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Pipelined Iterative Solvers with Kernel Fusion
for Graphics Processing Units
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We revisit the implementation of iterative solvers on discrete graphics processing units and demonstrate
the benefit of implementations using extensive kernel fusion for pipelined formulations over conventional
implementations of classical formulations. The proposed implementations with both CUDA and OpenCL
are freely available in ViennaCL and are shown to be competitive with or even superior to other solver
packages for graphics processing units. Highest performance gains are obtained for small to medium-sized
systems, while our implementations are on par with vendor-tuned implementations for very large systems.
Our results are especially beneficial for transient problems, where many small to medium-sized systems
instead of a single big system need to be solved.
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1. INTRODUCTION

The need for the solution of a linear system of equations described by a sparse matrix A
and a right hand side vector b is ubiquitous in computational science and engineering.
Most prominently, discretizations of linear partial differential equations by means of
the finite element or the finite volume method directly lead to such systems. Smaller-
sized systems may be solved using sparse direct solvers, whereas iterative solvers are
preferred or even necessary for large systems, eventually supplemented by precondi-
tioning techniques of various degrees of sophistication.

The fine-grained parallelism of iterative solvers from the family of Krylov methods
is particularly attractive for massively parallel hardware such as graphics process-
ing units (GPUs), whereas much more effort is required to expose the parallelism
in sparse direct solvers appropriately [Kim and Eijkhout 2013; Schenk et al. 2008].
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Sparse matrix-vector products - essential parts of Krylov methods - have been studied
in detail for GPUs [Ashari et al. 2014; Baskaran and Bordawekar 2008; Bell and Gar-
land 2009; Greathouse and Daga 2014] and for INTEL’s many-integrated core (MIC)
architecture [Liu et al. 2013; Saule et al. 2014], based on which a unified format also
well-suited for multi-core processors has been proposed recently [Kreutzer et al. 2014].
Similarly, vendor-tuned implementations of the vector operations required in addition
to the sparse matrix-vector products for implementing sparse iterative solvers from
the family of Krylov methods are available. A disadvantage of current accelerators is
their connection to the host system via the PCI-Express bus, which is often a bottle-
neck both in terms of latency as well as bandwidth. This mandates a certain minimum
system size to amortize the overhead of data transfer through the PCI-Express bus in
order to obtain any performance gains over an execution on the host.

Two programming models are currently in widespread use for general purpose
computations on GPUs: CUDA is a proprietary programming model for NVIDIA
GPUs [Nickolls et al. 2008] providing its own compiler wrapper, whereas OpenCL is
a royalty-free open standard maintained by the Khronos Group1 and is typically pro-
vided as a shared library. Although OpenCL can also be used for NVIDIA GPUs, the
richer CUDA toolchain has resulted in a higher share of research on general purpose
computations on GPUs using CUDA. Also, slight performance differences of CUDA
and OpenCL, caused by different degrees of compiler optimizations or differences in
the implementation rather than through differences in the programming model, have
been reported [Fang et al. 2011; Karimi et al. 2010]. Automated translators such as
Swan [Harvey and De Fabritiis 2011] or CU2CL [Martinez et al. 2011] have been de-
veloped to reduce the maintenance effort of CUDA and OpenCL branches. However,
only a subset of CUDA and OpenCL is supported by these translators, limiting their
applicability particularly for highly optimized implementations. Directives-based ap-
proaches for general purpose computations on GPUs are the OpenACC2 and OpenMP3

standards. Broad compiler support for both standards in the context of GPUs is, how-
ever, not yet available. Consequently, portable software libraries targeting GPUs are
currently driven into providing support for both CUDA and OpenCL, for example PAR-
ALUTION4, VexCL5, or ViennaCL6.

A substantial amount of research has been conducted on various preconditioning
techniques for iterative solvers on GPUs including algebraic multigrid [Bell et al. 2012;
Gandham et al. 2014; Richter et al. 2014; Wagner et al. 2012], incomplete factoriza-
tions [Li and Saad 2013; Naumov 2012], or sparse approximate inverses [Dehnavi
et al. 2013; Lukash et al. 2012; Sawyer et al. 2012]. Nevertheless, hardware-efficient
and scalable black-box preconditioners for GPUs are not available, but instead the use
of problem-specific information is required [Yokota et al. 2011]. Taking preconditioner
setup costs into account, iterative solvers using simple diagonal preconditioners or no
preconditioner at all are often observed to be competitive in terms of time-to-solution
for small to mid-sized systems, where e.g. the asymptotic optimality of multigrid pre-
conditioners is not yet dominant [Wagner et al. 2012]. Similarly, matrix-free methods
cannot be used with complicated black-box preconditioners in general.

In this work we consider three popular iterative solvers: The conjugate gradient (CG)
method for symmetric positive definite systems [Hestenes and Stiefel 1952], the stabi-

1Khronos Group, OpenCL: http://www.khronos.org/opencl/
2OpenACC: http://www.openacc-standard.org/
3OpenMP: http://openmp.org/
4PARALUTION library: http://www.paralution.com/
5VexCL library: https://github.com/ddemidov/vexcl/
6ViennaCL library: http://viennacl.sourceforge.net/
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lized bi-conjugate gradient (BiCGStab) method for non-symmetric positive definite sys-
tems [van der Vorst 1992], and the generalized minimum residual (GMRES) method
for general systems [Saad and Schultz 1986]. In contrast to previous work with a focus
on the optimization of sparse matrix-vector products [Ashari et al. 2014; Baskaran and
Bordawekar 2008; Bell and Garland 2009; Greathouse and Daga 2014; Kreutzer et al.
2014; Liu et al. 2013; Saule et al. 2014], we consider the optimization potential of the
full solvers rather than restricting the optimization to a single kernel. After a careful
evaluation of the limiting resources for different system sizes and different densities of
nonzeros in the system matrix, pipelining and kernel fusion techniques are presented
in Section 2 to resolve these bottlenecks to the extent possible. The key principle in
pipelined techniques is to apply not only a single operation to a datum loaded from
main memory, but to chain multiple operations together to reduce the overall number
of loads and stores to global memory. Pipelining is typically achieved by fusing multi-
ple compute kernels, but compute kernels may also be fused only to reduce the overall
number of kernel launches, not exhibiting any pipelining effect. Pipelining and kernel
fusion are then applied to the CG method, the BiCGStab method, and the GMRES
method in Section 3, leading to more efficient solver implementations than those us-
ing a sequence of calls to the basic linear algebra subprograms (BLAS) in vendor-tuned
libraries. Section 4 then compares the proposed solver implementations with existing
solver implementations for GPUs available in the software libraries CUSP7, MAGMA8,
and PARALUTION9, demonstrating a substantial performance gain of pipelined im-
plementations for small systems without sacrificing performance for large systems.
Our benchmark results demonstrate the benefit of kernel fusion and pipelining tech-
niques for GPUs from AMD and NVIDIA for the CG method, the BiCGStab method,
and the GMRES method, and clearly outline that these techniques have not been ap-
plied extensively in the context of GPU computing before.

The obtained execution times are also compared with those obtained from CPU-
based implementations in the PETSc10 library to demonstrate that CPU-based imple-
mentations are superior for typical sparse systems below about 3 000 unknowns. Our
results, similar to previous investigations [Lee et al. 2010], also falsify wide-spread
misconceptions of extreme performance gains using GPUs. We show that performance
gains of GPUs over power-equivalent dual-socket CPU machines are below an order
of magnitude on average. This holds true also for large problem sizes and when initial
data setup costs on GPUs are not taken into account. Finally, Section 5 discusses the
implications of our findings to software design and the need for more tightly integrated
future hardware generations.

