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Abstract

Caches are used to significantly improve performance. Even
with high degrees of set associativity, the number of ac-
cessed data elements mapping to the same set in a cache
can easily exceed the degree of associativity. This can cause
conflict misses and lower performance, even if the working
set is much smaller than cache capacity. Array padding (in-
creasing the size of array dimensions) is a well-known op-
timization technique that can reduce conflict misses. In this
paper, we develop the first algorithms for optimal padding
of arrays aimed at a set-associative cache for arbitrary tile
sizes. In addition, we develop the first solution to padding
for nested tiles and multi-level caches. Experimental results
with multiple benchmarks demonstrate a significant perfor-
mance improvement from padding.

Categories and Subject Descriptors D.3.4 [Processors]:
Code generation, compilers, optimization

General Terms Algorithms, Performance

Keywords Array padding, conflict misses, direct-mapped
cache, set-associative cache, tiling

1. Introduction

Array padding is a well-known performance optimization
technique widely used in practice. A common scenario for

using array padding is in computations, such as multidimen-
sional fast Fourier transform (FFT) [8, 13, 15] and alternat-
ing direction implicit (ADI) solvers [6, 19], where repeated
access of data values of different directions along a multi-
dimensional array is required. Often, the multidimensional
arrays are a power of two in size, causing high power-of-
two access strides in memory. In turn, this can result in oc-
cupation of only a small subset of the available sets in a
set-associative cache. Even with high degrees of set asso-
ciativity, the number of accessed elements mapping to the
same set can easily exceed the degree of associativity, caus-
ing conflict misses and significantly reduced performance.
This can occur even if the working set is much smaller than
cache capacity.

Fig. 1(a) illustrates the padding issue on a simple loop
nest to symmetrize a square matrix of double floating-point
numbers, an operation commonly performed in quantum
chemistry. The result matrix B is a symmetrized form of the
input matrix A, defined as the average of A and its transpose:
B[i][j] = B[j][i] = (A[i][j] +A[j][i])/2. The computation of
each row of B requires access to the corresponding row and
column of A.

Consider an 8-way 32KB set-associative cache with 32
KB and a line size of 64 bytes. The cache has 64 sets, each
with 8 lines. Using the code from Fig. 1(a), assume the array
origins are aligned to cache line boundaries. Without loss of
generality, assume that A[0][0] maps to cache set 0 (if A[0][0]
maps to some other set S0, all set mappings will just shift
by a fixed amount, modulo 64, and all conflict miss counts
will remain identical). Fig. 1(c) shows the elements mapping
to cache sets. With the row-major array linearization in C

(because the two-dimensional (2D) array A has 128 elements
in each row) and as each 64-byte cache line holds 8 elements,
the 128 elements in the first row of Awill map to consecutive
cache sets 0, 1, ..., 15. A[1][0] will map to cache set 16,
A[2][0] to cache set 32, A[3][0] to set 48, and A[4][0] back
to set 0. Thus, every fourth element in a column will map to
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set 0. When the entire column of 128 elements is repeatedly
accessed, 32 of them will map to cache set 0. Thus, despite 8-
way set associativity, cache lines containing earlier elements
in A will get evicted when later elements in the column
are accessed. As a result, each access along the columns of
A will result in a cache miss. For example, the cache line
containing A[0][0], A[0][1], . . . , A[0][7] is brought in when
row 0 of B is computed. However, when the next row of
B is computed, element A[0][1] will no longer be in cache
because the needed cache line will have been evicted earlier
by conflict misses.

Fig. 1(d) shows mapping of the elements in column 0
to cache sets when A is padded by 8 dummy columns and
declared A[128][136] instead of A[128][128]. Only the subset
of array locations A[0 : 127][0 : 127] actually gets used, while
the set of elements A[0 : 127][128 : 135] is never initialized
or used. The dummy array columns’ key benefit is to change
the element-to-set mapping in the cache. A[1][0] now maps
to cache set 17, A[2][0] to cache set 34, A[3][0] to set 51, and
A[4][0] to set 4. Every adjacent pair of elements in a column
now maps to sets that are 17 apart, modulo 64. Because
17 and 64 are relatively prime, each element from A[0][0]
to A[0][63] maps to a distinct cache set until A[0][64] again
maps to set 0. Exactly 4 elements out of the 128 elements
in array column 0 map to each cache set, and no evictions
occur.

Fig. 1(b) shows the performance impact of padding for
this simple example. The symmetrizer accelerates by more
than 250% on two different Intel processors, while the num-
ber of L3 cache misses drops by more than 70%.

for (i=0; i<N; i++)

for (j=0; j<N; j++)

B[i][j] =

0.5 *
(A[i][j]+A[j][i]);

(a) Symmetrization
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(d) Map with padding

Figure 1: 2D Conflict Miss Example

In the preceding example, padding the array to hold 8 ex-
tra dummy columns (one cache line width) enables complete
elimination of conflict misses for column-wise data access.
In general, conflict misses can be detrimental when an ap-

plication code exhibits reuse within a working set that is
smaller than cache capacity, but too many elements in the
working set (more than the cache associativity) map to the
same cache set in a set-associative cache. A common sce-
nario involves tiled execution, where data is reused within
a tile. However, the collection of data accessed in the tile,
i.e., the tile’s data footprint, is not contiguous in memory.
Multidimensional arrays naturally have power-of-two ex-
tents in many scientific applications, e.g., with multidimen-
sional FFTs and adaptive mesh refinement where the coars-
ening/partitioning factor along each spatial dimension is typ-
ically 2. Tiled execution in such cases often results in conflict
misses within the data footprint of tiles. Padding the arrays
can alleviate or even completely eliminate conflict misses.
The problem we address in this paper is:

Given a set of multidimensional arrays and a multidi-
mensional hyperrectangular data footprint for each ar-
ray, can padding extents for arrays and inter-array spac-
ing be found that completely eliminate conflict misses
in a hierarchy of set-associative caches while minimiz-
ing the space overhead from the padding itself?

