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Abstract
We present a new type system combining occurrence typ-
ing—a technique previously used to type check programs in
dynamically-typed languages such as Racket, Clojure, and
JavaScript—with dependent refinement types.  We demon-
strate that the addition of refinement types allows the inte-
gration of arbitrary solver-backed reasoning about logical
propositions from external theories. By building on occur-
rence typing, we can add our enriched type system as a natu-
ral extension of Typed Racket, reusing its core while increas-
ing its expressiveness. The result is a well-tested type system
with a conservative, decidable core in which types may de-
pend on a small but extensible set of program terms.

In addition to describing our design, we present the fol-
lowing: a formal model and proof of correctness; a strategy
for integrating new theories, with specific examples includ-
ing linear arithmetic and bitvectors; and an evaluation in the
context of the full Typed Racket implementation. Specifi-
cally, we take safe vector operations as a case study, exam-
ining all vector accesses in a 56,000 line corpus of Typed
Racket programs. Our system is able to prove that 50% of
these are safe with no new annotations, and with a few an-
notations and modifications we capture more than 70%.

Categories and Subject Descriptors F.3.1 [Specifying and
Verifying and Reasoning about Programs]

General Terms Languages, Design, Verification

Keywords Refinement types, occurrence typing, Racket
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1. Introduction
Applying a static type discipline to an existing code base
written in a dynamically-typed language such as JavaScript,
Python, or Racket requires a type system tailored to the id-
ioms of the language. When building gradually–typed sys-
tems, designers have focused their attention on type systems
with relatively simple goals, e.g. ruling out dynamic type er-
rors such as including a string in an arithmetic computation.
These systems—ranging from widely-adopted industrial ef-
forts such as TypeScript [6], Hack [16], and Flow [15] to
more academic systems such as Typed Racket [25], Typed
Clojure [2], Reticulated Python [29], and Gradualtalk [1]—
have been successful in this narrow goal.

However, advanced type systems can express more pow-
erful properties and check more significant invariants than
merely the absence of dynamic type errors. Refinement and
dependent types, as well as sophisticated encodings in the
type systems of languages such as Haskell and ML [11, 30],
allow programmers to capture more precise correctness crite-
ria for their programs such as those for balanced binary trees,
sized vectors, and much more.

In this paper, we combine these two strands of research,
producing a system we dub Refinement Typed Racket,  or
RTR. RTR follows in the tradition of Dependent ML [32] and
Liquid Haskell [27] by supporting dependent and refinement
types over a limited but extensible expression language. Ex-
perience with these languages has already demonstrated that
expressive and rich program properties can be captured by a
fully-decidable type system.

Furthermore, by building on the existing framework of
occurrence typing, refinement types prove to be a natural ad-
dition to the Typed Racket implementation, formal model,
and soundness results. Occurrence typing is designed to rea-
son about dynamic type tests and control flow in existing
Racket programs, using propositions about the types of terms
and simple rules of logical inference. Extending this logic
to encompass refinements of types as well as propositions
drawn from solver-backed theories produces an expressive
system which scales to real programs. In this paper, we show
examples drawn from the theory of linear inequalities and the
theory of bitvectors.
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(: max : [x : Int] [y : Int]
-> [z : Int #:where (∧ (≥ z x) (≥ z y))])

(define (max x y) (if (> x y) x y))

Figure 1. max with refinement types

Figure 1 presents a simple demonstration of integrating
refinement types with linear arithmetic. The max function
takes two integers and returns the larger, but instead of de-
scribing it as a simple binary operator on values of type Int,
as the current Typed Racket implementation specifies, we
give a more precise type describing the behavior of max.

The  syntax  for  function  types  in  RTR allows  for  ex-
plicit dependencies between the domain and range by giv-
ing  names  to  arguments  which  are  in  scope  in  any  log-
ical  refinements.  For  the  range  in  this  example  we  use
[z : Int #:where (∧ (≥ z x) (≥ z y))] as  syn-
tactic sugar for a logical refinement on the base type Int:
(Refine [z : Int] (∧ (≥ z x) (≥ z y))).  Note
that the max function definition does not require any changes
to accommodate the stronger type, nor do clients of max
need to care that the type provides more guarantees than
before; the conditional in the body of max enables the use
of the refinement type in the result, as in most refinement
type systems. Typed Racket’s pre-existing ability to reason
about conditionals means that abstraction and combination
of conditional tests properly works in RTR without requiring
anything more from solvers for various theories.

With these features we enable programmers to enforce
new invariants in existing Typed Racket code and thus eval-
uate  the  effectiveness  of  our  type  checker  on  real-world
programs. As evidence, we have implemented our system
in  Typed  Racket,  including  support  for  linear  arithmetic
and provably-safe vector access, and automatically analyzed
three large libraries totalling more than 56,000 lines of code.
We determined that approximately 50% of the vector ac-
cesses are provably safe with no code changes. We then ex-
amined one of the libraries in detail, finding that of the 75%
that were not automatically proved safe, an additional 47%
could be verified by adding type annotations and minor code
modifications.

Our primary contributions are as follows:

1. We present the design of a novel and sound integration
between occurrence typing and refinement types drawn
from arbitrary logical theories.

2. We describe how to scale our design to a realistic imple-
mentation (i.e. Typed Racket).

3. We validate our design by using our implementation to
verify the majority of vector accesses in a large Racket
library.1

1 Our accompanying artifact is available at the following url: https://
github.com/andmkent/pldi16-artifact

The remainder of this paper is structured as follows: sec-
tion 2 reviews the basics of occurrence typing and introduces
dependency and refinement types via examples; section 3
formally presents the details of our type system, as well as
soundness results for the calculus; section 4 describes the
challenges of scaling the calculus to our implementation in
Typed Racket; section 5 contains the results of our empirical
evaluation of the effectiveness of using refinement types for
vector bounds verification; section 6 discusses related work;
and section 7 concludes.

2. Beyond Occurrence Typing
Occurrence typing—an approach whereby different occur-
rences of the same identifier may be type checked at different
types throughout a program—is the strategy Typed Racket
uses to type check idiomatic Racket code [25, 26]. To illus-
trate, consider a Typed Racket function which accepts either
an integer or a list of bits as input and returns the least sig-
nificant bit:

(: least-significant-bit :
(U Int (Listof Bit)) -> Bit)

(define (least-significant-bit n)
(if (int? n)

(if (even? n) 0 1)
(last n)))

Type checking the function body begins with the assump-
tion that n is of type (U Int (Listof Bit)) (an ad hoc
union containing Int and (Listof Bit)). Typed Racket
then verifies the test-expression(int? n) is well typed and
checks the remaining branches of the program with the fol-
lowing insights:

1. In the then branch we know (int? n) produced a non-
#f value, thus nmust have type Int. The type system can
then verify (if (even? n) 0 1) is well-typed at Bit.

2. In the else branch we know (int? n) produced #f, im-
plying n is not of type Int. This fact, combined with our
previous knowledge of the type of n, tells us n must have
type (Listof Bit). Thus (last n) is also well typed
and of type Bit.