2. IMPLEMENTATION TECHNIQUES FOR FAST ITERATIVE SOLVERS

The purpose of this section is to identify the general bottlenecks of the typical building
blocks of iterative solvers and to present techniques for mitigating their detrimental
effects on performance. A schematic view of a machine (host) equipped with a discrete
GPU connected via PCI-Express is given in Fig. 1, where the following key features
are schematically depicted using a terminology similar to OpenCL:

— Threads are collected in workgroups, where each workgroup provides dedicated mem-
ory shared across threads in the workgroup. Thread synchronizations within a work-
group are possible inside a compute kernel, but a global synchronization of all work-

7CUSP library: http://cusplibrary.github.io/
8MAGMA library: http://icl.cs.utk.edu/magma/
9PARALUTION library: http://www.paralution.com/
10PETSc library: http://www.mcs.anl.gov/petsc/
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Fig. 1. Schematic view of a GPU board connected to the host via PCI-Express at a bandwidth of about
10 GB/sec and a latency on the order of 10 microseconds. Each workgroup of threads can be synchronized
through shared memory, but global synchronization is available only through separate kernel launches.

groups is typically only possible by launching a new kernel. Although global synchro-
nization primitives and spin locks through atomic operations are used occasionally,
these techniques are not sufficiently portable across different hardware and thus not
further considered.

— If a kernel launch is initiated on the host, it takes at least a few microseconds until
the kernel will launch on a GPU. This is because a kernel launch on the GPU requires
a message from the host to trigger the execution, entailing high latency for communi-
cation across PCI-Express. This latency of kernel launches can be hidden if another
kernel is currently active on the GPU, in which case the PCI-Express message for
launching the new kernel is received asynchronously.

— Memory access latency of GPU main memory is around three orders of magnitude
smaller than the latency of messages across the PCI-Express bus.

— The memory bandwidth between GPU main memory and the GPU compute units can
be more than ten times higher than the bandwidth of the PCI-Express bus connecting
host and GPU. Current high-end GPUs offer over 200 GB/sec memory bandwidth,
whereas the current PCI-Express 3.0 offers up to 15.75 GB/sec for a 16-lane slot.

The remainder of this section quantifies the overhead of PCI-Express latency and
presents techniques for reducing the number of kernel launches to reduce the detri-
mental latency effect.

2.1. PCI-Express Latency

At the very least, iterative solvers executed on the GPU need to communicate infor-
mation about the current residual norm to the host. In the typical case of a commu-
nication of the residual norm in each iteration for convergence checks, the time re-
quired for a data transfer from the device to the host represents a lower bound for the
time required for an iterative solver iteration. An OpenCL benchmark for PCI-Express
data communication shown for an NVIDIA Tesla C2050 in Fig. 2 exhibits a latency-
dominated regime for message sizes below ten kilobytes, where the transfer time is
around eight microseconds, and a bandwidth-limited regime for larger message sizes
in accordance to the well-known idealized communication model based on latency and

ACM Transactions on Mathematical Software, Vol. X, No. Y, Article 00, Publication date: October 2015.
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Fig. 2. Plot of median values for execution time (left) and obtained bandwidth (right) from 100 host-device
data transfers over PCI-Express 2.0 using an NVIDIA Tesla C2050. The benchmark uses the OpenCL func-
tions clEnqueueWriteBuffer() and clEnqueueReadBuffer() in a blocking manner so that the respective function
only returns after the data is sent or received. Message sizes below 104 bytes are limited by latency, not
PCI-Express bandwidth.

bandwidth [Foster 1995]. Latency-dominated data transfer from the device to the host
takes almost twice as long, because a transfer initiation from the host is required first.
Similar timings and bandwidths are obtained on other GPUs both with PCI-Express
2.0 and 3.0. Our overall observation in Section 4 is that NVIDIA GPUs show slightly
lower latency than AMD GPUs on the Linux-based machines used for the comparison.

To better understand the latency induced by PCI-Express transfer, consider a high-
end GPU with 200 GB/s memory bandwidth. Within the PCI-Express latency of 8 mi-
croseconds, the GPU can load or store 1.6 megabytes of data from main memory as-
suming full saturation of the memory channel, which amounts to 200 000 values in
double precision and which we will refer to as latency barrier. Consequently, GPUs
suffer from inherent performance constraints for any kernel limited by memory band-
width whenever the total amount of data loaded or stored is significantly below the
latency barrier. On the other hand, many practical applications induce systems with
storage requirements for the unknowns close to or even below the latency barrier. In
such case, iterative solver implementations for GPUs need to keep the latency-induced
overhead as small as possible by packing multiple operations into each kernel.

2.2. Kernel Fusion

As a prototypical example for many iterative solvers, consider the two operations

q = Ap (1)

α = 〈p, q〉 (2)

for a scalar value α, vectors p and q, and a sparse square matrix A. Conventional
implementations based on BLAS routines involve the following steps:

(1) Call the sparse matrix-vector product kernel for computing (1). For a standard com-
pressed sparse row (CSR) representation of the sparse matrix, a typical OpenCL
kernel body is as follows (cf. [Baskaran and Bordawekar 2008; Bell and Garland
2009]):

for ( uint i = ge t g loba l id (0 ) ; i < s ize ; i += ge t g loba l s i ze (0 ) )
2 {

double q a t i = 0;
4 for ( uint j = A row [ i ] ; j < A row [ i +1] ; ++ j )

q a t i += A values [ j ] ∗ p [ A col [ j ] ] ;
6 q [ i ] = q a t i ;

}

ACM Transactions on Mathematical Software, Vol. X, No. Y, Article 00, Publication date: October 2015.
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where A row and A col are the arrays holding the row and column indices in the CSR
storage format, and A values holds the nonzero entries. High-performance implemen-
tations of sparse matrix-vector products for the CSR format are more involved than
the simple example shown here [Ashari et al. 2014; Greathouse and Daga 2014].

(2) Compute the partial results of 〈p, q〉 for the subvectors assigned to each of the
thread workgroups.

(3) If α is stored on the GPU, launch another kernel using a single thread workgroup
to sum the partial results. If α is stored on the host, transfer the partial results to
the host, and perform the summation there.

Although this conventional implementation can reuse vendor-tuned routines, the mul-
tiple kernel launches are detrimental to performance for data sizes below the PCI-
Express latency barrier.

On closer inspection, the operations (1) and (2) can be computed more efficiently by
fusing compute kernels: Since the respective values in q and p are already available in
the GPU processing elements when computing the matrix-vector product, they can be
reused to compute the partial results for each thread workgroup of the inner product.
The fused kernel body for the CSR format is as follows:

//
2 // Part 1: Matrix−vec tor product

//
4 double p in q = 0;

for ( uint i = ge t g loba l id (0 ) ; i < s ize ; i += ge t g loba l s i ze (0 ) )
6 {

double q a t i = 0;
8 for ( uint j = A row [ i ] ; j < A row [ i +1] ; ++ j )

q a t i += A values [ j ] ∗ p [ A col [ j ] ] ;
10 q [ i ] = q a t i ;

p in q += q a t i ∗ p [ i ] ; // extra operation fo r <p , q>
12 }

14 //
// Part 2: Reduction to obtain contr ibution from thread workgroups :

16 //
l o c a l double shared buf [BUFFER SIZE] ;

18 shared buffer [ g e t l o c a l i d (0 ) ] = p in q ;
for ( uint s t r ide= g e t l o c a l s i z e (0 ) / 2 ; s t r ide > 0; s t r ide /= 2)

20 {
barr ier (CLK LOCAL MEM FENCE) ;

22 i f ( g e t l o c a l i d (0 ) < s t r ide )
shared buf [ g e t l o c a l i d (0 ) ] += shared buf [ g e t l o c a l i d (0 ) + s t r ide ] ;

24 }

26 i f ( g e t l o c a l i d (0 ) == 0)
par t ia l r es u l t [ get group id (0 ) ] = shared buf [ 0 ] ;

First, the matrix-vector kernel from the previous snippet is only slightly augmented to
accumulate the partial results for each thread in p in q. Extra logic could be employed
to explicitly avoid reading p[i ] from global memory if the respective diagonal entry of
A is nonzero, but p[i ] may still be available in cache anyway. Then, a reduction using a
shared memory buffer shared buf of appropriate size BUFFER SIZE is applied to obtain the
sum over all threads within a thread workgroup. Finally, the first thread in each thread
workgroup writes the partial result of the workgroup to a temporary buffer partial result.
The summation of the values in partial result is carried out on the host as outlined in the
third step above.

A comparison of execution times of the conventional implementation with the imple-
mentation using the fused kernel is given in Fig. 3. In both cases the final reduction
step for the partial results from 128 thread workgroups has been computed on the host
and is included in the timings. Two types of matrices have been compared: The first

ACM Transactions on Mathematical Software, Vol. X, No. Y, Article 00, Publication date: October 2015.
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Fig. 3. Total time required to run the operations (1) and (2) for different matrix and vector sizes on an
NVIDIA Tesla C2050. If the vector size is below 10 000 entries, the total time is dominated by the latency
for enqueuing the kernel, not the kernel execution time.

family of matrices with four randomly (with a uniform distribution over all column
indices) distributed nonzeros per row is limited by latency for systems with up to 104

unknowns. A performance gain of about 20 percent is obtained from the use of a fused
kernel, which reduces the number of kernels required from two to just one. At sys-
tem sizes above 105 unknowns, a performance gain of a few percent is still obtained
because the vector q does not need to be reloaded from memory when computing the
inner product (2). The second matrix type with 28 randomly distributed nonzeros per
row is limited by the kernel execution time for system sizes below 103 unknowns. This
is because each thread needs to process 28 nonzeros per row in A, which results in a
larger execution time than the pure PCI-Express latency. Nevertheless, a performance
gain of up to ten percent is obtained for smaller systems, yet there is no notable per-
formance gain or loss at larger system sizes due to diminishing savings from reusing
values from q for computing the inner product.

It is not only possible to fuse the first stage in the inner product computation with
the matrix-vector product, but one can also fuse the second stage (summation of par-
tial results) with subsequent operations. Since the summation result is usually needed
in each thread workgroup, the final summation has to be computed in each thread
workgroup in such case. These redundant computations are usually well below the
PCI-Express latency barrier and thus faster than the use of a separate host-device
transfer or a dedicated summation kernel. While kernel fusion can in principle be
applied to an arbitrary number of vector updates, the global synchronization points
induced by matrix-vector products as well as inner products are natural boundaries
for fusing compute kernels. However, not every inner product induces a separate syn-
chronization point: The partial summation stage of several inner products may also be
computed within the same kernel, which is then followed by a second kernel computing
the final results of the inner products and possibly other vector operations.

3. PIPELINED ITERATIVE METHODS FOR GRAPHICS PROCESSING UNITS

The implementation of the CG method, the BiCGStab method, and the GMRES
method are investigated in depth in the following. Each of these solvers is analyzed
for the number of kernel launches to evaluate latency. The kernel fusion techniques
outlined in Section 2 are applied to reduce the number of kernel launches whenever
appropriate. We restrict our investigations to the execution on a single GPU, as this is
the most frequent use case. Nevertheless, the optimizations applied in this section can
also be transferred to a multi-GPU setting, where additional data exchange between
GPUs via the PCI-Express bus entails similar cost. This allows, for example, to pack
multiple partial results from inner products into a single memory buffer transfer to
minimize latency.

ACM Transactions on Mathematical Software, Vol. X, No. Y, Article 00, Publication date: October 2015.
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3.1. Conjugate Gradient Method

Several variations of the classical CG method [Hestenes and Stiefel 1952] have been
proposed in the past, cf. [Aliaga et al. 2013; Barkai et al. 1985; Chronopoulos and Gear
1989; Ghysels and Vanroose 2014]. Also, techniques for merging multiple solver iter-
ations have been proposed, but they do not find broad acceptance in practice because
of numerical instabilities [Saad 1985]. In the following, the classical CG method and a
pipelined version are compared, where the latter has already been developed for vector
machines [Chronopoulos and Gear 1989], revisited for extreme-scale scalability [Ghy-
sels and Vanroose 2014], and implemented in field-programmable gate arrays [Str-
zodka and Göddeke 2006]:

Algorithm 1: Classical CG

1 Choose x0

2 p0 = r0 = b− Ax0

3

4

5

6 for i = 0 to convergence do
7 Compute and store Api
8 Compute 〈pi, Api〉
9 αi = 〈ri, ri〉/〈pi, Api〉

10 xi+1 = xi + αipi
11 ri+1 = ri − αiApi
12

13

14

15 Compute 〈ri+1, ri+1〉

16

17 βi = 〈ri+1, ri+1〉/〈ri, ri〉
18 pi+1 = ri+1 + βipi
19 end

Algorithm 2: Pipelined CG

1 Choose x0

2 p0 = r0 = b− Ax0

3 Compute and store Ap0
4 α0 = 〈r0, r0〉/〈p0, Ap0〉

5 β0 = α2
0〈Ap0, Ap0〉/〈r0, r0〉 − 1

6 for i = 1 to convergence do
7

8

9

10 xi = xi−1 + αi−1pi−1

11 ri = ri−1 − αi−1Api−1

12 pi = ri + βi−1pi−1

13 Compute and store Api
14 Compute 〈Api, Api〉, 〈pi, Api〉
15 Compute 〈ri, ri〉
16 αi = (ri, ri〉/(pi, Api〉

17 βi = α2
i 〈Api, Api〉/〈ri, ri〉 − 1

18

19 end

A direct implementation of Algorithm 1 using one call to a matrix-vector product
routine and five calls to BLAS routines per solver iteration is straightforward. Opti-
mizations of the matrix-vector products on lines 2 and 7 in Algorithm 1 and lines 2, 3,
and 13 in Algorithm 2 have been investigated in detail for different matrix formats on
GPUs in the past [Baskaran and Bordawekar 2008; Bell and Garland 2009]. The inner
products in lines 8 and 15 in the classical CG formulation impose synchronization by
either splitting the operation into two kernels or by requiring a host-device transfer.
In particular, the residual norm computed in line 15 is typically required on the host
for convergence checks. The vectors r and p are loaded in lines 10 and 11, but have to
be reloaded for the search vector update operation in line 18.

The pipelined version in Algorithm 2 is based on the relation

βi =
〈ri+1, ri+1〉

〈ri, ri〉
=

α2
i 〈Api, Api〉 − 〈ri, ri〉

〈ri, ri〉
= α2

i 〈Api, Api〉/〈ri, ri〉 − 1 (3)

to compute pi in line 18 of Algorithm 1 without having computed 〈ri+1, ri+1〉 yet. We
note that it has been stated in the literature that precomputing inner products involv-
ing the vectors pi and ri by using recursion formulas based only on inner products of pj
and rj with j < i may lead to unstable algorithms [Chronopoulos and Gear 1989; Saad
1985]. However, the computation of βi involves Api, resulting in a stable algorithm
based on experiences from multiple groups in different application contexts [Barkai
et al. 1985; Chronopoulos and Gear 1989; Strzodka and Göddeke 2006].

ACM Transactions on Mathematical Software, Vol. X, No. Y, Article 00, Publication date: October 2015.
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Relation (3) allows for a rearrangement of Algorithm 1 such that all vector updates
can be computed right after each other (lines 10, 11, and 12 in Algorithm 2). An appli-
cation of kernel fusion not only allows for computing all three vector updates within
a single kernel instead of three, but also for avoiding a reload of pi−1 and ri (line 12)
when using registers for intermediate values. Furthermore, all three inner products
in Algorithm 2 can be computed simultaneously, allowing all intermediate results to
be communicated to the host with a single data transfer. More precisely, the first re-
duction stage for the inner products 〈Api, Api〉, 〈pi, Api〉, and 〈ri, ri〉 can be computed
within the same kernel sharing the same buffer for intermediate results. Then, the sec-
ond reduction stage for obtaining the final results is either computed by only a single
additional kernel launch, or by communicating all partial results with a single trans-
fer to the host, which performs the summation. The data size of a single partial result
is about one kilobyte, hence the data transfer time remains in the latency-dominated
regime even if three of them are packed together, cf. Fig. 2.

To further enhance data reuse, we fuse the matrix-vector product in line 13 with
the inner products in line 14, so that the result values of the matrix vector product
can be processed right before they are written to GPU RAM. Thus, the computation
of 〈Api, Api〉 and 〈pi, Api〉 comes at reduced data transfer cost, because the j-entry of
Api has just been computed, and the j-th entry of pi may still be available in cache.
Similarly, the inner product 〈ri, ri〉 in line 15 is fused with the vector update kernel for
lines 10, 11, and 12.

In summary, we propose the following implementation of Algorithm 2:

— Compute lines 10, 11, and 12 in one kernel and store the reduction results of each
workgroup for the computation of 〈ri, ri〉 in line 15 in a temporary buffer.

— Compute lines 13 and 14 in one kernel and append the reduction results of each
workgroup for the computation of the inner products in line 14 to the same tempo-
rary buffer.

— Communicate the temporary buffer to the host, where the final reduction is com-
puted to obtain 〈ri, ri〉, αi, and βi from lines 15, 16, and 17.

Since 〈ri, ri〉 is available for monitoring the residual norm on the host, a convergence
check can be applied in each iteration with no extra effort. The proposed implementa-
tion requires only two kernel launches per iteration and one host-device data transfer.
In contrast, a direct translation of the classical CG algorithm into BLAS-routines re-
quires at least six kernel launches (lines 7, 8, 10, 11, 15, and 18) and may involve a
second host-device data transfer for 〈pi, Api〉. Consequently, we expect an up to three-
fold performance gain for small systems in the latency-dominated regime. Because pi
and ri do not need to be loaded from memory twice per iteration, a performance gain of
a few percent may also be obtained for large systems with very few nonzeros per row.

If a fusion of the matrix-vector product in line 13 and the partial reduction of the
inner products in line 14 is not possible or desired, each of the two lines can be com-
puted in separate kernels instead. This increases the number of kernel launches from
two to three per iteration and requires one additional load and store operation of Api
in global memory. Since the CUDA or OpenCL runtime can communicate all three ker-
nel launches in a single transaction, no notable hit in the latency-dominated regime is
expected.

3.2. BiCGStab

BiCGStab is an attractive iterative solver for systems described by nonsymmetric ma-
trices, because the transposed operator AT is not required. Based on the initial deriva-
tion [van der Vorst 1992], a pipelined method with only two global synchronizations
has been proposed [Jacques et al. 1999]. Later, a variant with only a single global
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synchronization has been proposed at the cost of an application of the transposed op-
erator in the setup stage [Yang and Brent 2002]. Also, a preconditioned BiCGStab
method overlapping global communication with the application of the preconditioner
has been developed [Krasnopolsky 2010]. A preliminary optimization study of the clas-
sical BiCGStab for GPUs is also available [Anzt et al. 2014], for which we postpone a
comparison to Section 4.

In analogy to the classical BiCGStab algorithm, the pipelined BiCGStab implemen-
tation proposed in this work does not require the transposed operator AT to be avail-
able and is similar to the one proposed with two global synchronizations [Jacques et al.
1999]. A comparison with the classical BiCGStab algorithm [Saad 2003] is as follows:

Algorithm 3: Classical BiCGStab

1 Choose x0

2 p0 = r0 = b− Ax0

3 Choose r∗0 arbitrary
4 Compute 〈r0, r

∗
0〉

5 for i = 0 to convergence do
6 Compute and store Api
7 Compute 〈Api, r

∗
0〉

8 αi = 〈ri, r
∗
0〉/〈Api, r

∗
0〉

9 si = ri − αiApi
10 Compute and store Asi
11 Compute 〈Asi, si〉, 〈Asi, Asi〉
12

13

14 ωi = 〈Asi, si〉/〈Asi, Asi〉
15 xi+1 = xi + αipi + ωisi
16 ri+1 = si − ωiAsi
17 Compute 〈ri+1, r

∗
0〉

18 βi =
〈ri+1,r

∗

0 〉

〈ri,r
∗

0
〉

× αi

ωi

19 pi+1 = ri+1 + βi(pi − ωiAi)
20

21 end

Algorithm 4: Pipelined BiCGStab

1 Choose x0

2 p0 = r0 = b− Ax0

3 Choose r∗0 arbitrary
4 Compute 〈r0, r

∗
0〉

5 for i = 0 to convergence do
6 Compute and store Api
7 Compute 〈Api, r

∗
0〉

8 αi = 〈ri, r
∗
0〉/〈Api, r

∗
0〉

9 si = ri − αiApi
10 Compute and store Asi
11 Compute 〈Asi, si〉, 〈Asi, Asi〉
12 Compute 〈Asi, r

∗
0〉

13 βi = −
(Asi,r

∗

0 〉

〈Api,r
∗

0
〉

14 ωi = 〈Asi, si〉/〈Asi, Asi〉
15 xi+1 = xi + αipi + ωisi
16 ri+1 = si − ωiAsi
17

18

19 pi+1 = ri+1 + βi(pi − ωiAi)
20 Compute 〈ri+1, r

∗
0〉

21 end

The classical BiCGStab method in Algorithm 3 requires a global synchronization
after line 7 to compute αi for use in line 8. Similarly, synchronizations are also re-
quired after line 11 to compute ωi for use in line 14 and after line 17 to compute β for
use in line 18. In analogy to the classical CG method, the search direction vector pi+1

(line 19) cannot be updated together with the approximated solution xi+1 (line 15) and
the residual vector ri+1 (line 16). Consequently, additional loads from GPU main mem-
ory are required. Overall, two calls to routines for sparse matrix-vector products and
at least eight calls to BLAS level 1 routines are needed in a conventional implemen-
tation of the classical BiCGStab method. Four host-device data transfers are required
if each inner product induces a data transfer between host and device. An additional
call to a BLAS level 1 routine and a host-device transfer are necessary if the residual
norm is recomputed explicitly in each iteration.

The pipelined BiCGStab version in Algorithm 4 allows for improved data reuse by
shifting the calculation of βi to line 13 through

βi =
〈ri+1, r

∗
0〉

〈ri, r∗0〉
×

αi

ωi

=
〈si − ωiAsi, r

∗
0〉

〈ri, r∗0〉
×
〈ri, r

∗
0〉

ωi〈Api, r∗0〉
=

〈si, r
∗
0〉

ωi〈Api, r∗0〉
−
〈Asi, r

∗
0〉

〈Api, r∗0〉
.
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Using the orthogonality 〈si, r
∗
0〉 = 〈ri − αiApi, r

∗
0〉 = 0 one arrives at

βi = −
〈Asi, r

∗
0〉

〈Api, r∗0〉
,

which we found to be numerically stable based on our experiments. This derivation of
a pipelined BiCGStab version is similar to the modification of the classical CG method
in Algorithm 1 to obtain the pipelined Algorithm 2. The minor price to pay for this
rearrangement is the calculation of 〈Asi, r

∗
0〉 in line 12.

The next step is to apply kernel fusion extensively to the pipelined BiCGStab version
in Algorithm 4. The calculation of 〈Asi, r

∗
0〉 can be fused with the sparse matrix product

in line 10 together with the calculation of 〈Asi, si〉 and 〈Asi, Asi〉 in line 11. Similarly,
lines 6 and 7 are fused to a single kernel computing a matrix-vector product and the
first reduction stage of the inner product. The vector update in line 9 is fused with the
second reduction stages for the inner products needed to compute αi in line 8. Since
the residual norm is obtained via

〈ri+1, ri+1〉 = 〈si, si〉 − 2ωi〈si, Asi〉+ ω2
i 〈Asi, Asi〉

for which 〈si, Asi〉 and 〈Asi, Asi〉 are computed in line 11 and needed for the calculation
of ωi in line 14, we augment the update kernel for the computation of si in line 9 with
the first reduction stage for 〈si, si〉. The partial results are transferred to the host
together with the partial results for all other inner products after line 12, where βi

and ωi are computed. Finally, the vector updates in lines 15, 16, and 19 as well as the
first reduction stage for the inner product in line 20 are fused into another kernel.

Overall, the proposed pipelined BiCGStab implementation of Algorithm 4 consists
of four kernel launches and one host-device transfer of the partial results from the four
inner products 〈Asi, si〉, 〈Asi, Asi〉, 〈Asi, r

∗
0〉, and 〈si, si〉:

— Compute the matrix-vector product in line 6 and the partial results for the two inner
products required for αi in line 8.

— Compute si in line 9 by redundantly computing αi in each thread workgroup from
the partial results of the inner products 〈ri, r

∗
0〉 and 〈Api, r

∗
0〉.

— Compute and store Asi (line 10) and the partial results for the inner products in
lines 11 and 12.

— Communicate all partial results for the inner products to the host, sum them there
and perform a convergence check.

— Compute the vector updates in lines 15, 16, and 19 as well as the partial results for
the inner product in line 20.

In comparison, the BiCGStab implementation proposed in [Anzt et al. 2014] requires
five kernel launches and three reductions, while a BLAS-based implementation of the
classical method requires at least eight kernel launches and four additional kernel
launches or host-device transfers for the second reduction stage in the computation
of the inner products. Therefore, a moderate improvement over the pipelined imple-
mentation in [Anzt et al. 2014] and a two- to three-fold performance gain over purely
BLAS-based implementations in the latency-dominated regime are expected, assum-
ing that kernel launches and host-device transfers entail comparable latency.

If a fusion of the matrix-vector products in lines 6 and 10 with the partial reduction
for the inner products in lines 8, 11, and 12 is not possible or desired, each of the two
kernels can be split into one kernel for the matrix-vector product and one for the partial
reductions. This increases the total number of kernel launches to six per iteration, of
which the CUDA or OpenCL runtime can pack up to six kernel launches into a single
communication, while preserving the benefit on only a single data transfer from the
device to the host.
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3.3. GMRES

In contrast to the CG and BiCGStab methods, the GMRES method requires to store
the full Krylov basis rather than only the current search direction vector, leading to an
increase in the number of operations with each iteration [Saad and Schultz 1986]. To
limit the computational expense, the GMRES method is typically restarted after m it-
erations, which is denoted by GMRES(m). Typical values for m are in the range of 20 to
50. Smaller values tend to slow down the overall convergence, whereas higher values
increase the computational cost and may lead to more time spent in the orthogonal-
ization rather than the matrix-vector product, making GMRES less attractive when
compared to other methods.

Three methods for the computation of an orthonormal Krylov basis from a set of
linearly independent vectors {vk}

m
k=1 are common [Saad 2003], further algorithms em-

ployed for the orthogonalization in a multi-GPU setting with significantly different
constraints in terms of communication can be found in [Yamazaki et al. 2014]:

— Classical Gram-Schmidt: The k-th vector of the basis is obtained as

wk ←

k−1∑

i=1

〈vi, vk〉vi , vk ← vk − wk

followed by a normalization of vk. The inner products 〈vi, vk〉 are independent and
can be computed in parallel.

— Modified Gram-Schmidt: An accumulation of round-off errors in the basis vectors
vk may lead to a loss of orthogonality as the basis is augmented. Higher numerical
robustness than for the classical Gram-Schmidt method has been observed for

vk ← vk − 〈vi, vk〉vi

for i from 1 to k − 1 rather than forming a single update vector wk. The disadvan-
tage of the modified Gram-Schmidt method is the reduced parallelism: Instead of
computing all inner products 〈vi, vk〉 concurrently, only one inner product can be
computed at a time, followed by a vector update.

— Householder reflections: The Krylov basis may also be obtained through House-
holder reflections Pk = (I − βkuku

T
k ) with identity matrix I, suitably chosen scalars

βk, and Householder vectors uk. Similar to the modified Gram-Schmidt method, the
Householder reflections have to be applied sequentially to obtain the Krylov ba-
sis. Although the method allows for the computation of an orthonormal basis up
to machine precision, the method is less regularly used for implementations of the
GMRES method due to its sequential nature.

In the following we consider the simpler GMRES method [Walker and Zhou 1994],
which allows for a simpler solution of the minimization problem than the original
formulation, but is otherwise comparable in terms of computational expense. A
comparison of the restarted form and a pipelined formulation, both using the classical
Gram-Schmidt method for higher efficiency on parallel architectures, is as follows:
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Algorithm 5: Classical GMRES(m)

1 Choose x0

2 r0 = b− Ax0

3 ρ0 = ‖r0‖2
4 v0 = r0 = r0/ρ0
5 Ri,j = 0 for i, j ∈ {1, . . . ,m}
6 for i = 1 to m do
7 vi = Avi−1

8 for j = 1 to i− 1 do
9 Rj,i = 〈vj , vi〉

10 end
11 for j = 1 to i− 1 do
12 vi = vi −Rj,ivj
13 end
14 vi = vi/‖vi‖
15 ξi = 〈r, vi〉
16 r = r − ξivi
17 end
18

19

20

21 Solve Rη = (ξ1, . . . , ξm)
22 Update xm = η1r +

∑m

i=2 η̃ivi−1

Algorithm 6: Pipelined GMRES(m)

1 Choose x0

2 r0 = b−Ax0

3 ρ0 = ‖r0‖2
4 v0 = r0 = r0/ρ0
5 Ri,j = 0 for i, j ∈ {1, . . . ,m}
6 for i = 1 to m do
7 vi = Avi−1

8 for j = 1 to i− 1 do
9 Rj,i = 〈vj , vi〉

10 end
11 for j = 1 to i− 1 do
12 vi = vi −Rj,ivj
13 end
14 vi = vi/‖vi‖
15 ξi = 〈r, vi〉 (first stage)
16

17 end
18 for i = 1 to m do
19 ξi = 〈r, vi〉 (second stage)
20 end
21 Solve Rη = (ξ1, . . . , ξm)
22 Update xm = η1r +

∑m

i=2 ηivi−1

with η̃i = ηi + η1ξi−1 to account for the updates of the residual r.
The main difference between the classical formulation in Algorithm 5 and the

pipelined formulation in Algorithm 6 involves the update of the residual vector in
line 16 of Algorithm 5. Because of the orthonormality of {vk}

m
k=1

, the inner product in
line 15 remains unchanged when using exact arithmetic. Similarly, since the values ξi
do not enter the Gram-Schmidt process, the values in the matrix R remain unchanged
so that round-off errors only affect the right hand side vector in line 21. Our numeri-
cal experiments indicate that round-off errors in ξi are dominated by round-off errors
in the classical Gram-Schmidt process and therefore do not affect the overall numer-
ical stability of the solver. Also, the convergence monitors proposed in [Walker and
Zhou 1994] do not require updates of the residual and are based on the values ξi only.
Therefore, the full convergence history is still accessible before solving the minimiza-
tion problem in line 21, allowing for a correct handling of early convergence. Never-
theless, m − 1 unnecessary steps of the Gram-Schmidt process will be carried out if
convergence is obtained right at the first iteration, but this is rarely encountered for
unpreconditioned solvers in practice.

The benefit of removing the residual update from the Gram-Schmidt orthogonaliza-
tion is that extensive kernel fusion can be applied to obtain an implementation of Al-
gorithm 6 with almost no host-device communication. To begin, the reduction stage of
the inner products in line 9 can be computed in two ways: The first option is a special-
ized matrix-vector routine for tall matrices if all Krylov vectors are stored as either the
rows or the columns of a matrix. The second option is to fuse multiple inner products
into the same kernel if all Krylov vectors reside in distinct buffers [Rupp et al. 2013].
With both options the second reduction stage for computing Rj,i in line 9 is fused with
the vector updates in line 12 and also with the first reduction stage for computing ‖vi‖
needed in line 14. The normalization of vi in line 14 is carried out by a kernel first
computing the second reduction stage for ‖vi‖, then scaling vi and directly computing
the first reduction stage for the obtaining ξi in line 15. Consequently, no data transfer
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between host and device is required during the Gram-Schmidt orthogonalization. An
asynchronous transfer of the intermediate values for ξi can be inserted at the end of
each orthogonalization step for a better monitoring of the convergence process.

After the Gram-Schmidt process, the intermediate results for computing ξi are trans-
ferred to the host if not already transferred asynchronously, where the final values ξi
are computed. Similarly, the triangular matrix R is transferred to the host. After the
triangular system R is inverted, the result vector containing the values ηi is trans-
ferred to the device and the update of the result vector xm is computed in line 22 using
in a single kernel similar to the vector update in line 12.

Overall, the proposed implementation of the pipelined GMRES(m) method in Algo-
rithm 6 requires two kernel launches in the first iteration and four kernel launches in
subsequent iterations:

— Compute the matrix-vector product in line 7 and the first reduction stage for
〈vi−1, vi〉.

— Compute the first reduction stage for the inner products 〈vj , vi〉 in line 9 with j
ranging from 1 to i− 2.

— Compute the second reduction stage for the inner products 〈vj , vi〉 in line 9 for j from
1 to i−1, use the results directly for computing the vector update in 12, and compute
the first reduction stage for ‖vi‖.

— Compute the second reduction stage for ‖vi‖, normalize vi, and compute ξi.

A conventional implementation of the classical GMRES(m) method in Algorithm 5
requires at least seven kernel launches and may involve several host-device data
exchanges per iteration. Thus, an up to two-fold performance gain in the latency-
dominated regime is expected.

If a fusion of the matrix-vector product in line 7 and the first reduction stage for
〈vi−1, vi〉 is not possible or desired, each of the two operations can be computed in
separate kernels instead. This increases the number of kernel launches from four to
five per iteration and requires one additional load and store operation of vi in global
memory. In light of the the subsequent inner products with the Krylov basis required
for GMRES, these additional data loads and stores for vi are typically negligible.

The computation of ‖vi‖ in Algorithm 6 can be avoided by making use of the shift-
invariance property of the Krylov space, as it has been successfully demonstrated for
l1-GMRES in the context of large distributed-memory machines [Ghysels et al. 2013].
This would allow for a reduction of the number of kernels from four to three, but the
resulting GMRES variant would require an additional shift parameter. Moreover, since
the Gram-Schmidt orthogonalization in Algorithm 6 is already free of intermediate
host-device communication, the CUDA or OpenCL runtime can already communicate
all kernel launches in a single PCI-Express message, thus no more gains from a further
reduction of kernel launches are obtained.

It is also worth comparing the pipelined p1-GMRES method [Ghysels et al. 2013]
with Algorithm 6. The former is concerned with overlapping global reductions in in-
ner products with the computation of the sparse matrix-vector product involving local
point-to-point communication on distributed memory machines. Such an overlap, how-
ever, is not needed in Algorithm 6, because the whole orthogonalization phase is free
from synchronizations with the host.

4. BENCHMARK RESULTS

The implementations proposed in this work are implemented in the 1.7.0 release of the
free open-source linear algebra library ViennaCL11 and are compared in the following

11ViennaCL library: http://viennacl.sourceforge.net/
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with the implementations in the free open-source libraries CUSP12 0.5.1, MAGMA13

1.6.2 (linked with INTEL MKL 11.0), and PARALUTION14 1.0.0. Since CUSP and
MAGMA are based on CUDA, benchmark data for AMD GPUs could only be obtained
with ViennaCL and PARALUTION. All four libraries are used in an out-of-the-box
manner without additional target-specific tuning in order to reflect typical use cases.

In addition to classical implementations of the CG, BiCGStab, and GMRES methods,
MAGMA also provides pipelined implementations of the CG method (four kernels with
custom sparse matrix-vector product) and the BiCGStab method (nine kernels using
vendor-tuned sparse matrix-vector products) [Anzt et al. 2014]. Since MAGMA 1.6.2
provides a flexible GMRES implementation, but no classical GMRES implementation,
we used the classical GMRES implementation in MAGMA 1.6.1 for comparison. CUSP
and PARALUTION implement classical formulations of all three iterative solvers in
the comparison. Our numerical experiments showed that the implementations of the
classical CG and BiCGStab methods in MAGMA show similar performance to PAR-
ALUTION. Therefore, we do not include timings for the classical implementations in
MAGMA in our benchmark result plots, but instead only report execution times for the
pipelined variants.

All tests were carried out on Linux-based machines running the CUDA 6.0 SDK
on NVIDIA GPUs with GPU driver version 331.20 and the AMD APP SDK 2.9 with
GPU driver version 13.352.1014 on AMD GPUs. An NVIDIA Tesla C2050, an NVIDIA
Tesla K20m, an AMD FirePro W9000, and an AMD FirePro W9100 were used for a
comparison, representing the latest two generations of high-end workstation models
from each vendor. Error-correcting code memory was disabled on all four GPUs for bet-
ter comparison. Since all operations are limited by the available memory bandwidth,
the obtained results are also representative for a broader range of mid- to high-end
consumer GPUs with comparable memory bandwidth.

In addition to GPU-benchmarks, we also compare with the execution times obtained
with the CPU-based PETSc15 library, version 3.6.0, on a dual-socket system equipped
with INTEL Xeon E5-2620 CPUs, where parallel execution is based on the Message
Passing Interface (MPI)16 using MPICH17 3.1. The fastest execution time from runs
with 1, 2, 4, and 8 MPI ranks for each system size are taken for comparison. However,
it should be noted that a comparison with a CPU-based library needs to be interpreted
with care, because our benchmarks only compare the time taken per solver iteration,
not the time required for copying the data to the GPU or for obtaining the result vector.

Execution times per iterative solver iteration are computed from the median value
of ten solver runs with a fixed number of 30 iterations for each solver. In our exper-
iments we have not observed any significant differences in the number of solver it-
erations required for convergence of the classical implementation and the pipelined
implementation, hence the execution time per solver iteration is a suitable metric for
comparison.

4.1. Linear Finite Elements for the Poisson Equation in 2D

We consider the execution time obtained with linear finite elements applied to the so-
lution of the Poisson equation on the unit rectangle on a hierarchy of uniformly refined
unstructured triangular meshes as a first benchmark. The resulting systems consist

12CUSP library: http://cusplibrary.github.io/
13MAGMA library: http://icl.cs.utk.edu/magma/
14PARALUTION library: http://www.paralution.com/
15PETSc library: http://www.mcs.anl.gov/petsc/
16Message Passing Interface Forum: http://www.mpi-forum.org/
17MPICH library: http://www.mpich.org/
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Fig. 4. Comparison of the solver time required per iteration for solving the Poisson equation using finite
elements on triangular grids in two spatial dimensions. The proposed pipelined implementations in Vien-
naCL as well as the pipelined implementations in MAGMA outperform classical implementations in CUSP
and PARALUTION for system sizes below 105 thanks to a smaller number of kernel launches and better
data reuse.
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of 225, 961, 3 969, 16 129, 65 025, and 261 121 equations, respectively, and cover a broad
range of typical system sizes solved on a single workstation. Results for CG, BiCGStab,
and GMRES using the ELLPACK sparse matrix format (cf. [Bell and Garland 2009] for
a description) are given in Fig. 4 for the four GPUs considered in our comparison. Sim-
ilar results are obtained for other matrix formats, because the execution times in this
setting are primarily dominated by latency effects. The case of large system matrices,
where kernel execution times are dominant, is considered in Section 4.3.

Results for the NVIDIA GPUs show that the pipelined methods for the CG and
the BiCGStab methods in ViennaCL and MAGMA show the same performance for
small systems. The small differences can be explained by the use of asynchronous (and
hence non-deterministic) convergence checks in MAGMA, whereas ViennaCL uses
synchronous checks. Although MAGMA’s BiCGStab implementation uses five kernels
rather than the proposed implementation with four kernels, no significant difference
is visible in Fig. 4b and Fig. 4e. A comparison with the classical implementations in
PARALUTION shows a roughly two-fold performance gain of pipelined implementa-
tions for small systems. The proposed pipelined GMRES implementation on NVIDIA
GPUs is by about a factor of two faster in the latency-dominated regime than the im-
plementation in MAGMA and about a factor of three faster than the implementations
in CUSP and PARALUTION.

On AMD GPUs the differences between ViennaCL and PARALUTION are more pro-
nounced, because PARALUTION cannot take advantage from some optimizations in
CUBLAS for NVIDIA GPUs. Conversely, these results suggests that the CUDA run-
time for NVIDIA GPUs is able to hide the overhead of kernel launches more efficiently.
A three-fold difference in execution times is obtained for the CG method, which reflects
the different number of kernel launches, namely two for the pipelined implementation
and six for a conventional implementation. A four-fold difference in execution times
is obtained for the BiCGStab method, again reflecting the reduction in the number of
kernel launches and reduced host-device communication in the proposed pipelined im-
plementation. The difference for GMRES is approximately ten-fold, because the Gram-
Schmidt orthogonalization in PARALUTION calls one kernel per dot-product during
the orthogonalization procedure.

Execution times for each solver iteration at system sizes below 104 are practically
constant for both NVIDIA and AMD GPUs. Because this constant is about a factor of
two larger for AMD GPUs and because the AMD GPUs in this comparison offer higher
memory bandwidth, essentially constant execution times are obtained for systems with
up to 105 unknowns for AMD GPUs. Only at system sizes above 105 unknowns, PCI-
Express communication becomes negligible compared to kernel execution times, hence
the performance of all libraries becomes similar and varies only mildly.

When comparing the execution times of GPU-based solvers with the execution times
obtained with the CPU-based PETSc implementations, it is observed that the pro-
posed pipelined implementations on GPUs are faster if systems carry more than about
3 000 unknowns on average. Depending on the underlying hardware and solver, up
to 100 000 unknowns are needed with the conventional implementations in PARALU-
TION or CUSP to outperform the CPU-based implementations in PETSc. If initial data
setup is taken into account, these cross-over points are shifted to even larger values,
highlighting the importance of pipelining to increase the range of system sizes where
GPU acceleration may pay off.

4.2. Linear Finite Elements for Linear Elasticity in 3D

The second benchmark compares the execution time obtained with linear finite ele-
ments for numerical solutions of the linear elasticity model in three spatial dimen-
sions. A hierarchy of uniformly refined tetrahedral meshes of the unit cube was used,
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Fig. 5. Comparison of the solver time required per iteration for solving the linear elasticity model using
finite elements in three spatial dimensions. The proposed pipelined implementations in ViennaCL as well
as the pipelined implementations in MAGMA outperform other libraries for system sizes below 105 thanks
to a smaller number of kernel launches and better data reuse.
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Table I. Summary of symmetric and non-symmetric matrices taken from the Florida
Sparse Matrix Collection for comparison. These matrices represent the set of real-
valued, floating point square matrices used in earlier contributions on optimizing sparse
matrix-vector products [Bell and Garland 2009; Kreutzer et al. 2014].

Name Rows Nonzeros Nonzeros/Row Symmetric

pdb1HYS 36 417 4 344 765 119.31 yes
cant 62 451 4 007 383 64.17 yes
consph 83 334 6 010 480 72.13 yes
shipsec1 140 874 7 813 404 55.46 yes
pwtk 217 918 11 643 424 53.39 yes

rma10 46 835 2 374 001 50.69 no
cop20k A 121 192 2 624 331 21.65 no
scircuit 170 998 958 936 5.61 no
mac econ fwd500 206 500 1 273 389 6.17 no
RM07R 381 689 37 464 962 98.16 no
Hamrle3 1 447 360 5 514 242 3.81 no
kkt power 2 063 494 13 612 663 7.08 no

resulting in system sizes of 693, 5 265, 40 725, and 319 725, respectively. Compared to
the first benchmark, the average number of unknowns per row increases from about
7 to 60 for the largest system, resulting in a higher share of the execution time being
spent on sparse matrix-vector products.

The results on NVIDIA GPUs in Fig. 5 show a similar trend as the results in Fig. 4:
For small matrix sizes, the pipelined implementations of the CG and the BiCGStab
methods in ViennaCL and MAGMA show similar performance. A two-fold perfor-
mance gain over PARALUTION is obtained for the smallest system when using the
CG method, which quickly diminish at larger system sizes due to more time spent on
sparse matrix-vector products. While CUSP is about five times slower in the latency-
limited regime for BiCGStab, the implementation in PARALUTION is less than a fac-
tor of two slower, suggesting that the CUDA-runtime is able to hide kernel launch
latencies as well as host-device communication fairly well. Similar to the previous
benchmark, the performance gain of the proposed pipelined implementation of GM-
RES is two-fold over MAGMA and three-fold over CUSP and PARALUTION.

Performance differences between ViennaCL and PARALUTION on the AMD GPUs
are about three-fold for the CG and BiCGStab methods. For GMRES, a ten-fold perfor-
mance advantage of the proposed pipelined implementation in the latency-dominated
regime is obtained.

Although the system matrix carries more nonzeros than in the first benchmark,
about 2 × 104 unknowns on NVIDIA GPUs and 105 unknowns on AMD GPUs are
required such that kernel execution times hide performance penalties due to PCI-
Express communication.

4.3. Florida Sparse Matrix Collection

The performance of the proposed pipelined implementations is compared in the follow-
ing for matrices from the Florida Sparse Matrix Collection18 used for the evaluation
of sparse matrix-vector products in the past [Bell and Garland 2009; Kreutzer et al.
2014]. While the focus in the previous section was on demonstrating the benefit of
the proposed implementations for small to medium-sized systems, the purpose of this
section is to show that the proposed implementations are also competitive for large
systems. Thus, the implementations in PARALUTION and MAGMA (for BiCGStab
and GMRES) are a-priori expected to provide the best performance, since they use the
vendor-tuned sparse matrix-vector product kernels from NVIDIA’s CUSPARSE library.

18http://www.cise.ufl.edu/research/sparse/matrices/
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Table II. Comparison of the relative differences of residuals after 30

solver iterations for the classical and the proposed pipelined algo-
rithms. For CG and GMRES, the difference in residuals is only slightly
above the inherent round-off error. The difference of the residuals ob-
tained for the classical and the proposed pipelined BiCGStab method
(Algorithm 4) is larger, suggesting higher sensitivity with respect to
round-off errors.

Matrix CG BiCGStab GMRES

pdb1HYS 2.9× 10−12 1.9× 10−2 2.3× 10−15

cant 1.4× 10−14 1.2× 10−6 2.8× 10−11

consph 3.0× 10−15 7.3× 10−7 9.8× 10−10

shipsec1 7.4× 10−12 1.4× 10−2 4.0× 10−10

pwtk 3.0× 10−14 1.2× 10−6 6.5× 10−11

rma10 - 4.1× 10−1 5.3× 10−8

cop20k A - 3.4× 10−6 1.8× 10−11

scircuit - 1.4× 10−2 2.1× 10−8

mac econ fwd500 - 1.5× 10−1 4.6× 10−14

RM07R - 2.2× 10−1 1.4× 10−11

Hamrle3 - 1.1× 10−1 1.1× 10−16

kkt power - 4.7× 10−2 4.9× 10−12

In contrast, our implementations in ViennaCL rely on fused kernels, while CUSP im-
plements the classical methods using its own set of sparse matrix-vector product ker-
nels [Bell and Garland 2009].

Since OpenCL does not support complex arithmetic natively, we restrict our bench-
mark to real-valued matrices listed in Tab. I. The symmetric, positive definite matrices
are used for benchmarking the implementations of the CG method, while the non-
symmetric matrices are used for benchmarking the implementations of the BiCGStab
and GMRES methods. All sparse matrix formats available in the respective library
are compared using implementations in CUDA and, if available, OpenCL. The fastest
combination is then taken for the comparison, since such a procedure resembles the
typical user who picks the fastest sparse matrix format and the programming model
with best performance for a particular application.

A comparison of the relative difference of the residuals obtained for the classical and
the pipelined solvers after 30 solver iterations is given in Table II. For CG and GMRES,
the relative differences are below 10−10 for all matrices considered, hence the classical
and the pipelined methods can be considered to be equally stable. In contrast, the rel-
ative differences of the residuals obtained for BiCGStab are up to 41 percent (rma10),
where differences are larger if BiCGStab converges slower or even stagnates. This sug-
gests that the classical BiCGStab method in Algorithm 3 and the pipelined BiCGStab
method in Algorithm 4 show different sensitivity with respect to round-off errors. How-
ever, as the relative differences remain below unity and as the residual norms for the
pipelined BiCGStab method are smaller than those for the classical method for seven
out of twelve matrices, we conclude that neither of the two methods is more sensitive
to round-off errors than the other.

The benchmark results for the CG method in Fig. 6 show that the proposed solver
implementation provides the best overall performance on all four devices. Although the
pipelined CG method implemented in MAGMA is similar to the one proposed here, the
performance difference reflects the importance of providing fast fused kernels. Simi-
larly, the difference is particularly pronounced on AMD GPUs, where the performance
of our proposed implementation is up to twice as high as the performance of PAR-
ALUTION, which needs to rely on its own kernels rather than using vendor-tuned
implementations. A comparison of absolute execution times also shows that the AMD
GPUs provide a better overall performance due to their higher memory bandwidth.
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Fig. 6. Comparison of execution times per CG solver iteration for different systems from the Florida Sparse
Matrix Collection relative to the proposed pipelined implementations. Absolute execution times in millisec-
onds are given inside each bar. ViennaCL implements the pipelined methods proposed in this work, MAGMA
uses a similar pipelined implementation without using vendor-tuned kernels.

The comparison of execution times for the BiCGStab method in Fig. 7 shows similar
performance of ViennaCL, PARALUTION, and MAGMA for NVIDIA GPUs on aver-
age: Depending on the device and the matrix considered, either of the three is the
best choice. Since the proposed implementations do not contain any device-specific or
matrix-specific optimizations, further tuning may provide further performance gains.
In contrast, the use of vendor-tuned kernels for the implementations in PARALUTION
and MAGMA imposes limitations on further device- or matrix-specific tweaks to what
is offered by the vendor library. The custom sparse matrix-vector product kernels in
CUSP result in about 60 percent higher execution times on average. On AMD GPUs,
the performance gain over PARALUTION is about 50 percent on average. Similar to
the results of the benchmark of the CG method, slightly higher overall performance
can be obtained on AMD GPUs because of their higher memory bandwidth.

The benchmark results obtained for the GMRES method are depicted in Fig. 8 and
show the same trend as the results obtained when comparing the implementations
of the BiCGStab method. Depending on the device and the matrix considered, either
of ViennaCL, PARALUTION, and MAGMA may be the best choice. In particular, no
performance penalty from using pipelined implementations for large systems can be
observed.

The relative share of execution time spent on just computing matrix vector products
by running isolated sparse matrix-vector product kernels as compared to full solver
cycles is given in Table III. About 85 percent of the time is spent on matrix-vector
products for the CG method after pipelining, so significant reductions in execution
times can only be obtained by optimizing the sparse matrix-vector product. Similarly,
66 percent of the time is spent on matrix-vector products in the pipelined BiCGStab
method on average, where the share correlates well with the average number of nonze-
ros per row. For the GMRES method, however, 60 percent of the time is spent outside
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Fig. 7. Comparison of execution times per BiCGStab solver iteration for different systems from the Florida
Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute execution times in
milliseconds are given inside each bar. The cop20k A and the kkt power matrices could not be tested with
PARALUTION due to segmentation faults. The RM07R matrix could not be run with MAGMA since it did not
pass a check for positive definiteness.

Table III. Relative share of the execution time per solver iteration spent
on the sparse matrix-vector product, evaluated on an NVIDIA Tesla K20m.
While the execution time for the CG and the BiCGStab method are usually
dominated by computing sparse matrix-vector products particularly after
pipelining, orthogonalizations in the GMRES method dominate.

Matrix CG Matrix BiCGStab GMRES

pdb1HYS 79.9% rma10 78.2% 53.2%

cant 89.5% cop20k A 89.3% 53.6%

consph 89.0% scircuit 44.0% 21.3%

shipsec1 89.2% mac econ fwd500 50.1% 24.6%

pwtk 88.9% RM07R 91.2% 72.8%

Hamrle3 52.3% 17.1%

kkt power 58.9% 32.9%
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Fig. 8. Comparison of execution times per GMRES solver iteration for different systems from the Florida
Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute execution times in
milliseconds are given inside each bar. The cop20k A and the kkt power matrices could not be tested with
PARALUTION due to segmentation faults.

the matrix-vector product on average, justifying the careful optimization of the orthog-
onalization of the Krylov vectors via kernel fusion and pipelining.

Finally, execution times for the proposed implementations of the three iterative
solvers using CUDA and OpenCL are compared in Fig. 9. In all cases, the obtained
execution times of CUDA and OpenCL are within a few percent, which is a negligible
difference in practice.

Overall, the benchmark results confirm that pipelined methods are not only favor-
able for smaller systems, where latency effects are significant, but also competitive for
large systems. This is beneficial for code maintenance, as only a single implementation
needs to be maintained. Furthermore, our results also suggest that a single implemen-
tation in OpenCL is sufficient, as the performance differences to CUDA are negligible.
This, however, faces practical limitations, as user codes may be written only in CUDA
and thus incompatible with OpenCL.

5. CONCLUSION

The proposed pipelined implementations of the CG, BiCGStab, and GMRES methods
address the latency-induced performance penalties of GPU-accelerated implementa-
tions for sparse systems with less than about 105 unknowns. Our comparison with
other solver packages shows significant performance gains over conventional imple-
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Fig. 9. Comparison of execution times obtained with CUDA and OpenCL for the CG method (top), the
BiCGStab method (left), and the GMRES method (right). Relative execution times are with respect to the
faster framework. Absolute execution times in milliseconds are given inside each bar. Overall, the perfor-
mance differences of CUDA and OpenCL are negligible in practice, even though OpenCL shows slightly
better performance overall.

mentations for practically relevant problem sizes between 104 and 105 unknowns.
A comparison for larger systems shows that the proposed implementations using
fused kernels provide a performance competitive with implementations built on top of
vendor-tuned kernels. As a consequence, our results suggest that future efforts on the
optimization of compute kernels should not be restricted to standard BLAS or BLAS-
like kernels, but additional performance can be obtained if also optimized implemen-
tations for fused kernels are provided. For example, not only the sparse matrix-vector
product kernel, but also a kernel computing the sparse matrix-vector product plus the
first reduction stage of inner products involving the result vector may offer superior
performance for iterative solvers from the family of Krylov methods.

While an extensive use of pipelining and kernel fusion addresses latency issues and
limited memory bandwidth, it also brings new challenges for the design of scientific
software. To leverage the full potential of modern hardware, it is no longer sufficient to
only use a fairly small set of vendor-tuned BLAS-kernels, but instead provide modular
building blocks for minimizing communication of data.

Future GPUs as well as CPUs will see gains in memory bandwidth, but the latency
induced by the PCI-Express bus will not change substantially. Therefore, the minimum
system size required to get any performance gains on GPUs over CPUs will continue
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to grow. As a consequence, the replacement of the PCI-Express bus with a interconnect
technology of lower latency is essential for making accelerators more attractive. Inte-
grations of GPU units on the CPU die are one possible path to achieve lower latency.
However, no benefit over a well-optimized, purely CPU-based implementations can be
expected for the memory-bandwidth limited operations in iterative solvers, if both the
accelerator and the CPU core share the same memory link.

The techniques applied in this work can also be extended to preconditioned iterative
solvers. Not only can the application of the preconditioner be possibly fused with vector
updates, but also the setup stage can benefit from fusing as many operations as possi-
ble into the same kernel. A rigorous application of these techniques to preconditioners
is left for future work.
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