Until now, heuristics have been employed to determine
how much array padding to use because no complete solu-
tion is known. In this paper, we develop and describe a com-
prehensive solution to the problem.

• We develop an analytical solution to the problem of op-
timal padding of arrays for a set-associative cache with
necessary and sufficient conditions for avoiding conflict
misses using full-capacity tiles—the tile’s data footprint
fully uses the entire cache capacity.

• We develop an efficient computational solution for the
optimal padding of one or more arrays for an A-way set-
associative cache for arbitrary tile sizes.

• We develop the first solution to padding for nested tiles
and multi-level caches.

• We implement these padding algorithms in a new tool
called PAdvisor and demonstrate its effectiveness on the
co-tuning for optimal tile sizes and array padding extents.

• We present experimental results with multiple bench-
marks, demonstrating significant performance improve-
ment using PAdvisor.

2. Background and Related Work

Array padding is widely used for the important and com-
monly occurring case of data arrays with power-of-two sizes.
However, this topic has only been sparsely addressed by the
compiler community, and application developers resort to
heuristics or experimental auto-tuning to find good values
for padding. In this section, we review prior work on the
padding problem.

Heuristic Approaches Bacon et al. [4] propose array
padding as a method to handle conflict misses. Their work
addresses intra-array padding to eliminate conflict misses
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between two references in the context of a single loop (or
the innermost loop in a loop nest). It does not handle tiling.
In the context of embedded systems, Panda et. al. [18] han-
dle interference misses in array tiles by enumerating dif-
ferent padding values and performing cache simulation for
each padding value to record misses. Kowarschi et al. [16]
present a review of cache optimization techniques for nu-
merical methods. Other work [10, 14] employs padding
to optimize codes. Rivera and Tseng [21] show that new
transformations are needed for partial differential equations
(PDEs) in three dimensions (3D) and that tile sizes must be
chosen to avoid conflict misses along with the padding of
arrays. They present heuristics and cost models for padding,
but their solution does not guarantee elimination of conflict
misses.

Using Cache Miss Equations In their work, Ghosh et
al. [9] develop a general methodology for modeling cache
misses (cold, capacity, and conflict misses) for affine per-
fectly nested loop computations. Using this framework, they
have created an approach for determining padding extents
for multidimensional arrays to eliminate conflict misses.
Their approach involves numerical approximation to find
solutions to cache miss equations. Again, it does not guar-
antee optimality in sizing the padded arrays.

Footprint-Based Optimal Padding In the case of direct-
mapped caches, Li and Song [17] have developed a padding
scheme to remove conflict misses for a tile size whose data
footprint equals the cache capacity. They offer conditions
under which multidimensional array tiles are conflict-free
while fully utilizing the cache and find the minimum padding
values that satisfy these conditions. Their solution assumes
that the cache size equals the product of tiles sizes along dif-
ferent dimensions. In contrast, our analytical and computa-
tional solutions handle set-associative caches, and the com-
putational solution handles arbitrary tile sizes. Furthermore,
we present sufficient conditions for hierarchical tiling, which
is not addressed in [17].

3. Analytical Solution: Divisible Tile Sizes

We first define the notation used in the paper and assump-
tions about the cache hierarchy. Whenever possible, these
notations are compatible with those of Li and Song [17].

We study the optimal padding of a single d-dimensional
array of some scalar element type. Ni denotes the number
of elements along dimension i, for 1 ≤ i ≤ d, with N1

representing the extent along the fastest varying dimension
and Nd the extent along the slowest varying dimension in the
linearized layout of the array, i.e., the innermost dimension
for row-major order (C and C++) and outermost dimension
for column-major order (Matlab and Fortran). The padded
extent Ni = Mi +Pi is the sum of the number of accessible
elements Mi and the amount of padding Pi at dimension i.

We consider a tiled loop nest operating over such arrays,
and no restriction is made over the structure and iteration

schedule at these nests. Without loss of generality, we as-
sume the footprint of a given tile is d-dimensional in every
array it accesses. Let Di be the size of the tile footprint at
dimension i. It can take any value between 1 and Mi. Be-
cause the granularity of data movement for caches is a cache
line, the tile size along the fastest varying dimension D1 is
always assumed to be a multiple of the cache block size B.

We also model hierarchical tiling, aiming for the absence
of conflicts at each nested tile in the corresponding caches
in a multilevel hierarchy. We assume the footprints of inner
nested tiles are perfectly aligned within those of outer tiles,
so a collection of inner tiles precisely covers an outer tile’s
footprint. We show that only two levels of tiling need to be
considered at a time, e.g., let D′

i denote the size of dimension
i in the enclosing tiles with Di ≤ D′

i for all 1 ≤ i ≤ d.
It is possible to generalize this formalization to arrays

and tiles of different and non-homogeneous dimensions and
shapes, yet it is done without the guarantee of a consistent
padding strategy across all arrays and tiling levels.

The cache hierarchy itself has multiple levels and is seen
from the point of view of a single processor core. Let Cℓ

denote the capacity of the cache at level ℓ ≥ 1 following
the usual top-down numbering. We assume Cℓ ≤ Cℓ+1 and
an identical line/block size B at every level. The latter hy-
pothesis is not a fundamental restriction and is meant to im-
prove readability. To simplify the notations, we also express
B as a number of scalar elements rather than bytes. We write
Cℓ = SℓAℓB, where Aℓ and Sℓ are the set associativity and
number of sets at level ℓ, respectively.

The complexity of the analytical padding solution devel-
oped in this section does not depend on the size of the arrays.
The analytical solution relies on one important restriction:
for conflict-free padding at cache level j,

∏
1≤i≤d Di must

divide Cℓ. For hierarchical tiling with an additional lower
cache level j′ > j,

∏
1≤i≤d D

′
i must divide Cℓ′ .

The restriction means that the tile footprint divides cache
capacity. This apparently ad hoc constraint actually is the
key to a chain of simplifications that enables an analytical
solution for finding memory-optimal conflict-free padding.

