
A Tool for Content Based Navigation of Music
Steven Blackburn and David DeRoure

Multimedia Research Group, Department of Electronics and Computer Science
 University of Southampton, Southampton SO17 1BJ, UK

+44 (0)1703 592418

{sgb97r, dder}@ecs.soton.ac.uk

1. ABSTRACT
This paper presents a system which employs
the accepted notion of melodic pitch contours to
support content-based navigation around a body
of multimedia documents including MIDI and
digital audio files. The system adopts an open
hypermedia model which enables the user to
find available links from an arbitrary fragment
of a piece of music, based on the content or
location of that fragment. The design of the
tools, indexed contour database and the fast
contour-matching algorithms are discussed.

1.1 Keywords
Open hypermedia, content based navigation, branching
audio, melodic contours, pitch contours, query by humming

2. INTRODUCTION
Ghias et al [6] and McNab et al [11] describe systems for
querying an audio database by acoustic input, such as
humming the tune of a song. The query is pitch-tracked and
represented as a sequence of relative pitch changes (a
melodic pitch contour), thus factoring out inaccuracies of
timing and tuning; the contour is then matched against a
database of songs, using an appropriate string matching
technique. Hence these systems implement content based
retrieval (CBR).

We extend this work with an alternative design for the
contour database, which we have exercised with a database of

around 8000 songs, and we then employ pitch contours in
support of content based navigation (CBN), whereby the
user can select arbitrary fragments in a piece of music and
query for the available hypermedia links. In order to
investigate content based navigation we have created a suite
of tools to support hypermedia linking for stored and
streamed audio (the prototype tools were demonstrated at
ACM Multimedia 1997).

In the next section we present the motivation for our work,
and this is followed in Section 4 by a description of a content
based retrieval tool using our alternative database design.
Section 5 discusses our hyp ermedia linking tools and explains
the use of contours in content-based navigation. The
implementation is described in Section 6, with a discussion of
future work in Section 7.

3. MOTIVATION
The ability to follow hypermedia links to audio files is a
standard feature of hypermedia systems; the ability to link to
specified parts of audio files, and to link out from audio files
(for example to the current location in a text transcript of a
speech) is less common but nonetheless desirable.
Furthermore, we envisage situations which benefit from links
between parts of audio files. In traditional audio applications,
the data is linear and unstructured; in contrast, our work
regards audio as a branching, structured medium, like
hypertext but with the additional challenge of working with
streams as well as the store-and-forward model more readily
adopted for multimedia document delivery. We are interested
in the authoring, transport and delivery of this branching
material.

With branching audio, different listeners can experience
different tours through this structure, and they can interact to
influence their route. In the case of speech radio this may take
the form of a user listening to the beginning of a
documentary, where the features in the programme are listed,
and on hearing a particular topic of interest the user opts to
jump immediately to that item; finding an interesting interview
abbreviated, the user opts to listen to the entire interview; a
synchronized text transcript is available which may also
contain pre-authored links and, hearing an unfamiliar term, the
user can ask all available links to be computed dynamically

Figure 1: The content based retrieval architecture .

and follow one to a glossary. This involves ‘pushing’ the
programme to the user, with the possibility of the user
‘pulling’ additional information based on location or what has
gone before.

This paper addresses branching audio with musical content.
Traditionally, interaction with musical structure is an activity
associated with the composition, production and publication
process, rather than the listener. Hence the tools we describe
here are aimed primarily at the 'authors' rather than the
readers. However, our work also addresses scenarios where
a user may navigate the musical structure, for example, to find
a particular piece of music or to match the music to an activity
they are pursuing. Readers are also authors; listeners are
composers. Consider, for example, the evolution of portable
audiocassette and compact disc players to wearable
computers playing audio streams from the Internet.

