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Abstract

Although powerful image representations have been proposed
Jor content-based image refrieval, most of the current sys-
tems are “rigid”, i.e. they retrieve a fized set of images
as Tesponse to a given guery and an image feature. We
introduce Surfimage, a user-friendly, generic and flerible
content-based image retrieval system. Surfimage uses the
query-by-ezample approach for retrieving images and inte-
grates advanced features such as image signature combina-
tion, classification, multiple gueries and query refinement.
The classic and advanced festures of Surfimage are de-
tailed in the paper. Surfimage has been ertensively tested
on dozens of databases and produced ezcellent retrieval re-
sults; a sample of retrieval resulis is presented here.

1 Introduction

AMultimedia documents are dominated by images with re-
spect to bandwidth and complexity. Thus, retrieving im-
ages based on their content, commonly called content-based
image retrieval, has become a major issue in multimedia re-
trieval. For designing an effective image retrieval system,
we find it convenient to divide image databases in two cat-
egories.

The first category concerns databases for which a ground
truth is available. These databases are generally homoge-
neous — they contain images of the same object class. For
querying these databases, the notion of perceptual similarity
between two images is implicitly obvious (e.g. find more im-
ages of this person) or explicitly defined by an expert user
(e-g- find more images presenting the same type of tumor).
When indexing the database, the designer will consider these
ground truths and tune the models or range of parameters
accordingly, maximizing the system efficiency. The response
to the queries will then be “rigid”, i.e. an example image
will lead to the same set of retrieved images.

The second category includes databases with heteroge-
neous images where no ground truth is available or obvious.
Examples include stock photography and the World Wide
Web. The user should be assumed to be an average user
{(not an expert), and the notion of perceptual similarity is
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subjective. It highly depends on the application, the con-
text, and the user. In particular, different users may have
dramatically different goals when querying such a database.
The goal here is to maximize the system flezibility, adapting
to and learning from each user in order to satisfy their goal
[10, 4, 1, 11}.

Unlike most of the earlier systems (e.g. [2]), Surfimage
is a flexible image retrieval system that can deal with both
categories of image databases. For a specialized database,
the ground truth is well-defined and a dedicated image sig-
nature will lead to optimal performance [8].

In order to deal with generic databases, Surfimage in-
cludes a novel, generic and efficient relevance feedback tech-
nique which enables the user to refine their query by spec-
ifying over time a set of relevant and a set of non-relevant
images. Our idea is to estimate the distribution of rele-
vant images from the examples provided by the user and to
simultaneously minimize the probability of retrieving non-
relevant images [7]. We can iteratively refine our density
estimation through time as the user specifies more positive
and negative examples.

Surfimage also offers the possibility of combining image
features [7]. Using combined rather than individual features
is especially efficient for generic image databases, for which
no single feature is outstanding. For highly heterogeneous
databases, the combination of features can essentially lead
to the classification of the different image types, as shown
in this paper.

The various features of Surfimage enabling both effi-
ciency and flexibility are presented in this paper, and several
retrieval results in various cases are presented.

2 Surfimage: classic features

For the algorithm designer, the hardest step is image in-
dexing, i.e. the computation of image signatures. This is
typically an off-line processing. For doing this, genericity
or specificity of the signature and conservation (or non-
conservation) of the spatial arrangement of the image are
key issues. The corresponding images signature categories
with examples are summarized in table 2.

Surfimage offers a large selection of signatures in all the
different categories mentioned in table 1. Among the signa-
tures we can mention:

¢ Low-level signatures capturing color, shape and tex-
ture. Examples include color, orientation and texture
histograms, Cooccurrence, Fourier and Wavelet trans-
forms.
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| arrangement ||  generic sig. specific sig. |
encoded Fourier spectrum eigenfaces
lost color histogram | distance ratios

Table 1: Image signature categories & examples

o High-level signatures which are derivated from a com-
plex modeling of image content and sometimes a sta-
tistical analysis of the database. Examples include
eigenimages [13, 5], flexible images [8] or image shape
spectrum [6].

The similarity metric is usually defined via a distance
measure which will be used for nearest neighbor match in
feature space. Various similarity metrics are implemented
in Surfimage: the Minkowski L, distances, the Cosine met-
1ic, the Hellinger metric, and M-estimators for outlier rejec-
tion. In our experience, the city-block distance L; is conve-
nient since it is fast to compute and well-suited to signatures
which are histograms.

Surfimage uses the query-by-example approach for
querying. In the classic querying scheme, the user (i) loads
a database, (ii) selects a signature, (iii) chooses a similarity
metric, and clicks on a query image from the database to
find more similar images with respect to the chosen signa-
ture and metric. Experiments are shown in section 4.

3 Surfimage: advanced features

The specificity of Surfimage is its advanced features which
makes it uniguely flexible among image retrieval systems.
Advanced features include signature combination and rele-
vance feedback based on density estimation. They are de-
tailed hereafter.

3.1 Signature combination

Combination of different features has been a recent focus of
image retrieval {3, 1, 4]. But how do we combine “apples
and oranges”, i.e. features that have different number of
components, different scales etc.?

Simple rescaling of the features is not suitable since
it would alter the discrimination properties of each fea-
ture. A weighted linear combination of feature vectors is
another possible method, and the weights have to be es-
timated (learned) after various experimentations with the
database [3, 1]. We have experimented with two combina-
tion methods. Under Gaussian assumption, the normalized
linear combination method uses the estimated mean p; and
standard deviation o; of the distance measure d for each
feature 7, providing the normalized distance:

3=, 50) (s = 303)
60; :

4",y = @)

where x® and y© are the signature vectors of images X
and Y within feature . The new distance measure d’ will
essentially have its values in [0...1] and can be linearly com-
bined with the normalized distance measures of the other
features (see also [9)).

The voting procedure operates as follows: in response to
a query, each feature retrieves images and grades them by
increasing order of distance. The ranks of the retrieved im-
ages within each feature can then be combined by a weighted
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Figure 1: Precision-recall graph for the MIT Vister
database. Note that the Fourier texture, the most perfor-
mant single feature that we have computed, is not as good
as any of the combined features.

sum (e.g. averaging) to output the retrieved images accord-
ing to the combination of features. Alternative methods
include the use of the median rank and the gymnastics-rule
(i.e. ignoring the worst and the best ranks of an image) for
robustness.

For evaluating the combinations, we experiment on
benchmark databases with ground truth, and draw the
precision-recall graphs, with:

[retrieved relevant images|
Jretrieved images]

@

Precision

|retrieved relevant images|

Recall T
|relevant images|

®3)

where |D| denotes the number of elements in D.

For most applications, it is impossible to maximize pre-
cision and recall simultaneously, but these values should ide-
ally be as large as possible. Figure 1 shows the precision-
recall graphs for a database with ground-truth adapted from
the MIT Vister database, consisting of 384 homogeneously
textured images as used in [11]. From this figure, it is obvi-
ous that any version of feature combination is more perfor-
mant than a single feature, as noted elsewhere [10]. We have
quantitatively verified the better performance of the com-
bination on a number of other benchmark public-domain
databases with ground truth (Columbia database of 3D ob-
jects, ORL face database etc.).

o 0.604 0.C08 0.012 0.016

Figure 2: Distribution of a specific feature component. (a)
over database (b) over a set of relevant images.
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3.2 Relevance feedback
3.2.1 Motivations

We now can combine several features for a single query. Our
objective in this section is to enable query refinement by user
interaction. Before describing our method, consider the fol-
lowing example that will clarify our motivations. Suppose
the user is a customer willing to purchase a shirt. In most
cases they have some ideas about the features connected
with shirts, like color, texture, size, quality, price. Their
idea about these features can either be very precise (“I want
a cotton shirt”), other features can vary in a range (“I am
ready to spend 30 to 40 dollars on it”), other features might
be unimportant (“I don’t care about the color”). The sales-
man’s job is to guess these different distributions to come
up with the ideal shirt.

In statistical terms, each feature has a distribution. In
case of parametric distributions like Gaussians, the salesman
needs to guess the mean and the standard deviation. In par-
ticular, the standard deviation can be zero - or rather nar-
Tow - providing a constrained feature, {e.g. cotton), average
(e.g. price range), or infinite (e.g. color is unimportant).

What we want to do is similar to the above example.
A simple idea is to try to estimate the feature densities
of relevant images based on positive examples provided by
the user (non-relevant images are not taken into account at
this point). More precisely, let X an image, and x its d-
dimensional signature vector: x = [z1...%:...z3]. For a given
query, our goal is to estimate the density:

Pg(x|X is relevant) )
where 0 are the distribution parameters. If we make the
simplifying assumption that the z, are independent!, then

we have:
d

Pg (x| Xis relevant) = HPB, (z:)Xis relevant)

=1

()

Our goal is now to estimate the d distributions Py _based on

the user’s examples. Note that each of these distributions
concerns an individual feature component.

In this framework, we have to estimate the distribution
of the individual feature components for the relevant images
from the images labeled ‘relevant’ by the user, which is only
an approximation of the whole set of images relevant to the
query. This distribution will be updated through time and
user interactions. A new query is then determined by ran-
domly drawing individual feature components according to
the corresponding estimated distributions. Based on this
query, more relevant images are likely to be retrieved.

More precisely, we assume that the densities of the fea-
ture components of the relevant images are Gaussian. This
is motivated by looking at the distributions of feature com-
ponents over the database, and over a defined set of rele-
vant images. Consider for instance the benchmark Columbia
database [5]. It contains 1440 images of 20 different objects
with a wide variety of properties ranging from uniform re-
flectance and simple shapes to complex textural properties.
The database contains 72 images per object, taken at 5 de-
grees incremented in pose. Figure 2 shows the distribution
of an individual feature component over the entire database

1they are generally not independent, still the independence of in-
dex terms is a commeon assumption in particular in information re-
trieval theory [12]
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and over the set of 72 images of a specific object?. We ob-
serve that the distributions can be approximated by Gaus-
sians (the parameters are the mean and standard deviation:

0; = (p:,0:)).

3.2.2 Detailed algorithm

In practice, we wish to integrate both the positive (relevant)
and the negative (non-relevant) examples of the user. Our
idea is to estimate the distribution of relevant images for
each feature component (described by ;) from the exam-
ples provided by the user and to simultaneously minimize
the probability of retrieving non-relevant images. Note that
the distribution of the non-relevant images cannot be easily
modeled since by definition, non-relevant images tend to be
multimodal. Nevertheless, we take the user-provided non-
relevant examples into account, as explained hereafter.

For the relevant examples, we define the “So-
surrounding” V(i) as®:
Vi = [p: — 304, pri + 307 (6)

For each feature component %, our goal is to estimate the
parameters 8; = (p;,0:) such that more relevant images

and Jess non-relevant images are retrieved. .

. Hence, the method is different from the maximum like-
lihood estimation of the relevant images, since it also inte-
grates the non-relevant images. It is Qetaﬂed in the following
pseudo-code, which determines distribution parameters for
each feature component s;, given the sets of values for the
images labeled ‘relevant’ (D.;,) and ‘non-relevant’ (D},,,,)
by the user.

1. Let Vl.(“) = [pSn) ——30'5"'), ;.LS") +3ag")] where n is the iteration.
Initialize n = 0 and distribution parameters:
#EO) = mean {s.' € D:‘“i}

argmax,, I{s; € Doy, UD)on,lsi € Vi(o)}l

O

2. Determine error term ef") based on the percentages of “rel-
evant values not covered” pf,:l) and “non-relevant values cov-
ered” p{") by V;("):

Pt = |—11— {5 € Dy s € v}
re i

2, = P):Tl {5 € Dhponilss € VY|

£ = )+l

3. If pf_’:? exceeds a predefined pyaz, go to step 5, otherwise up-
date distribution parameters:

#Sn+l) = mean {si € DLC';’ |s: € V(n)}

agn'H) P agn) with0 <A <1

4. n=n+1. Go to step 2.

5. Determine distribution parameters with minimum error mea-
sure: (in case of an ambiguous minimum, decide for the one
with the maximal o)

E

argming, {egk)}
kﬁ
b= a0
2 agk')
* o
6. Draw random variables from from ./\f(pglc ),o'gk )) with i =
1...d. Use the obtained feature vector as a new query to retrieve
more relevant images.

e
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Figure 3: An example to demonstrate the algorithm for es-
timating p; and o3

A few comments on the algorithm: we start the pro-

cedure with a large a§°) covering all user-provided exam-
ples — both relevant and non-televant — thus p,(_?, = 0 and

pﬁf?,, = 1. Over the iterations, we slowly decrease o’,g") (e.s.

A = 0.9) until the error e{™ is minimized. We ensure that
the procedure does not exclude too many relevant images
(e.8. Pmaz = 1/3). A key issue is that our estimation of
the distribution is based on a few data points (less than a
dozen) and therefore it is not reliably representative of the
true distribution of all the images in the database relevant
to the query. Therefore we introduce a randomization (step
6) that will retrieve more “varied” images than the classic
maximum likelihood estimator (which will basically retrieve
the closest images to g). Note that the randomization of
step 6 can be improved by generating (i.e. randomly draw-
ing) m new query vectors and retrieving the m best matches
to each of the new queries.

One of the nice properties of the above algorithm is
that, in cases where relevant and non-relevant images are
all mived up within a feature component, the estimated dis-
tribution will tend to be flat (large o). This means that the
corresponding feature component is not discriminant for the
query.

An example illustrating the density estimation part of
the algorithm is presented on figure 3. Six ‘relevant’ (R)
and six ‘non-relevant’ (N) images have been labeled by the
user. Their values for a feature component s; are visual-
ized in the figure. The estimated mean value (1) and
3o-surrounding (V;(")) are visualized together with the cor-
responding error value eE") for the first ten loops of the al-
gorithm. For n > 10 the error value does not decrease any-
more, because all ‘non-relevant’ values are already excluded
from the 3o-surrounding, and for smaller values of o;g") only
more ‘relevant’ values would be excluded. In this case, the
algorithm determines two minima for the error function. In
order to favor the parameters such that most relevant val-
ues are inside the 3o-surrounding of the distribution, the
algorithm decides for the parameter set 6; = (,ug“),a,("))
corresponding to n=T.

We now evaluate the performance of our technique on
databases with unique ground truth: the Vistex and the

2In this example, the feature vector is the edge orientation
histogram
3V, covers 99.755 of the data in case of Gaussian distributions.

norf 1rvf 27of
Columbia
std approach | 0.752 0.764 0.778
our approach | 0.752 0.811 0.830
Vistex
std approach | 0.926 0.927 0.930
our approach | 0.926 0.956 0.974

Table 2: Performance of the proposed relevance feedback
technique after one (1 7f) and 2 sets (2 f) of user interac-
tions. The precision keeps getting better than with no user
interaction (no 7f)

Columbia database, using standard image features whose
description is not the scope of this paper (see for instance
[3, 5]). We measure the precision over a predefined num-
ber of retrieved images (e.g. 15). The performance of the
standard relevance feedback approach adapted from {12, 11}
is also presented. The results are summarized in table 2,
illustrating than the proposed technique is better than the
standard method.

342

Figure 4: Single specific features: retrieval of the top left
face in a database of 7562 images using flezible images [8].
Retrieved images are from top left to bottom right in order
of best match. Note that the second and third best matches
are faces of the query person without sunglasses.

4 Retrieval Results
Figure 4 shows an example of querying with Surfimage on
the MIT face database (7652 images). We have developed a
specific, arrangement-preserving signature for this database
called flezible images [8]. With the MIT face database,
Surfimage produced a recognition accuracy of 97% based
on a nearest neighbor rule. This corresponds to only six
mistakes in matching views of 200 people randomly chosen
in the database of 7,562 images. This is significantly better
than had previously been reported for this dataset {13].
Combining image features (up to a dozen image signa-
tures) increases the discrimination power of the index. We
have measured 100% recognition rate using combined fea-
tures on the Columbia database. We illustrate combined
features on our highly heterogenous homebrew bigdatabase,
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Figure 6: Multiple queries: specifying a couple of images (left) for finding more ANACIN and TYLENOL packs (right).
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Figure 7: Relevance feedback: Using user’s feedback (left) to find more portraits (right).

which was built by merging the MIT Vister database of tex-
tures, the BTphoto database of city and comntry scenes, a
homebrew paintings database, and the homeface database
of people in the lab. The total number of images in big-
databaseis 3670. Fignre 5 shows the ability of finding more
city scenes from a query, thus essentially performing a clas-
sification task. A combination of features were used for in-
creased performance.

Figure 6 presents the resulis of a multiple query on
the Columbia database. The user is shuffling through
the database and decides to retrieve more ANACIN and
TYLENOL packs. The technique used is the relevance feed-
back technique detailed above, but in this case no nonrele-
vant image was specified.

We illustrate query refinement on the bigdatabase de-
scribed above. The user refines their query to obtain more
portraits (fignre 7). Note that many of the retrieved images
can be classified as portraits, although the total number of
poriraits in the database is small (about 2% of the images
in the database are portraits).

$ Conclusion

We introduce Surfimage, a flexible content-based image
retrieval system. Surfimage offers a wide range of im-
age signatures, similarity metrics, and a user-friendly in-
terface. Moreover, Surfimage incorporates advanced fea-
tures for flexibility. Image signatures can be combined for
improved performance, and for applications such as classi-
fication of a database into classes of scenes. Surfimage is
also able to learn from user interaction, allowing multiple
queries and query refinement by relevance feedback. The
latter technique is based on a density estimation integrating
positive and negative examples provided by the user, and it
is shown to be more powerfal than the standard relevance
feedback approach.
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