In the next section, the restriction will be lifted thanks
to a more expensive—nevertheless extremely efficient—
computational solution to the optimal padding problem.

Note: when working on a single cache level at a time, we
will drop the j subscript from these cache parameters.

3.1 Padding for Direct-mapped Caches

First, recall the case of direct-mapped caches:

Theorem 1 (Direct-mapped cache). Consider a direct-

mapped cache of capacity C = SB. A loop nest whose

tiles have a d-dimensional array footprint can fully utilize

the cache and remain free of self-interference if and only if

the following conditions are met:

1. ∀i, 1 ≤ i ≤ d, Di divides Ni.

2. ∀i, 1 ≤ i ≤ d− 1, gcd(C/
∏

1≤k≤i Dk, Ni/Di) = 1.
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Proof. This is proven by Li and Song (see pp. 24–25 in [17]).
We recall the proof argument for further generalization to the
set-associative case, starting with the second condition.

For d = 2, the idea consists in partitioning cache lines
into chunks of consecutive lines of size D1/B. One may
reason up to the tile’s realignment to a chunk boundary. Each
row of the tile touches exactly one chunk. There are S lines.
Hence, SB/D1 = C/D1 chunks. The function mapping tile
rows to chunks touches all of them if and only if N1/D1 is
a generator of the (Z/(C/D1)Z, ·) group, i.e., if and only if
gcd(C/D1, N1/D1) = 1.

For d > 2, Li and Song only state that the proof
idea can be inductively applied to the general case ([17],
Lemma 5.2, pp. 25). Here, we provide a proof sketch.
Chunks may be reindexed by multiplying them by the in-
verse of N1/D1 modulo S/D1. As such, the reindexed
chunks associated to a tile plane are made consecutive and
may form “superchunks” of size D1D2. The function map-
ping tile planes to superchunks touches all of them if and
only if N2/D2 · N1/D1 · (N1/D1)

−1 = N2/D2 generates
the (Z/(C/(D1D2))Z, ·) group. Ongoing from dimension
i to i + 1, chunks may be reindexed to make them con-
secutive and form higher-dimensional superchunks of size
D1 · · ·Di+1. Those superchunks touch all cache lines if and
only if the theorem’s second condition holds.

Per the first condition, if Di did not divide Ni for some
i, the chunks would not span full cache lines, wasting cache
capacity, which contradicts the hypothesis. Conversely, if Di

divides Ni for all i, the construction enabled by the second
condition guarantees that all lines are fully used.

3.2 Padding for Set-associative Caches

To extend this result to the set-
associative case for all i, 1 ≤ i ≤ d−1,
we introduce the characteristic num-
ber gi of dimension i with respect to
the cache size. Intuitively, as depicted
(square at right) for A = 4, we will es-
tablish that if the enclosed tile g1×· · ·×gd−1×Dd is free of
self-interference conflicts in a direct-mapped cache, then the
A-times larger tile D1D2 · · ·Dd is free of self-interference
conflicts in an A-associative cache of the same capacity.

Theorem 2 (Associative cache). Consider a set-associative

cache of capacity C = SAB. For all 1 ≤ i ≤ d − 1, let

gi = gcd(S/
∏

1≤k≤i−1
gk, Ni). A loop nest whose tiles

have a d-dimensional array footprint can fully utilize the

cache and remain free of self-interference if and only if the

following conditions are met:

1. ∀i, 1 ≤ i ≤ d − 1, ∃j, 1 ≤ j ≤ i,
∏

1≤k≤i gk divides

Dj

∏
1≤i≤j−1

gi.

2. ∃i, 1 ≤ i ≤ d, S divides Di

∏
1≤k≤i−1

gk.

Proof. We state two key observations underlying the proof,
which is detailed in the appendix.

The reasoning of the direct-mapped case can be adapted
to where chunks do not occupy disjoint cache sets but when,
at most, A of them hit a given set instead. Such overlap
will be tolerated through set associativity. The reasoning of
the direct-mapped case extends to the case where exactly
A chunks hit the same set, each one being aligned on a
cache line boundary. This means the stride between chunks
can be any integer dividing the set size (e.g., C/g1 when
d = 2) and greater than or equal to the set size divided by A
(e.g., C/(g1D1) when d = 2). This leads to the interval of
possible values for a given gcd gi in the second condition.

The case of gi = Di hits each set exactly once on a stripe
of rows in the tile footprint before hitting every set again in
the next stripe. The case of gi = Di/A matches the indexing
of the direct-mapped case with each consecutive chunk in
the tile footprint hitting a different set A times. Intuitively,
the lower the gi, the more associativity is “consumed” by
sub-tiles of dimension i (rows, planes, etc.), leaving less con-
flicts to be tolerated at higher dimensions. This observation
underlines the second condition.

Note 1: the necessary condition establishes that the min-
imal padding satisfying the hypotheses of Theorem 2 is the
optimal one that avoids self-interference conflicts in the gen-
eral case of set-associative caches.

Note 2: as a side effect, the second condition eliminates
degenerate cases where the tile footprint would be so small
that all of its conflicts could be tolerated by associativity.

3.3 Padding for Tile Hierarchies

We now extend this result to hierarchically tiled loop nests.
We focus on two nested tiles, following the notations in-
troduced earlier in this section. We note that the previ-
ous padding approach of Li and Song [17] only models
direct-mapped caches, and with that model, surprisingly, no
conflict-free padding for nested tiles is feasible.

We use a simple example here to explain why. Mean-
while, a formal statement about the infeasibility of nested
tiling for conflict-free padding under a direct-mapped cache
model is stated and proven in the associated report [11].

