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Abstract

A2thozgh pouleTful image TepT~entatiom have been proposed
for cozienf-based image Tetieval, most of the cument sys-
tems aTe “tigid”, i.e. they rettieve a fied set of images
as Tesponse to a given que~ and an image featuTe. We
introduce S=fitaage, a useT-fiendly, genetic and flw-ble
content-based image TetievaI system. Stiiatage wes the
que~-by-sample appToachfor ~ettieving images and inte-
grate advanced ~eatuTessuch as image signatuTe combina-
tion, classification, multiple queti~ and queq Refinement.
The classic and advanced featuTes of SMiraage aTe de-
taild in the papeT. Stiiraage has been eztensive[y t~ted
oz dozens of databas~ and p~oauced ezcellent Tetm-evalTe-
S-dts; a sample of Tetm”eva~Tau~ts h pr~ented here.

1 Introduction

lItititnedia documents are dominated by irnag~ tith r~
spect to b~dtidth and complexity. Thus, retrieving im-
ages based on their cent ent., cotnrnody cded content-based
image Tetm.eval,hz become a major issue in mtdtirnedia re
trie;d. For designing an tiective image retrie~d system,
we fid it convenient to di~<de image databases in tio cat-
ego~~.

The tist category concerns dat abases for which a ground
tr~th is a~tiable. These databasw are gener~y homoge
neous - they contain imag= of the same object class. For
qu~g these databasw, the notion of perceptual similarity
be~een fio itnag~ is impficifly obvious (ag. &d more im-
ages of this person) or e\T~citly d~ed by = &\Tertuser
(e.g. fid more images presenting the same type of tumor).
When ind~tig the database, the designer wfl consider these
~~ound truths and tune the mod~ or range of pararneters
accordingly, matiig the system eficiency. The response
to the queri~ wfl then be “rigid”, i.e. an example image
@ lead to the same set of retrieved images.

The second category includes databases tith heterog~
neous images where no gTound troth is a~dable or obvious.
Examples include stock photography and the World l%~de
Web. The user shotdd be assumed to be an average user
(not an a\T@), and the notion of perceptual stiarity is
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subjectiv~ It hig~y depends on the application, the con-
ta~~, and the user. k partictdar, different users may have
dramatic~y Merent go~ when querying such a database.
The god here is to maximize the system ~m.bility, adapting
to and learning from each user in order to satisfy their god
[10, 4,1, 11].

Urdike most of the earher systems (e.g. [2]), Suf image
is a flexible image retrieti system that can ded tith both
categorim of image databases. For a specitized database,
the ground truth is wre~-defied and a dedicated image sig-
nature @ lead to optimal performance [S].

k order to ded tith generic databases, Stiimage in-
cludes a novel, generic and efficient relevance feedback tech-
nique which enables the user to refine their query by spec-
ifying over time a set of relevant and a set of non-relevant
itnaga. Our idea is to estimate the distribution of rel~
vant images from the e~arnples provided by the user and to
sirmdtaneously rnitize the probab%ty of retrieving non-
relevattt images [7]. We can iteratively refine our density
estimation through time as the user specifies more positive
and negative axarnples.

Stiiraage *O offers the possibfity of combining image
features [7]. Using combined rather than individud features
is especidy efficient for generic image databases, for which
no single feature is outstanding. For higMy heterogenous
databasw, the combination of features can essentidy lead
to the dasstication of the different image types, as show
in this paper.

The various features of Surf image enabfing both efi-
ciency and flatibfity are presented in this paper, and several
retried restits in various cases are presented.

2 Stiiraage: classic features

For the dgorithtn designer, the hardest step is image in-
d~tig, i.e. the computation of image signatures. This is
typicdy an off-be processing. For doing this, genericity
or specificity of the signature and conservation (or non-
conservation) of the spatial arrangement of the image are
key issues. The corresponding images signature categories
tith exatnplw are summarized in table 2.

Stiiraage offers a large sdection of signatures in d the
Merent categoriw mentioned in table 1. Among the signa-
tures we can mention

● Low-levd si~atures capturing color, shape and tex-
ture. Examples include color, orientation and texture
histograms, Cooccurrence, Fourier and Wavelet trans-
forms.

— .___
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I arrangement generic Sig. I spetic sig.
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encoded Foutier spectmm I eigenfaces
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Table L bage signature categories & Esamples

. High-levd signatures whi& are deriwted horn a com-
pl~x modhg of image content and sometimw a sta-
tistid analysis of the database. ~amples include
eigenimages [13, 5], flauble images [8] or image shape
.~ectrurn 16].

The stiarity metric is usudy dhed via a distance
measure which W be used for nearwt neighbor match in
feature space. l~arious stiarity metrics are implemented
in Suftiage: the NMowski LP &t antes, the Cosine met-
ric, the H&ger metric, and N1-estimators for outfier rejec-
tion. h our cxTerience, the city-block distance L1 is conv~
nient since it is fast to compute and wd-suited to signatures
which are histo~ams.

Stitiage uses the query-by-sample approach for
qu~tig. k the classic querying scheme, the user (i) loads
a database, (ii) sdects a signatur~ (iii) chooses a stiarity
metric, and &&s on a qu~ image from the database to
&d more stiar images with respect to the chosen signa-
ture and metric E\Teriments are shown in section 4.

3 Stitiage: advanced features

The specificity of Stitiage is its dvanced features which
m~es it uniqudy fl~tible among image retrieti systems.
Ad\~ced features include signature combination and rde
vance feedback based on density estimation They are de
tied hereafter.

3.1 Sgnature combination

Combination of Merent features has been a recent focus of
image retrie>d [3, 1, 4]. But how do we combme “apples
and oranges”, i.e. features that have different number of
componmts, Hezent sales etc?

Simple resc~g of the features is not suitable since
it ~“odd alter the discrimin ation properties of each fea-
ture. .4 weighted bear combination of feature vectors is
another possible method, and the wtights have to be es-
timated ~earned) after various mTerimentations with the
database 13, 1]. W’e have e~~erimented with two combin-
ationmethods. Under Gaussian assumption, tie nomalized
linear wmhination method uses the estimated mean K and
stmdard deviation ui of the distance measure d for each
feature i, providing the norm~ed distance

d’(x(”, y(i))=
d(x{~), y(~)) – (~ – 3ffi)

6 u;
(1)

m-herex(i) and y(i) are the signature vectors of images X
and 17 within feature i. The new distance measure d’ fl
essenti~y have its dues in [0...1] and a be h-ly com-
bmed tith the norm~ed distance measures of the other
featurw (see *o [9]).

fie voting procedure operates as fo~ow% in response to
a query, each feature retrieves images and grades them by
increasing order of distance. The ranks of the retrieved im-
ages within each feature can then be combmed by a weighted

t
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Figure 1: Precision-reed graph for the MT Vistez ~
database. Note that the Fourier t-ure, the most perfor- r
mant single feature that we have computed, is not ~ good

.

as any of the combined features.

sum (e.g. averaging) to output the retrieved images accord-
ing to the combination of features. Mternative methods
include the use of the median rank and the gymnastics-de
(i.e. ignoring the worst and the best ranks of an image) for
robustness.

For etiuating the combinations, we experiment on
benchmark databas- with ground truth, and draw the
precision-rec~ graphs, with

Precision =
Iretrieved relevant images!

/retrieved images]
(2)

RecW =
Iretrieved relevant imagesl

Irelevant imagesl
(3) ‘

where IDI denotes the number of demerits in D.
For most app~cations, it is impossible to mtirnize pre

c~lon and rec~ simtitaneously, but these dues shotid id~
~y be as large as possible. Figure 1 shows the precision-
rec~ graphs for a database with ground-truth adapted from
the ~T Vtitm database, consisting of 384 homogeneously
tex%ured imagw as used in [11]. From this figure, it is obvi-
ous that any version of featuTe combination is moTe perfor-
mant than a single featuTe, as noted ekewhere [10]. We have
quantitativdy vefied the better performance of the com-
bination on a number of other benchmazk pubfic-domain
databases with ground truth (Columbia database of 3D ob-
jects, OM face database etc.).

1 I [

Figure 2: Distribution of a specific feature component. (a) i
over database (b) over a set of relevant images. 1

i
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3.2 Relevance feedback

3.2.1 h!otivations

We now m combme several features for a single query. Our
objective in this section is to enable query r~ement by user
interaction. Before describing our method, consider the fol-
loting example that d clarify our motivations. Suppose
the user is a customer ~ng to pnrdase a shirt. h most
cases they have some ideas about the features connected
tith shirts, Me color, taxtiure, size, qutity, price. Their
idea about these features can either be very precise (UI-t
a cotton shirt?’), other features can ~~ in a range (~ am
ready to spend 30 to 40 do~ars on it”), other features might
be unimportmt (UI don’t care about the color”). The sd~
man’s job is to gums these Merent distributions to come
up with the ided shirt.

h statistical terms, each feature has a distribution. h
c~<eof paramet tic distributions me Ganssians, the salesman
needs to ~%essthe mean and the standard deviation. b par-
tictiar, the standard deviation can be zero - or rather nar-
row - providing a constrained feature, (e.g. cotton), average
(e.g. price range), or infinite (e.g. color is unimportant).

What we =t to do is tiar to the above &sample.
A simple idea is to try to estimate the feature densitiw
of relevant imagm based on positive exmples provided by
the user (non-rdevant &ages are not tden into ucount at
this point). hIore precisdy, let X an image, and x its d-
dimensiond signature vector: x = [zl ...zi ..-zd]. For a given

query, our god is to estimate the densi~

Pe (x[X is rdel=t) (4)

where @ are the distribution parameters. H we make the
simp~tig assumption that the x, are independent 1, then
we have

d

P~ (x]Xk r~evant) = ~ P@Z(z;]Xk rdevant) (5)
.=1

Our gord is now to estimate the d distributions Pei based on
the user’s asamplw. ~~ote that ~ch of these distributions
concerns an individu~ feature component.

h this hamework, we have to estimate the distribution
of the individu~ feature components for the rdevant images
from the images labded ‘rdevant’ by the user, which is ody
an approtiation of the whole set of images rdevant to the
quw~ This distribution %3 be updated through time and
user interactions. A new query is then determined by rm-
dotiy dratig individud feature components according to
the corr~ponding estimated distributions. Based on this
qu~, more rdevant irnagw are Mdy to be retrieved.

lIore precisdy, we assume that the densities of the fea-
ture components of the rde~at imaga are Gaussian. This
is motivated by looking at the distributions of feature com-
ponents over the database, and over a dhed set of rde
vant images. Consider for instance the benchmark Colnmbla
database 15]. It contains lMO images of 20 Merent objects
with a tide variety of properties ranging from uniform r~
fleetante and simple shapes to compl~y ta~%nrd properties.
The database contains 72 images per object, taken at 5 d+
agreesincremmt ed in pose. Fignre 2 shows the distribution
of an individud feature component over the entire database

lthey are gener~ly not indepadent, still the independence of in-
d~x tms is a common ~sumption in ptiicul~ in information r~
trie~-d theo~ [12]

I

1

and over the set of 72 images of a specific object2. We ob-
serve that the distributions can be approximated by Gaus-
sians (the parameters ae the mean and standard deviation:
ei = (Pi,ai)). !“

,.

3.2.2 Detailed algorithm

h practice, we tish to integrate both the positive (relevant)
and the negative (non-relevant) examples of the user. Our
idea is to estimate the distribution of relemt images for
each feature component (described by Oi) from the exam-

1

pies provided by the user and to simultaneously minimize
the probabtity of retrieving non-relevant images. Note that
the distribution of the non-relevant images cannot be easfiy
modded since by detition, non-relevant images tend to be
mtitimodd. Nevertheless, we take the user-provided non-
rdevant exampl~ into account, as explained hereafter.

For the relevant examples, we define the “3u-
Snrronnding v(i) as3:

For each feature component i, our god is to estimate the
parameters e; = (Pi, u~) such that more relevant images
and less non-relevant images are retrieved.

Hence,. the method is Merent horn the maximum tike-
Mood estmation of the relevant images since it dso int~
grates the non-relevant images. It js det~ed in the fo~oting
pseud~code, wkch determmes distribution arameters for

?each feature component si, given the sets o dues for the
images labeled ‘relevant’ (D~eli) and ‘non-relevant’ (D~Oni)
by the user.

(n) + 3Cfn)] where n is the iteration.1. Let V(n) = ~~) –3a(m), pi
Initia~ze n = O and d~stribution p~rameters:

~(o) =
, mean {siC D:e,i }

(o) =
u., argm== 1{.i CD:e[. “D~oni,.i E V(o)}l* *

(n) b~ed on the percentages of “rel-2. Detemine error term e,
(n)e-nt =lUU not covered” p-., and “non-relewnt valu~ cov-

3.

4.

5.

6.

e(n) =
, P:; + P?.;

If p~~ exceeds a predefine p~=., go tostep 5, otherfvise up-
date distribution parameters:

~(n+l)
* {

= mean s~ E D~el{ [~i c V(n)
}

~{n+l) = ~ . ~(n)
* z \vith O<A<l

n=n+l. Gotostep2.

Detemine distribution parameters \vith minimum error mea-
sur= fin c=e of an ambiguous minimum, decide for the one
with the m~imal u)

k“ = argmink {e\k)}

~(k*)p~=,

~(k’)
c.=,

Draw random nriabl~ from from ~(p~k”, U$k’)) with i =
I...d. Use the obtained feature vector= a new query to retrieve
more relevant images.

,.

I

i
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NR ~NR ~YNNR Si
~(n)

n=o 1.;0
n=l 1.17
n=2 ~ 0.83
~=3 ~ 0.67
n=4 ~ 0.50
n=~ , 0.50
n=6 0.50
n 7 0.331
nZ~ 0.50
n=g , 0.50
n=lo 4 0.33

(=) – 3D: )piPi
n (m) p:) + 3U:)

Fime 3 An &xample to demonstrate the algorithm for w
timating ~ ~d u; -

A few comments o;, the algorithm: we start the pr~

cedure tith a large Ci covering ~ us=-provided =arn-

ples - both rdevant and non-rdevant – thus P$] = O =d

p~~. = 1. Over the itwations, we slowly decrease a:) (e.g.

A = 0.9) untfi the -or e~) is minimized. We ensure that
the procedure does not axdude too many rdent images
(e.g. p~~. = 1/3). A key issueis that 0~ =@ation of
the distribution is based on a fen’ data points (less than a
dozen) =d therefore it is not r&ably representative of the
true distribution of ti the images in the database rdevant
to the query. Therefore we introduce a randomization (step
6) that fl retrie~remore ‘varied” images than the cbtssic
matium Mmood estiruator (which d basidy retrieve
the closest images to ~). N’ote that the randomization of
step 6 can be improved by generating (i.e. randody draw-
ing) m new query vectors and retrietig the m best match=
to ea& of the nem queries.

One of the nice properties of the above algorithm is
that, in cases where rdevant and non-rdevant images are
fi tixed up tithin a feature component, the estimated dis-
tribution fl tmd to be flat (large a;). This means that the
corr=ponding feature component is not discriminant for the
quq.

An example Uustrating the density estimation part of
the dgorithrn is presented on figure 3. SLY‘relevant’ (R)
and six ‘non-rdevant’ (N) images have been labded by the
user. Their Idues for a feature component si are visua-
lized in the fi~e. The estimated mean vrdue (p!)) and

3a-surrounding (~(”)) are visutized together tith the cor-

(“) for the fist ten loops of the d-desponding error ~due ei
gonth. For n >10 the error ~due does not decrease any-
more, because d ‘non-rde\mt’ ~dues are tieady &xduded

(=) o~yfrom the 3u-surrounding, and for smder dues of Ui
more ‘rdevant’ Idues motid be e~duded k this -e, the
dgonthrn deterrnina @o minima for the error function. k
order to favor the parameters such that most rdevant d-
ues are inside the 3a-surrounding of the distribution, the
algorithm decides for the pmarneter set @i = (P~), U:))

corresponding to n = 7.
We non. e~duate the performance of our technique on

databases tith unique ground truth the Visttix and the

21n this es-pie, the feature ~.ector ‘S the edge ofiatation
hlsto~am

317 co%.- gg.7yo of the data in ae of Gaussim @lstfihutiOns-,

I lno~j 1~ 2 rf I
I Columbia I

Table 2: Performmce of the proposed relevance feedback
technique after one (1 ~) and 2 sets (2 r~) of user interac-
tions. The precision keeps getting better than tith no user
interaction (no ~)

Columbia database, using standard image features whose
description is not the scope of this paper (see for instance
[3, 5]). We measure the precision over a predefine num-
ber of retrieved images (e.g. 15). The performmce of the
standard relevance feedback approach adapted from [12, 11]
is fio presented. The restits are summarized in table 2,
Uustrating than the proposed technique is better than the
standard method.

1

Figure 4 Single spefic features: retried of the top left
face in a database of 7562 images using flaible images [8].
Retrieved images are from top left to bottom right in order
of best match. Note that the second and third best matches
are faces of the que~ person tithout sunglasses.

4 Retrieval Results
Figure 4 shows an example of querying tith Surfimage on
the h~T face database (7652 images). We have developed a
spe~c, arrangement-preservtig signature for this database
c~ed fim.ble images [8]. With the MIT face database,
SMtiage produced a recognition accuracy of 9770 based
on a nearest neighbor tie. This corresponds to ody Sk
mistakes in matching views of 200 people randody chosen
in the database of 7,562 images. This is si@cantly better
than had previously been reported for this dataset [13].

Combtig image features (up to a dozen image signa-
tures) increases the discrimination power of the inda. We
have measured 100% recognition rate using combined fea-
tures on the Columbia database. We Nustrate combined
features on our hig~y heterogeneous homebrew bigdatabase,

I

I

I
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Figure Z Rdewce feedbd Using useT’s feedback (left) to find more portraits (right).

I

which was btit by merging the h~ Vista dat abase oft ax-
ture~, the BTphoto datab~~e of city and conntry scenes, a
homebrew paintings database, and the homeface database
of people in the lab. The total nmber of irnagw in big-
Jatabase is 3670. Fi~e 5 shows the abiity of&ding more
city scaes from a qn~, thm s~entifly pefio~g a ~=
.~cation task A combination of featm- were med for in-
cre~=ed performance.

FI~e 6 prments the resdts of a mdtiple query on
the ColmEla database The a<er is shag through
the database and dead~s to retrieve more ANACIN and
T~ENOL pa~s. The technique w~edis the rdewce feed-
back technique detded above, but. in this c~~e no nonrde
-t image w~~ speded.

lTe tiwstrat e query refiement on the bigdutabase de
scribed above The user refines their query to obtain more
portraits (figure 7). Note that many of the retrieved tiag=
can be dasfied as portraits, although the total nnrnber of
portraits in the database is smfl (about 2% of the images
in the database are portraits).

5 Conclusion

Ive introduce Stifiage, a fltible conten~based image
retried system. S@tiage offers a tide range of im-
age signatures, .=arity metrics, and a user-friendy in-
terface. hIoreover, Stitiage incorporates advanced fea-
tur~s for 3atibiity. bage signatmes can be combmed for
improved perforrn=c~ and for appKcations such as &ass-
fication of a database into classes of seen=- S*tiage is
*O able to learn from mer interaction, Wowing mdtiple
qneri= and query r~ernent by rdevance feedback. The
latter technique is based on a density estimation integrating
positive and negative ~-pies protided by the uer, and it
~ shown to be more powefi than the standard relevance
feedback approach.
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