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ABSTRACT
Modal real-time stream processing applications often con-
tain cyclic dependencies and are typically executed on mul-
tiprocessor systems with processor sharing. Most real-time
operating system kernels for these systems support Static
Priority Pre-emptive (SPP) scheduling, however there is cur-
rently no suitable temporal analysis technique available for
this type of systems.

In this paper we present a compositional temporal analy-
sis approach for modal and cyclic stream processing appli-
cations executed on SPP scheduled multiprocessor systems.
In this approach locks and barriers are added such that the
temporal behavior of modes can be characterized indepen-
dently. As a result, the composition of modes does not
change their characterization. This enables the use of an ex-
isting Structured Variable-Rate Phased Dataflow (SVPDF)
model based dataflow analysis technique to determine the
worst-case temporal behavior. The SVPDF model and the
parallel implementation including locks and barriers are gen-
erated by a multiprocessor compiler.

The applicability of the analysis approach is demonstrated
using a WLAN 802.11p application. Conditions under which
pipelined execution can be achieved are identified. The anal-
ysis results are verified with a dataflow simulator that sup-
ports sharing of resources.

CCS Concepts
•Software and its engineering→ Formal software ver-
ification;

Keywords
Real-time, dataflow, multiprocessor systems, modal systems,
automatic parallelization

1. INTRODUCTION
Stream processing applications such as software defined

radios and vision applications are typically executed on em-
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bedded multiprocessor systems under real-time constraints.
These applications often contain multiple processing modes
and cyclic dependencies. Examples of processing modes
found in software defined radios are the detection, synchro-
nization and decoding mode. The cyclic dependencies are a
result of feedback loops and the use of bounded FIFO buffers
for inter-task communication.

Stream processing applications are described as task graphs
of which the tasks are executed on shared processors. The
tasks executed on a processor are scheduled according to a
scheduling policy. Examples of scheduling policies are Time
Division Multiplex (TDM), Round-Robin (RR) and SPP.

The minimum throughput of a modal stream process-
ing application can be determined using dataflow analysis
techniques given a Variable-Rate Phased Dataflow (VPDF)
[17] or a Finite State Machine-based Scenario-Aware Data-
Flow (FSM-SADF) [2] model if budget schedulers are ap-
plied [15, 16]. An example of a budget scheduler is TDM.
For these budget schedulers it is possible to derive the worst-
case response time of each task independently of the sched-
ule of the other tasks, after which a compositional temporal
analysis method can be applied. However, many embedded
operating systems only support the SPP scheduling policy.
Dataflow analysis techniques for systems that use SPP have
recently been introduced for multi-rate applications that can
be modeled as SDF graphs [6]. However, there is currently
no temporal analysis technique for modal stream processing
applications that contain cycles and that are executed on
multiprocessor systems which make use of SPP task schedul-
ing.

In this paper we present a compositional temporal analy-
sis approach for modal stream processing applications exe-
cuted on multiprocessor systems using SPP task scheduling
per processor. A compiler inserts locks and barriers in the
application such that the temporal behavior of each appli-
cation mode can be characterized in isolation. The locks
ensure that tasks belonging to different modes do not inter-
fere, and the barriers make the response times of the tasks
independent of the production moments of tasks that be-
long to other modes. The locks and barriers result in addi-
tional constraints that are included in a hierarchical SVPDF
model of the application. This model is used to verify the
satisfaction of the throughput constraint and to compute
the required buffer sizes by recursively applying a recently
introduced dataflow analysis technique. Furthermore, it is
shown that the approach supports response times of tasks
larger than the period of the source, and allows the use of
budget scheduling besides SPP scheduling. The applicabil-
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ity of the approach is demonstrated using a WLANp ap-
plication. This application can be executed in a pipelined
fashion despite the additional constraints introduced by the
locks and barriers.

The outline of this paper is as follows. We first discuss
related work in Section 2. The basic idea behind our anal-
ysis approach is presented in Section 3. Section 4 describes
the analysis flow we use to analyze modal applications. The
SVPDF model that we use is described in Section 5. In
order to be able to verify if a periodic source can execute
strictly periodically when switching between modes, addi-
tional constraints are introduced into the SVPDF model as
described in Section 6. The response time equations that are
introduced in Section 7 can be used to apply the presented
analysis approach to systems in which also other scheduling
policies are applied than SPP. Conditions under which re-
sponse times larger than the source period are allowed are
stated in Section 8. The applicability of the analysis ap-
proach is demonstrated in Section 9. The conclusions are
stated in Section 10.

2. RELATED WORK
Mode changes in SPP scheduled single processor systems

have been studied extensively [5,12,13]. These works present
analysis techniques to determine whether deadline misses
can occur during a mode change. Overloads can be pre-
vented by the schedulers by delaying the release of tasks [11].
A limitation of these techniques is that the next mode tran-
sition may only be started after the previous mode transition
is completed. Furthermore, these techniques are only appli-
cable for acyclic task graphs.

Dataflow models are applicable for cyclic task graphs, and
a number of dynamic dataflow models have been developed
that are also suitable for modal stream processing applica-
tions. In the FSM-SADF [2] dataflow model modes are de-
scribed as scenarios where the possible transitions between
scenarios are encoded in a non-deterministic finite-state-
machine. Processor sharing can be supported if schedulers
are applied that belong to the class of budget schedulers to
which TDM schedulers belong.