This strategy of gleaning typed-based information from
tests in control flow statements is an essential part of oc-
currence typing. Instead of only describing the expression
(int? n) as being of type Boolean,

$ (int? n) : B

RTR adds additional type-based logical information:

$ (int? n) : pB ; n P I | n R I ; ✁0q

The first additional element, n P I, states ‘if the result is
non-#f, then n is an integer.’ We dub this statement the ‘then’
proposition, since it is what holds in the first branch of a
conditional using (int? n) as the test. The second element,
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n R I, tells us ‘if the result is #f, then n is not an integer.’
This we dub the ‘else’ proposition, since it is what holds in
the second branch of a conditional using (int? n) as the
test. The final element, ✁0, tells us the expression is not a term
that can be lifted into types.

This additional typed-based logical information and the
usual logical connectives (conjunction, disjunction, etc.) are
already an integral part of Typed Racket’s well-tested type
system. By enriching and extending this foundation—adding
extensible refinement types and new approaches for reason-
ing about aliasing and identifiers going out of scope—we can
provide a more expressive, theory-extensible system capable
of verifying a wider array of practical program invariants.

2.1 Occurrence Typing with Linear Arithmetic
Consider how a standard vector access function vec-ref
might be implemented in a relatively simply-typed language
(e.g. standard Typed Racket).  In order to ensure we only
access valid indices of the vector, our function must conduct
a runtime check before performing the raw, unsafe memory
access at the user-specified index:

(: vec-ref : (∀ {A} (Vecof A) Int -> A))
(define (vec-ref v i)
(if (≤ 0 i (sub1 (len v)))

(unsafe-vec-ref v i)
(error "invalid vector index!")))

Although the type for vec-ref prevents some runtime
errors, invalid indices remain a potential problem. In order
to eliminate these, we can extend our new system to con-
sider propositions from the theory of linear integer arithmetic
(with a simple implementation of Fourier-Motzkin elimina-
tion [7] as a lightweight solver). This allows us to give ≤ a
dependent function type where the truth-value of the result
reports the intuitively implied linear inequality. We can then
design a safe function safe-vec-ref:

(: safe-vec-ref :
(∀ {A} [v : (Vecof A)]

[i : Int #:where (∧ (≤ 0 i)
(< i (len v)))]

-> [res : A]))
(define safe-vec-ref unsafe-vec-ref)

Now the type guarantees only provably valid indices are
used.  While  replacing all occurrences  of vec-ref with
safe-vec-ref in a program may seem desirable, such a
change would likely result is programs that no longer type
check! One reason for this is the validity of an index is not
always apparent at the actual use site. For example, consider
a standard vector dot product function:

(: safe-dot-prod :
(Vecof Int) (Vecof Int) -> Int)

(define (safe-dot-prod A B)
(for/sum ([i (in-range (len A))])
(* (safe-vec-ref A i)

(safe-vec-ref B i))))

Because there is no explicit knowledge about the length of
B, our attempt verify one of the indices in safe-dot-prod
will not type check:

(safe-vec-ref B i)

(Refine [i : Int] (∧ (≤ 0 i) (< i (len B))))
Int

In order to type check safe-dot-prod, the types for the
domain must either be enriched to include the assumption
that  the vectors are of  equal  length,  or  a  dynamic check
must be added which verifies the assumption at  runtime.
Also note that without carefully examining the use sites of
this function it is difficult to know which solution would
be ideal—demanding clients statically verify the property at
every call may be an unreasonable requirement. Fortunately
a middle ground can be achieved by allowing for both:

(: dot-prod :
(Vecof Int) (Vecof Int) -> Int)

(define (dot-prod A B)
(unless (= (len A) (len B))

(error "invalid vector lengths!"))
(safe-dot-prod A B))

Legacy code and clients who cannot easily verify their
vectors’ lengths may continue to call dot-prodwhile clients
wishing to statically eliminate this error may call a safe ver-
sion which uses a stronger type.

Safe vector access is a simple example of the program
invariants expressible with occurrence typing extended with
the theory of linear integer arithmetic—we have chosen it
for thorough examination because it relates directly to our
sizable case study on existing Typed Racket code. Xi [31],
however, demonstrates at length in the presentation of De-
pendent ML how the invariants of far richer programs, such
as balanced red-black trees and simple type-preserving eval-
uators, can be expressed using this same class of refinements.

2.2 Occurrence Typing with Bitvectors
Linear arithmetic, however, is merely one example of ex-
tending RTR with an external theory. To illustrate, we ad-
ditionally experimented by adding the theory of bitvectors
to RTR. By leveraging Z3’s bitvector reasoning [8] we were
able to type check the helper function xtime found in many
implementations of AES [19] encryption. This function com-
putes the result of multiplying the elements of the field F28 by
x (i.e. polynomials of the form F2[x]/(x8 +x4 +x3 +x+1),
which AES conveniently represents using a byte):

(: xtime : Byte -> Byte)
(define (xtime num)

(let ([n (AND (* #x02 num) #xff)])
(cond
[(= #x00 (AND num #x80)) n]
[else (XOR n #x1b)])))
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In this example the type Byte is a shorthand for the type
(Refine [b : BitVector] (≤ #x00 b #xff)).  To
verify this program, we enrich the types of the relevant bit-
wise operations (e.g. =, AND, etc.) to include propositions and
refinements relating the values to bitvector-theoretic state-
ments and add bitvector literals to the set of terms which
may be lifted to the type level. Adding the theory of bitvec-
tors and verifying this program proved to be a relatively
straightforward process; in subsection 3.4 we discuss in de-
tail our general strategy for adding new theories to RTR.

3. Formal Model
Our  base  system λRTR is  a  natural  extension  of  Typed
Racket’s previous formal model, λTR [26]; new language
forms and judgments are highlighted.

The typing judgment for λRTR resembles a standard typ-
ing judgment except that instead of assigning types, it assigns
type-results to well-typed expressions:

Γ $ e : pτ ; ψ+ | ψ´ ; oq

This judgment states that in environment Γ

• e has type τ ;
• if e evaluates to a non- (i.e. treated as true) value,

‘then proposition’ ψ+ holds;
• if e evaluates to , ‘else proposition’ ψ´ holds;
• e’s value corresponds to the symbolic object o.

3.1 Syntax
The syntax of terms, types, propositions, and other forms are
given in Figure 2.

Expressions. λRTR uses a standard set of expressions
with explicit pair operations for simplicity (so our presen-
tation may omit polymorphism).

Types. The universal ‘top’ type J is the type which de-
scribes all well typed terms. I is the type of integers, while T
and F are the types of the boolean values and . Pair
types are written τ ˆ σ. (

ŤÝÑτ ) describes a ‘true’ (i.e. un-
tagged) union of its components. For convenience we write
the boolean type (

Ť
T F) as B and the uninhabited ‘bottom’

type (
Ť

) as K. Function types consist of a named argument
x, a domain type τ , and range type-result R in which x is
bound. tx:τ | ψu is a standard refinement type, describing
any value x of type τ for which proposition ψ holds.