Example Consider cache lines of 64 bytes. Let S1 be 512
lines for a 32 KB L1 cache and S2 be 4096 lines for a 256
KB L2 cache. Finally, select M1 = 1024 doubles, i.e., 128
cache lines and D1 = 8 and D2 = 32.
For a conflict-free tile in L1, N1 can be 1024+8, 1024+24,
1024+40, 1024+56, etc., (i.e., 1024+8(2k+1)), because
gcd(1024 + 8(2k + 1), 4096) = 8.
For a conflict-free tile in L2, N1 can be 1024+32, 1024+96,
1024 + 160, 1024 + 224, etc., (i.e., 1024 + 32(2k + 1)),
because gcd(1024 + 32(2k + 1), 4096) = 32.

Clearly, there are no common values for the padded ar-
ray that can be conflict-free for both direct-mapped caches.
However, when the caches are set-associative, we can de-
velop padding solutions that enable interference-free access
in multiple nested tiles within a cache hierarchy.
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Theorem 3 (Hierarchical tiling, associative cache). Con-

sider a high-level cache of capacity Cℓ = SℓAℓB and a

low-level cache of capacity Cℓ′ = Sℓ′Aℓ′B. For all 1 ≤
i ≤ d − 1, let gi = gcd(Sℓ/

∏
1≤k≤i−1

gk, Ni) and g′i =
gcd(Sℓ′/

∏
1≤k≤i−1

g′k, Ni). For both inner and enclosing

tiles to fully utilize their respective caches levels and remain

free of self-interference, it is sufficient that the following con-

ditions are met:

1. ∀i, 1 ≤ i ≤ d − 1, ∃j, 1 ≤ j ≤ i,
∏

1≤k≤i gk divides

Dj

∏
1≤i≤j−1

gi.

2. ∀i, 1 ≤ i ≤ d − 1, ∃j, 1 ≤ j ≤ i,
∏

1≤k≤i g
′
k divides

D′
j

∏
1≤i≤j−1

g′i.

3. ∃k, 1 ≤ k ≤ d, Sℓ divides Dk

∏
1≤i≤k−1

gi.

4. ∃k, 1 ≤ k ≤ d, Sℓ′ divides Dk

∏
1≤i≤k−1

g′i.

5. ∀i, 1 ≤ i ≤ d− 1,
∏

1≤k≤i D
′
k divides Aℓ′

∏
1≤k≤i Dk.

In addition, the first four conditions establish a necessary

condition for both tiles to fully utilize their respective cache

levels and remain free of self-interference.

Proof. The first four conditions are simply the conjunction
of ones established for a single level of tiling.

The fifth condition states the footprint of the first i di-
mensions of the enclosing tile cannot be more than Aℓ′ times
larger than the first i dimensions of the inner tile. One may
then iterate along dimension i + 1, spanning a whole i + 1-
dimensional slice of the enclosing tile without exceeding the
associativity of the larger, lower-level j′ cache.

The theorem for hierarchical tiling is only a sufficient
condition because specific ratios between the inner and en-
closing tiles may not require the fifth condition.

Nevertheless, it is important to note that in the direct-
mapped case, the fact the first four conditions alone are not
sufficient proves the impossibility of compatible paddings

for two nested levels of tiling if the lower-level cache is
not sufficiently associative. This is a completely new result,
inaccessible to Li and Song [17]. It also carries a concrete
message for cache architects and for applying loop tiling in
compilers or domain-specific frameworks: it is essential to
keep the cache size 1 and tile ratios below the associativity
of the lower, larger cache. This result also pushes for higher
associativity as the cache hierarchy grows taller.

4. Padding For Arbitrary Tile Sizes

The previous section addressed padding for “divisible” tiles,
where the cache capacity is divisible by the tile data foot-
print. However, this may not always be feasible. For exam-
ple, consider a computation that uses three data arrays and
identically sized tiles for the them. For any power-of-two
cache capacity, it is impossible to satisfy the divisibility con-
dition without making the tile unnecessarily small and wast-
ing cache capacity. As another constraint, some tiled algo-

1 Or cache slice size for shared caches with parallel access ports.

rithms may be constrained to using “square” tiles, i.e., tile
sizes along all dimensions must be equal. Hence, the total
cache capacity may not be a perfect square or cube.

In this section, we address the more general padding
problem, where the cache capacity is not constrained to be
divisible by the tile data footprint. Given a 2D (resp. 3D)
array of size M2M1 (resp. M3M2M1) and an arbitrarily
sized data tile D2D1 (resp. D3D2D1) such that the tile data
footprint is less than the cache capacity, we seek to find
minimal padding extent(s) P1 (resp. P2, P1) that guarantee
conflict-freedom within the data tile. While the developed
approach can be extended to higher dimensions, our current
implementation in PAdvisor only handles 2D and 3D arrays.
We present details for the 2D case in the paper, while details
for the 3D case are provided in the associated report [11].

Before presenting the algorithms for finding optimal
conflict-free padding, we first address the question: is it al-
ways feasible to achieve conflict-free padding for any ar-
bitrary tile size as long as the total tile data footprint is no
greater than cache capacity? The answer to this question is
positive and is stated in the following lemma:

Lemma 1. For an arbitrary data tile with footprint less than

or equal to cache capacity, there always exists some padding

that makes the tile conflict-free.

Proof. Consider a d-dimensional tile in a d-dimensional ar-
ray. The cause of conflict misses is a non-uniform mapping
of tile elements to cache sets. The following constructive
scheme for padded extents along the lowest d−1 dimensions
avoids such non-uniformity: ∀1 ≤ i ≤ d − 1, NiS = DiS

(≡ Ni mod S ≡ Di mod S). Such a padding ensures that
consecutive tile rows and tile planes map to cache sets in ex-
actly the same way they would if the data array was the same
size as the data tile, i.e., blocks in the array are mapped lexi-
cographically to consecutive cache sets. Thus, occupancy of
no cache set can exceed the associativity.

We first present the solution for direct-mapped caches,
forming the framework basis for its generalization to set-
associative caches in Sec. 4.2.

4.1 Computational Scheme for Direct-mapped Caches

In contrast to the analytical approach presented in the previ-
ous section, the approach developed in this section uses an
explicit enumeration process.

