z̄))-bounded rewriting.

To simplify the discussion, we assume w.l.o.g. the follow-
ing [1]: (a) no variable x occurs both free and bound in Q,
and there exists at most one quantifier for each x; and (b)
there exists no universal quantifier in Q, i.e., we replace each
∀x̄ ψ(x̄) with ¬∃x̄(¬ψ(x̄)); (c) only variables occur in rela-
tion atoms, e.g., R(x, 1) is replaced with ∃y (R(x, y)∧y = 1);
and (d) no relation atoms contain repeated variables, e.g.,
we substitute R(x, y) ∧ x = y for each R(x, x).

The definition is separated into 7 cases below.

(1) Q(z̄) is z = c. For equality atom with a constant,
cov(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = 1.

(2) Q(z̄) is V (z̄). We can access cached views; thus,
cov(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = 1.

That is, constant queries and views have 1-bounded
rewriting and hence, are topped queries.



(3) Q(z̄) is Q′(z̄) ∧ C, where C is (x = y), (x 6= y), (x = c)
or (x 6= c). We define cov(Qs(x̄), Q(z̄)) = cov(Qs(x̄), Q′(z̄)),
and define size(Qs(x̄), Q(z̄)) as size(Qs(x̄), Q′(z̄)) + 1 when
cov(Qs(x̄), Q′(z̄)) = true, and as +∞ otherwise.

Note that given a bounded plan ξ′ for Q′, a bounded plan
for Q is (T = ξ′, σC(ξ′)), increasing the size of ξ′ by 1.

(4) Q(z̄) is Q1(z̄1) ∧ Q2(z̄2), where Q2 is not an (in)equality.
Let µi = cov(Qs(x̄), Qi(z̄i)), si = size(Qs(x̄), Qi(z̄i)), µ′ =
cov(Qs(x̄) ∧ Q1(z̄1), Q2(z̄2)) and s′ = size(Qs(x̄) ∧ Q1(z̄2),
Q2(z̄2)) (i ∈ {1, 2}). Then,

(a) if µ1 = true and Q2(z̄2) is of the form ∃w R(z̄1, z̄
′
2, w̄),

R(Z1 → Z′
2, N) is in A with Z1∪Z′

2 = Z2 and if Qs(x̄)∧
Q1(z̄1) has bounded output under A, then cov(Qs(x̄),
Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = s1 +1; otherwise

(b) if µ1 = µ2 = true, cov(Qs(x̄), Q(z̄)) = true, size(Qs(x̄),
Q(z̄)) = s1 + s2 + λ(z̄1,z̄2), where λ(z̄1,z̄2) is 1 (resp. 4)
if z̄1 ∩ z̄2 is empty (resp. not empty); otherwise

(c) if µ1 ∧ µ′ = true and |Q2| ≤ K for some constant K,
then cov(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) =
s1+s′+λ(z̄1,z̄2) for the same λ(z̄1,z̄2) as in (b); otherwise

(d) cov(Qs(x̄), Q(z̄)) = false and size(Qs(x̄), Q(z̄)) = +∞.

In this case we characterize value propagation shown in
Example 6, e.g., y-value from ∃x, y (V (x, y) ∧ (x = 1)) to
R(y, z) in sub-query Q4 of Q3. Note that Qs is expanded in
case (c) above to propagate z̄1 from Q1 ∧Qs to Q2. That is,
if sub-query Q2(z̄2) of Q does not have a bounded rewriting
with Qs(x̄) (i.e., s2 = false), we may extend Qs(x̄) with
Q1(z̄1) to make Q2(z̄2) bounded when µ′ = true.

When cov(Qs(x̄), Q(z̄)) = true, we have three cases below.

(a) If Q1 has a bounded plan ξ1 with Qs, and if Q2 is (a pro-
jection of) a relation atom covered by a constraint R(Z1 →
Z′

2, N) in A, then Q(z̄) also has a bounded plan with Qs(x̄)
and Q1(z̄1), as long as Qs(x̄) ∧ Q1(z̄1) has bounded output.
Indeed, a plan for Q2 is (T = ξ1, fetch(X ∈ T, R, Z′

2)) of
size |ξ1|+ 1. We instantiate the Z1 attributes of R with the
output of Q1(z̄1), and ensure that the input T of fetch, i.e.,
the output of Qs(x̄) ∧ Q1(z̄1), has bounded size.