Propositions. At our system’s core is a propositional logic
with domain specific features. tt and ff are the trivial and
absurd propositions, while ^ and _ represent the conjunc-
tion and disjunction of propositions. Type information is ex-
pressed by propositions of the form o P τ or o R τ , which
state that symbolic object o is or is not of type τ respectively.
o1 ” o2 describes an ‘alias’ between symbolic objects, stat-
ing that the object o1 points to the same value as o2. Finally,
an atomic propositions of the form χT represents a statement
from a theory T for which λRTR has been provided a sound

n ::= ... ´ 2 | ´1 | 0 | 1 | 2 ... Integers
p ::= | | ? | ... Primitive Ops
e ::= Expressions

| x variable
| n | | | p base values
| λx:τ.e | (e e) abstraction, application
| (if e e e) conditional
| (let (x e) e) local binding
| (cons e e) pair construction
| (fst e) | (snd e) field access

v ::= Values
| n | | | p base values
| xv, vy | [ρ, λx:τ.e] pair, closure

τ, σ ::= Types
| J universal type
| I | T | F | τˆτ basic types
| (

Ť
τ⃗) ad-hoc union type

| x:τ Ñ R function type
| tx:τ | ψu refinement type

ψ ::= Propositions
| tt | ff trivial/absurd prop
| o P τ | o R τ o is/is not of type τ

| ψ^ψ | ψ_ψ compound props
| o ” o object aliasing
| χT prop from theory T

ϕ ::= | Fields
o ::= Symbolic Objects

| ✁0 null object
| x variable reference
| (ϕ o) object field reference
| xo, oy object pair

R ::= Type-Results
| pτ ; ψ | ψ ; oq type-result
| Dx:τ.R existential type-result

Γ ::=
ÝÑ
ψ Environments

ρ ::= ÝÝÝÑx ÞÑ v Runtime Environments

Figure 2. λRTR Syntax

solver. In this way our logic describes an extensible system
that can be enriched with various theories according to the
needs of the application at hand.

Fields. A field allows us to reference a subcomponent of a
structural value. For example, if p is a tree-like structure built
using nested pairs, ( ( p)) would describe the value
found by accessing the first field of the result of accessing
p’s second field. In this model having the and fields
for pairs suffices; in general, fields for both built-in and user-
defined data types are needed in order to type check real-
world programs. Our vector case study, for example, required
a field which described a vector’s length.

Symbolic Objects. Instead of allowing our types to de-
pend on arbitrary program terms (as is done in systems with
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full dependent types), we define a canonical subset of terms
called symbolic objects which represent the terms which may
be lifted to the type level in our system. These objects act as
a conservative ‘whitelist’ of sorts, allowing our type system
to work in a full-scale programming language by only con-
sidering obviously safe terms (i.e. excluding mutated fields,
potentially non-deterministic functions, etc.).

Initially these objects are only used to describe values
bound to variables, field accesses, and pairs of objects, while
the null symbolic object ✁0 represents terms we do not lift to
the type level. These objects (excluding pairs) are what al-
lows standard Typed Racket to type check many dynamic
programming idioms. When extending RTR to handle addi-
tional theories, the grammar of symbolic objects is extended
to include program terms the new theory must reason about.

Finally, when performing standard capture-avoiding sub-
stitution we keep symbolic objects in the obvious normal
form (e.g. ( xx, yy) is reduced to x). Propositions that end
up directly referring to ✁0, such as ✁0 P I, are treated as equiv-
alent to tt (i.e. meaningless) and are discarded.

Type-Results. In order to allow our system to easily rea-
son about more than the just the simple type τ of an expres-
sion, we assign a well typed expression a type-result. In addi-
tion to describing an expression’s type, a type-result further
informs the system by explicitly capturing two additional
properties: (1) what is learned when the expression’s value is
used as the test-expression in a conditional—this is described
by the pair of propositionsψ+|ψ´ in the type-result—and (2)
which symbolic object o the expression’s value corresponds
to.

Existentially quantified type-results allow types to depend
on terms with no in-scope symbolic object. Our usage of
existential quantification resembles the technique introduced
by Knowles and Flanagan [17] in many ways, except that
our usage is restricted to when substitution is simply not
possible (i.e. when the variable’s assigned expression has a
null object).

Environments. For simplicity in this model we use an
environment built entirely of propositions. In a real imple-
mentation it is useful to separate the environment into two
portions: a traditional mapping of variables to types along
with a set of currently known propositions. The latter can
then be used to refine the former during type checking.

Runtime Environments. Our runtime environments are
standard mappings of variables to closed runtime values,
appearing in closures and our big-step reduction semantics.

3.2 Typing Rules
The typing judgment is defined in Figure 4 and an executable
PLT Redex [9] model is included in our accompanying arti-
fact. The individual rules are those previously used by Typed
Racket with only a few minor modifications to incorporate
our new forms (i.e. existential type-results and aliases).

T-Int, T-True, T-False, and T-Prim are used for type check-
ing the respective base values, with T-Prim consulting the ∆

∆( ) = x:J Ñ pB ; x P F | x R F ; ✁0q
∆( ) = x:I Ñ pI ; tt | ff ; ✁0q
∆( ?) = x:J Ñ pB ; x P I | x R I ; ✁0q
∆( ?) = x:J Ñ pB ; x P B | x R B ; ✁0q
∆( ?) = x:J Ñ pB ; x P JˆJ | x R JˆJ ; ✁0q

Figure 3. Primitive Types

metafunction described in Figure 3 for primitive operators.
Note that the then- and else-propositions are consistent with
their being or non- . Additionally, by default none
of these terms will appear in types and propositions, as sig-
nified by the null symbolic object ✁0.

T-Var may assign any type τ to variable x so long as
the system can derive Γ $ x P τ .  The then- and else-
propositions reflect the self evident fact that if x is found to
equal then x is of type F, otherwise x is not of type
F.  The symbolic object informs the type system that this
expression corresponds to the program term x.

T-Abs, the rule for checking lambda abstractions, checks
the  body of  the  abstraction  in  the  extended environment
which maps x to τ . We use the standard convention of choos-
ing fresh names not currently bound when extending Γ with
new bindings. The type-result  from checking the body is
then used as the range for the function type, and the then-
and else-propositions report the non-falseness of the value.

T-App handles function application, first checking that e1

and e2 are well-typed individually and then ensuring the type
of e2 is a subtype of the domain of e1. The overall type-result
of the application is the range of the function, R, with the
symbolic object of the operand, o2, lifted and optionally sub-
stituted for x. This lifting substitution is defined as follows:

R[x
τúùñ ✁0] = Dx:τ.R

R[x
τúùñ o] = R[x ÞÑ o]

In essence, if the operand corresponds to a value our type
system can reason directly about (i.e. its object is non-null),
we perform capture avoiding substitution as expected. Oth-
erwise, an existential quantifier à la Knowles and Flanagan
[17] is used to capture the argument expression’s precise
type, even though it’s exact identity is unknown; this enables
the function’s range to depend on its argument regardless of
whether the term can soundly be lifted to the type level.