4.1.1 2D Data Space

Given an arbitrary 2D data tile of size D2D1, we seek the
smallest value of P1 so that a given padded array A of size
M2(M1 +P1) is conflict-free. We first explain the approach
for the direct-mapped case. The essential idea is to systemat-
ically proceed to eliminate unsuitable values for P1, i.e., val-
ues of P1 that do not achieve freedom from conflict. Given
an element A[i2][i1], in the padded array, it maps to cache
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set (N1i2 + i1)/B mod S. We first observe that the possi-
ble range of values to be considered for P1 is limited to S,
the number of cache sets. This is because (N1i2 + i1)/B ≡
((N1 + SB)i2 + i1)/B mod S. This means that the map-
ping of tile elements to cache sets is exactly the same for a
padded array extent N1 and a padded array extent N1+SB.
Assuming that N1 is chosen to be a multiple of cache size,
there is no need to search over all possible N1 values to de-
termine the existence of a conflict-free solution. Checking
only S padding values (0, B, 2B, .., (S − 1)B) is enough to
find a conflict-free padding.

To simplify the explanation of the approach, consider the
cache block size to be one (the detailed algorithm provided
later does not impose such a constraint). A particular choice
of padding value P1 is unsuitable if any two data tile ele-
ments A[i2][i1] and A[j2][j1] that map to the same cache set
under that padding exist. The essential idea behind the com-
putational approach developed in this section is to perform
“inverse” reasoning: consider all possible pairwise tile el-
ement conflicts, find padding choices that can cause each
conflict, and eliminate all such padding choices. After all
possible pairwise conflicts between data tile elements are
considered, any remaining padding choices are guaranteed
to provide conflict-freedom for the data tile, and the choice
requiring the smallest space overhead is selected..

Given a D2×D1 tile, there are D2D1 distinct data blocks
and, therefore (D2D1(D2D1 − 1))/2 possible cases to con-
sider. However, we can reduce the number of potentially
conflicting pairs to be considered because of the following
observation (Lemma 2): if there is a conflict (noted ∼) be-
tween any two elements in a tile data space A, then there
necessarily also is a conflict between the first data element
A[0][0] and some other element in A or a conflict between
A[0][D1 − 1] and some other element. This simplifies and
focuses our reasoning on just these two particular elements.

Lemma 2. Consider a 2D tile data space A[i2][i1] such that

0 ≤ i2 < D2 and 0 ≤ i1 < D1. For all i2, i1 in the data

space, there are no cache conflicts A[0][0] ∼ A[i2][i1] and

A[0][D1 − 1] ∼ A[i2][i1] if and only if the entire data space

is conflict-free.

Proof. If case: We prove by contradiction. If the cache is
not conflict-free, then ∃(i2, i1), (j2, j1) such that there is a
conflict (i2, i1) ∼ (j2, j1) with (i2, i1) ≺ (j2, j1). We have
two possibilities:
Case 1: i2 ≤ j2, i1 < j1, (N1i2 + i1)/B ≡ (N1j2 + j1)/B
mod S ⇐⇒ (N1(j2−i2)+(j1−i1))/B ≡ ((N1·0)+0)/B
mod S. Also, 0 ≤ i1, j1 < D1 and 0 ≤ i2, j2 < D2.
Thus, 0 ≤ j2 − i2 < D2, 0 < j1 − i1 < D1, which
means A[j2 − i2][j1 − i1] is in the data space. Therefore,
A[0][0] ∼ A[j2 − i2][j1 − i1], contradiction.
Case 2: i2 < j2, i1 ≥ j1, Similar to case 1, (N1i2+i1)/B ≡
(N1j2+j1)/B mod S ⇐⇒ (N1(j2−i2)+(j1−i1))/B ≡
((N1 · 0) + 0)/B mod S ⇐⇒ (N1(j2 − i2) + (D1 −

1 + j1 − i1))/B ≡ ((N1 · 0) + D1 − 1)/B mod S.
Also, 0 ≤ i2, j2 < D2, and 0 ≤ i1, j1 < D1. Thus,
0 ≤ j2 − i2 < D2, 0 ≤ D1 − 1 + j1 − i1 < D1, which
means A[j2 − i2][D1 − 1 + j1 − i1] is in the data space.
Therefore, A[0][D1 − 1] ∼ A[j2 − i2][D1 − 1 + j1 − i1],
contradiction.
Only if: This is true by definition, since no pair of elements
can be in conflict in a conflict-free data space.

A consequence of Lemma 2 is that checking for the ab-
sence of conflicts A[0][0] ∼ A[i2][i1] and A[0][D1 − 1] ∼
A[i2][i1] is enough to ensure the entire tile data space is
conflict-free. There is no need to check all pairs of points
in the data tile.

The previous condition for checking on absence of con-
flicts for the top left and right corners of a 2D tile can be
equivalently stated in terms of additional tests for the top
left corner of the tile. Lemma 3 presents the necessary and
sufficient conditions.

Lemma 3. Given a 2D array A[∗][N1] with padded size N1,

the tile data space A[i2][i1], 0 ≤ i2 < D2, 0 ≤ i1 < D1,

is conflict-free if and only if (N1i2 + i1)/B mod S 6= 0,

∀i2, i1 such that 0 ≤ i2 < D2,−D1 < i1 < D1, i1 ≡ 0
mod B and (i2, i1) 6= (0, 0).

Proof. There is no cache conflict A[0][0] ∼ A[i2][i1] if and
only if (N1i2+i1)/B 6≡ 0 mod S for all 0 ≤ i2 < D2, 0 <
i1 < D1. There is no cache conflict A[0][D1−1] ∼ A[i2][i1]
if and only if (N1i2 + i1 − (D1 − 1))/B 6≡ 0 mod S
for all 0 ≤ i2 < D2, 0 ≤ i1 < D1. Also, (N1i2 + i1 −
(D1 − 1))/B 6≡ mod S for all 0 < i2 < D2, 0 ≤
i1 < D1 ⇐⇒ (N1i2 + i1)/B 6≡ 0 mod S for all
0 < i2 < D2,−(D1 − 1) ≤ i1 < 0. So, (N1i2 + i1)/B 6≡ 0
mod S for all 0 ≤ i2 < D2,−D1 < i1 < D1, and by
Lemma 2, this proves Lemma 3.

Before presenting the algorithm to compute optimal
padding for 2D tiles, we use a simple example to illustrate
the approach. Consider a direct-mapped cache with S=10,
B=1, a 2D array of size 10 × 10, and a 3 × 3 data tile.
Because the array extent in the fastest varying dimension is
100, a multiple of S, every element in a column of the tile
will map to the same set, causing conflict misses. As already
observed, the possible padding values to be considered are
from 0 to 9. By Lemma 3, for a padded size N1 to make the
data tile conflict-free, we should have:
(N1i2+i1) 6≡ 0 mod S, ∀i2, i1 such that 0 ≤ i2 < 3,−3 <
i1 < 3 and (i2, i1) 6= (0, 0).
The preceding condition can be visualized in Fig. 2, which
requires that none of the shown vectors should be “conflict
vectors” with respect to (0,0), i.e., none of the target ele-
ments at the sink of the vectors should map to cache set 0.
For each such vector, a Diophantine equation determines the
values of N1, if any, for which the condition is violated.
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For example, considering (i2, i1) = (1, 1), the equation
(N1 · 1) + 1 ≡ 0 mod 10 has solutions 9, 19, 29. . .etc.
Any padded extent N1 equal to 9 modulo 10 would cause a
conflict between tile elements (0, 0) and (1, 1). As shown in
Fig. 2, the value 9 is crossed off as unsuitable in the space
of possible values. Similarly, considering (i2, i1) = (1,−1),
which actually corresponds to checking for a conflict with
the top right corner tile element (0, 2), we get the equation
(N1 · 1) − 1 ≡ 0 mod 10, with solutions 1, 11, 21. . .etc.
This results in crossing off the entry for 1 in the space
of possible padding values in Fig. 2. The figure shows all
such “conflict vectors” evaluated and the padding value they
eliminate. Some conflict vectors produce no solutions to
the corresponding Diophantine equation, for example, (2,1).
The equation (N1 · 2) + 1 ≡ 0 mod 10 clearly has no
integer solutions. Such pairs of data elements do not have
conflicts for any possible padding value and, therefore, do
not eliminate any options.

After eliminating all unsuitable padding values corre-
sponding to all possible conflict vectors in the range 0 ≤
i2 < 3,−3 < i1 < 3 and (i2, i1) 6= (0, 0), any remaining
values are all suitable candidates for padding (modulo 10)
that ensure freedom from conflicts for the data tile. For this
example, the result is that a conflict-free padded extent must
have a remainder of either 3 or 7 when divided by 10. The
padding value that results in the least space overhead is cho-
sen. For an array of extent 100, a padded size of 103 would
be the best choice among the possible options of 100+3 ≡ 3
mod 10 and 100 + 7 ≡ 7 mod 10. If the unpadded array
happened to be of size 106, the best padded choice would be
106+1 ≡ 7 mod 10, which is better than the other possible
conflict-free choice of 106 + 7 ≡ 3 mod 10.

The Algorithm Alg. 1 depicts the algorithm for finding
conflict-free padding. It explores a set of points (i2, i1) in
the data space for which the modulo property is verified, per
Lemma 3. Instead of formulating and solving a separate Dio-
phantine equation for each possible conflict vector, acceler-
ation of the execution time is achieved by a pre-computation
of the inverse modulo. Given x ∈ Z∗

n, there exists a unique
element y ∈ Z∗

n s.t. xy ≡ 1 mod n. y is called the inverse
of x, written x−1, and can be computed by the extended Eu-
clidean algorithm with a time complexity of O(n log n). The
algorithm proceeds by enumerating the necessary points in
the data space, checking the condition of Lemma 3 to find
and mark off all unsuitable padding values in the PadOk ar-
ray. Then, the minimal padding is obtained from this array
from among those entries that have not been eliminated. As
the total number of blocks in the tile data space is, at most,
the number of sets in the cache, an inverse modulo opera-
tion of complexity logS is performed S times. Therefore,
computational complexity is O(S logS).

Algorithm 1 2D padding, single array, direct-mapped cache

Input: S (number of cache sets), D2, D1 (tile sizes), M1 (unpadded array
extent)

Output: Minimal Padding Size P1

1: // Initially consider all padding values as OK
2: PadOk [S]← 1
3: // For each (i2, i1) clear PadOk for any padding values that create

conflict between (0, 0) and (i2, i1)
4: for i2 = 0 to D2 − 1 do

5: c← gcd(i2, S)
6: inv← (i2/c)−1 mod (S/c)
7: for i1 = −(D1 +B)/B to (D1 −B)/B do

8: if i1 mod c = 0 then

9: for i0 = 0 to c− 1 do

10: v ← (−i1 · inv) mod (S/c)
11: PadOk [(v + i0(S/c))]← 0
12: end for

13: end if

14: end for

15: end for

16: for i0 = 0 to S − 1 do

17: if PadOk [(M1 + i0B) mod S] = 1 then

18: return i0B // Return P1

19: end if

20: end for

21: return 0 // Return P1

4.1.2 3D Data Space

The extension of the previously described 2D padding al-
gorithm to 3D data space is essentially a direct generaliza-
tion. For 3D tiles, it is necessary and sufficient to analyze
conflicts with respect to four corner tile elements (instead of
two points for the 2D case). Lemma 4 is a generalization of
Lemma 2 to 3D spaces and is proven in the associated report
[11].

Lemma 4. Let A[i3][i2][i1] be a 3D tile data space, with

0 ≤ i3 < D3, 0 ≤ i2 < D2, 0 ≤ i1 < D1, with the ad-

ditional constraint that i1 ≡ 0 mod B. For all i3, i2, i1
in the data space, there is no cache conflict A[0][0][0] ∼
A[i3][i2][i1], A[0][0][D1 − 1] ∼ A[i3][i2][i1], A[0][D2 −
1][0] ∼ A[i3][i2][i1], and A[0][D2−1][D1−1] ∼ A[i3][i2][i1]
if and only if the data space is conflict-free.

Similarly, we can derive the central Lemma 5, which is
the 3D analog of Lemma 3.

Lemma 5. For ∀i3, i2, i1 such that 0 ≤ i3 < D3,−D2 <
i2 < D2,−D1 < i1 < D1, i1 ≡ 0 mod B, (i3, i2, i1) 6=
(0, 0, 0) and given N2, N1, the data space is conflict-free if

and only if (N2N1i3 +N1i2 + i1)/B 6≡ 0 mod S.

The proof is similar to the 2D case. It is available in the
associated report [11].

The algorithm for the 3D case is similar to Alg. 1, explor-
ing all necessary points (i3, i2, i1) in the data space to elimi-
nate unsuitable choices for conflict-free paddings. Instead of
two corner tile elements in the 2D case, four corner elements
in the top plane of the 3D tile must be checked for conflicts.
However, there are two padding choices to be made for P1

and P2. For each P2, starting with P2=0 and incrementing
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P2 by 1, the algorithm proceeds by enumerating the neces-
sary points in the data space to find all conflict-free padding
values P1, if any. Among the valid P1 values for each P2,
the one requiring minimal storage overhead is identified. A
globally optimal (P2, P1) pair is maintained and updated as
different P2 values are considered if a new conflict-free pair
with lower space overhead is found.

For each value of P2, the cost is O(S logS), similar to
the 2D case. There are S possible choices for P2. Thus, the
time complexity for the 3D case is O(S2 logS) applying
the previously described, simple computation method. Nev-
ertheless, additional optimizations via pre-computation can
reduce the worst case complexity to O(S2) and the average
complexity to O(S logS + SD1/B). Details may be found
in the associated report [11].

4.2 Computational Scheme for Set-associative Caches

The broad approach to computing padding for arbitrary tile
sizes with set-associative caches is the same as that previ-
ously discussed for direct-mapped caches: scan the data tile
space to identify padding values for which there is a conflict.
Yet, there is a fundamental difference. While the existence of
a conflict with any tile element is grounds for elimination
of a padding choice, a more complex counting procedure
must be used for set-associative caches because an A-way
set-associative cache allows A conflicts at each set without
needing to evict any data. Hence, we keep track of all conflict
vectors for each possible padding value and only eliminate
those that result in more than A conflicts.

4.2.1 2D Data Space

For clarity’s sake, we start with the 2D space problem. Fig. 2
provides an intuition of the computation of conflict vectors
(i.e., a data space location conflicting with either the top
left or top right corner of the data space). Intuitively, the
algorithm will proceed by keeping track of, for each possible
padding value, the set of conflict vectors associated with it.
For each possible conflict vector, a Diophantine equation’s
solution specifies the array padding extents (modulo S) for
which such conflict vectors exist. In this example, a padding
of 0 is associated with conflict vectors (1,0) and (2,0). A
padding value of 3 or 7 has no conflict vectors.

As with the direct-mapped caches, we first reduce the set
of data elements for which conflicts are analyzed. Whereas
just the two top corner elements needed checking for the
direct-mapped case, for the set-associative case all elements
in the top row of a 2D tile must be checked for. This is
formalized by the following lemma:

Lemma 6. For a cache with associativity A, ∀k a data point

A[0][k] has less than A conflicts with other points in the data

space if and only if the data space is conflict-free.

See the proof in the associated report [11].
Let us use an example to explain the computation of the

optimal conflict-free padding for a set-associative cache.

Figure 2: Conflict-free padding: direct-mapped cache

Figure 3: Conflict-free padding: set-associative cache

Figure 4: Inter-array padding

The example shown in Fig. 3 is similar to Fig. 2, which
explains the computation of a conflict-free padding for a
direct-mapped cache. Similarly in the set-associative case,
the first step involves determination of padding values that
cause conflicts for each point (i2, i1). In Fig. 3, we consider
a cache with S = 8, A = 2, B = 1, M1 = 80, D1 = 5,
and D2 = 3. The data tile has a footprint of 3 × 5 =
15 blocks, and the cache capacity is 16 blocks. For each
possible padding value in the range {0, . . . , 7}, the index-
pairs (i2, i1) that cause conflict with (0, 0) are marked.

In contrast to the 2D case where simply the occurrence
of a conflict eliminated a padding value from considera-
tion, we need to count the number of conflicts for the set-
associative case. Further, by Lemma 6, we must check for
conflict counts w.r.t. all elements in the top row of the data
tile; if any of these involve more conflicts than the cache as-
sociativity, the padding value is unsuitable.
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For each of the S possible candidate values for padding,
two groups of conflict vectors (i2, i1) are formed: Type 1
(i1 > 0) and Type 2 (i1 ≤ 0). Type 1 conflict vectors imply
that tile element (0, 0) and (i2, i1) are mapped to the same
set. Type 2 conflict vectors imply that the top right corner
element in the tile (0, 4) is mapped to the same set as (i2, i1).

For example, a padding value of 0 will yield two Type 1
conflict vectors (1, 0) and (2, 0). Including (0, 0), there are
three tile elements mapping to the same set and, therefore,
cannot avoid conflict misses. Using a padding value of 1
yields two Type 2 conflict vectors (1,−1) and (2,−2),
which means that the top right corner element (0, 4) will
conflict with (0+1, 4−1) and (0+2, 4−2), i.e., with (1, 3)
and (2, 2). So padding by 1 cannot avoid conflict misses.