Where does the structure come from? Some information, such
as song structure, is available from existing production
processes and might be discarded at present, but could be
retained and enhanced. However, archive material lacks this
information, so there is a need for tools which can determine
structure. Whatever metadata might be available, there are
always situations in which available links must be determined
based on content rather than location. This provides
additional motivation for content based retrieval and
navigation of musical documents.

4. CONTENT BASED RETRIEVAL
Given a contour, the content based retrieval tool returns a list
of songs which match that contour, ranked according to an
appropriate metric ('contour based retrieval'); the metric
depends on the user's requirements and the source, and
therefore the quality, of the contour. In our system the
contour is extracted from a fragment of music, which the user
may have identified by pressing a button ('LINK' in Figure 1)

whilst listening to the music, or via some other interface. We
use MIDI as a standard representation in the system,

therefore the fragment should either consist of MIDI events
or should be in a form that can be converted to MIDI (in
principle this could be other media, such as a musical score or
the soundtrack of a music video). This section describes the
contour representation and design of the contour database.

4.1 Contours
When considering how songs are recognised, the most
obvious characteristic is that tunes are recognised
independent of the key that they are sung in. To be
independent of transposition, a database can cope with this
by recording intervals (i.e. pitch changes) rather than absolute
pitch. However, intervals may not be accurate, and research
suggests that the direction of the interval is important [4], so
music can be indexed and searched using just pitch direction.

A contour describes a series of relative pitch transitions, an
abstraction of a sequence of notes. In the simple contour
representation adopted for this work, a note in a piece of
music is classified in one of three ways: it is either a repetition
of the previous note (R); higher than previous note (U); or
lower than the previous note (D). Thus, the piece can be
converted into a string with a three letter alphabet (U, D, R).
For example, the introductory theme to Beethoven's 5th
Symphony would be converted into the sequence R R D U R
R D. Notice that there is one fewer symbol than notes as only
the transitions between notes are recorded. NB We use R (for
repeat) in the same way as Ghias et al use S (for same), as we
reserve S for another contour representation.

With respect to a query by humming (QBH) system, the use
of contours eliminates input errors which are due to the user
singing out of key, out of time or out of tune. As long as the
pitch direction is correct then the contour should be found.
The drawback is that all rhythmic information is lost; if this
could be used in conjunction with the pitch contour then the
number of incorrect matches would be decreased. We
discuss refinements of this process, including other contour
representations, in Section 7.

4.2 Deriving Contours
In our system we derive contours from sequences of MIDI
events; in turn, we can derive sequences of MIDI events from
digital audio files using pitch tracking. We are not solely
interested in QBH: our queries may come from other sources,
and as with QBH these queries are prone to error, though the
types of error may be different.

MIDI files consist of a collection of tracks specifying for each
instrument what to play and when to play it. It is not always
possible to know in advance how useful a track will be when
deriving contours; for example, it is probably not useful to
store drum tracks. In the absence of reliable heuristics for

identifying prominent melodic features, we rely on an
established standard for MIDI files called General MIDI,
which matches instrument numbers with a known set of
instruments (e.g. rhythm tracks must transmit on channel 10).
Converting a MIDI track is a simple matter of identifying the
pitch directions when a note is played. However, one channel
may carry several notes sounding simultaneously, so it is
necessary to adopt a policy such as taking the most recent
note or, when several notes can be identified as commencing
together (a chord) taking the lowest note.

Techniques for monophonic pitch tracking are widely
documented (see, for example, references in [6]) and these
enable contours to be determined from fragments of digital
audio. Polyphonic pitch tracking requires more sophisticated
solutions and is very sensitive to the style and
instrumentation of the music. It is significant that for our
application we do not require perfect polyphonic pitch
tracking; in fact, monophonic tracking of prominent melodic
features in polyphonic source material may suffice. We have
developed a polyphonic pitch tracking algorithm which
employs an iterative technique to optimize the analysis of
spectral data, and this has delivered very promising results for
certain classes of music.

