skip to main content
10.1145/2903150.2906827acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article

A heterogeneous quantum computer architecture

Authors Info & Claims
Published:16 May 2016Publication History

ABSTRACT

In this paper, we present a high level view of the heterogeneous quantum computer architecture as any future quantum computer will consist of both a classical and quantum computing part. The classical part is needed for error correction as well as for the execution of algorithms that contain both classical and quantum logic. We present a complete system stack describing the different layers when building a quantum computer. We also present the control logic and corresponding data path that needs to be implemented when executing quantum instructions and conclude by discussing design choices in the quantum plane.

References

  1. T. A. Baart et al. Single-spin ccd. Nature nanotechnology, 2016.Google ScholarGoogle Scholar
  2. S. Beauregard. Circuit for shor's algorithm using 2n+ 3 qubits. arXiv preprint quant-ph/0205095, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Bombin and M. Martin-Delgado. Topological computation without braiding. Phys. Rev. Lett., 98(16):160502, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Bombin and M. A. Martin-Delgado. Topological quantum distillation. Phys. Rev. Lett., 97(18):180501, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara. Subsystem surface codes with three-qubit check operators. arXiv:1207.1443, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. C. Bultink et al. In preparation, 2016.Google ScholarGoogle Scholar
  7. A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54(2):1098, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Córcoles et al. Demonstration of a quantum error detection code using a square lattice of four super-conducting qubits. Nature Comm., 6, 2015.Google ScholarGoogle Scholar
  9. D. Deutsch. Quantum theory, the church-turing principle and the universal quantum computer. In Proc. of the Royal Society of London A: Math., Physical and Engineering Sciences, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. P. DiVincenzo. Fault-tolerant architectures for superconducting qubits. Physica Scripta, 2009(T137):014020, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. P. Feynman. Simulating physics with computers. Intern. J. of Theoretical physics, 21(6):467--488, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fowler et al. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86(3):032324, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fowler et al. Towards practical classical processing for the surface code: Timing analysis. Phys. Rev. A, 86(4):042313, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  14. D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A, 54(3):1862, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. S. Green et al. An introduction to quantum programming in quipper. In Reversible Computation, pages 110--124. Springer, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Heckey et al. Compiler management of communication and parallelism for quantum computation. In Proc. of the 20th Int. Conf. on Architectural Support for Prog. Languages and Oper. Systems, pages 445--456. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. D. Hill et al. A surface code quantum computer in silicon. Science advances, 1(9):e1500707, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  18. Horsman et al. Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. JavadiAbhari et al. Scaffcc: A framework for compilation and analysis of quantum computing programs. In Proc. of the 11th ACM Conference on Computing Frontiers, page 1. ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. C. Jones et al. Layered architecture for quantum computing. Phys. Rev. X, 2(3):031007, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Kelly et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541):66--69, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Y. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2--30, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  23. E. Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39--44, 03 2005.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Mariantoni et al. Implementing the quantum von neumann architecture with superconducting circuits. Science, 334(6052):61--65, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  25. Meter and other. Arithmetic on a distributed-memory quantum multicomputer. ACM J. on Emerging Technologies in Computing Systems, 3(4):2, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. T. Monz et al. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett., 106(13):130506--, 03 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge university press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Omer. Structured quantum programming. Information Systems, page 130, 2003.Google ScholarGoogle Scholar
  29. M. Oskin, F. T. Chong, and I. L. Chuang. A practical architecture for reliable quantum computers. Computer, 35(1):79--87, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. otherss. A fault tolerant, area efficient architecture for shor's factoring algorithm. ACM SIGARCH Computer Architecture News, 37(3):383--394, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Paler, I. Polian, K. Nemoto, and S. J. Devitt. A compiler for fault-tolerant high level quantum circuits. arXiv:1509.02004, 2015.Google ScholarGoogle Scholar
  32. D. Riste, S. Poletto, M. Z. Huang, et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat Commun, 6, 04 2015.Google ScholarGoogle ScholarCross RefCross Ref
  33. J. W. Sanders and P. Zuliani. Quantum programming. In Mathematics of Program Construction, pages 80--99. Springer, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Foundations of Computer Science, 1994, 35th Annual Symp. on, pages 124--134. IEEE, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A, 52(4):R2493, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  36. A. Steane. Multiple-particle interference and quantum error correction. In Proceedings of the Royal Society of London A: Math., Phys. and Eng. Sciences, 1996.Google ScholarGoogle Scholar
  37. J. Stephen. Quantum algorithm zoo. list available at http://math.nist.gov/quantum/zoo, 2011.Google ScholarGoogle Scholar
  38. Measuring and manipulating individual quantum systems, 2012.Google ScholarGoogle Scholar
  39. R. Van Meter and C. Horsman. A blueprint for building a quantum computer. Comm. of the ACM, 56(10):84--93, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. D. Wecker, M. B. Hastings, and M. Troyer. Towards practical quantum variational algorithms. arXiv preprint arXiv:1507.08969, 2015.Google ScholarGoogle Scholar
  41. D. Wecker and K. Svore. Liqui|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467, 2014.Google ScholarGoogle Scholar
  42. X.-C. Yao et al. Experimental demonstration of topological error correction. Nature, 482(7386):489--494, 02 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A heterogeneous quantum computer architecture

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CF '16: Proceedings of the ACM International Conference on Computing Frontiers
          May 2016
          487 pages
          ISBN:9781450341288
          DOI:10.1145/2903150
          • General Chairs:
          • Gianluca Palermo,
          • John Feo,
          • Program Chairs:
          • Antonino Tumeo,
          • Hubertus Franke

          Copyright © 2016 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 16 May 2016

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          CF '16 Paper Acceptance Rate30of94submissions,32%Overall Acceptance Rate240of680submissions,35%

          Upcoming Conference

          CF '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader