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ABSTRACT

Aerial drones, ground robots, and aquatic rovers enable mo-
bile applications that no other technology can realize with
comparable flexibility and costs. In existing platforms, the
low-level control enabling a drone’s autonomous movement
is currently realized in a time-triggered fashion, which sim-
plifies implementations. In contrast, we conceive a notion
of reactive control that supersedes the time-triggered ap-
proach by leveraging the characteristics of existing control
logic and of the hardware it runs on. Using reactive con-
trol, control decisions are taken only upon recognizing the
need to, based on observed changes in the navigation sen-
sors. As a result, the rate of execution dynamically adapts
to the circumstances. Compared to time-triggered control,
this allows us to: i) attain more timely control decisions, i)
improve hardware utilization, i) lessen the need to over-
provision control rates. Based on 260+ hours of real-world
experiments using three aerial drones, three different con-
trol logic, and three hardware platforms, we demonstrate,
for example, up to 41% improvements in control accuracy
and up to 22% improvements in flight time.

1. INTRODUCTION

Aerial drones, ground robots, and aquatic rovers enable
novel mobile applications. Compared to mobile phones and
connected cars that only opportunistically sense or commu-
nicate, these platforms offer direct control over their move-
ments. They can thus implement functionality that were
previously beyond reach, such as collecting high-resolution
imagery of civil infrastructures [10, 38], exploring near-inac-
cessible areas [16], or inspecting the sea floor to gain fine-
grained environmental data [19, 54].

Existing platforms. Most existing drone platforms are
architected as in Fig. 1. Two components are involved. Spe-
cialized software runs at a ground-control station (GCS) to
let users configure mission parameters, such as the coordi-
nates to cover through waypoint navigation and the action
to take at each waypoint. The GCS is typically a standard
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Figure 1: Software components in mainstream drone
platforms. The ground control station let users configure
high-level mission parameters, the autopilot software imple-
ments the low-level motion control aboard the drone.

computer that communicates with the drone using a long-
range low-bandwidth radio.

Aboard the drone, the autopilot software implements the
low-level control in charge of autonomously driving the drone
to the next desired coordinate. The control loop processes
various sensor inputs, such as accelerations and GPS coor-
dinates, to operate actuators such as electrical motors that
set the 3D orientation of the drone, also commonly termed
as the drone’s attitude. Because of size, cost, and energy
concerns, autopilots run on resource-constrained embedded
hardware. For example, ARM MCUs of the Cortex M series
are often used as the main processing unit.

Together with the mechanical design, the low-level con-
trol determines the effectiveness of physical motion. For
example, when using aerial drones in imagery applications,
the low-level control directly influences the quality of the
shots [37, 38]. Further, the low-level control is partly re-
sponsible for how the energy available from batteries is con-
sumed. The drone’s lifetime is often a result of how stream-
lined is its operation [11, 55].

Most existing autopilot implementations employ Propor-
tional-Integral-Derivative (PID) [7] designs for low-level con-
trol. These controllers run in a time-triggered fashion: ev-
ery T time units, sensors are probed, control decisions are
computed, and commands are sent to the actuators. Such
an approach enjoys the advantage of highly deterministic
operation, which simplifies implementations.

Reactive control. Despite these advantages, current im-
plementations overlook two essential aspects, as we further
illustrate in Sec. 2:

1) Most PID controllers on the drones are tuned so that it
is mostly the Proportional component to bear an influ-



ence. As long as the weights are balanced, the Derivative
component can be kept to a minimum [13, 26]. A proper
calibration of navigation sensors may also reduce the In-
tegral component [13, 26, 44]. This yields executions
where: i) small variations in the sensor inputs tend to
correspond to small variations in the actuator settings,
and ) as long as the sensor inputs do not change, the
actuator settings remain almost unaltered. Therefore, in
principle, one may spare control executions that starts
from the same or similar sensor inputs as the previous
iteration, by simply maintaining the earlier actuator set-
tings. We quantitatively verify this intuition in Sec.3
through real-world experiments.

2) Autopilot software typically runs on hardware that closely
resembles mobile phones. This especially applies to the
sensing equipment. Many argue that without the push to
improve sensors due to the rise of mobile phones, drone
technology would have not emerged [17]. These sensors
are especially designed to enable energy-efficient high-
frequency sensing; for example, for tracking human ac-
tivity [20, 35]. Many of them can also be programmed to
return a value only upon verifying certain conditions [27,
49]; for example, when a threshold is passed, which is use-
ful to implement functionality such as fall detection [22].

Reactive control builds upon these observations. Rather
than periodically triggering the control logic, we constantly
monitor the navigation sensors and run the control logic only
upon recognizing the need to. As a result, reactive control
dynamically adapts the control rate. When sensor inputs
change often, control runs repeatedly, possibly even more
frequently than the fixed rate of a time-triggered implemen-
tation. When sensor inputs exhibit small or no variations,
the rate of control execution reduces, freeing up resources
that may be needed at different times. Unlike other emerg-
ing forms of asynchronous control [6], however, we require no
changes to the underlying control logic. The design method-
ologies of traditional control still apply [7].

Reactive control yields several advantages, for example:
1) it enables more timely and adaptive control decisions, i3)
it spares unnecessary processing, improving the utilization
of the hardware, and #43) it lessens the need to overprovi-
sion control rates to handle extreme situations. As it ex-
clusively works in software, reactive control also requires no
hardware modifications. Nevertheless, we demonstrate that
reactive control is applicable beyond waypoint navigation.
Further use cases include, for example, active sensing func-
tionality [14, 36, 51] and advanced motion control [1].
Challenges and solutions. Realizing reactive control is,
however, non-trivial. Three issues are to be solved:

1) What is a “significant” change in the sensor input de-

pends on several factors, including the accuracy of sen-
sor hardware, the physical characteristics of the drone,
the control logic, and the granularity of actuator output.
This notion is thus difficult to generalize. Sec.4 illus-
trates our probabilistic approach to tackle this problem,
which abstracts from all these aspects by employing a
form of auto-tuning of the conditions leading to running
the control logic.

2) An indication for running the control logic may origi-
nate from different sensors, at different rates, and asyn-
chronously with respect to each other. One problem is
thus how to handle the possible interleavings. Moreover,

not running the control loop for too long may negatively
affect the drone’s stability, possibly preventing to reclaim
the correct behavior. Sec.5 illustrates how we tackle
these issues by only changing the execution of the control
logic over time, rather than the logic itself.

3) Reactive control must run on resource-constrained em-
bedded hardware. When implementing reactive control,
however, the code quickly turns into a “callback hell” [25]
as the operation becomes inherently event-driven. We
experimentally find that, using standard languages and
compilers, this negatively affects the execution speed,
thus limiting the gains. Sec. 6 describes our custom real-
ization of reactive programming (RP) techniques [8] to
tackle this problem.