(b) If both Q1 and Q2 have bounded plans with Qs, e.g., ξ1

and ξ2, respectively, then Q also has a bounded plan with
Qs, whose size depends on the forms of Q1(z̄1) and Q2(z̄2),
as reflected by different values of λ(z̄1,z̄2). More specifically,
if z̄1 and z̄2 are disjoint, then Q is a production of Q1 and
Q2 and thus has a plan (T1 = ξ1, T2 = ξ2, T3 = T1 × T2),
of size |ξ1| + |ξ2| + 1. Otherwise, i.e., z̄1 ∩ z̄2 6= ∅, then Q is
a join of Q1 and Q2 and thus has a plan (T1 = ξ1, T2 = ξ2,
T3 = ρ(T2), T4 = T1 × T2, T5 = σZ1∩Z2=ρ(Z1∩Z2)(T4)), of
size |ξ1| + |ξ2| + 4. Here ρ renames attributes in Z1 ∩ Z2.

(c) If Q1 has a bounded plan with Qs while Q2 has one
with Qs ∧ Q1 instead of Qs alone, e.g., plans ξ1 and ξ′2,
respectively, then Q has a bounded query plan of size |ξ1|+
|ξ′2|+λ(z̄1,z̄2) along the same lines as (b) above, where |ξ1| =
size(Qs(x̄), Q1(z̄1)) and |ξ′2| = size(Qs ∧ Q1(x̄), Q2(z̄2)).

Note that we extend Qs(x̄) with Q1(z̄1) only if Q1(z̄1) has
a bounded plan using V with Qs. One can verify that this
expansion policy assures that Qs always has a bounded plan
since we start with a tautology query Qs = Qε.

(5) Q(z̄) is Q1(z̄) ∨ Q2(z̄). Let µi = cov(Qs(x̄), Qi(z̄) and
si = size(Qs(x̄), Qi(z̄)) for i ∈ {1, 2}. We define cov(Qs(z̄),
Q(z̄)) = µ1 ∧ µ2, and size(Qs(z̄), Q(z̄)) as s1 + s2 + 1 if
cov(Qs(z̄), Q(z̄)) = true, and as +∞ otherwise.

Intuitively, if Q1 and Q2 have bounded plans ξ1 and ξ2,
respectively, then Q(z̄) has a bounded plan (T1 = ξ1, T2 =
ξ2, T1 ∪ T2), of size |ξ1| + |ξ2| + 1.

(6) Q(z̄) is Q1(z̄) ∧ ¬Q2(z̄). Let µi = cov(Qs(x̄), Qi(z̄)),
si = size(Qs(x̄), Qi(z̄)), µ12 = cov(Qs(x̄), Q1(z̄) ∧ Q2(z̄)),
and s12 = size(Qs(x̄), Q1(z̄) ∧ Q2(z̄)). Then

(a) if µ1 ∧ µ2 = true, then cov(Qs(x̄), Q(z̄)) = true and
size(Qs(x̄), Q(z̄))=s1+s2+1; otherwise

(b) if µ1 ∧ µ12 = true and |Q2| ≤ K for some constant
K, cov(Qs(x̄), Q(z̄)) = true and size(Qs(x̄), Q(z̄)) =
s1 + s12 + 1; otherwise

(c) cov(Qs(x̄), Q(z̄) = false and size(Qs(x̄), Q(z̄)) = +∞.
This is the case that captures how sub-query Q4 of Q3 is

propagated to ∃w R(w, z) in Example 6. When cov(Qs(x̄),
Q(z̄)) = true, we have one of the following three cases.

(a) When µ1 = µ2 = true, it is similar to case (5) above.

(b) If µ1 = µ12 = true, let ξ1 and ξ12 be the plans to Q1(z̄)
and Q1(z̄) ∧ Q2(z̄), respectively, with Qs(x̄). Since Q1(z̄) ∧
¬Q2(z̄) = Q1(z̄)∧¬(Q1(z̄)∧Q2(z̄)), Q(z̄) has bounded plan
(T1 = ξ1, T2 = ξ12, T3 = T1 − T2), of size |ξ1| + |ξ12| + 1.

(c) Otherwise, cov(Qs(x̄), Q(z̄)) = false, and thus size(Qs(x̄),
Q(z̄)) = +∞, i.e., Q has no bounded rewriting.

(7) Q(z̄) is ∃w̄ Q′(w̄, z̄) (w̄ is possibly empty). Let µ′ =
cov(Qs(x̄), Q′(w̄, z̄)) and s′ = size(Qs(x̄), Q′(w̄, z̄)). Then,

(a) if Q′ is R(w̄, z̄) and R(∅ → Z, N) ∈ A, then cov(Qs(x̄),
Q(z̄)) = true and size(Qs(x̄), Q(z̄)) = 1;

(b) if Q′ is R(w̄, z̄), R(X → Z′, N) ∈ A, X ∪ Z′ = Z and
Qs(x̄) has bounded output under A, then cov(Qs(x̄),
Q(z̄))=true, size(Qs(x̄), Q(z̄)) = size(Qε, Qs(x̄)) + 1;

(c) otherwise, cov(Qs(x̄), Q(z̄)) = cov(Qs(x̄), Q′(w̄, z̄))
and size(Qs(x̄), Q(z̄)) = size(Qs(x̄), Q′(w̄, z̄)) + 1 if
cov(Qs(x̄), Q(z̄)) = true, and as +∞ otherwise.