In this paper we use the SVPDF [4] model that allows a
hierarchical description of nested modes in an application.
The dependencies are explicit in this model and it has been
shown that a deadlock-free model and implementation can
be automatically derived from a sequential description of an
application in the OIL language [3]. The SVPDF model has
only been used in combination with budget schedulers. In
this paper, however, we will show that the SVPDF model
can be used if SPP schedulers are applied.

Throughput analysis of systems with multiple applications
that are modeled as Mode-Controlled Dataflow (MCDF) and
scheduled by SPP has been presented in [10]. However, this
approach only addresses interference between tasks that be-
long to different applications, while in this paper we derive
the interference between tasks of the same application.

Only recently, a throughput analysis has been introduced
in [7] for multi-rate applications that are modeled by Syn-
chronous Dataflow (SDF) graphs and that are executed on
multiprocessor systems using SPP schedulers. By introduc-
ing an enabling rate characterization in [6], the accuracy of
the analysis technique is improved. The analysis flow based
on the enabling rate characterization is further improved
in [18] by taking into account that cyclic dependencies limit

the maximum interference between tasks. We make use of
this observation in this paper, since we introduce cycles to
make the execution of tasks mutually exclusive.

Locks have been introduced in modal applications to make
tasks scheduled by budget schedulers mutually exclusive,
which can improve the accuracy of dataflow analysis [8]. In
this paper we generalize this approach for budget schedulers,
making it applicable for systems with SPP schedulers.

3. BASIC IDEA
In this section we use a didactic example to explain the

basic idea behind our compositional temporal analysis ap-
proach. This approach is suitable for modal stream process-
ing applications that are executed on multiprocessor sys-
tems using SPP task scheduling per processor. The peri-
odic source in these applications imposes a throughput con-
straint.

The task graph used in our didactic example is derived
by a multiprocessor compiler from the OIL program that is
shown in Figure 1a. An OIL program is a kind of C-program
with some adaptations that facilitate automatic paralleliza-
tion. The OIL program contains two potentially endlessly
iterating while-loops, where each while-loop corresponds to
a mode. After parallelization, the task graph in Figure 1b
is obtained. Each task in the graph corresponds to a func-
tion in the OIL program, e.g. τa corresponds to function
a. The color of a task represents the mapping to a proces-
sor. Each FIFO buffer in the task graph corresponds to a
variable that is communicated between two functions. The
source task has two output buffers such that data can be
sent to the tasks that belong to an active mode.

Besides a task graph, also an SVPDF dataflow model is
created by our compiler. This model contains nested blocks
where each block corresponds to a while-loop in the OIL
program. These blocks are depicted as dashed blocks in the
SVPDF model. The actors in a block correspond with the
functions inside the while-loop. The SVPDF model that
corresponds to our didactic OIL program is shown in Fig-
ure 1c. The nodes on the boundaries of the dashed blocks
are called port actors. The port actors at the inputs of a
block perform up-sampling, i.e. multiply the number of to-
kens with a factor that is equal to the number of iterations
of the while-loop. The port actors at the outputs of a block
perform down-sampling. Port actors have by definition a
firing duration equal to zero. The other actors have a fir-
ing duration that corresponds to the response times of the
tasks. Derivation of these response times is discussed in
subsequent paragraphs. The solid black edges between the
actors in the SVPDF model denote dependencies between
actor firings. The use of FIFO buffers with a bounded ca-
pacity in the task graph results in cyclic dependencies in
the SVPDF model. The number of tokens on a cycle in the
SVPDF model corresponds to the capacity of a buffer. The
reason for the inclusion of the other edges in the SVPDF
model will be explained in subsequent paragraphs.

The SVPDF model is the input of our compositional tem-
poral analysis method which is described in Section 4. This
method requires that response times of tasks can be deter-
mined independently of when tasks in other modes execute.
Given that the response times are independent then the fir-
ing durations of the actors in one mode is also independent
of the firing durations of the actors in another mode. Be-
cause the firing durations are independent we can analyze



source ADC @ 250 kHz ;
loop{

loop{
x=a(ADC) ;
y=b ( ) ;

}while ( . . ) ;
loop{

z=d( y ) ;
c(ADC, x , z ) ;

}while ( . . ) ;
} while (1 ) ;

(a) Modal OIL program
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(b) Corresponding task graph
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(c) SVPDF mode of Figure 1a including additional constraints of
a lock and barriers

Figure 1: Example of a modal program and the correspond-
ing task graph and dataflow model

whether each deepest nested block fulfills the constraints
imposed by the source independently of other blocks. After
this is confirmed, we can ascend the hierarchy of blocks and
perform the same analysis on the next hierarchical level of
the SVPDF model.

The fact that response times of tasks in one mode can be
analyzed independently of tasks in another mode is achieved
by making use of locks and barriers. Locks prevent that
tasks belonging to different modes can execute at the same
moment in time. Barriers are used to verify that all inputs
of a mode are available before the periodic source in a mode
finishes its first execution. As a result, the response times
can be determined relative to the executions of the periodic
source in a block and become independent of the production
moments of tasks that belong to other modes.

Dataflow analysis for systems that make use of non-starva-
tion-free schedulers such as SPP has been described in [6,7].
These approaches make use of a slightly modified version of
the Worst-Case Response Time (WCRT) equation that has
been proposed by Tindell [14]. This response time equation
computes a so-called busy period which calculates the max-
imum time it takes to finish q executions of τi and is defined
as:

wi(q) = q · Ci +
∑

j∈hp(i)

⌈
Jj + wi(q)

Pj

⌉
· Cj (1)

where Jj is the jitter in the so-called external enabling time
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Figure 2: Barrier at t = 4µs guarantees that no task belong-
ing to a mode can start before all inputs are available and
the source of that mode finishes its firing

of τj and hp(i) the set of tasks executing on the same pro-
cessor with a priority higher than τi. The external enabling
time of a task is defined as the time at which the task can
read sufficient locations from the adjacent buffers. Only
values of q for which it holds that wi(q) ≥ q · Pi need to be
considered in (1) according to [14].

According to [6,7] is the worst-case response time relative
to the external enabling time of a task equal to:

R̂i = max
1≤q

(wi(q)− (q − 1) · Pi) (2)

From (1) and (2) we conclude that the WCRT of τi de-
pends on the jitter Jj of the inputs of the higher priority
tasks on the same processor. These inputs can be produced
by tasks in a different mode. As a result, the WCRT of τi
cannot be determined independently of the tasks in other
modes, because the jitter can be a result of the jitter in the
finish times of tasks in other modes. This is even the case
if the execution of these tasks has been made mutually ex-
clusive by making use of locks. Therefore, besides the locks,
also barriers are needed to make the jitter of tasks in a mode
independent of the production moments of tasks that belong
to other modes.

Barriers are used to guarantee that none of the tasks in
a mode can start before all inputs for that mode are avail-
able and the source inside the mode has finished its firing.
Therefore, the start times of vc and vd in Figure 2 are only
related to the finish time of the source actor in the mode,
adc2, and not to the arrival times of the input data. As a
result, the jitter in the production moments of tasks outside
a mode has no influence on the response time of the tasks
that belong to the mode.

A barrier in the implementation is modeled with addi-
tional dependencies in the SVPDF model. These depen-
dencies are depicted as orange dashed arrows in Figure 1c.
Moreover, the locks which make the execution of tasks mu-
tually exclusive are modeled with the red dotted edges in
Figure 1c. These edges in combination with a single token
on the cycles created by these edges guarantee that actors
belonging to different blocks, and thus modes, can not fire
simultaneously.

4. ANALYSIS FLOW
In this section the applied temporal analysis flow is pre-

sented. In this flow, blocks in the SVPDF model are ana-
lyzed recursively, starting at the deepest nested blocks in the
model, and subsequently one level upwards at a time after
flattening the blocks of a hierarchical level. The temporal
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Figure 3: Overview of the analysis flow for modal applica-
tions

analysis flow incorporates the flow presented in [18] for the
computation of the worst-case response times of the tasks.
We present first an overview of the steps in the analysis flow
after which the flattening step in the flow is explained in
more detail in Section 4.1.

The applied analysis flow is shown in Figure 3. This flow
is used to verify whether the temporal constraint imposed
by the periodic source (sink) in the blocks can be satisfied.
To verify these constraints the worst-case response times of
the tasks are computed. The last step in the flow computes
sufficiently large buffer capacities.

The analysis flow in Figure 3 contains five steps of which
some of the steps are executed repeatedly. Step 2 consists
internally of three steps which are executed repeatedly. In
step 0, the input information for the analysis flow is gath-
ered. This is the information about the topology of the task
graph, the task-to-processor assignment, the applied task
scheduling policy for each processor including the scheduling
parameters such a priorities, worst- and best-case execution
times of the tasks, and the temporal constraints imposed by
the periodic source and/or sink inside a block.

Based on the nesting of the functions in an OIL program,
an SVPDF model is generated in step 1. Locks and barriers
are inserted to enable compositional analysis of blocks as
discussed in Section 3. As a consequence, the response times
of tasks belonging to a mode can be determined by analyzing
each mode in isolation.

In step 2a of the flow, a lower and an upper bound on
the response time of the tasks in a block at the deepest
hierarchical level is computed. This is done under the as-
sumption that the inputs of the block have arrived before
the source of the task has finished its execution, which is
verified later. These response times are used to update the
minimum and maximum firing durations of the actors in the
SVPDF model in step 2b. Two periodic schedules are com-
puted using these firing durations, which bound the start
times of the actors. From these start times, the jitter in
the production moments of the actors is computed. Given
these jitters the response times are recomputed in step 2a,

2b, and 2c, which are repeated until the jitters and response
times remain unchanged, or exceed a predefined limit. Step
2 is repeated until all blocks at the deepest hierarchical level
have been analyzed.

Once the response times of all the tasks at the deepest
hierarchical level have been computed the modes at that
level are flattened in step 3. The flattening step is described
in more detail in the next section.

1 23 45

Figure 4: An SVPDF model with nested blocks

Step 2 and 3 are repeated until all levels in the hierarchy of
the application are flattened and the top level is reached, or a
violation of the temporal constraints is detected. The order
in which modes are flattened is explained using Figure 4
which shows the nested block structure of an SVPDF model.
In the first iteration of the analysis flow the modes at the
deepest level are analyzed, i.e., mode 1 and 2. After these
modes are flattened, mode 3 and 4 are analyzed at the next
hierarchical level. Finally, mode 5 can be analyzed after all
other modes have been flattened.

In the final step of the flow, the buffer capacities are deter-
mined, given the computed best-case and worst-case sched-
ules for the actors in each of the blocks.

4.1 Flattening of a hierarchical level
The flattening step of the analysis flow removes the hi-

erarchical boundaries of the blocks of one hierarchical level
in an SVPDF model. This step is performed after the re-
sponse times of the actors in the blocks at one hierarchical
level have been derived using the analysis flow in Figure 3.
In the remainder of this section we will first describe how a
hierarchical level can be flattened. Next, we introduce the
constraints on the flattening step imposed by the periodic
source. Finally, we will discuss the consequences of a flat-
tened block on the jitter and response time of tasks at a
higher hierarchical level.

The WCRT of tasks can be calculated under the assump-
tion that tasks in a block execute an infinite number of times.
This is possible because the WCRT equation as stated in (2)
assumes an infinite number of executions of strictly period-
ically executing tasks. However, tasks in a block do not
execute after a switch to a different block. Therefore the
tasks do not execute infinitely often, however, tasks that do
not execute, do not cause interference, which reduces the
response time. The actual number of times a task executes
depends on the value of a so-called parameter [3] of a block,
which indicates how often a block will execute. The param-
eter can range from one to infinite and is only a modeling
construct without a counterpart in reality. Therefore an up-
per bound on the actual response time of the tasks in a block
can be calculated by assuming that tasks in a block execute
infinitely often.

The structure in an SVPDF model allows blocks to be
flattened. A block is flattened by setting the response times
of tasks inside the block to the WCRT calculated under
the worst-case assumption that tasks in a block execute in-
finitely often. Therefore, the WCRT is valid for every pos-



va vb

p

vc

vd ve

(a) Hierarchical SVPDF model

va vb

vc

vd ve

(b) HSDF model

Figure 5: Flatting an example of an SVPDF model into a
HSDF model

sible parameter value. As a result, only a single iteration of
the block needs to be considered at higher hierarchical levels.
In the SVPDF model a single iteration of a block is equal to
a parameter value of one of the corresponding blocks. A pa-
rameter value of one flattens the block, since the boundaries
of a block and the port actors become redundant because up-
or down-sampling of tokens is not needed anymore. There-
fore, the SVPDF model in Figure 5a can be flattened into the
Homogeneous Synchronous Dataflow (HSDF) model shown
in Figure 5b. The flattened model can be analyzed using
the approach presented in [18], which is applied in step 2 of
our flow.

A flattened block should still adhere to the constraints
imposed by the periodic source inside the block. The con-
straints are a result of the source task in an application that
must be able to execute strictly periodically independent of
the block that is active. Two constraints must therefore be
satisfied [3]. The first one states that when the same block
is executed repeatedly the source actor in that block should
execute periodically. The other constraint that must hold
is that the source in the block after a mode switch must
execute exactly one period after the last execution of the
source in the previous block. The first constraint is fulfilled
by enforcing that a strict periodic schedule is computed for
the source actor in a block. The second constraint is veri-
fied in the analysis flow, as will be discussed in Section 6.
Satisfaction of both constraints indicate that a schedule is
valid for all parameter values.

Now, it might appear that flattening a block is not allowed
because the production moments of tasks in nested blocks
seem to depend on the number of iterations a block is exe-
cuted. For example, in Figure 5a the enabling of vd depends
on the finish time of the p’th execution of vb. The enabling
jitter of vd therefore appears to depend on the block param-
eter value p which would prevent the block to be flattened.
However, we can use the fact that the computed schedules
of the actors in a block are periodic. The actual start time
of an execution of a task τi will be in between the schedule
that forms a lower bound, ši, and the periodic schedule that
is used as an upper bound, ŝi. Therefore we can conclude
from (6) that the enabling jitter of vb is independent of p.

Jd(p) = ŝd − šd (3)

= (ŝb(p) + ρ̂b)− (šd(p) + ρ̌b) (4)

= ŝb + (p− 1) · Pb − šd + (p− 1) · Pb + ρ̂b − ρ̌b (5)

= ŝb − šd + ρ̂b − ρ̌b (6)

In the equations above Jb(p) is the enabling jitter of vb for
iteration p, ŝb the latest possible enabling time of vb in the
periodic schedule and šb the earliest possible enabling time.
The jitter caused by τb itself depends on its maximum firing

duration ρ̂b and minumum firing duration ρ̌b. Because the
enabling jitter for vb is independent of p, we can use a single
iteration of a block for the calculation of the enabling jitter
of actors at a higher hierarchical level.

The response time of tasks at a higher hierarchical level
can be calculated by setting the parameters of the nested
blocks to one, because this results in the maximum inter-
ference for tasks at a higher level. The response time for
the tasks at a higher hierarchical level is determined by the
response time, period, and jitter of tasks at that level ac-
cording to (2) after additional constraints are added to en-
sure that blocks can be analyzed in isolation. The jitter
caused by tasks in nested blocks is independent of the pa-
rameter value of that block, according to (6) as explained in
the previous paragraph. Increasing the parameter value of a
block changes the period of the tasks at a higher hierarchi-
cal level. Executing a nested block more often results in a
less frequent execution of the tasks at a higher hierarchical
level. The period of these tasks is thus effectively increased
by executing nested blocks more often. An increase of the
period of tasks results in lower worst-case response time ac-
cording to (2). The worst-case response times are therefore
also independent of the parameter value of a block. There-
fore, the minimal parameter value of one can be used for
nested blocks to calculate an upper bound of the response
time of tasks at higher hierarchical levels.

As an example, consider flattening of the nested block
in the SVPDF model in Figure 5a, such that the response
time of the tasks at the highest level in the model can be
determined. First, the response times of tasks τb and τe
at the deepest nested level are determined by analyzing
their blocks. The blocks are flattened by fixing the response
times of these two tasks to the computed worst-case response
times, and removing the boundaries of the blocks as shown
in Figure 5b. Using fixed values for the response times of
the tasks in nested blocks is allowed since the additional
constraints that are a result of the added locks and barri-
ers ensure that tasks outside a block cannot increase the
response time of tasks inside a block. After the nested block
are flattened, the response times of τa, τc and τd can be
calculated.

Flattening of a hierarchical level removes some potentially
useful information. Consider again the SVPDF model shown
in Figure 5a where the colors represent the mapping to a
processor. On one processor, we have that vc has a lower
priority then vd. The time at which vd becomes enabled is
dependent on p. From a certain value of p, vc will always
finish before vd is enabled and therefore vd will not interfere
with vc. The knowledge about a minimum number of block
executions can be used as offset information to obtain a less
pessimistic response time for vc. The use of offset informa-
tion to obtain more accurate results for cyclic applications
that do not contain modes is presented in [9].

5. SVPDF MODEL
In this section we present the SVPDF model. The SVPDF

model is based on the VPDF model but contains additional
structure in the form of hierarchical blocks. These blocks
can be seen as do-while loops that iterate for an unknown
number of times. In Section 7.1 properties of the model are
used to prove that tasks in different blocks execute mutually
exclusive when locks are applied.

An SVPDF model is a directed graph G = (V,E, P, δ, ρ)



that consists of a set of actors V connected by a set of di-
rected edges E. An actor vi ∈ V communicates to another
actor vj by producing tokens on an edge eij ∈ E. Initially
there are δ(eij) (δij in short) tokens on an edge. An actor
vi is enabled to fire if there are tokens on all its incoming
edges. After its firing duration ρi a token is produced on all
its outgoing edges. The number of tokens on a cycle remains
constant and is for example used to model the capacity of a
First-In-First-Out (FIFO) buffer.

Hierarchy is introduced in the form of blocks with port
actors on the block boundaries. Actors inside a block fire
p ∈ P times compared to actors one level higher in the hier-
archy of blocks. The value of p is unknown during analysis
and can be infinite. Communication between actors inside
and outside a block can only be through the port actors.
These port actors perform an up- or down-sampling of to-
kens such that a single token coming from outside the block
is replicated p times, and vice versa for communication in
the opposite direction.

The blocks are used to describe modal behavior of an ap-
plication, where it is unknown how many iterations an ap-
plication remain in a certain mode. Tasks in these modes
can interact with the environment via periodic sources and
sinks. Only tasks in the active mode can read from a source
or write to a sink, such that every sample produced by a
source is only read in a single mode. Therefore an actor
derived from a source or sink is copied into every block in
which it is used. Such an actor only produces or consumes
tokens if the mode corresponding to the block is active. The
implementation and analysis of periodic sources is discussed
further in Section 6. These sources and sinks execute pe-
riodically and therefore impose a throughput constraint on
the execution of the application.

6. PERIODIC SOURCE CONSTRAINTS
In this section we derive the conditions that need to be

satisfied for applications containing multiple modes in which
the same source is accessed. Additional constraints need to
be introduced to verify that the source task can execute
strictly periodically when switching between modes.

The source task in an application needs to execute strictly
periodically. Therefore, theN actors derived from the source
task, for all N blocks where the source is read, need to
fire periodically. The source actors fire periodically when
the time between the start times of firings of the same,
or consecutive source actors, is exactly one period P of
the source task. The two additional constraints in (7) and
(8) on the start times of the source actors, vqs with q ∈
{0, 1, . . . , N − 1}, are therefore added.

ŝqs(i+ 1) = ŝqs(i) + P (7)

ŝ(q+1)modN
s (i+ 1) = ŝqs(i) + P (8)

where ŝqs(i) is the upper bound on the start time of source ac-
tor vqs in iteration i ∈ N if that source actor fires in iteration
i. The constraint in (8) is added in step 2c of the analysis
flow presented in Section 4. This constraint is added in the
hierarchical level where all the blocks containing source ac-
tors are flattened such that each source actor fires only once
before switching to the next source actor.

As a result of the added constraints the source actors must
fire strictly periodically. A delay in the enabling time of
a source actor will immediately lead to a violation of the

throughput constraint in the block one level higher in the hi-
erarchy than the blocks containing the source actors, which
is 2P in the example since there are two source actors. A
delay in the enabling of a source actor occurs when the in-
puts of a mode arrive too late and the constraints result-
ing from a barrier do not enable the source actor in time.
A violation of the throughput constraint occurs when the
sum of the response times of the tasks on the path of edges
without tokens from one source actor to the next source ac-
tor, via the constraint that result of locks and barriers, is
larger than one period. An example of such a path is seen
in Figure 1c from actor src2 to vd, vc via the red dotted
and orange dashed edges originating from a lock and barrier
to src1. The combination of the constraints of the strictly
periodic executing source and the barriers and locks ensures
that mode transitions can be analyzed.

7. RESPONSE TIMES
In the previous sections, constraints are enforced to en-

able independent analysis of modes. In this section a gen-
eral WCRT equation is derived that makes use of the fact
that modes can be analyzed in isolation after additional con-
straints are added in the dataflow model. The equation is
valid for schedulers in the non-starvation-free class which in-
cludes SPP, RR and TDM schedulers. We make use of the
prove that the constraints resulting from locks prevent any
interference of tasks in other modes as is given in Section 7.1.

In general, the WCRT R̂i of a task τi consists of its Worst-
Case Execution Time (WCET) Ci and an upper bound on
the interference I of tasks assigned to the same processor,
as shown in the following equation:

R̂i = Ci + Ischeduler(i, R̂i) (9)

The interference depends on the type of scheduler used on a
processor. We will first consider SPP schedulers and limit R̂i

to Pi, to satisfy the constraints presented in Section 6. Since
this limitation implies that wi ≤ P , only a single execution
of τi needs to be considered such that q = 1. The WCRT of
(2) can then be simplified to the following equation for the
interference on τi:

ISPP (i,∆t) =
∑

j∈hp(i)\M(i)

⌈
Jj + ∆t

Pj

⌉
· Cj (10)

where M(i) is the set of tasks in another mode as τi that is
made mutually exclusive to τi using a lock. Using the prove
given in Section 7.1 the set of interfering tasks is reduced to
tasks in the same mode by using locks. For RR and TDM
schedulers a similar expression can be derived where the
interference is a summation over the tasks assigned to the
same processor. The following equation for the interference
for the different types of schedulers is obtained:

IRR(i,∆t) =
∑

j∈T (i)\M(i)

Cj (11)

ITDM (i,∆t) =

⌈
Ci

Bi

⌉
· (Qm −Bi),

where Qm = Bi +
∑

j∈T (i)\M(i)

Bj

(12)

where Bi is the budget of τi within replenishment interval
Qm within mode m and T (i) the set of tasks mapped to the
same processor as τi excluding τi itself. We have shown that



for SPP, RR and TDM schedulers an upper bound on the
interference can be derived only consisting of interference of
tasks within the same mode as the task being analyzed.

7.1 Mutual exclusive execution using locks
In this section we will prove that the constraints imposed

by a lock ensure that tasks in different modes will not inter-
fere with each other and therefore execute mutually exclu-
sive.

For HSDF graphs it has been proven that the number of
tokens on a cycle determines the interference of tasks on
the cycle [18]. A cycle with one token on it, as shown in
Figure 6a, prevents interference between actor x and y and
therefore these actors will fire mutually exclusively. In this
section it is proven that this also holds for two actors in dif-
ferent blocks in an SVPDF graph, like the one in Figure 6b.
If the actors belong to the same block, then they potentially
interfere.

The SVPDF graph in Figure 6b has two actors x and
y in different modes, A and B, and the edges represent the
constraints that are a result of a lock. Any number of modes
and tasks within a mode is supported by the lock, but in
the proof we will for clarity only consider two modes each
containing a single task . In the proof we will make use of
the following notation: a ≺ b means a dependency from a
to b, sa(n) is the start of firing n ∈ N of actor a, fa(n) is
the finish of the n-th firing of actor a. Function ϕA(n) ∈ N
returns the block iteration counter in which firing n of an
actor in block A takes place. A new block iteration is started
when the next token is consumed by all port actors of the
block. Similarly the function ϕB(n) ∈ N returns the block
iteration counter in which firing n of an actor in block B
takes place. Also functions that indicate the start and finish
time of an iteration of a block are defined.

x y

(a) HSDF graph
consisting of actor
x and y

x y

A B

(b) SVPDF graph consisting of two modes,
A and B, each containing one actor, x or
y

Figure 6: The constraints resulting of a lock for an HSDF
model (a) and an SVPDF model (b)

By definition an actor x can cause interference on an actor
y when actor x finishes its n-th firing later than the start of
the m-th firing of y. Similarly an actor y can cause interfer-
ence on an actor x when actor y finishes its m-th firing later
than the start of the n-th firing of x. Two actors x and y fire
mutually exclusive if x cannot cause interference on actor y,
and y can not cause interference on actor x. That this holds
for the actor x and y in the different blocks in Figure 6b can
be seen as follows:

The edge exy represents a dependency. As a result of this
edge it holds that:

fx(n) ≺ fA
(
ϕA(n)

)
≺ sB

(
ϕB(m)

)
≺ sy(m),

{n,m ∈ N | ϕA(n) = ϕB(m)} (13)

Since it holds that fA(ϕA(n) − 1) ≺ fA(ϕA(n)) it follows

from (13) that:

fx(n) ≺ sy(m), {n,m ∈ N | ϕA(n) ≤ ϕB(m)} (14)

Now we have that x can only cause interference on actor
y according to (14) if:

ϕA(n) > ϕB(m) (15)

A similar reasoning holds for the edge eyx which has one
initial token. This initial token causes that the start of
the z-th block iteration of A depends on the finish of the
(z − 1)-th block iteration of B. Therefore it holds that:

fy(m) ≺ fB
(
ϕB(m)

)
≺ sA

(
ϕA(n)− 1

)
≺ sx(n),

{n,m ∈ N | ϕB(m) = ϕA(n)− 1} (16)

Since fB(ϕB(m)− 1) ≺ fB(ϕB(m)) it follows that:

fy(m) ≺ sx(n), {n,m ∈ N | ϕB(m) ≤ ϕA(n)− 1} (17)

We have that the m-th firing of actor y can only cause
interference on the n-th firing of x if the m-th firing of y can
finish later than the n-th start of x, which is true according
to (17) if:

ϕB(m) > ϕA(n)− 1 (18)

Therefore there is no interference from actor x on y and
from actor y on x if (15) and (18) hold, thus:

ϕA(n)− 1 < ϕB(m) < ϕA(n) (19)

Because there is no block iteration counter value ϕB(m) for
which (19) holds we conclude that the actors x and y do
not interfere and therefore fire mutually exclusive, which
concludes the proof.

The proof remains valid for q consecutive executions of an
actor x starting at firing n. This is because these consecutive
executions must belong to the same block iterations such
that ϕA(n + q − 1) = ϕA(n). As a consequence, (19) still
holds since there is no block iteration counter value ϕB(m)
for which actors x and y can interfere.

8. RESPONSE TIMES LARGER THAN PE-
RIOD

The approach presented in the previous sections is only
applicable if all tasks have a WCRT smaller than the period
of the source. In this section we present conditions under
which WCRTs larger than the period are possible, however
our impression is that these conditions will be rarely satisfied
in practice.

The approach presented in the previous sections does not
allow WCRT larger than the period of the source as a result
of the barriers. These barriers were introduced to take care
that the arrival times of the input data of a block could not
affect the response times of the tasks in that block. However,
the jitter in the arrival times of the input data can only have
an effect on other tasks if these tasks have a sufficiently high
priority or have a dependency towards other tasks. If this is
not the case then there is no need for the barrier and WCRT
larger than the period of the source can be allowed. The
simplified WCRT equation derived in Section 7 is invalid
for tasks with a response times larger than the period, since
multiple executions of a task need to be considered as is
accounted for in the equation stated in (2).
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Figure 7: SVPDF model of an application where the WCRT
of v2 can be greater than the period of the source

In Figure 7, a constructed example is shown that illus-
trates a case in which the barrier can be removed for some
inputs of a block. This allows a WCRT larger than the pe-
riod of the source, which must be compensated for in a sub-
sequent mode. In this example there are five tasks divided
across two modes. Task τ0, τ1 and τ2 share a processor, as
indicated by the colors of their actors, where τ0 has a high
priority and τ2 a low priority. The WCET of τ0, τ2, and τ4
is 1

4
P and τ1, and τ3 have a WCET of 1

2
P . Only τ3 has a

Best-Case Execution Time (BCET) not equal to its WCET
and is assumed to be 0 and therefore v3 will introduce a
jitter in the enabling time of v1. Based on this jitter, τ1 can
pre-empt τ2 not only once, but twice during τ2’s execution,
increasing R̂2 to 1 1

4
P .

When the dependencies resulting from the barrier would
be introduced from the port actor producing the input of v2
then an R̂2 > P will lead to the conclusion of infeasibility
given that the source period is P . However, in this example
τ2 is allowed to be enabled earlier or later than the source
actor starts in its corresponding block. The enabling jitter
that can be caused by removing the dependency from the
input that is a result of the barrier will not cause interfer-
ence on other tasks in this example, since τ2 cannot interfere
because it has the lowest priority. Moreover, the jitter of τ2
is not propagated to the other tasks because there are no de-
pendencies to other tasks and therefore there is no increase
of the jitter of other tasks. The large WCRT of τ2 in this
case is compensated by the sufficiently small WCRT of τ0
and τ4 in the other mode, because the sum of their WCRTs
is within the constraint of one execution of a source in each
mode, which takes 2P .

9. CASE-STUDY
In this section the analysis approach that has been in-

troduced in this paper is demonstrated using a simplified
WLAN 802.11p receiver application. The organization of
this section is as follows. First we describe the application
of which a dataflow model will be derived that includes the
constraints that are a result of locks and barriers. We apply
temporal analysis to this model to determine the WCRTs
of tasks and the buffer sizes. A simulator is used to verify

source ADC @ 250 kHz ;

loop{
loop{

h = detectHeader (ADC) ;
vh = val idHeader (h) ;
NSym’ = decodeHeader (h) ;

} while ( ! vh ) ;
n = 0 ;
loop{

x = f f t (ADC) ;
y = demap(x ) ;
z = de int (y ) ;
w = convDecode ( z ) ;
c r c (w) ;
n ’ = n + 1 ;

} while (n < NSym) ;
} while (1 ) ;

Figure 8: WLAN receiver application

the analysis results and to generate a trace of the execu-
tions of the tasks on shared resources. Finally, we show that
a pipelined execution of tasks is supported although addi-
tional constraints are introduced in the application.

The OIL program of the WLAN application is shown in
Figure 8. The application receives its input from a periodic
Analog-to-Digital Converter (ADC) running at 250 kHz (a
period of 4µs). This source imposes a throughput constraint
on the execution of the application.

The WLAN application contains two modes. Each mode
corresponds to a potentially endlessly repeated while-loop.

In the first mode the detectHeader function reads sym-
bols from the source until it detects a header of a packet.
The decodeHeader function extracts the size of the payload
from the header while the validHeader function determines
in parallel if the checksum of the header is valid. Only when
a valid header is found the first mode is left as is specified
in the loop condition.

The fft function in the second modes reads a number of
symbols from the source based on the size of the payload
and performs a transformation to the frequency domain on
each of these symbols. The other functions in this mode per-
form demapping, deinterleaving, convolution decoding and
verification of the CRC. The number of loop iterations in
this mode is dependent on the result of the first mode and
can be determined before tasks in the second mode start.

The multiprocessor compiler Omphale [3] is used to trans-
form the program shown in Figure 8 into a task graph where
each function results in a task. The variables used in the
program are converted into buffers to allow a pipelined exe-
cution of the tasks. The WCETs of the detectHeader, valid-
Header and decodeHeader tasks are assumed to be 2µs, 1µs
and 1µs as is shown in Table 1a. The fft, demap, deint, conv
and crc tasks in the second mode have an execution time of
3µs, 1.5µs, 2µs, 1.5µs and 2µs respectively.

In this case-study we assume there are more tasks than
processors. Therefore, multiple tasks are scheduled onto
a processor using a scheduling policy. Multiple scheduling
policies are used for different processors to demonstrate that
the approach presented in this paper can also be used for
other schedulers than the SPP scheduler. Tasks validHeader,
decodeHeader, and fft are scheduled by an SPP scheduler on
one processor. On that processor task decodeHeader has the
highest priority and task validHeader the lowest priority.
Another processor runs the tasks deint, and crc using a RR
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Figure 9: SVPDF model of the application in Figure 8 in-
cluding additional constraints of a lock and barriers

scheduler. A budget scheduler is used on another processor
to schedule the tasks demap and convDecode. Both tasks
are allocated a budget of 0.5µs every 1µs. The remaining
task detectHeader runs on a dedicated processor.

In order to verify the temporal constraint imposed by
the periodic source, the compiler also generates an SVPDF
model besides the task graph. An actor is introduced for
each task in this model as is shown in Figure 9. The blocks
in the model correspond to while-loops in the application.
The colors of the actors correspond to the mapping to a pro-
cessor. Buffers are represented as a forward and backward
edge containing the number of tokens corresponding to the
capacity of the buffer. Since the the validHeader, decode-
Header and fft tasks run on the same processor, but do no
not belong to the same mode a lock is added. The analy-
sis flow requires a strictly periodic execution of the source
to be able to determine response times for an SPP sched-
uler. Therefore, additional constraints on the start times of
source actors are added in step 2c of the analysis flow. The
precedence constraints that results for the lock are repre-
sented in the model by the red dotted edges. The additional
constraints that are a result of the barriers are shown as the
orange dashed edges.

Using the analysis flow as defined in Section 4 and the
response time equation (9) of Section 7 we derive WCRTs
for the tasks in these two modes. The resulting WCRTs
are listed in Table 1a. Table 1b shows the computed buffer
capacities given these WCRTs. The last two buffers in the
table, δlc1 and δlcc, represent a buffer in which a loop condi-
tion is stored that is read by all tasks in the corresponding
mode. The size of these buffers affects the maximum amount

of tasks that can execute in parallel.

task WCET (µs) R̂ (µs)
detectHeader 2.0 2.0
decodeHeader 1.0 1.0
validHeader 1.0 2.0
fft 2.5 2.5
demap 1.5 3.0
deint 2.0 2.0
convDecode 1.5 3.0
crc 2.0 4.0

(a) Task execution times and derived re-
sponse times

buffer capacity
δh 1
δvh 1
δx 2
δy 2
δz 2
δw 2
δNSym 1
δlc1 1
δlc2 4

(b) Derived buffer
capacities

Table 1: Temporal analysis results of the WLAN application

We use the high-level system simulator HAPI to verify
the obtained analysis results. HAPI was initially a dataflow
simulator [1], but was recently extended with the addition
of processor sharing, which allows for the simulation of task
graph executions on arbitrary platforms. No constraint vi-
olations were detected for the derived buffer capacities be-
cause the source could fire strictly periodically. The traces
generated with the HAPI simulator are shown in Figure 10.
In this figure there is one trace for each processor in which
the currently running task and the iteration number of the
task is shown. In each trace pre-emptions based on either
priorities or depletion of budget are indicated by X’s. The
trace in Figure 10 shows pipeline parallelism for example at
a time of 24µs, at which the fft task already processes the
next symbol of the source whereas the CRC of a previous
symbol is being computed by the crc task.

Pipelining of the WLAN application would be impossible
for certain assignments of tasks to processors. The addi-
tional constraints in the application as a result of barriers
and locks can prevent pipeline parallelism inside a mode.
In the example the first task in the second mode (fft) is
assigned to the same processor as tasks in the first mode.
The combined constraints of the buffer from the source to
fft and the lock and barrier, represented by the red dotted
and orange dashed edge in Figure 9, require fft to process
a sample from the source within one period when switch-
ing to the first mode. When for example task crc would be
mapped to that processor instead of task fft, multiple tasks
need to be finished within the same period. In the dataflow
model, the path without initial tokens from actor src2 via
fft, demap, deint and convDecode to actor crc would than be
a bottleneck and limit pipelining since task crc would then
release the lock. The barrier in the first mode requires the
lock to be acquired before the source in the same mode fin-
ished its first execution. Therefore, it can be concluded that
the amount of achievable pipeline parallelism depends on
the mapping of tasks to processors when an SPP scheduler
is used.

10. CONCLUSION
This paper presents a compositional temporal dataflow

analysis approach for cyclic stream processing applications
with modes executed on multiprocessor systems that use
SPP scheduling.

The analysis approach is based on the ability to indepen-
dently characterize the temporal behavior of modes. This is
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Figure 10: Execution trace of the WLAN application from Figure 8 including a lock and barriers

ensured by adding locks in the application which make the
execution of tasks that belong to different modes but exe-
cuted on the same processor mutually exclusive. Further-
more, barriers are added such that together with the locks
the interference of the tasks in a mode is independent of
tasks belonging to other modes. The additional constraints
introduced by the barriers and locks guarantee that compo-
sition of modes does not change their individual character-
ization. As a result, applications containing a hierarchy of
modes can be described in an SVPDF model. This model
can be analyzed by recursively applying existing dataflow
analysis techniques, to determine the worst-case temporal
behavior. The SVPDF model and the parallel implementa-
tion including locks and barriers are generated by a multi-
processor compiler.

Furthermore it is shown that the approach allows for re-
sponse times of tasks larger than the period of the source. It
is also shown that systems in which a combination of budget
schedulers and SPP schedulers are applied can be analyzed.

The applicability of the approach is demonstrated using
a WLAN 802.11p receiver application. We show that this
application can be executed pipelined despite the inserted
locks and barriers. The analysis results are verified using a
dataflow simulator.
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