Sec. 7 illustrates the effectiveness of reactive control com-
pared to the time-triggered approach. We consider the chal-
lenging case of aerial drone control. These require contin-
uous attitude adjustments because of the potentially severe
environment influence, for example, due to wind gusts in
unpredictable directions. We report on 260+ hours of test
flights in three increasingly demanding environments, using
a combination of three aerial drones, three autopilot soft-
ware, and three embedded hardware platforms.

Our results indicate that reactive control obtains up to
41% improvements in the accuracy of motion, which results
in up to 22% extension of flight times. We also demon-
strate that our RP-based implementation is fundamental
to obtain this performance, in that a traditional implemen-
tation would only obtain about half of the improvements.
Finally, we report on the benefits reactive control provides
in two end-user applications beyond waypoint navigation,
including 3D reconstruction and active sensing in search-
and-rescue scenarios.

2. BACKGROUND

First, we survey efforts in related areas, showing that the
goal we pursue sets us apart from existing literature. Next,
to better understand our context, we describe the Ardupi-
lot [5] autopilot and supported hardware.

2.1 Related Work

The drones we target in this work can be regarded as
a cruder form of modern robotics [17]. In this field, con-
trol operates at two levels. High-level control implements
advanced navigation functionality, such as simultaneous lo-
calization and mapping [23], path planning [9], and obstacle
avoidance [30]. In our context, this is the job of the GCS,
even though it is certainly realized in a simplified form here.

The output of high-level control may be a waypoint or a
trajectory, given as input to the low-level control that op-
erates the robot actuators. In the majority of the cases,
PID controllers are used for this [13]. The rate to run the
controller is statically set to find a trade-off between accu-
racy and resource consumption, based on a few “rules of
thumbs” [56]. In contrast, our goal is to run the PID con-
troller in a reactive fashion, dynamically adapting to the
circumstances dictated by, for example, the instantaneous
environment influence.

In the field of aerial drones, demonstrations exist showing
motion control in tasks such as throwing and catching bal-
Is [43] and poles [15], building architectural structures [32],
flying in formation [50], and carrying large payloads [34]. In
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Figure 2: Ardupilot’s control loop. The time for a
single iteration of the loop is split between fast loop, which
only includes critical motion control functionality, and an
application-level scheduler that runs non-critical tasks.
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Figure 3: Attitude control with raw, pitch, and yaw.

these settings, the low-level control does not operate aboard
the drone. At 100 Hz or more, a powerful computer receives
accurate localization data [52], runs sophisticated control
algorithms based on drone-specific mechanical models often
expressed through differential equations, and sends actua-
tor commands back to the drones. Differently, we aim at
improving the performance of mainstream low-level control
running on embedded hardware, targeting mobile sensing
applications that operate in the wild.

On the surface, reactive control may resemble the notion
of event-based control [6]. In the latter, however, the con-
trol logic is expressly redesigned for settings different than
ours; for example, in distributed control systems to better
cope with limited communication bandwidth. This requires
an entirely different theoretical framework [6]. Our work
alms at re-using existing control logic, whose properties are
well understood. Different than event-based control, how-
ever, reactive control is mainly applicable only to PID-like
controllers where the Proportional component dominates.

2.2 Autopilots

Autopilots provide critical functionality for the efficient
and dependable operation of drone platforms. Their imple-
mentation is also often coupled with dedicated hardware.

Among available autopilot implementation, Ardupilot® is
a mature open-source project that provides reliable autopi-
lot functionality for aerial drones and ground robots [5]. The
project is at the basis of many commercial products, includ-
ing those of 3DRobotics [2] and many others, and boasts
a large on-line community. Nonetheless, our evaluation in
Sec. 7 demonstrates the applicability of reactive control with
autopilots other than Ardupilot and dedicated hardware.
Software. Fig.2 shows the execution of Ardupilot’s control
loop. Following the initial setup, the control loop is split in
two parts. The fast loop only includes critical motion control
functionality. The time left from the execution of fast loop
is given to an application-level scheduler that distributes
it among non-critical tasks that may not execute at every

! At the start of the project, Ardupilot ran on Arduino hard-
ware. However, developers eventually moved to more capa-
ble hardware while retaining the name.

iteration, such as logging. The scheduler operates in a best-
effort preemptable manner based on programmer-provided
priorities. Many autopilots share similar designs [18, 39].

Initially, fast loop blocks waiting for a new value from the
Inertial Measurement Unit (IMU), which provides an indi-
cation of the forces the drone is subject to in the three di-
mensions. This is obtained by combining the readings of ac-
celerometers, gyroscopes, magnetometers, and barometers.
Once a new value is available, IMU information is combined
with GPS readings to determine updated attitude control by
minimizing the error between the desired and actual pitch,
roll, and yaw, shown in Fig.3. Multiple PID controllers in-
side fast loop are used to this end. Their output is converted
into commands sent to the motors to orient the drone.

Ardupilot well exemplifies the state of the art. Control

is periodic and proceeds sequentially, which simplifies the
implementation. Most importantly, the control rate is stat-
ically set as discussed in Sec.2.1. For example, Ardupilot
runs at a fized 400 Hz on the hardware we describe next.
This rate is not necessarily the maximum the hardware sup-
ports. The 400 Hz of Ardupilot, for example, are thought to
leave enough room—on average—to the scheduler. In short
bursts, control may run much faster than 400 Hz, as long as
some resources are eventually allocated to the scheduler; for
example, at times when control does not need to run that
frequently. By recognizing the situations when control does
need to run—or not—reactive control enables precisely this
kind of dynamic adaptation of control rate.
Hardware. Ardupilot runs on various embedded hardware.
A primary example is the Pixhawk board [41], which features
a Cortex M4 core at 168 MHz and a full sensor array for nav-
igation, including a 16-bit gyroscope, a 14-bit accelerome-
ter/magnetometer, a 16-bit 3-axis accelerometer/gyroscope,
and a 24-bit barometer. Most often, at least a sonar and a
GPS are added to the built-in sensor array to provide posi-
tioning and altitude information, respectively.

The sensors on Pixhawk have similar capabilities as those
on modern mobile phones. They support energy-efficient
high-frequency sampling and often provide interrupt-driven
modes to generate a value upon verifying certain conditions.
The ST LSM303D [49] on the Pixhawk, for example, can be
programmed to generate an SPI interrupt based on three
thresholds. While useful, for example, in crowdsensing ap-
plications for specific functionality such as fall detection [35],
these features are rarely exploited in autopilots.

The commands sent from the autopilot to the actuators
are encoded in Pulse-Width Modulation (PWM). These are
converted to a current flowing into the motors through ded-
icated Electronic Speed Controllers (ESC): tiny embedded
boards that govern the current flow to the motors according
to some analog input. Typically, ESCs hold the output value
as long as the input does not change. Because of size and
cost, ESCs are extremely primitive; most of them employing
8-bit Atmel ATMega MCUs. The granularity of their input-
s/outputs is also often quite coarse. This further limits the
degrees of changes to the actual motor operation.