Note that Qs(x̄) may not have bounded output even when
it has a bounded rewriting. Therefore, in case (b) above we
have to ensure that Qs(x̄) has bounded output in order to
propagate x̄-value from Qs(x̄) to R(z̄), for a fetch operation
to use the x̄-value. Moreover, observe the following.

(a) When Q(z̄) is a projection of a relation atom, if it is cov-
ered by a constraint R(∅ → Z, N) in A, then fetch(∅, R, Z)
is an 1-bounded plan for Q(z̄). Otherwise if it is covered by
R(X → Z′, N) and Qs(x̄) has bounded output, then it has
a plan (T1 = ξs, T2 = fetch(X ∈ T1, R, Z′)), where ξs is the
plan for Qs. Note that Qs has a bounded plan by induction.

(b) Otherwise, Q(z̄) has a bounded plan if Q′(w̄, z̄) has one.
Let ξ′ be the plan for Q′ with Qs. Then (T1 = ξ′, T2 =
πZ(T1)) of size |ξ′| + 1 is a plan for Q(z̄) with Qs(x̄).

Example 7: We next show that Q3 of Example 6 is topped
by (R1,A2,V3, 13). Denote the sub-queries of Q3 as follows:

q1 = V3(x, y) ∧ (x = 1), q2 = ∃x q1,
q3 = q2 ∧ R(y, z) (thus Q4 = ∃y q3), q4 = ∃w R(z, w).

Then one can easily verify the following:
(a) cov(Qε, Q3) = (cov(Qε, Q4) ∧ cov(Qε, q4))

∨(cov(Qε, Q4) ∧ cov(Qε, Q4 ∧ q4)),
(b) cov(Qε, Q4) = cov(Qε, q3) = (cov(Qε, q2) ∧ cov(Qε,

R(y, z)) ∨ (cov(Qε, q2) ∧ cov(q2, R(y, z)),
(c) cov(Qε, q2) = cov(Qε, q1) = true,
(d) cov(q2, R(y, z)) = true (since q2 has bounded output),
(e) from these it follows that cov(Qε, Q4) = true,
(f) cov(Qε, Q4 ∧ q4) = (cov(Qε, Q3) ∧ cov(Qε, q4))

∨(cov(Qε, Q4) ∧ cov(Q4, q4)) = true.



Thus cov(Qε, Q3) = true. One can easily verify that size(Qε,
Q3) = 13. Thus Q3 is topped by (R1,A2,V3, 13). 2

Having defined topped queries, we now prove Theorem 15.

Proof sketch of Theorem 15. (a) Suppose that Q is
an FO query with an M -bounded rewriting, i.e., Q has an
M -bounded query plan ξ(Q,V,R) under A. We show that
there exists a query Qξ topped by (R,V,A, M) such that
ξ ≡A Qξ. This is verified by induction on M , verifying each
case and step of ξ. In this direction, Qs = Qε suffices; in
other words, we do not need to expand Qs as described in
cases (4c) and (6b) above (to be elaborated shortly).

(b) We show that every query Q topped by (R,V,A, M)
has a size(Qε, Q)-bounded rewriting using V under A. The
proof needs the following lemma: if cov(Qs, Q) = true, and
if Qs has a size(Qε, Qs)-bounded plan, then Qs ∧ Q has
a size(Qε, Qs ∧ Q)-bounded plan. This is verified by in-
duction on the structure of Q. For instance, when Q(z̄)
is Q1(z̄1) ∧ Q2(z̄2), cov(Qs, Q(z̄)) is true and Qs has a
size(Qε, Qs)-bounded plan, we know that cov(Qs, Q1(z̄1))
is also true. By the induction hypothesis we have that
Qs∧Q1(z̄1) has a size(Qε, Qs∧Q1(z̄1))-bounded plan. Thus
either cov(Qs, Q2(z̄2)) = true or cov(Qs ∧ Q1(z̄1), Q2(z̄2))
= true. In both cases, again by the induction hypothesis,
Qs ∧ Q1 ∧ Q2 has a size(Qε, Qs ∧ Q1 ∧ Q2)-bounded plan.

(c) It takes PTIME in |R|, |Q|, |V|, |A| and M to check
whether an FO query is topped by (R,V,A, M). Indeed, it is
easy to see that both cov(Qε, Q) and size(Qε, Q) are PTIME

functions, which use a PTIME oracle to check bounded out-
put for cases (4a) and (7b) of topped queries. 2

Remark. Observe the following. (a) As mentioned above,
to prove Theorem 15(1), it suffices to use Qs = Qε and does
not need to expand Qs (for cases (4c) and (6b)). We allow
value propagation in cases (4c) and (6b) to cover queries
that are commonly used and have a bounded rewriting. (b)
The class of topped queries is quite different from the rules
for x̄-controllability [18] and the syntactic rules for bounded
evaluability of CQ [17] and for FO [10], particularly in the
use of Qs to check bounded output of views and the function
size(Qs(x̄), Q(z̄)) to ensure the bounded size of query plans.