4.3 The Database Structure
The systems described in [11] and [6] both have
characteristics which are not well suited to our intended
application in content based navigation (see Section 5). The
former only indexes the first part of each piece, while we need
to identify all alignments, and we need to improve on the
scalability of the latter to ensure response times within
bounds for an interactive CBN system.

The contour for a track is long, for example it averages 170
pitch directions per minute of our test material. The contour
database stores sub-contours and uses them as the key on
which to search the database; to store a whole pitch contour
it is split into overlapping sub-contours of key_length pitch
directions. For example, where key_length = 12, the contour
 DURDRUURDRUDUR
is split into the overlapping contour set:
 DURDRUURDRUD
 URDRUURDRUDU
 RDRUURDRUDUR

The length of the key is important as it defines the number of
distinct contours that may be held in the database; more
contours allows the database to be more accurate. The
number of contours is given as:

max_contour = alphabet_size key_length

A contour can be one of 3 letters (U, D and R) so, for a key

length of 3, the number of possible contours would be 27.
This means that the system could only differentiate between
27 queries, which only need to be 3 pitch directions long. This
is not enough to identify a piece of music; the key_length
should be long enough to uniquely identify a song. The
research by Ghias et al [6] found that 12 notes (not pitch
directions) were enough to identify 90% of their 183 songs.
To allow selection from a larger number of songs, the key
length should be as high as possible.

4.4 Matching
To match a query, we produce a near match set of contours
which are within a user defined distance of the query. The
distance is a string metric which quantifies the minimum cost
of transforming one string into another. Cost weights may be
assigned to the individual editing operations involved in such
transformations, namely symbol substitution, insertion, and
deletion.

The metric depends on the source of the query, which might
be extracted from a MIDI file or from a digital audio file with
monophonic or polyphonic content, and it may come from
original source material or via the tune recall skills of the user.
By default we employ the Levenshtein distance where each
transformation has a cost weighting of 1, but in each case
certain types of error may be more common so this weighting
may not be the most appropriate. For QBH, more research into
tune recall is needed to identify suitable weights. It may also
be possible to establish an appropriate distance metric
automatically by learning from a reference set of data.

4.5 The Near Match Set
A brute force approach to collating the near match set would
iterate sequentially through all contours. It is possible to
implement a similar algorithm using a tree structure to visit
each contour.

Consider a tertiary tree whose depth is key_length. Each node
contains a contour. The contour at the root node is empty.
The tree branches three ways at each node, appending a pitch
direction to the contour at each level. The set of leaf nodes
contain the set of all possible contours (see Figure 2).

Figure 2: The contour tree.

A simple tree search would compare the contour at each leaf
node with the query, as in the brute force approach; indeed,

it has the same time complexity as that approach.

The algorithm can be refined by comparing the contour at
each node with a prefix of the query contour. If the distance
limit is exceeded then there is no point in traversing the rest
of the tree. This permits large sub-trees to be removed,
reducing the number of leaf nodes. This vastly improves the
performance.

There is a further improvement that can be made. Currently
each node contour is compared. There are two situations
where the distance value (d) is irrelevant:
1. If the length of the contour at a tree node is less

than the number of errors allowed, then it must be
within tolerance;

2. Take an example where there is one error in the
contour and there are two levels of the tree still to be
recursed. If three errors are allowed overall then the
whole of the sub-tree must be within tolerance.

This means that if d = key_length then all leaf nodes could be
added without comparing the contour at each node. This
improves performance because the first d levels would not be
compared. This decreases the time taken to match for large
values of d but also has a noticeable effect for smaller values
(ie: d < 3).

All contours stored in the database are key_length pitch
directions long. If a query is submitted with more pitch
directions than this, a more accurate search of the database is
expected. This is achieved by building a list of sub-contours
from the query, as used when adding a contour to the
database (see Section 4.3). Approximate matching is
performed on each sub-contour and the near match sets
pooled. This larger set is then used to search the database.

4.6 Ranking of Results
Tune retrieval can be compared with text retrieval; for example,
the number of occurrences of a contour in a MIDI file is
significant. However, it is perhaps less usual in a text retrieval
system for the query to be so prone to error and in this
respect contour matching is more akin to spell-checking. This
means that the policy for ranking results is different, giving
priority to a large number of hits over a single precise hit.

A score is calculated by summing the number of times a
contour in the near match set occurs in the file. Each hit is
inversely weighted by the distance between the query and the
contour matched. The inverse weighting means that less
importance is given to contours matched which are
increasingly different to the query. The search results are
sorted in order of file score, highest first.

5. CONTENT BASED NAVIGATION

In this section we extend content based retrieval to content
based navigation. We first discuss our hypermedia tools, and
then the use of contours in this framework.

5.1 Open Hypermedia
The hypermedia model we have adopted to work with
branching audio is an example of an open hypermedia system
[3]. There are two key aspects to the model we have adopted:
1. Information about links between multimedia

documents is stored separately from the documents
themselves (in contrast to common practice with
HTML documents on the Web). This information is
stored in link databases (linkbases) and by selecting
different linkbases, the user obtains different views
of the documents. Access to linkbases may be
abstracted into a link service.

2. When the user requests available links, the
linkbases are queried with either the location in the
stream or with a feature extracted from the data at
that location. This means it is always possible to link
from somewhere in a document. Linking from
content in this way is an example of a generic link
[8].

This model was employed in the Microcosm [5] open
hypermedia system, which also provides an audio tool called
the Soundviewer [7] supporting hypermedia links into and out
of stored audio. The MAVIS system [9, 10] applies open
hypermedia to other stored media, notably images but also
including stored audio for proof of concept.

Our objective is to explore open hypermedia applied to audio,
in particular streamed audio. Since the existing systems do not
directly support streamed media or distributed working, we
have implemented a component-based approach in order to
support this experimental work. Hence our system resembles
the Microcosm architecture but works with streamed media
and contemporary link services, such as the Distributed Link
Service [1]. The incorporation of musical objects in a
hypermedia system, as both static and temporal media, has
been discussed elsewhere; e.g. Ossenbruggen [12].

5.2 Navigation
At any place in a piece of music (e.g. whilst listening to the
music), a user may ask for available links. Their position in the
music, or the position of a selection they have made by
whatever means, is the source endpoint of those links. This
is compared with the link information in the link database to
determine all the possible destination endpoints . The
information in the link database, which essentially consists of
stream and position information in this case, is generated by
the authors of links.

In the absence of any other link information, CBR is a useful

Figure 3: The content based navigation architecture. Figure 4: The content based retrieval tool.

tool to assist the user in navigating the information space.
Although it performs a function which resembles link
resolution, in that it generates available links from a given
musical fragment, these are strictly links to similar material;
this should be contrasted with the different types of available
links that might be obtained from a link database. In fact, the
CBR tool could be seen as a means of obtaining similar source
endpoints rather than a mechanism for link resolution per se.
For an author, creating a linkbase, it is another tool to assist
in identifying endpoints.

In content based navigation, a contour extracted from the
current position or selected fragment is used to interrogate
the link database, thus obtaining a list of available
destinations according to the content rather than the location
of the source endpoint. Links with contours as their source
endpoint are generic: the endpoint corresponds to any
musical fragment that matches the contour, in any document.

The metric used to determine matches may be very different
to the QBH case, depending on the quality of the feature
extraction and the quality of the data in the linkbase. Linkbase
data can be very high quality, having been 'hand-crafted' and
checked by the author, and in some applications the user
works with multiple, small linkbases rather than one large
linkbase. In this situation, and with contours extracted directly
from MIDI selections, we are able to employ a straightforward
substring comparison. However, an error-prone contour
(perhaps derived by polyphonic pitch tracking from the
selection) still requires an approximate match, and in some
situation linkbases can be very large. It is in these situations
that the CBR techniques of the previous section can also be
applied to CBN.

5.3 System Design
Figure 3 shows the architecture of the system for CBN. The
Link Manager is the central application and is responsible for
supervising link resolution; all the other tools communicate

with it. For example, when a user selects LINK from a viewer
application, information about the current position or
selection in the audio stream is sent to the Link Manager,
which then resolves the link by interacting with other
components and generating a list of possible destinations.
The Available Links display presents these destinations to
the user, who can then select any of these in the usual way;
if the Auto Follow Links option is enabled, a link will be
followed as soon as it is added to the display. The viewer is
any application that can be programmed to send link
information to the Link Manager. We have created a viewer
which is a simple wrapper application for the underlying
multimedia system.

The feature extractor uses information about a selection in an
audio file to obtain the content of that selection and then
extracts one or more contours (according to the number of
tracks present). These contours are returned to the Link
Manager, where they can be resolved independently or in
combination. Given a selection in a digital audio file or a
movie, the feature extractor can call the pitch tracker to
generate the MIDI selection.

The Link Manager performs link resolution via a link service.
At its simplest, this is a simple file lookup, or a database
query. However, the link service may be a third party service
(such as the Distributed Link Service), perhaps remote from
the host, and the Link Manager can communicate with this via
the appropriate protocol. A third party link service which
supports generic links in text may also be able to deal with
contours to an extent, but in general the link service needs to
implement the appropriate contour matching. Hence the
matching algorithms that we have adopted (e.g. Levenshtein
and substring matching) need to be implemented in, or
available to, the link service. In fact the system we describe
could itself be regarded as a link service, consulting other link
services in turn [2].

6. IMPLEMENTATION

6.1 Content Based Retrieval
The CBR tool implements the database structure described in

Figure 6: The number of files matched per contour.

Figure 8: The link player.

Section 4, accepting a contour as a query and displaying
matches with their scores (see Figure 4). Having selected one
of the matches, the user can opt to play that song or to
compute information on alignment of the contour matches; i.e.
the positions at which the contour occurs, expressed as a time
index suitable for use as an endpoint. Figure 5 shows the time
indices for the best scoring match of the 12-symbol contour
shown in the previous figure.

 Figure 5: The time index display.

The system has been tested with a database of 8000 MIDI
files, including some multiple versions and duplicates. The
database was analyse to determine the practicality of
contours. Figure 6 shows the number of files matched per
contour. There are 531,441 possible contours which have
twelve pitch directions. Of these, 60,000 contours each
identify just two files. The graph continues beyond matching
60 files, some contours are contained in over 1000 MIDI files.
This shows that the principle of using contours to identify

music does work, although a larger k ey_length is required to
improve performance and uniquely identify a file.

The performance of the system is suitable for content based
navigation. On a single user Pent ium 133 system, exact
matches take 0.01 seconds on average for a query with
key_length pitch directions. Matches allowing for one error
in the query take 0.12 seconds.

6.2 Audio Tools
The architecture described in Section 5 was implemented
using Borland C++ Builder for Microsoft Windows NT v4. We
took a component based approach to implementation as it
allows straightforward expansion of the system and
evaluation of different component implementations.

The central component is the Link Manager as it is the point
of contact for all link-enabled applications. A link-enabled
application can be anything which is capable of
communicating with an OLE Automation server, such as a
custom written program or many applications with a macro
language. Figure 7 shows the Link Manager in diagnostic
mode with the Available Links display (and source endpoint).

Figure 7: The link manager.

Our main viewer is the Link Player, which is a wrapper
application for the MS Windows Media Control Interface
(MCI) and looks very much like other media players; the main
difference is the addition of a Link button, which sends the
current position or selection information to the Link Manager
(see Figure 8). In fact the player has several options which
control when an endpoint is sent to the Link Manager: Link
on Play sends an endpoint whenever the play button is
pressed; Auto Link sends an endpoint at regular time
intervals.

Each Link Service is an OLE Automation server which
implements a common set of functions. Each service takes an

endpoint and resolves it against a linkbase, returning a list of
endpoints. We plan to use the close relationship between
OLE Automation and DCOM to distribute the link services.
The feature extraction is currently built into the Link Manager
although we plan to use DLLs or OLE Automation to allow
multiple feature extraction engines. Each engine takes an
endpoint and returns a list of equivalent endpoints. The
resultant endpoints may then be submitted to any of other
engines until a complete list of endpoints is built.

7. DISCUSSION AND FUTURE WORK

7.1 Contours
Our experience is that, while suitable for QBH, the contour
representation is not sufficiently specific for some of our
applications, in particular linking from selections in MIDI files
when a precise hit can be expected. A lot of information is
thrown away, which might otherwise help reduce the search
space, such as rhythm information and the pitch intervals. We
are investigating other representations, such as secondary
contours. Given that we have an effective tool for working
with contours based on an alphabet of three and that we are
already matching with multiple contours, our approach is to
work with multiple simple contours rather than developing a
single, compound contour; these approaches may be
equivalent.

One of these is the time contour. Similar to the way a pitch
contour describes a series of relative pitch transitions, a time
contour describes a series of relative note lengths (or the
length of time between each note). Time in a piece of music is
classified in one of three ways: it is either a repetition of the
previous time (R); longer than the previous time (L); or shorter
than the previous time (S). Thus, the piece can be converted
into a string with a three letter alphabet (L, S, R). The duration
over which a contour lasts may be used to further reduce the
search space; for example, this helps avoid one bar of a
melodic part matching another part that changes note just
once per bar, such as a bass line.

Pitch contours are designed to be an abstraction of the notes
to allow for errors in the input. This is useful for both hummed
queries and the result of feature extraction engines. While
pitch errors are likely to accumulate over time, more
information can be deduced from notes which are close
together. Using the example musical score below, the pitch
contour for both bars is identical, "UDU", although they are
clearly very different to listen to.

One improvement would be to classify intervals out of five

possible types: up, up a lot, repeat, down and down a lot. The
classification for up, down and repeat is the same as the one
discussed previously. The distinction between "up" and "up
a lot" could depend on a threshold on interval size, but we
observe that a more reliable approach is to compare a note
with a pitch previously established in the contour; e.g. if the
current note is of higher pitch than the note before the last
one, then it is classified as being "up a lot". This only applies
when the pitch direction changes, otherwise all but the first
pitch direction would be "up a lot". We propose a single
character representation of the five pitch direction types
based of: u, U, r, d and D for up, up a lot, repeat, down and
down a lot respectively. The first bar of the example is
represented as "udU", while the second bar is "uDu",
showing a difference.

We have adopted an alternate approach which has a similar
effect but retains the existing representation. A secondary
contour is created where each symbol represents the
relationship between the current note and the "note before
last"; e.g. in the example above, this secondary pitch contour
would be "UU" for the first bar and "DD" for the second bar.
Although the possible secondary contours are constrained
by a given primary contour, preliminary experiments suggest
this approach to be very effective in reducing the search
space.

7.2 Audio Tools
The tools have achieved their objective of providing an
environment for investigating open hypermedia applied to
audio and in particular, content based navigation. We support
streaming via RTSP [13] and we see this as the means for
transporting branching audio, hence we are exploring the use
of RTSP for transporting endpoint information, linkbase
information and for carrying queries. It has emerged that a key
area for further work is the state of the session as we do not
currently support a notion of 'back'. In fact, there is no
concept of a description of a session, and we are therefore
investigating session descriptions such as in SMIL [14].

Contours are just one feature which we can extract from
musical content and we are working on others. We are
particularly interested in a hybrid approach, combining the
results from different analyses, and the architecture of the
tools will evolve to support this. We are reviewing pitch
tracking techniques, as our requirements are different to other
applications.

The experience of applying open hypermedia principle to
audio has been enlightening. The idea that link information
should be stored separately is uncontroversial when there are
no standard formats which embed it! In fact, we believe there
are situations when it is useful to embed endpoint or link
information, and this is readily achieved in audio file formats

without violating open principles, because they typically
support the notion of multiple channels. For example, we can
encode endpoint information as MIDI events on an unused
MIDI channel, enabling us to store, transport and even edit
it using standard tools.

ACKNOWLEDGEMENTS
We are grateful to Hugh Davis for supporting the project and
providing advice on open hypermedia, to Thomas Cooke for
his remarkably good polyphonic pitch tracking algorithm, to
Neil Ridgway and Lee Oades for the additional audio tools
that made the ACM Multimedia 97 demo, and to Paul Lewis
for discussions about MAVIS. This work is partially
supported by EPSRC grant GR/K73060.

REFERENCES
1. Les Carr, David DeRoure, Wendy Hall, and Gary Hill.

The distributed link service: A tool for publishers,
authors and readers. In Proceedings of the Fourth
International World Wide Web Conference: The
Web Revolution, Boston, Massachusetts, USA,
December 1995.

2. David DeRoure, Les Carr, Wendy Hall, and Gary Hill.
A distributed hypermedia link service. In Third
International Workshop on Services in Distributed
and Networked Environments, pages 156-161,
Macau, June 1996. IEEE.

3. Hugh Davis, Wendy Hall, Ian Heath, Gary Hill, and
Rob Wilkins. Towards an integrated information
environment with open hypermedia systems. In
Proceedings of the Fourth ACM Conference on
Hypertext, Models for Open Systems, pages 181-190,
1992.

4. W.J. Dowling. Scale and contour: Two components
of a theory of memory for melodies. Psychological
Review, 1978.

5. Andrew M. Fountain, Wendy Hall, Ian Heath, and
Hugh C. Davis. MICROCOSM: An open model for
hypermedia with dynamic linking. In Proceedings of
the ECHT'90 European Conference on Hypertext,
Building Hypertext Applications, pages 298-311,
1990.

6. A.Ghias, J. Logan, D. Chamberlin, and B. C. Smith.
Query by humming - musical information retrieval in
an audio database. In Proceedings of ACM
Multimedia 95, San Francisco, California, November
1995.

7. Stuart Goose and Wendy Hall. The development of
a sound viewer for an open hypermedia system. The
New Review of Hypermedia and Multimedia,
1:213-231, 1995.

8. Wendy Hall. Ending the tyranny of the button. IEEE
Multimedia, 1(1):60-68, Spring 1994.

9. Paul H. Lewis, Hugh C. Davis, Steve R. Griffiths,
Wendy Hall, and Rob J. Wilkins. Media-based
navigation with generic links. In Proceedings of the
7th ACM Conference on Hypertext, pages 215-223,
New York, 16-20 March 1996. ACM Press.

10. P. Lewis, H. Davis, M. Dobie, W. Hall, J. Kuan, and
S. Perry. Content based navigation in multimedia
information systems. In Proceedings of ACM
Multimedia 96, pages 415-416, New York, NY, USA,
November 1996. ACM Press.

11. Rodger J. McNab, Lloyd A. Smith, Ian H. Witten,
Clare L. Henderson, and Sally Jo Cunningham.
Towards the digital music library: Tune retrieval from
acoustic input. In Proceedings of DL'96, 1996.

12. Jacco van Ossenbruggen and Anton Eliens. Music
in time-based hypermedia. In Proceedings of the
ECHT'94 European Conference on Hypermedia
Technologies, Technical Briefings, pages 224-227,
1994.

13. H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). Technical Report
MMUSIC WG Internet Draft, Internet Engineering
Task Force, March 1997.

14. SMIL (Synchronized Multimedia Integration
Language), W3C Technical Report, November 1997.