3. MOTIVATION

Experimentally verifying that some iterations of the con-
trol loop are, in fact, unnecessary is a challenge per se. One
issue is that of wisibility: the most un-biased measure we
may get is the current flowing into the motors, namely, the
output of the ESC. Next is a problem of realism: one would



(a) Quadcopter. (b) Hexacopter.

Figure 4: Custom aerial drones used to gain evi-
dence of the opportunities for reactive control.
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Figure 5: Preliminary experiments: fraction of time
the control outputs do not change. The less influence
the environment plays, the more the control decisions tend
to remain the same. The hexacopter shows higher values as
it is more resilient to the environment.

need to gather the measurements during actual operation.
Finally, high-frequency logging is ezpensive on embedded
hardware, and may affect the processing of the control loop.
Setup. To address the issues above, we instrument two
custom-built aerial drones, shown in Fig. 4, with Hall-effect
current sensors [47] placed between the ESC and the motors.
We choose aerial drones because they represent a challeng-
ing case for autopilots, as they require continuous attitude
adjustment. By contrast, for example, a ground robot may
simply not run any control loop once it reaches the desti-
nation, as in most cases it naturally maintains the position.
The Hall-effect sensors are sampled at the same rate of the
control loop from an independently-powered Waspmote [31]
aboard the drones. Data is dumped on an SD card. The
measurement subsystem is thus completely decoupled from
the drone, and does not affect its operation but for the min-
imal added weight.

We test several flight paths at a maximum speed of 3
m/s and 5 m altitude, each with 8 random waypoints in a
loop and lasting at least 20 min, in three environments: i) a
20x20 m lab where drones localize themselves using on-drone
visual techniques [42], termed LAB; ii) a rugby field in front
of our department termed RUGBY, using GPS; and #44) an
archaeological site in Aquileia (Italy) termed ARCH, the size
of almost four soccer fields [36], stll using GPS. The sites
exhibit increasing environment influence. LAB only suffers
from air conditioning from the ceiling. RUGBY is protected
on two sides by trees. ARCH lies in an area with average
wind speeds of 8+ knots. We record a total of 10 flight
hours for each drone in every site.

Results. Fig. 5 shows the fraction of samples from the Hall-
effect sensor within the sensor accuracy of the previous sam-
ple. This quantity can be understood as the fraction of time
the control decisions at one iteration are the same as the
previous one. This figure is highest for LAB, because of

the little environment influence. By contrast, the values are
smallest for ARCH: sudden wind gusts may require unantic-
ipated attitude corrections. The physical design also plays
a role: the hexacopter, which is heavier and mounts more
powerful motors, is more resilient. Thus, the control logic
outputs the same decisions more often than the quadcopter.

Fig. 5 shows that there would be ample margin to spare a
fraction of control executions, even in the most challenging
environment, if only one were able to recognize these unnec-
essary iterations beforehand. By freeing resources when they
are not needed, we may make them available when there is
a need to promptly react, thus overcoming the limitations of
a fixed control rate. Sparing unnecessary executions of the
control logic may also create room for running additional
functionality on the same hardware, or yield an opportunity
for downsizing the hardware itself.

The rest of the paper describes how reactive control pro-
vides these benefits by changing the temporal execution of
existing control logic. Three issues are to be addressed.
Sec. 4 describes how to recognize, based only on sensor in-
puts and with minimal overhead, when there is a need for
running the control logic. Next, Sec. 5 describes how to reg-
ulate the executions in a setting where different sensors may
require running the control logic asynchronously with re-
spect to each other. Sec. 6 describes how to implement these
functionality efficiently on resource-constrained hardware.

4. CONDITIONS FOR REACTING

In principle, one may simply assume that control decisions
do not change whenever the inputs do not change.
Problem. Although correct, such a reasoning is, in fact,
quite naive. The control logic used to govern the drones
is not at all trivial. It involves combining several read-
ings from diverse sensors with varying precision and gen-
erated at different rates across multiple steps of process-
ing. Moreover, the control logic runs on embedded resource-
constrained hardware and using simplified numerical libraries,
which affects the precision of processing. Thus, it is often
the case that control decisions remain the same even when
the sensor inputs do change.

The issue is thus to distinguish those changes in the sen-

sor inputs that would alter the control decisions from those
that would not. Whenever a sensor input changes in a way
that—all other sensor inputs staying the same—the control
decisions change as well, we say we record a trigger on that
sensor. It is difficult to determine beforehand the condi-
tions to search in the sensor readings to identify a trigger.
Factors such as the accuracy and calibration of sensors, the
physical characteristics of the drone, the control logic, and
the granularity of actuator outputs all concur to determine
these conditions.
Approach. We opt for a lightweight on-line approach that
self-adapts to different instances of the aspects above without
assuming any specific knowledge on any of them, including
the control logic. This makes our approach applicable to
different implementations, as we demonstrate in Sec. 7.

Despite the control logic is deterministic, we abstract away
the underlying complexity by considering a change in the
control output as a random phenomena. The input to this
phenomena is the difference between consecutive samples
of the same sensor; the output is a binary value indicating
whether the control decisions change. An accurate statisti-
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cal estimator of such phenomena would allow us to take an
informed decision on whether to run the control logic.
Among statistical estimators with a binary dependent vari-
able, logistic regression [28] is both simple and closely matches
the intuition on when one would need to execute the control
logic. Fig.6 shows its probability distribution. For small
changes in the sensor inputs, the probability of changes in
the control outputs is small. When changes in sensor inputs
are large, a change in the control decisions becomes (almost)
certain. The logistic function we employ is expressed as:

1
L(z) = 1+ e (Bi+B2m) @

where L(z) is the probability of new control decisions com-
pared to the previous iteration, given a change of x in the
inputs of a navigation sensor. The problem thus becomes
how to estimate parameters 1 and (2 at run-time. Exist-
ing results indicate that, for 0 < L(z) < 1, eq. (1) can be
re-written in generalized linear form [28]. Barring the cases
L(z) = 0 and L(x) = 1, this allows us to employ simple
estimation models to determine 1 and 2, such as ordinary
least squares [28].

Detecting triggers. We employ one logistic regression
model per navigation sensor. Given a change x in the sen-
sor readings from one iteration to the next, we compute the
probability L(x) that the change corresponds to new control
decisions. If this is greater than a threshold P, we detect
a trigger on that sensor and execute the control logic, with
all other inputs set to the most recent value; otherwise, we
maintain the earlier output to the actuators.

This approach assumes that changes in a sensor’s inputs
at different times are statistically independent. This is jus-
tified because the time-dependent I, D components of the
PID controllers bear little influence in our setting, as dis-
cussed earlier. Moreover, maintaining the earlier output to
the actuators is possible only as long as the control set-
point does not change in the mean time. This is most often
the case when drones hover or perform waypoint navigation,
but rarely happens in applications such as aerial acrobatics,
where this approach would probably be inefficient.

Parameter P, offers a knob to trade computational re-
sources against the tightness of control. Large values of Py,
spare a significant fraction of control executions. However,
the drone may require drastic corrections whenever the con-
trol loop does run; in a sense, motion becomes more “ner-
vous”. Small values of Py, limit the processing gains. How-
ever, control runs more often, ensuring the drone smoothly
maintains the right attitude. Sec.7 illustrates that gains
over time-triggered control are seen for many different set-
tings of Pryun. Also, Pruy is no threat to dependable oper-
ation, in that we make sure there is a minimum frequency
the control loop runs anyways, as described in Sec. 5.

Run-time operation. The least square estimation has
two operating modes. At start-up, control runs in a time-
triggered fashion for Th0:. For each execution of the control
logic within The0t, we record whether that run was necessary.
This provides an initial data set for the least square estima-
tion to compute preliminary values for 81 and B2. The value
of Thoot can be small; for the experiments of Sec.7, we use
Thoot = 30 sec.

After Thoot, we start identifying the triggers by comparing
L(z) with Pryn. Upon occurrence of a false positive, that
is, a value of = recognized as a trigger that does not change
the control decisions, we feed back the value of x to the
estimation of $1 and (2. This occurs by adding = to the
data set for least square estimation and by periodically re-
evaluating £ and f2. The parameter estimation runs with
medium priority in the scheduler part of the control loop,
shown in Fig. 2.

This design considers the execution up to Theot as repre-
sentative of the rest of the flight. Should this not be the
case, for example, whenever after Tyt a drone would enter
an area with significantly different environment conditions,
the initial parameter estimation would need to be recom-
puted. Moreover, Sec. 5 shows there may also be cases when
we recognize false negatives. From the perspective of param-
eter estimation, we treat these occurrences in the same way
as false positives. Overall, this processing implements a sim-
plified form of auto-tuning [56] that improves the accuracy
of logistic regression as the system runs.

S. TRIGGERS OVER TIME

Existing control logic, such as the various PID controllers
used in autopilots, is designed under the assumption that
sensors are sampled simultaneously according to a known
frequency [7]. Removing such assumptions changes the con-
trol problem and requires a different conceptual framework [6].
In contrast, we aim at re-using existing control logic, and
thus intend to approximate its timing assumptions.
Problems. Because of the above, how to process triggers
deserves some thoughts:

1) We should be careful when multiple sensors record trig-
gers close in time. It is unclear if these triggers deserve
separate executions of the control logic as they are “too
far” in time, or rather a single iteration of the control
logic suffices because the triggers are “sufficiently close”
to approximate simultaneity.

2) The way we recognize triggers is essentially probabilistic,
as described in Sec.4. Therefore, to ensure dependable
operation we must consider the unlucky case when we
miss a large number of consecutive triggers, and avoid
running the control logic for too long. Otherwise, when
we finally recognize a trigger, it may be too late to re-
claim the drone’s stability.

Several aspects are to be taken into account to find ap-
propriate solutions to these problems.
Sampling frequency. Ideally, one would aim at continu-
ously sampling the environment waiting for triggers. This
way, they would be promptly recognized. In reality, such a
sampling only occurs at discrete times.

To recognize triggers as early as possible, we sample ev-
ery sensor at the highest frequency allowed by the hardware.
Using sensors like those of Pixhawk boards, this is usually



not a problem. They are expressly designed for energy-
efficient high-frequency sampling, while the major energy
drain aboard the drones is anyways due to the motors. More-
over, whenever the sensors permit, as in the case of the ST
LSM303D [49], we compute the inverse of eq. (1) and pro-
gram the sensor to return an interrupt only when a change
z would return L(z) > Prun.

Hyperperiod triggers. To match the assumptions of ex-
isting control logic, we must approximate the simultaneous
sampling of all input sensors. However, the time of sampling,
and therefore of possibly recognizing a trigger, is not neces-
sarily aligned across sensors. Drastic changes in the sensor
inputs may also be correlated. For example, when the ac-
celerometers record a sudden increase, it may be because
environmental factors such as wind gusts; in these cases, a
gyroscope also likely records changes. A time-triggered im-
plementation would likely process these inputs together.

We take a conservative approach to address these issues.
Based on the sampling frequency of every sensor in the sys-
tem, we compute the system’s hyperperiod as the smallest in-
terval of time after which the sampling of all sensors repeats.
Upon recognizing a trigger, we wait until the current hy-
perperiod completes before running the control logic. This
allows us to “accumulate” all triggers possibly recognized on
different sensors, giving the most up-to-date inputs to the
execution of the control logic at once.

Note that all such executions are not taken into account as

feedback to the regression models described in Sec. 4. With
multiple triggers from different sensors, it is difficult to de-
termine which sensors are responsible for the change of con-
trol decisions. This would require an understanding of the
underlying control laws, which we wish avoid to foster gen-
eral applicability of reactive control.
Failsafe. There may be unlucky cases when false negatives
in the trigger conditions happen in a row. This may hurt
dependability: it may be too late to reclaim the drone’s
stability when a trigger is recognized.

To cater for these extreme cases, we run the control logic
anyhow every Tjaisafe. Whenever this happens after a row
of false negatives, the drone most likely applies some signifi-
cant corrections that make sensor inputs change drastically.
In turn, this triggers reactive control already at the immedi-
ately following iteration. In other words, Tjsiisefe Prompts
reactive control to execute as soon as possible whenever
there is a need to. In the experiments of Sec.7, includ-
ing those in ARCH with winds blowing at 8+ knots, we use
Ttaitsafe = -1 sec. This is negligible compared to a control
logic that normally runs at 400 Hz.

For all executions due to Tfaisafe resulting in a change of
actuator settings, if the logistic regression models of Sec.4
return a false negative for every sensors, the last changes
to the sensor inputs are fed back for the next round of
least square estimation of 51 and pB2. We do this to re-
duce false negatives. We also demonstrate that the setting
of Tfaitsafe bears little influence on the final performance.
T'taitsafe should be set to ensure the drone’s stability in worst-
case conditions. Determining this value analytically would
require an accurate model of the environment to identify
these worst-case conditions. In this work, we take a practical
approach—as in the vast majority of operational control sys-
tems [4]—and employ a setting of Ttaiisefe that is most likely
overprovisioned, but safely ensures the dependable system
operation without appreciably impacting the performance.

6. IMPLEMENTATION

For simplicity, Sec.4 and Sec. 5 describe the control logic
as a single processing unit. In reality, things are more com-
plex. As a matter of fact, the control logic is composed
of multiple processing steps arranged in a complex multi-
branch pipeline. Depending on what trigger occurs, different
slices of the control logic may need to run while other parts
may not. Moreover, each such processing step may—in ad-
dition to producing an output immediately useful—update
global state used at a different iteration elsewhere in the
control pipeline.

In this setting, using triggers makes the processing event-
driven not just because of the triggers themselves, but also
because of asynchronous updates to global state. Thus, ev-
ery processing step—not just those that directly process the
sensors’ inputs—might potentially need to execute upon rec-
ognizing a change in the inputs. Employing standard pro-
gramming techniques to this end quickly turns implemen-
tations into a “callback hell” [25]. This fragments the pro-
gram’s control flow across numerous syntactically-independent
fragments of code, hampering compile-time optimizations.
As shown in Sec. 7, this causes a processing overhead that
limits the benefits of reactive control.

We tackle this issue using a technique called reactive pro-
gramming (RP) [8], illustrated in Sec.6.1. This technique
is rarely employed in embedded computing, because of re-
source constraints. We thus create an RP implementation
tailored to the hardware we target, described in Sec.6.2,
with additional custom semantics to better support reactive
control. Next, Sec. 6.3 describes the use of our realization of
RP to implement reactive control.

6.1 Reactive Programming

RP is increasingly employed to realize applications that
maintain a continuous interaction with the environment [8].
In these settings, it is generally impossible to predict the
time of arrival of interesting events. Programmers thus im-
plement the required processing through asynchronous call-
backs and by manually propagating the relevant updates
throughout the application’s global state. Besides being
error-prone, this is usually also inefficient. The control flow
is hidden in the interactions across callbacks, which typically
happens through side-effects and updates to global state
variables. Thus, compilers and linkers have little control-
flow information to optimize the execution.

RP provides abstractions to automatically manage data
dependencies in programs where updates to variables hap-
pen unpredictably. Consider the example:

a= 2;

b= 3;

c= a + b;

In sequential programming, variable ¢ retains the value 5
regardless of any future update to variable a or b. Updating
¢ requires an explicit assignment following the changes in a
or b. It becomes an issue to determine where to place such
an assignment without knowing when a or b might change.

Using RP, one declaratively describes the data dependen-
cies between variables a, b, and c. As variables a and b
change, the value of c is constantly kept up-to-date. Then,
variable ¢ may be input to the computation of further state
variables. Conceptually, the data dependencies take the
form of an (acylic) graph, where the nodes represent in-
dividual values, and edges represent input/output relations.
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Figure 7: Data structures used in RP-Embedded
to store the data dependency graph. Using statically
dimensioned vectors helps reduce memory consumption at
the price of reduced flexibility.

Together with the value, every node is also associated to a
processing function that determines the value based on the
inputs, executed whenever any of the input nodes changes.
This resembles synchronous programming [12], yet with the
fundamental difference that the arrival of events remains
generally unknown.

The RP run-time support traverses the data dependency
graph every time a data change occurs, stopping whenever
a variable does not change its value as a result of changes in
its inputs. Any further processing would be unnecessary be-
cause the other values in the graph would remain the same.

6.2 RP-Embedded

Run-time support for RP is provided through specialized
libraries embedded in mainstream languages. Autopilots are
generally written in C/C++, so we focus primarily on these.
Motivation. Existing C++ RP libraries [21, 46, 48] im-
plement the propagation of changes in the data dependency
graph using complex functionality to speed up the operation.
One example is the use of Intel’s Threading Building Blocks
(TBB) [29]: a C++ library to handle concurrent events in
a multi-core system. These functionality are not applicable
to resource-constrained MCUs. Existing RP libraries also
pay little attention to memory consumption, employing dy-
namic and even redundant data structures. These provide
flexibility at run-time and reduce execution times with a
large number of inputs.

Our setting is different. First, the data dependency graph
encodes the control logic; therefore, its layout is known at
compile-time. Further, memory consumption must be lim-
ited, as we use resource-constrained hardware. The sensors
we wish to map to behaviors are also only a handful. Finally,
the highest frequency of data changes is known; for each in-
put sensors, we are aware or can safely approximate the
highest sampling frequency. Based on these considerations,
we design and implement RP-EMBEDDED: a C++ library to
support RP on embedded resource-constrained hardware.
Data structures. Unlike existing libraries, we employ two
statically allocated vectors to encode the graph, as shown in
Fig.8. The pointers vector is split in as many segments as
the maximum number N of nodes in the dependency graph.
Each segment stores a sequence of object pointers that in-
dicate what other nodes in the dependency graph use the
value of that node as input. The quickAccess vector serves
to speed up random accesses to the pointers vector. Us-
ing these structures, memory occupation is greatly reduced,
especially compared to the container classes of the STD li-

( Gyro ) ( Magn ) ( Sonar )

3D Position

Altitude

to the motors

Dynamics Attitude control

Figure 8: Ardupilot’s control loop for copters after
refactoring to use RP-Embedded. Squashed rectangles
indicate triggers possibly signalled by sensors, squared rect-
angles indicate global state information.

brary used in many C++ RP libraries. For the same reason,
the traversal of the graph requires fewer pointer dereferences
and indirection operations, which tend to be costly on em-
bedded hardware.

These features come at the cost of limited flexibility. Pro-
grammers must place an upper bound on the number of
nodes N and on their fan-out. At run-time, the data depen-
dency graph can only change within these bounds, yet these
needs should be rare in autopilots.

Hyperperiods. From the discussion in Sec.5, we know it
makes sense to await the possible signaling of all triggers
within the same hyperperiod.

Besides having an effect on control decisions, this may
impact the processing overhead. Say we implement a classi-
cal RP semantics and propagate any data change indepen-
dent of any other. The propagation caused by triggers from
a high-frequency sensor may simply be immediately super-
seded by another trigger caused by another sensor within
the same hyperperiod. The control decisions that become
effective, however, are only those of the second propagation.

To avoid this unnecessary processing, RP-EMBEDDED al-
lows the initial input values to be classified based on their
maximum rate of change. Based on this information, RP-
EMBEDDED computes the system’s hyperperiod and, for all
downstream nodes in the dependency graph, it recursively
determines their maximum rate of update. Every time a
value is updated in the graph, RP-EMBEDDED knows the
maximum time to wait before propagating the change, as
further updates in other inputs may occur. As far as we
know, such a semantics is not available in any RP imple-
mentation, regardless of the language.

6.3 Using RP-Embedded

Employing RP-EMBEDDED for reactive control requires
to reformulate the implementation of the control logic—not
the logic itself—in the form of a data dependency graph.
The sensor inputs, as well as the outputs to the motors, re-
main the same as in the original time-triggered implementa-
tion. Triggers generated by sensors when applying reactive
control become the initial inputs to the dependency graph,
whereas global state variables are explicitly associated to
the functions that compute their values. The implementa-
tion of trigger functionality is straightforward, as it boils
down to computing L(z) and comparing the output against
Prun. The run-time estimation of 81 and Sz simply consists
in running an ordinary least square estimation [28].

The problem above is, in essence, a problem of code refac-
toring. We currently perform this transformation manually,
using code inspection tools such as Understand [45]. Soft-
ware engineering, however, offers a wide literature on code



refactoring that can be leveraged to further ease this trans-
formation [33]. Even in the absence of dedicated support,
our experience indicates that the needed transformations
can be implemented with very little effort. Fig.8 shows
the data dependency graph of the Ardupilot control loop
for copters, which a single person on our team realized and
tested in three days of work. Ardupilot is one of the most
complex autopilot implementations. The other autopilots
we test in Sec.7 are simpler. It took from one to two work
days to refactor them. We plan to perform a complete study
to better quantify the efforts and benefits due to implement-
ing control logic in a reactive fashion as opposed to a time-
triggered approach.

7. EVALUATION

We assess the effectiveness of reactive control along several
dimensions, using aerial drones as a challenging use case. We
compare the performance of implementations using reactive
control against the original time-triggered versions.

In the following, Sec. 7.2 reports on the improvements in
navigation and flight time. Sec.7.3 discusses a series of
micro-benchmarks investigating the influence of RP and pa-
rameter settings. Sec.7.4 illustrates the impact of reactive
control in two end-user applications, demonstrating the ben-
efits beyond waypoint navigation. The next section illus-
trates the experimental setup common to all experiments.

7.1 Setup

Drones. We use the two drones of Fig.4 plus a Y6 drone
from 3D Robotics [2]. The latter is peculiar; it is composed
of three arms with two co-axial motor-propeller assemblies
at each end. One propeller faces up and “pulls”; the other
propeller faces down and “pushes”. This configuration ob-
tains almost the same thrust of a hexacopter, but with fewer
components and a lighter frame, which allows it to carry
larger payloads.

Using a Y6 configuration, however, control is more com-

plex. The autopilot needs to set the desired attitude by
carefully tuning the motor settings on the same arm while
counteracting the gyro effect. Due to this, not all autopilots
support this configuration.
Autopilots. Besides Ardupilot and Pixhawk, we consider
two other autopilots and corresponding hardware. We im-
plement reactive control on both as described in Sec. 6, even
though the results of the refactoring generally differ from
that of Ardupilot, shown earlier in Fig. 8.

OpenPilot [39] is an open-source community-driven au-
topilot tightly co-designed with the underlying hardware.
It generally offers fewer navigation features than Ardupilot.
The corresponding CC3D board mounts a Cortex M3 MCU
clocked at 72 MHz, coupled to a 16-bit 3-axis accelerom-
eter/gyroscope, a 24-bit barometer, and a 12-bit magne-
tometer. Cleanflight [18] is the youngest of the three and
is expressly designed for Cortex M MCUs. It focuses on the
robustness of the implementation at the cost of only support-
ing copter drones . We use the SP Racing F3 (SPRF3) board
for Cleanflight. It features a 32-bit Cortex M4 core running
at 72 MHz, together with a 16-bit 3-axis accelerometer/gy-
roscope, a 24-bit barometer, and a 12-bit magnetometer.

The implementations of OpenPilot and Cleanflight resem-
ble the design of Ardupilot shown in Fig. 2, but the control
logic differs substantially in both sophistication and tuning.

This aspect is likely to bear an impact on the effectiveness
of reactive control. Further, the boards we employ differ in
processing capabilities and sensor equipment, which is in-
strumental to understand the general applicability of reac-
tive control. We test OpenPilot and Cleanflight by replacing
Ardupilot and the Pixhawk board on either the quadcopter
or the hexacopter of Fig.4; however, only Ardupilot sup-
ports the Y6. Besides the sensors mounted directly on the
boards themselves, the remainder of the equipment on the
drones remains the same.

Metrics and setting. To study the accuracy of flight con-
trol, we measure the attitude error, that is, the difference
between the desired and actual attitude. The former is de-
termined by the autopilot to reach the next waypoint and
changes seldomly, for example, when reaching a waypoint
and turning to the next one The actual attitude is recorded
through the on-board sensors. Their difference is the figure
the control logic aims at minimizing. If the error was con-
stantly zero, the control would attain perfect performance;
the larger this figure, the less effective is the autopilot.

The attitude error is measured along the tree axis as the
error between desired and actual raw, pitch, and yaw, shown
in Fig.3. When navigating from one waypoint to the next,
all three are subject to the environment influence. To mea-
sure the error in a minimally invasive way, we connect a
separately-powered RaspberryPI board to the I12C or GPIO
interfaces of the boards we test. The modifications to the
autopilot to output these information are minimal; the im-
pact of this processing and the added weight of the Raspber-
ryPI and its battery are negligible and equally affect time-
triggered and reactive control.

To understand how the accuracy of flight control impacts
the drone lifetime, we also record the flight time as the time
between the start of an experiment and the time when the
battery falls below a 20% threshold. For safety, most GCS
implementations instruct the drone to return to the launch
point upon reaching this threshold. In general, the lifetime
of aerial drones is currently extremely limited. State of the
art technology usually provides at most half an hour of op-
eration [24]. As a result, this aspect is widely perceived as
a major hampering factor.

We test 18 different flight paths in the three environments
of Sec. 3. Each path is composed of 8 random waypoints cov-
ered at a maximum speed of 3 m/s and 5 m altitude. We
repeat every run at least 3 times with every drone. The
path loops as long as the battery stays above 20%. Note
that it is extremely difficult for RuGBY and ARCH to en-
sure that the comparisons are performed in the exact same
conditions. We use a 5 m tall digital anemometer in the
middle of the fields to record the wind speed during an ex-
periment, and consider the conditions comparable within £1
knot. The results we present next are based on more than
260 flight hours, and exhibit a variance constantly within
5% of the average value given comparable environment con-
ditions. Running these experiments took almost 8 months,
as we often had to wait for the right conditions to run the
tests in comparable conditions.

7.2 Navigation

Based on empirical tests and our own experience in devel-
oping reactive control, we set Pr, = 0.6 and
Tfaitsafe = .1 sec. We study the impact of different settings
for these parameters in Sec. 7.3.
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Figure 9: Average improvement in pitch error. The
absolute values range from a 41% improvement with Clean-
flight in LAB to a 27% improvement with Ardupilot in ARCH.
The improvements for the latter are proportional to the time
control outputs the same decisions, shown in Fig. 5; it is the
opportunity to spare iterations of the control loop that en-
ables more accurate control decisions.

Test Yaw improvement | Roll improvement
environment (min/max) (min/max)
LaB 29%/41% 31%/41%
RucBYy 31%/37% 30%/39%
ARCH 22%/35% 24%/37%

Figure 10: Improvements for yaw and roll across all
autopilots and drone types.