5.3 Size Bounded Queries
We next define size-bounded queries and prove Theo-

rem 16. We remark that there are other forms of effective
syntax for FO queries with bounded output. To simplify the
discussion, below we present a straightforward one.

Size-bounded queries. An FO query Q(x̄) is size-bounded
under an access schema A if it is of the following form:

Q(x̄) = Q′(x̄) ∧ ∀x̄1, . . . , x̄K+1

`

Q′(x̄1) ∧ · · · ∧ Q′(x̄K+1)
→

W

i,j∈[1,K+1],i6=j x̄i = x̄j

´

.

where K is a natural number, and Q′ is an FO query.
Intuitively, an FO query Q′(x̄) has bounded output under

A if there exists a bound K such that it is A-equivalent to
Q(x̄) of the form above, which explicitly states that Q′(x̄)
has at most K distinct answers for a constant K.

This class of size-bounded queries suffices for Theorem 16.

Proof of Theorem 16. (a) Consider an FO query Q(x̄)
having bounded output under A. By the definition of queries
with bounded-output (Section 3.1), there exists a natural

Queries Complexity Condition

FO undecidable (Th 1)
CQ, UCQ, ∃FO+ Σp

3-complete (Th 1)
CQ, UCQ, ∃FO+ Σp

3-complete (Cor 6) fixed R,A, M

CQ NP-complete (Prop 13) only FDs in A

Fixed R,A, M and V for the following
FO undecidable (Cor 5)

CQ, UCQ, ∃FO+ C
p
2k+1-complete (Th 7)

CQ NP-complete (Prop 13) only FDs in A

ACQ coNP (Th 10)
ACQ coNP-complete (Th 9) restricted A

ACQ PTIME (Cor 12) only FDs in A

Table 2: Complexity of VBRP(L)

number K such that for any instance D of R, if D |= A,
then |Q(D)| ≤ K. Construct Q′(x̄) from Q(x̄) as follows:

Q′(x̄) = Q(x̄) ∧ ∀x̄1, . . . , x̄K+1

`

Q(x̄1) ∧ · · · ∧ Q(x̄K+1)
→

W

i,j∈[1,K+1],i6=j(x̄i = x̄j)
´

,

Obviously, Q′(x̄) is a size-bounded query. Moreover, Q′(x̄)
≡A Q(x̄), since Q(x̄) has output bounded by K, and hence,
for any D |= A, it is easy to see that Q(D) = Q′(D).

(b) Consider a size-bounded query Q(x̄) of the form above.
Observe that for any D, if Q′(D) contains more than K an-
swer tuples, then Q(D) = ∅. Otherwise, Q(D) = Q′(D) and
Q(D) includes at most K tuples. Putting these together, we
have that |Q(D)| ≤ K. That is, Q has bounded output.

(c) By the definition of size-bounded queries, it is immedi-
ate to syntactically check whether an FO query Q is size-
bounded. It takes PTIME in the size |Q| of Q. 2

6. CONCLUSION
We have formalized bounded query rewriting using views

under access constraints, studied the bounded rewriting
problem VBRP(L) when L is ACQ, CQ, UCQ, ∃FO+or FO,
and established their upper and lower bounds, all matching,
when M,R,A and V are fixed or not. The main complex-
ity results are summarized in Table 2, annotated with their
corresponding theorems. We have also provided an effective
syntax for FO queries with a bounded rewriting, along with
an effective syntax for FO queries with bounded output.

There is much more to be done. One topic for future
work is to study bounded rewriting Q′ in a query language
more powerful than the one in which query Q and views V
are defined, e.g., when Q and V are CQ while Q′ is a UCQ.
We have only considered the setting when Q, Q′ and V are
in the same language. It is also interesting to study which
language is powerful enough to express all bounded rewrit-
ing, along the same lines as [31]. Another topic concerns
bounded rewriting and bounded evaluability [10, 17] when
we allow the amount of data accessed from the underlying
dataset D to be an α-fraction of D, for a small α in the
range of [0, 1], rather than to be bounded by a constant.
Similarly, we may allow M to be a function of resources and
workload, rather than a constant. The third topic is to study
bounded view maintenance, to incrementally maintain V(D)
by accessing a bounded amount of data in D, in response to
changes to D. The fourth topic is to develop methods for
selecting views V and discovering access constraints A, such
that under A, the number of queries that have a bounded
rewriting using V is maximized in a given application.
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