T-If is used for conditionals, describing the important pro-
cess by which information learned from test-expressions is
projected into the respective branches. After ensuring e1 is
well-typed at  some type,  we make note of the then- and
else-propositions ψ1+ and ψ1´. We then extend the envi-
ronment with the appropriate proposition, dependent upon
which branch we are checking: ψ1+ is assumed while check-
ing the then-branch and ψ1´ for the else-branch. The type
result of a conditional is simply the type result implied by
both branches.
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T-Int
Γ $ n : pI ; tt | ff ; ✁0q

T-True
Γ $ : pT ; tt | ff ; ✁0q

T-False
Γ $ : pF ; ff | tt ; ✁0q

T-Prim
Γ $ p : p∆(p) ; tt | ff ; ✁0q

T-Var
Γ $ x P τ

Γ $ x : pτ ; x R F | x P F ; xq

T-Abs
Γ, x P τ $ e : R

Γ $ λx:τ.e : px:τ Ñ R ; tt | ff ; ✁0q

T-Subsume
Γ $ e : R1 Γ $ R1 ă: R

Γ $ e : R

T-If
Γ $ e1 : pJ ; ψ1+ | ψ1´ ; ✁0q

Γ, ψ1+ $ e2 : R
Γ, ψ1´ $ e3 : R

Γ $ (if e1 e2 e3) : R

T-Let
Γ $ e1 : pτ1 ; ψ1+ | ψ1´ ; o1q

ψx = (x R F^ψx+)_(x P F^ψx´)
Γ, x P τ, x ” o1, ψx $ e : R2

Γ $ (let (x e1) e2) : R2[x
τ1úùùñ o1]

T-App
Γ $ e1 : px:τ Ñ R ; tt | tt ; ✁0q

Γ $ e2 : pσ ; tt | tt ; o2q Γ $ σ ă: τ

Γ $ (e1 e2) : R[x
σúùñ o2]

T-Cons
Γ $ e1 : pτ1 ; tt | tt ; o1q
Γ $ e2 : pτ2 ; tt | tt ; o2q

R = pτ1ˆτ2 ; tt | ff ; xx1, x2yq

Γ $ (cons e1 e2) : R[x1
τ1úùùñ o1][x2

τ2úùùñ o2]

T-Fst
Γ $ e : pτ1ˆτ2 ; tt | tt ; oq
R = pτ1 ; tt | tt ; ( x)q

Γ $ (fst e) : R[x
τ1úùùñ o]

T-Snd
Γ $ e : pτ1ˆτ2 ; tt | tt ; oq
R = pτ2 ; tt | tt ; ( x)q

Γ $ (snd e) : R[x
τ2úùùñ o]

Figure 4. Typing Judgment

T-Let first checks whether the expression e1 being bound
to x is well typed. When checking the body, the environment
is extended with the type for x, a proposition describing x’s
then- and else- propositions, and an alias stating that x refers
to o1 (i.e. the symbolic object of e1). Since x is unbound
outside the body, we perform a lifting substitution of o1 for
x on the result as we do with function application.

In order to omit polymorphism we use explicit pair in-
troduction and elimination rules. T-Cons introduces pairs,
first checking the types and symbolic objects for e1 and e2.
The type-result then includes the product of these individ-
ual types, propositions reflecting the non- nature of the
value, and a symbolic pair object (all modulo the two lift-
ing substitutions). Pair elimination forms are checked with
T-Fst and T-Snd, which ensure their arguments are indeed a
pair before returning the expected type and a symbolic object
describing which field was accessed.

3.3 Subtyping and Proof System
The subtyping and proof system use a combination of famil-
iar rules from type theory and formal logic.

3.3.1 Subtyping
Figure 5 describes the subtyping relation ă: for types, sym-
bolic objects, and type-results.

For objects, the null object ✁0 is the top object and objects
are sub-objects of any alias-equivalent object. Pair objects
are sub-objects in a pointwise fashion.

All types are subtypes of themselves and of the top type
J.  A type is a subtype of a union if it is a subtype of any
element of the union. Unions are only subtypes of a type if
every member of the union is a subtype of that type. Function
subtyping has the standard contra- and co-variance in the do-

main and range; in order to reason correctly about dependen-
cies when checking the range, the environment is extended
to assign x the more specific domain type. Pair subtyping is
standard.

For refinement types we have three rules: S-Weaken states
if τ is a subtype of σ in Γ then so is any refinement of τ ; S-
Refine1 and S-Refine2 allow subtyping inquiries about re-
finements to be translated into their equivalent logical in-
quiries.

The subtyping relation for type-results relies on subtyping
for the type and object, and logical implication for the then-
and else-propositions.  Since  existentially  quantified type-
results are only used as a tool for type checking, there is only
one explicit subtyping rule for them: SR-Exists. This rule re-
sembles the standard existential instantiation rule from first
order logic, stating an existentially quantified type-result is a
subtype of another type result if the subtyping relation holds
in the appropriately extended environment.

3.3.2 Proof System
Figure 6 describes the type-specific portion of the proposi-
tional logic for λRTR. We omit the introduction and elim-
ination rules for forms from propositional logic, since they
are identical to those used by λTR [26] (i.e. resembling those
found in any natural deduction system).

L-Sub says an object o is of type τ when it is a known
subtype of τ . L-Not conversely lets us prove object o is not of
type τ when assuming the opposite implies a contradiction.
L-Bot serves as an ‘ex falso quodlibet’ of sorts, allowing us
to draw any conclusion since K is uninhabited.

Object aliasing allows us to reason about the statically
known equivalences classes of symbolic objects. L-Refl and
L-Sym provide reflexivity and symmetry for aliasing, while
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SO-Equiv

Γ $ o1 ” o2

Γ $ o1 ă: o2

SO-Null
Γ $ o ă: ✁0

S-Refl
Γ $ τ ă: τ

S-Top
Γ $ τ ă: J

S-Union1
@τ in τ⃗ . Γ $ τ ă: σ

Γ $ (
ď
τ⃗) ă: σ

S-Union2
Dσ in σ⃗. Γ $ τ ă: σ

Γ $ τ ă: (
ď
σ⃗)

SO-Pair
Γ $ o1 ă: o3

Γ $ o2 ă: o4

Γ $ xo1, o2y ă: xo3, o4y

S-Pair
Γ $ τ1 ă: τ2
Γ $ σ1 ă: σ2

Γ $ τ1ˆσ1 ă: τ2ˆσ2

S-Weaken
Γ $ τ ă: σ

Γ $ tx:τ | ψu ă: σ

S-Refine1
Γ, x P τ, ψ $ x P σ
Γ $ tx:τ | ψu ă: σ

S-Refine2
Γ $ τ ă: σ
Γ, x P τ $ ψ

Γ $ τ ă: tx:σ | ψu
S-Fun

Γ $ τ2 ă: τ1
Γ, x P τ2 $ R1 ă: R2

Γ $ x:τ1 Ñ R1 ă: x:τ2 Ñ R2

SR-Result
Γ $ τ1 ă: τ2 Γ, ψ1+ $ ψ2+

Γ $ o1 ă: o2 Γ, ψ1´ $ ψ2´
Γ $ pτ1 ; ψ1+ | ψ1´ ; o1q ă: pτ2 ; ψ2+ | ψ2´ ; o2q

SR-Exists
Γ, x P τ $ R1 ă: R2

Γ $ Dx:τ.R1 ă: R2

Figure 5. Subtyping

L-Sub
Γ $ o P σ Γ $ σ ă: τ

Γ $ o P τ

L-Not
Γ, o P τ $ ff

Γ $ o R τ

L-Bot
Γ $ o P K

Γ $ ψ

L-Refl
Γ $ o ” o

L-Sym

Γ $ o2 ” o1

Γ $ o1 ” o2

L-Update+
Γ $ o P τ Γ $ (ϕ⃗ o) P σ

Γ $ o P +
Γ (τ, ϕ⃗, σ)

L-Update–
Γ $ o P τ Γ $ (ϕ⃗ o) R σ

Γ $ o P ´
Γ (τ, ϕ⃗, σ)

L-Transport

Γ $ ψ(o1) Γ $ o1 ” o2

Γ $ ψ(o2)

L-Theory

[[Γ]]T , χT

Γ $ χT

L-TypeFork

Γ $ xo1, o2y P τ1ˆτ2
Γ $ o1 P τ1^o2 P τ2

L-ObjFork

Γ $ xo1, o2y ” xo3, o4y
Γ $ o1 ” o3 ^ o2 ” o4

L-RefI
Γ $ o P τ

Γ $ ψ[x ÞÑ o]

Γ $ o P tx:τ | ψu

L-RefE
Γ $ o P tx:τ | ψu

Γ $ ψ[x ÞÑ o]

Figure 6. RTR-specific Logic Rules

L-Transport allows us replace alias-equivalent objects in any
derivable proposition (giving us transitivity). L-ObjFork and
L-TypeFork provide a means for reducing claims about ob-
ject pairs to be claims about their fields.

L-Update+ and L-Update– play a key role in our system,
allowing positive and negative type statements to refine the
known types of objects. Roughly speaking, if we know an
object o is of type τ , updating some field (ϕn (... (ϕ0 o)))
within the object (abbreviated (ϕ⃗ o)) with additional infor-
mation computes the following: if we know (ϕ⃗ o) P σ—that
the field is of type σ—we update that field’s type τ 1 to be ap-
proximately τ 1 X σ (i.e. a conservative ‘intersection’ of the
two types); conversely, updating a field’s type τ 1 with the
knowledge that the field is not σ updates the field to be ap-
proximately τ 1 ´σ (i.e. the ‘difference’ between the two). A
full definition of is given in Figure 7.

L-RefI and L-RefE construct and eliminate refinement
types in the expected ways, essentially saying that the propo-
sition o P tx:τ |ψu is equivalent to the compound proposition
o P τ ^ ψ[x ÞÑ o].

˘
Γ (τ1ˆτ2, ϕ⃗ :: , σ) = ˘

Γ (τ1, ϕ⃗, σ)ˆτ2˘
Γ (τ1ˆτ2, ϕ⃗ :: , σ) = τ1ˆ ˘

Γ (τ2, ϕ⃗, σ)
+
Γ (τ, ϵ, σ) = Γ(τ, σ)
´
Γ (τ, ϵ, σ) = Γ(τ, σ)
˘
Γ ((

Ť
τ⃗), ϕ⃗, σ) = (

Ť ÝÝÝÝÝÝÝÝÝÝÝÑ˘
Γ (τ, ϕ⃗, σ))

Γ(τ, σ) = K if τ X σ = H
Γ((

Ť
τ⃗), σ) = (

ŤÝÝÝÝÝÝÝÝÝÑ
Γ(τ, σ))

Γ(tx:τ | ψu, σ) = tx: Γ(τ, σ) | ψu
Γ(τ, σ) = τ if Γ $ τ ă: σ

Γ(τ, σ) = σ otherwise

Γ(τ, σ) = K if Γ $ τ ă: σ

Γ((
Ť
τ⃗), σ) = (

ŤÝÝÝÝÝÝÝÝÝÑ
Γ(τ, σ))

Γ(tx:τ | ψu, σ) = tx: Γ(τ, σ) | ψu
Γ(τ, σ) = τ otherwise

Figure 7. Update metafunction
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Finally, a proposition χT from theory T is derived using
L-Theory. This rule consults a solver for theory T with the
relevant knowledge from Γ.

3.4 Integrating Additional Theories
Our system is designed in an extensible fashion, allowing
an arbitrary external theory to be added so long as a theory-
specific solver is provided. To illustrate, we discuss the linear
arithmetic extension we implemented in Typed Racket in
order to perform our vector-related case study.

To add this theory, we first must identify the canonical set
of program terms which appear in the theory’s sentences. For
our case study this included integer arithmetic expressions of
the form a0x0 + a1x1 + ... + anxn (i.e. linear combinations
over Z) and a field which describes a vector’s length. We
can extend the grammar of fields and symbolic objects to
naturally include these terms:

ϕ ::= ... |
o ::= ... | n | n ¨ o | o + o

Now our type system and logic can reason directly about the
terms our theory discusses.

We then identify the theory-relevant predicates and ex-
tend our grammar of propositions to include them:

χLI ::= o ă o | o ď o

Finally, the types of some language primitives must be
enriched so these newly added forms are emitted during type
checking. For example, we must modify the typing judgment
for integer literals to include the precise symbolic object:

T-Int
Γ $ n : pI ; tt | ff ; nq

Similarly,  primitive  functions  which  perform  arithmetic
computation, arithmetic comparison, and report a vector’s
length must be updated to return the appropriate proposi-
tions and symbolic objects (similar to how ? and are
handled in our presentation of λRTR).

With these additions in place, a simple function which
converts linear integer propositions into solver-compatible
assertions allows our system to begin type checking pro-
grams with these theory-specific types.

3.5 Semantics and Soundness
λRTR uses the big-step reduction semantics described in Fig-
ure 8, which notably treats all non- values as ‘true’ for
the purposes of conditional test-expressions. The evaluation
judgment ρ $ e ó v states that in runtime-environment ρ,
expression e evaluates to the value v. A model-theoretic sat-
isfaction relation is used to prove type soundness, just as in
prior work on occurrence typing [26].

3.5.1 Models
Because our formalism is described as a type-theory aware
logic,  it  is  convenient  to  examine  its  soundness  using  a
model-theoretic approach commonly used in proof theory.
For λRTR a model is any runtime-value environment ρ and
is said to satisfy a proposition ψ (written ρ ( ψ) when its as-
signment of values to the free variables of ψ make the propo-
sition a tautology. The details of satisfaction are defined in
Figure 8. The satisfaction relation extends to environments
in a pointwise manner.

In order to complete our definition of satisfaction, we also
require a typing rule for closures:

T-Closure
DΓ. ρ ( Γ Γ $ λx:τ.e : R

$ [ρ, λx:τ.e] : R

The satisfaction rules are mostly straightforward. tt is
always satisfied, while the logical connectives _ and ^ are
satisfied in the standard ways. Aliases are satisfied when the
objects are equivalent values in ρ.

The satisfaction rules M-Refine, M-RefineNot1, and M-
RefineNot2 allow refinement types to be satisfied by satisfy-
ing the type and proposition separately. M-Theory consults
a decider for the specific theory in order to satisfy sentences
in its domain.

From M-Type we see propositions stating an object o is of
type τ are satisfied when the value of o in ρ is a subtype of τ .
Similarly M-TypeNot tells us if an object o’s value in ρ has
a type which does not overlap with τ , then the proposition
o R τ is satisfied.

3.5.2 Soundness
Our first lemma states that our proof theory respects models.

Lemma 1. If ρ ( Γ and Γ $ ψ then ρ ( ψ.

Proof. By structural induction on Γ $ ψ

With our proof theory and models in sync and our opera-
tional semantics defined, we can state and prove the next key
lemma for type soundness which deals with evaluation.

Lemma 2. If Γ $ e : pτ ; ψ+ |ψ´ ; oq, ρ ( Γ and ρ $ e ó v
then all of the following hold:

1. all non-✁0 structural parts of o are equal in ρ to the corre-
sponding parts of v,

2. v ‰ and ρ ( ψ+, or v = and ρ ( ψ´, and
3. Γ $ v : pτ ; tt | tt ; ✁0q

Proof. By induction on the derivation of ρ $ e ó v.

Now we can state our soundness theorem for λRTR.

Theorem 1. (Type Soundness for λRTR). If $ e : τ and
$ e ó v then $ v : τ .

Proof. Corollary of Lemma 2.
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B-Val
ρ $ v ó v

B-Var
ρ(x) = v

ρ $ x ó v

B-Let
ρ $ e1 ó v1

ρ[x := v1] $ e2 ó v

ρ $ (let (x e1) e2) ó v

B-Abs
ρ $ λx:τ.e ó [ρ, λx:τ.e]

B-Fst
ρ $ e ó xv1, v2y
ρ $ ( e) ó v1

B-Snd
ρ $ e ó xv1, v2y
ρ $ ( e) ó v2

B-Beta
ρ $ e1 ó [ρc, λx:τ.e]

ρ $ e2 ó v2

ρc[x := v2] $ e ó v

ρ $ (e1 e2) ó v

B-Prim
ρ $ e1 ó p
ρ $ e2 ó v2

δ(p, v2) = v

ρ $ (e1 e2) ó v

B-IfTrue
ρ $ e1 ó v1

v1 ‰
ρ $ e2 ó v

ρ $ (if e1 e2 e3) ó v

B-IfFalse
ρ $ e1 ó
ρ $ e3 ó v

ρ $ (if e1 e2 e3) ó v

B-Pair
ρ $ e1 ó v1

ρ $ e2 ó v2

ρ $ (cons e1 e2) ó xv1, v2y

M-Top
ρ ( tt

M-Or
ρ ( ψ1 or ρ ( ψ2

ρ ( ψ1_ψ2

M-And
ρ ( ψ1 ρ ( ψ2

ρ ( ψ1^ψ2

M-Alias
ρ(o1) = ρ(o2)

ρ ( o1 ” o2

M-Refine
ρ ( o P τ ρ ( ψ[x ÞÑ o]

ρ ( o P tx:τ | ψu

M-Type
$ ρ(o) : τ

ρ ( o P τ

M-TypeNot
$ ρ(o) : σ σ X τ = H

ρ ( o R τ

M-Theory

[[ρ]]T ( χT

ρ ( χT

M-RefineNot1
ρ ( o R τ

ρ ( o R tx:τ | ψu

M-RefineNot2
ρ ( ␣ψ[x ÞÑ o]

ρ ( o R tx:τ | ψu

Figure 8. Big-step Reduction and Model Relation

Although  this  model-theoretic  proof  technique  works
quite naturally, it includes the standard drawbacks of big-
step soundness proofs,  saying nothing about diverging or
stuck terms. We could address this by adding an value
of type K that is propagated upward during evaluation and
modify our soundness claim to show is not derived
from evaluating well-typed terms.

4. Scaling to a Real Implementation
Although λRTR describes the essence of our approach, there
are additional details to consider when reasoning about a
realistic programming language.

4.1 Efficient, Algorithmic Subtyping
In order to highlight the essential features of λRTR we chose
a more declarative description of the type system. To make
this process efficient and algorithmic several additional steps
can be taken.

Hybrid environments. Instead of working with only a
set of propositions while type checking, it is helpful to use
an environment with two distinct parts: one which resembles
a standard type environment—mapping objects to the cur-
rently known positive and negative type information—and
another which contains only the set of currently known com-
pound propositions (since all atomic type-propositions can
be efficiently stored in the former part). With these pieces in
place, it is easy to iteratively refine the standard type envi-
ronment with the metafunction while traversing the
abstract syntax tree instead of saving all logical reasoning for
checking non-trivial terms.

Representative objects. Another valuable simplification
which greatly reduced type checking times was the use of

representative members from alias-equivalent classes of ob-
jects. By eagerly substituting and using a single representa-
tive member in the environment, large complex propositions
which conservatively but inefficiently tracked dependencies—
such as those arising from local-bindings—can be omitted
entirely, resulting in major performance improvements for
real world Typed Racket programs.

Propogating existentials. Our typing judgments use sub-
sumption to omit the less interesting details of type checking.
Making this system algorithmic would not only require the
standard inlining of subtyping throughout many of the judg-
ments, but would also require that existential bindings on the
type-results of subterms be propagated upward by the current
term’s type-result. This ensures all identifiers in the raw re-
sults of type checking are still bound and frees us from sim-
plifying every intermediate type-result (as our model with
subsumption often requires). This technique is thoroughly
described in Knowels and Flanagan’s [17] algorithmic type
system, which served as an important motivation for this as-
pect of our approach.

4.2 Mutation
We soundly support mutation in our type system in a conser-
vative fashion. First, a preliminary pass identifies which vari-
ables and fields may be mutated during program execution.
The type checker then proceeds to type check the program,
omitting symbolic objects for mutable variables and fields.
This way, the initial type of a newly introduced variable will
be recorded but no potentially unsound assumptions will be
made from runtime tests in the code.

An illustrative example of this approach in action was
found during our vector access case study and analysis of
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the Racket math library. It contained a module with a vari-
able cache-size of type Int. The type system ensured any
updates to the value of cache-size were indeed of type
Int,  but tests  on the relative size of the cache—such as
(> cache-size n)—failed to produce any logical infor-
mation about the size of cache-size. This failure made it
impossible to verify accesses whose correctness relied on the
result of this test, since a concurrent thread could easily mod-
ify the cache and its size between our testing and performing
the operation, invalidating any supposed guarantees. Indeed,
without much effort we were able to cause a runtime error in
the math library by exploiting this fact before patching the
offending code.

4.3 Type Inference and Polymorphism
Typed Racket (and RTR) relies on local type inference [21]
to instantiate type variables for polymorphic functions when-
ever possible. Since type inference is such an essential part
of type checking real programs, we were unable to check any
interesting examples until we had accommodated refinement
types.

The constraint generation algorithm in local type infer-
ence, written Γ $V

X̄
S ă: T ñ C, takes as input an envi-

ronment Γ, a set of type variables V , a set of unknown type
variables X̄ , and two types S and T , and produces a con-
straint set C. Since the implementation of the algorithm al-
ready correctly handled when S is a subtype of T , we merely
needed to add the natural cases which allow constraint gen-
eration to properly recurse into the types being refined:

CG-Ref
Γ, x P τ, ψ1 $ ψ2

Γ $V
X̄ τ ă: σ ñ C

Γ $V
X̄ tx:τ | ψ1u ă: tx:σ | ψ2u ñ C

CG-RefLower
Γ $V

X̄ τ ă: σ ñ C

Γ $V
X̄ tx:τ | ψu ă: σ ñ C

CG-RefUpper
Γ, x P τ $ ψ

Γ $V
X̄ τ ă: σ ñ C

Γ $V
X̄ τ ă: tx:σ | ψu ñ C

This naturally requires maintaining the full environment of
propositions throughout the constraint generation process.
Although we did not perform a detailed analysis, the annota-
tion burden for polymorphic functions seems unaffected by
our changes.

4.4 Complex Macros
Racket programmers use a series of for-macros for many it-
eration patterns [10]. This simple dot-product example iter-
ates i from 0 to (sub1 (len A)) to perform the relevant
computations:

(for/sum ([i (in-range (len A))])
(* (vec-ref A i)

(vec-ref B i)))

Although initially verifying these vector accesses appears
somewhat straightforward, Typed Racket’s type checker runs
after macro expansion. At that point the obvious nature of the
original program may be obfuscated in the sea of primitives
that emerge, and the system is left to infer types for the newly
introduced identifiers and lambda abstractions:
(letrec

([start 0] [end (len A)]
[step 1] [initial 0]
[loop
(λ (pos acc)

(cond
[(< pos end)
(define i pos)
(loop (+ step pos)

(+ acc (* (vec-ref A i)
(vec-ref B i))))]

[else acc]))])
(loop start initial))

Here RTR is left  to infer  types for  both the domain and
range of the inner loop function (note that its arguments
were not  even annotatable identifiers  in the original  pro-
gram). Initially, our local type inference chooses type Int
for the position argument pos. This might be perfectly ac-
ceptable in Typed Racket, since Int is a valid argument type
for vec-ref. However, when attempting to verify the vector
access, Int is too permissive: it does not express the loop-
invariant that pos is always non-negative.

In an effort to effectively reason about these macros we
experimented with adding an additional heuristic to our in-
ference for anonymous lambda applications: if  a variable
is, directly or indirectly, used as a vector index within the
function,  we try the type Nat instead of Int.  This  type,
combined  with  the  upper-bounds  check  within  the  loop,
is  enough  to  verify  the  access  in (vec-ref A i) and
(vec-ref B i) (assuming they are of equal length). How-
ever, the heuristic quickly fails in the reverse iteration case,
(in-range (len A) 0 -1) (i.e. where i steps from
(sub1 (len A)) to 0) since for the last iteration pos is -1
and not a Nat.

More advanced techniques for inferring invariants—such
as those used by Liquid Types[22]—will be needed if id-
iomatic patterns such as Racket’s for are to seamlessly in-
tegrate with refinement types.

5. Case Study: Safe Vector Access
In order to evaluate RTR’s effectiveness on real programs we
examined all unique vector accesses2 in three large libraries
written in Typed Racket, totalling more than 56,000 lines of
code:

• The math library, a Racket standard library covering op-
erations ranging from number theory to linear algebra. It

2 Since we type check programs after macro expansion, vector accesses were
assessed at this time as well, and accesses in macros were only counted once.
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Figure 9. safe-vec-ref case study

contains 22,503 lines of code and 301 unique vector op-
erations.

• The plot library, also a part of Racket’s standard library,
which supports both 2- and 3-dimensional plotting. It con-
tains 14,987 lines of code and 655 unique vector opera-
tions.

• The pict3d library,3 which defines a performant 3D en-
gine with a purely functional interface, has 19,345 lines
of code and 129 unique vector operations.

These libraries were chosen because of their size and fre-
quent use of vector operations. During our analysis we tested
whether each vector read and write could be replaced with its
equivalent safe-vec- counterpart and still type check.

To reason statically about vector bounds and linear inte-
ger arithmetic we first enriched Typed Racket’s base type
environment, modifying the type of 36 functions. This in-
cluded enriching the types of 7 vector operations, 16 arith-
metic operations, 12 arithmetic fixnum operations (i.e. oper-
ations that work only on fixed-width integers), and the typing
of Racket’s equal?.

We initially verified over 50% of accesses without the aid
of additional annotations to the source code. As Figure 9 il-
lustrates, our success rate for entirely automatic verification
of vector indices was 74% for plot, 13% for pict3d, and
25% for math. We attribute plot’s unusually high automatic
success rate relative to the other libraries to a few heavily re-
peated patterns which are guaranteed to produce safe index-

3 https://github.com/jeapostrophe/pict3d

ing: pattern matching on vectors and loops using a vector’s
length as an explicit bound were extremely common.

For the remaining vector accesses we performed a pre-
liminary review of the plot and pict3d libraries and an in
depth examination of the math library.

5.1 Enriching the Math Library
For the math library we examined each individual access to
determine how many of the failing cases our system might
handle with reasonable effort. We identified five general cat-
egories that describe these initially unverified vector opera-
tions:

Annotations  Added. 34% of the failed accesses were
unverified until additional (or more specific) type annotations
were added to the original program. In this recursive loop
snippet  taken from our case study,  for  example,  the Nat
annotation for the index i is not specific enough to verify
the vector reference:

(let loop ([i : Nat (len ds)] [res : Nat 1])
(cond

[(zero? i) res]
[else
(loop (- i 1)

(* res (safe-vec-ref ds i)))]))

Using (Refine [i : Nat] (≤ i (len ds))) for  the
type of i, however, allows RTR to verify the vector access
immediately. As we discussed in subsection 4.4, a more ad-
vanced inference algorithm could potentially help by auto-
matically inferring these types. On the other hand, as code
documentation these added annotations often made programs
easier to understand and helped us navigate our way through
the large, unfamiliar code base.

Code Modified. 13% of the unverified accesses were ver-
ifiable after small local modifications were made to the body
of the program. In some cases, these modifications moved
the code away from particularly complex macros; other pro-
grams presented opportunities for a few well-placed dynamic
checks to prove the safety of a series of vector operations. An
example of the latter can be seen in the function vec-swap!:

(: vec-swap! :
∀ {A} (Vecof A) Int Int -> Void)

(define (vect-swap! vs i j)
(unless (= i j)

(cond
[(and (< -1 i (len vs)) ;; added

(< -1 j (len vs))) ;; added
(define i-val (safe-vec-ref vs i))
(define j-val (safe-vec-ref vs j))
(safe-vec-set! vs i j-val)
(safe-vec-set! vs j i-val)]

[else (error "bad index(s)!")])))

This function swaps the values at two indices within a vec-
tor. Our initial investigation concluded adding constraints to
the type was unreasonable for this particular function (i.e.
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clients could not easily satisfy the more specific types), how-
ever we noticed adding two simple tests on the indices in
question allowed us to safely verify four separate vector op-
erations without perturbing any client code. This approach
seemed like an advantageous tradeoff in this and other situ-
ations and worked well in our experience.

Beyond our scope. 22% were unverifiable because, in
their current form, their invariants were too complex to de-
scribe (i.e. they were outside the scope of our type system
and/or linear integer theory). One simple example of this in-
volved determining the maximum dimension dims for a list
of arrays:

(define dims (apply max (map len dss)))

Because of the complex higher order nature of these oper-
ations, our simple syntactic analysis and linear integer theory
was unable to reason about how the integer dims related to
the vectors in the list dss.

Unimplemented features 6% of the unverified accesses
involved Racket features we had neglected to support dur-
ing implementation (e.g. dependent record fields), but which
seemed otherwise amenable to our verification techniques.

Unsafe code. As previously mentioned in subsection 4.2,
we discovered 2 vector operations which made unsafe as-
sumptions about a mutable cache whose size could shrink
and cause errors at runtime. Both of these correctly did not
typecheck using our system and were subsequently patched.

Total. In all, 72% of the vector accesses in the math library
were verifiable using these approaches without drastically
altering any internal algorithms or data representations.4

6. Related Work
There is a history of using refinements and dependent types
to enrich already existing type systems. Dependent ML [32]
adds a practical set of dependent types to standard ML to
allow for richer specifications and compiler optimizations
through simple refinements, using a small custom solver to
check constraints. Liquid Haskell [27] extends Haskell’s type
system with a more general set of refinement types supported
by an SMT solver and predicate abstraction. We similarly
strive to provide an expressive, practical extension to an ex-
isting type system by adding dependent refinements.  Our
approach, however, seeks to enrich a type system designed
specifically for dynamically typed languages and therefore is
built on a different set of foundational features (e.g. subtyp-
ing, ‘true’ union types, type predicates, etc.).

Some approaches, aiming for more expressive type spec-
ifications, have shown how enriching an ML-like typesys-
tem with dependent types and access to theorem proving (au-
tomated and manual) provides both expressive and flexible
programming tools. ATS, the successor of DML, supports
both dependent and linear types as well as a form of inter-
active theorem proving for more complex obligations [3].
4 Our modified math library can be found in our artifact.

F‹ [23, 24] adds full dependent types and refinement types
(along with other features) to an Fω-like core while allowing
manual and SMT solver-backed discharging of proof obliga-
tions. Although our system shares the goal of allowing users
to further enrich their typed programs beyond the expressive-
ness of the core system, we have chosen a simpler, less ex-
pressive approach aimed at allowing dynamically typed pro-
grams to gradually adopt a simpler set of dependent types.

Chugh et al. [5] explore how extensive use of refinement
types and an SMT solver enable type checking for rich dy-
namically typed languages such as JavaScript [4]. This ap-
proach feels similar to ours in terms of features and expres-
siveness. As seen in our respective metatheories, however,
their system requires a much more complicated design and
a complex stratified soundness proof; this fact has made it
“[difficult to] add extra (basic) typing features to the lan-
guage” [28]. In contrast, our system uses a well-understood
core and does not require interaction with an external SMT
solver. This allows us to use many common type-theoretic
algorithms and techniques—as witnessed by Typed Racket’s
continued adoption of new features.

Vekris et al. [28] explore how refinements can help rea-
son about complex JavaScript programs utilizing a novel two
phase approach. The first phase elaborates the source lan-
guage into a ML-like target that is checked using standard
techniques, at which point the second phase attempts to ver-
ify all ill-typed branches are in fact infeasible using refine-
ments in the spirit of Knowles and Flanagan [18] and Rondon
et al. [22]. Our single-phase approach, however, does not re-
quire elaboration into an ML-like language and allows our
system to work more directly with a larger set of types.

Sage’s use of a dynamic and static types is similar to
our approach for type checking programs. However, their
usage of first-class types and arbitrary refinements means
their core system is expressive yet undecidable [13]. Our
system utilizes a more conservative, decidable core in which
only a small set of immutable terms are lifted into types.
Because of this,  having impure functions and data in the
language does not require changes to the type system. Also,
our approach only reasons about non-type related theories
when they are explicitly added.

Our usage of existential quantification to enable depen-
dent yet abstract reasoning for values no longer in scope
strongly resembles the approach described by Knowels and
Flanagan [17]. Our design, however, lifts fewer terms into
types in  general  and substitutes  terms directly  into types
when possible.  Additionally,  our  design includes  features
specifically aimed at dynamic languages instead of refining
a more standard type theory.

Ou et al. [20] aim to make the process of working with de-
pendent types more palatable by allowing fine-grained con-
trol over the trade-offs between dependent and simple types.
This certainly is similar to our system in spirit, but there are
several important differences. They choose to automatically
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insert coercions when dependent fragments and simple types
interact, while we do not explicitly distinguish between the
two and require explicit code to cast values. Additionally,
while they convert their programs from a surface language
into an entirely dependently typed language, our programs
are translated into dynamically typed Racket code, which is
void of any artifacts of our type system. This places us in a
more suitable position for supporting sound interoperability
between untyped and dependently typed programs.

Manifest contracts [12] are an approach that uses depen-
dent contracts both as a method for ensuring runtime sound-
ness and as a way to provide static typing information. Un-
like our system, this method only reasons about explicit casts
(i.e. program structure does not inform the type system), and
there is no description of how a solver would be utilized to
dispatch proof goals.

7. Conclusion
Enriching existing programs with stronger static guarantees
is the original goal of the scripts-to-programs approach. Its
realization in the type system underlying Typed Racket al-
lows Racket programmers to add simple types to their pro-
grams with relatively little effort. In this paper, we show how
refinement types and an extensible logic allows programmers
to continue this process by adding additional invariants to
their repertoire which allow for strong new guarantees. Our
integration of refinement types with the occurrence typing
underlying Typed Racket produces a new system that is both
more expressive and simpler than previous approaches.

Additionally, our evaluation demonstrates that despite the
relatively simple nature of RTR’s dependent types, the in-
variants that can be expressed are powerful. Our case study
of vector operations finds that half of existing operations in
a large Typed Racket code base can be already proven safe
with many of the remainder checked with simple annotations
and changes to the code. We anticipate that other programs,
ranging from fixed-width arithmetic to theories of regular ex-
pressions [14], can similarly benefit from the strong specifi-
cations provided via refinement types.
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