Results: attitude error. Fig.9 shows the average im-
provements in pitch error enabled by reactive control. The
improvements are significant, ranging from a 41% reduction
with Cleanflight in LAB to a 27% reduction with Ardupilot
in the challenging ARCH. We obtain very similar results,
sometimes better, for yaw and roll, summarized in Fig. 10.

The improvements for Ardupilot are proportional to the
time the control logic outputs the same decisions, shown
in Fig.5. This confirms that it is the opportunity to spare
iterations of the control loop that enables more accurate
control decisions. Not running the control loop unnecessarily
frees resources, increasing their availability whenever there
is actually the need to use them. In these circumstances,
reactive control dynamically increases the rate of control,
possibly beyond the pre-set rate of time-triggered control.
This means reactive control does not necessarily decreases
the utilization of resources, but rather moves that utilization
at times where the demands are more crucial to satisfy.
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Figure 11: Average rate of control at second scale
in two example Ardupilot runs. Reactive control adapts
the rate of control executions both in the short and long term,
and according to the perceived environment influence.
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Figure 12: Improvement in flight time. More accurate
motion control reduces the energy overhead in attitude cor-
rections. As a result, battery utilization improves and flight
times increase. The improvements are higher in the more
demanding settings.

Evidence of this is shown in Fig. 11, showing an exam-
ple trace that indicates the average control rate at second
scale using Ardupilot and the hexacopter. In ARCH, reactive
control results in rapid adaptations of the control rate in re-
sponse to the environment influence. On average, the control
rate starts slightly below the 400 Hz used in time-triggered
control and slowly increases. Our anemometer confirms that
the average wind speed is growing during this experiment.

In contrast, Fig. 11 shows reactive control in LAB exhibit-
ing more limited short-term adaptations. The average con-
trol rate stays below the rate of time-triggered control, with
occasional bursts above the rate of time-triggered control
whenever corrections are needed to respond to environmen-
tal events, for example, when passing close to a ventilation
duct. The trends in Fig. 11 demonstrate reactive control’s
adaptation abilities both in the short and long term.

Still in Fig. 9, the improvements of reactive control ap-
ply to the Y6 as well; in fact, these are highest in a given
environment. This cannot be attributed to its structural ro-
bustness; the Y6 is definitely the least “sturdy” of the three.
We conjecture that the different control logic of the Y6 offers
additional opportunities to reactive control. This provides
evidence of the general applicability of reactive control in-
dependent of the control logic. This is also demonstrated
by the results for Cleanflight, still shown in Fig.9. Being
the youngest of the autopilot we test, it is fair to expect the
control logic to be the least refined. Reactive control is still
able to drastically improve the pitch error, by a 32% (37%)
factor with the quadcopter (hexacopter) in ARCH.

The results for OpenPilot in Fig.9 also show how reac-
tive control leads to better hardware utilization. All other
settings being equal, the improvements for OpenPilot are
higher than with Ardupilot, yet the OpenPilot hardware is
the least powerful we test. Sparing unnecessary iterations
of the control loop is thus increasingly important, and the
effect of reactive control amplifies. This testifies the oppor-
tunity for downsizing the hardware, as reactive control can
utilize it better and, most importantly, at the right times.
Results: flight time. The improvements in attitude error
translate into more accurate motion control. This reduces
the energy overhead in attitude corrections, for example,
due to operating the motors at higher rates to adjust the
trajectory. As a result, battery utilization improves and
flight times increase.
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Figure 13: Improvement in flight time without us-
ing RP-Embedded, with Cleanflight. The improve-
ments are still appreciable, but almost halved. Part of the
resources freed by reactive control are eaten up by an ineffi-
cient implementation.

Fig. 12 shows the results we obtain in this respect. Re-
active control reaches up to a 24% improvement compared
to time-triggered control, with a worst-case improvement
of 11%. This means flying more than 27 min instead of 22
min with OpenPilot in ARCH, that is, covering 6 to 8 ad-
ditional waypoints: almost an entire additional lap. This
figure is crucial for aerial drones, as discussed earlier. The
improvements reactive control enables in this respect are
thus extremely valuable.

Perhaps most importantly, these improvements are higher
in the more demanding settings. Compared to the results of
Fig. 9, the trends are indeed opposite. The better resource
utilization enabled by reactive control becomes more impor-
tant as it is more urgent to react. Similarly, the quadcopter
shows higher improvements than the hexacopter. The me-
chanical design of the latter already makes it physically re-
silient. Differently, the quadcopter offers more ample margin
to cope with the environment influence in software.

7.3 Micro-benchmarks

Based on the results of the previous section, we study
the impact of employing RP-EMBEDDED for implementing
reactive control and the influence of P, and Tfisafe-
Impact of RP-Embedded. Conceptually, reactive con-
trol is not necessarily tied to any specific implementation
technique. The question then arises as to what is the role of
RP-EMBEDDED in the performance of Sec.7.2. To answer
this, we run 20 hours of experiments with an implementa-
tion of reactive control that exclusively employs standard
C/C++ and mainstream libraries. Code is always compiled
using the GNU GCC toolchain.

Fig. 13 exemplifies the performance in flight time improve-
ments with this implementation, using Cleanflight running
on SPRF3. Compared to Fig. 12, the improvements are still
appreciable, but are almost halved now. Basically, at least
part of the resources freed by reactive control are eaten up
by an inefficient implementation. These results demonstrate
that provisioning an efficient implementation is essential to
fully harvest the advantages of reactive control, and our RP-
EMBEDDED implementation of RP is effective to this end.
Parameter setting. We run another 20 hours of test flights
to understand the influence of Py, and Tjiisefe On the per-
formance of Sec. 7.2.

Initially, we vary the setting of P, from 0.2 to 0.8 and
keep a fixed Thissafe = -1 sec. As example, Fig. 14 depicts the
pitch error improvement we observe using Ardupilot. Worth
noticing is that for all values and settings we test, the results
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Figure 14: Improvement in pitch error with different
Pryun, using Ardupilot. Some improvements are obtained
for all values and settings we test.

are positive, that is, some improvements are always obtained
regardless of the parameters’ values.

The performance shown in Fig.14(a) demonstrates the
robustness of reactive control against different settings for
Pryu»n in the most challenging environment. A setting in the
[0.4,0.7] range offers a performance close to the best at-
tainable. Within this range, the probability of false posi-
tives in logistic regression as described in Sec. 4 is also very
small: it is about 7% right after Tho0:, and quickly reaches
a steady 2%2. In Fig. 14(a), the performance only degrades
when P, takes extreme values. When P, is too large,
control happens too seldom so corrections tend to be abrupt.
When P, is too small, the execution approximates time-
triggered control, which sub-optimally uses resources. Again,
the structural robustness of the hexacopter yields the least
sensitivity to different P.,: its curve is almost flat in the
[0.4,0.7] interval.

We show the performance with varying P, across the
three environments in Fig. 14(b), using the hexacopter. We
obtain similar results with the quadcopter and the Y6. We
observe how the range of robust values for P, tends to
become larger as the environment plays less influence. The
curve for ARCH is the most concave, the curve for LAB tends
to flatten, and the one for RUGBY lies in the middle.

Based on these results, and without relying on any knowl-
edge on the environment, values in a [0.5,0.6] range should
be preferred. The more the drone can sustain the envi-
ronment influence, the more it is safe to increase Py.,, as
observed in Fig.14(a). Similarly, if the environment is ex-

2Note that computing the general probability of false neg-
atives would, in principle, require to run the control loop
anyways and on the same hardware of reactive control. This
would affect the timing of the following iterations and thus
the whole execution. We offer next some insights into the
probability of false negatives for failsafe executions, which
do occur anyways.




pected not to play any strong influence, it makes sense to
increase Pryn, as the range of robust values is probably large
as observed in Fig. 14(b).

In a different set of experiments, we fix P, = 0.6 and test
Thaitsase € {.01,.05,.1,.2,.3} sec, again using Ardupilot with
all three drones across all environments. The performance
in attitude error turns out largely insensitive of the value of
Taitsafe, demonstrating how this is in fact only a safety mea-
sure. Moreover, for all failsafe executions, the probability of
a false negative compared to the output of logistic regression
turns out negligible. The only exception is for Thuiisafe = .01
sec, which yields a slight performance degradation. With
this setting, the frequency of failsafe executions starts inter-
fering with reactive control.

7.4 End-user Applications

We demonstrate the benefits of reactive control in end-
user applications beyond waypoint navigation.

7.4.1 3D Reconstruction

We perform 3D reconstruction of static objects using aerial

pictures [38]. This is a paradigmatic aerial drone application
of great societal interest [53]. The procedure requires gath-
ering a predetermined set of aerial pictures, followed by a
post-processing step with 3D reconstruction software, such
as Photoscan [3].
Setup. In LAB, we attempt the 3D reconstruction of a
puppet on a table in the middle of the area. In RUGBY,
our target is a car kindly provided by one of the authors®.
We are interested in the quality of the 3D reconstructions.
The more stable is the drone while hovering for taking a
picture, the less blurred or distorted is the picture. In turn,
the better are the input pictures, the higher quality is the
resulting 3D reconstruction. The latter is usually measured
based on the density of the point cloud [38], that is, the
number of image points the reconstruction software found
to be the same across pictures. This is the information that
enables the transition from a 2D plane to a 3D surface.

We use Ardupilot and the hexacopter equipped with a

Nikon D5500+4 camera. We refactor the PID controllers for
Ardupilot’s Hovering mode, which are different than those
for waypoint navigation, to use reactive control. We deter-
mine a total of 30 target coordinates where to take a picture,
and repeat the experiment 3 times using either reactive or
time-triggered control at 400 Hz. Because the number of
pictures input to Photoscan is the same in both cases, any
improvement due to reactive control is only due to the qual-
ity of individual pictures.
Results. Photoscan returns that the point cloud is 23%
or 29% more dense when using reactive control in LAB or
RucGBY, respectively. Reactive control thus translates into
tangible benefits also in a challenging end-user application.
Coherently with the earlier observations, these advantages
are greater in the more challenging environment. The higher
environment influence in RUGBY amplifies the improvements
of reactive control compared to LAB.

7.4.2 Search-and-rescue

We demonstrate how reactive control is amenable to im-
plement active sensing functionality.

31t was not possible to obtain the needed authorization to
place an object of proper size in ARCH; thus, we could not
perform any 3D reconstruction experiment there.

. — — RSy
Figure 15: Example of ARVA-driven navigation
when using reactive control (black) and time-
triggered processing (yellow). Time-triggered control
occasionally produces highly inefficient paths, whereas we
never observe similar behaviors with reactive control.

Setup. Professional skiers are recommended to carry a de-

vice called “Appareil de Recherche de Victimes en Avalanche”
(ARVA) [40], that is, a radio transceiver operating at 457 KHz
and specialized for the purpose of finding people under snow.

Normally, the device emits a low-power beacon. Following

an avalanche, a rescue team can use another ARVA device as

a direction finding device, searching for signals from trapped

persons. The searching device generates a “U-turn” signal

whenever it detects the owner starts moving away from the

victim. Modern ARVA devices reach a 5 m accuracy in lo-

cating a transmitter under 10 m of snow [40].

We integrate a Pieps DSP PRO [40] ARVA transceiver
with the Pixhawk board through the UART port. A cus-
tom PID controller drives the drone’s yaw to align it with
the direction pointed by the ARVA. Roll and pitch, instead,
are determined to fly at constant 1 m/s along the direc-
tion indicated by the ARVA. The resulting control does not
make any use of GPS information; navigation is entirely de-
termined by the ARVA inputs. We implement this controller
both using reactive control by probing the ARVA device as
fast as possible, and with time-triggered control at 400 Hz.

We place an ARVA transmitter at one end of RUGBY, and

set up the quadcopter at 100 m distance facing opposite
to it. Even though GPS does not provide any inputs for
navigation, we use it to track the path until the first time
the ARVA device generates the “U-turn” signal. We compare
the duration and length of the flight when using reactive or
time-triggered control. The results are obtained from 20
repetitions in comparable conditions.
Results. On average, reactive control results in a 21%
(11%) reduction in the duration (length) of the flight. Be-
sides the averages, time-triggered control shows higher vari-
ance in the results, occasionally producing highly inefficient
paths. Fig. 15 reports a visual example. The path followed
by reactive control appears fairly smooth. In contrast, time-
triggered control shows a convoluted trajectory at about
one-third of the distance, where the drone’s yaw is basically
490° compared to the target.

By looking at the logs, we find the reason to be in the
inability of time-triggered control to promptly react. Prob-
ably because of sudden wind gusts, at some point the drone
gains a lateral momentum. Time-triggered control is unable
to react fast enough; a higher than 400 Hz rate would prob-
ably be needed in this case, so the drone turns almost 90°.
At this point, time-triggered control takes some seconds to



remedy the situation. We never observe this behavior with
reactive control, which better manages available resources
against environment influences.

8. CONCLUSION

Reactive control replaces time-triggered control by gov-
erning the execution of the low-level control logic based on
changes in the navigation sensors, rather than time. This
allows the system to dynamically adapt the control rate to
varying environment dynamics. We described how we en-
able reactive control by conceiving a probabilistic approach
to trigger the execution of the control logic, by carefully
regulating the control executions over time, and by provi-
sioning an efficient implementation on resource-constrained
hardware. We then extensively demonstrated the benefits
reactive control provides, including higher accuracy in mo-
tion control, longer operational times, and better perfor-
mance in two diverse end-user applications.
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