Next, consider a padding value of 3. We have a conflict
vector of each type: a Type 1 vector (2, 2) and a Type
2 vector (1,−3). At the two corner tile points (0, 0) and
(0, 4), only the Type 1 and Type 2 vectors, respectively, can
cause conflict. However, all interior tile elements in the top
row must be considered, i.e., (0, 1), (0, 2), and (0, 3). For
(0, 1), we consider (0 + 2, 1 + 2) and (0 + 1, 2 − 3). Of
these, (2, 3) is within the data tile, but (1,−1) is outside.
Hence, there is only one conflicting data element. Similarly,
it can be determined that (0, 2) and (0, 3) also have only
one conflicting tile element. Therefore, a padding value of 3
results in conflict-free access for the data tile.

The algorithm for the 2D set-associative case is similar
in structure to the previously described Alg. 1 for the direct-
mapped case. The main difference is that conflict vectors are
first stored for various padding values. Then, the elements
of the top row of the data tile are tested for the number of
conflicts (explained in the previous example). If less than A
conflicts occur, the candidate padding value is valid. Finally,
valid padding values are scanned to output the one with
lowest space overhead. Each conflict vector (p, q) must be
added to several padding candidates S[i], such that S[i]p +
q = 0. This process is repeated O(AS logS) times, giving
a time complexity of O(AS logS). The testing of conflict
counts for the top-row elements of the data tile has only an
O(AS) cost. As such, the total complexity of the algorithm
is O(AS logS).

4.2.2 3D Data Space

The PAdvisor algorithm for 3D tiles and set-associative
caches uses a combination of the approach previously de-
scribed for the 3D direct-mapped case and the approach for
handling associativity in 2D tiles.

4.3 Inter-array Padding

When multiple arrays are accessed in a tiled computation in
an interleaved manner, the relative offsets of the array origins
can clearly affect the number of cache misses due to inter-
array interference in the cache. Therefore, even after padding
each array to avoid cache conflicts, conflict misses could
occur because of inter-array interference. Such interference

may be avoided by suitably shifting array origins so that
conflict misses stemming from previously interfering data
elements by different arrays no longer cause conflict misses.
Details are provided in the associated report [11]. Here,
we use an example to explain the main idea behind the
approach.

Fig. 2 illustrates an example with two arrays. No restric-
tions are imposed on either the array or tile sizes. First, for
each array and its data tile footprint, padding analysis is per-
formed per the algorithm presented in Sec. 4.2. In this ex-
ample, we consider the same tile size for both arrays. The
cache has 8 sets and a set-associativity of 4. Assume that for
some choice of padding Ni, the padding analysis (identical
for both arrays) shows interference counts of 1, 3, 1, 2, 2, 2,
0, and 2, for sets 0 through 7, respectively. This means that
set 0 would have just one data block mapped to it while set
1 has three different data blocks in the data tile mapped to it
for the chosen padding value.

If no inter-array padding is utilized, the total interference
count from both arrays combined will double the single-
array interference counts, resulting in interference counts of
2, 6, 2, 4, 4, 4, 0, and 4. This would be unsatisfactory as set
1 has 6 data blocks mapping to it but only 4 lines. If we shift
the second array’s origin by 1 cache line, the set interference
counts for different cache sets would shift from the previous
case (Fig. 2). After the inter-array shift, the accumulated
interference counts for sets {0, . . . , 7} are 3, 4, 4, 3, 4, 4,
2, and 2. Now, no sets exceed their capacity of 4 cache lines,
so the inter-array shift results in conflict-free mapping of the
data tiles for both arrays.

The approach generalizes to multiple arrays without any
restriction on the data footprints or array extents. Details are
provided in the associated report [11].

4.4 Computational Complexity

When a divisibility relationship between the tile and cache
sizes can be enforced, the very efficient analytical reasoning
introduced in Sec. 3 applies. Table 1 summarizes the com-
putational complexity of the padding algorithms for various
other cases.

Table 1: Computational complexity: B=line size,
S=number of sets, A=associativity

Type Worst-case Average

2D direct-mapped O(S logS) O(S logS)
2D set-associative O(AS logS) O(AS logS)
3D direct-mapped O(S2) θ(S logS + SD1/B)
3D set-associative O((AS)2) θ(S logS + SD1/B +AS)

The table shows worst- and average-case complexity for
the algorithms. In practice, because of acceleration tech-
niques, the average complexity can be lower than the worst-
case complexity (shown in Table 1). Details for all algo-
rithms and the complexity analysis are provided in the as-
sociated report [11]. The actual runtime of the most com-
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plicated algorithm (3D set-associative) is reported later in
Sec. 5, showing PAdvisor runs on the order of a few mil-
liseconds for all benchmarks.

5. Experimental Evaluation

Padding is an essential optimization to avoid conflict misses,
including when data are accessed along different directions
of a multidimensional array. For example, the Intel Math
Kernel Library Fast Fourier Transform routine, Intel MKL
FFT [13], explicitly encourages padding by the user for best
performance by separating out the description of the data
layout from the FFT problem size in its interface, and it
provides a tool to iteratively try various padding sizes for
best performance [12]. Our work affords analytical solutions
to the padding size search problem, and we now illustrate
the impact of padding on several representative problems.
They have been chosen to highlight the performance impact
of padding in codes traversing data in different directions
of a multidimensional array (Intel’s MKL FFT and ADI),
as well as the role of padding in tile size selection and its
performance impact in multi-level tiling schemes on well-
optimized codes (HPGMG, DGEMM, and Stencils).

Benchmarks We evaluate on six benchmarks, four of
which can be tiled. For those, we also perform extensive
tile size exploration.

ADI is an alternating direction implicit solver from Poly-
Bench/C 4.1 [20] typically used to solve PDEs, we evaluate
20+ 2D problem sizes. For both MKL-FFT and ADI, the data
access pattern combines row-first and column-first traversals
of the data space, a stress case for conflict misses. We eval-
uate 13 different 2D problem sizes.

HPGMG is a High Performance Geometric Multigrid
benchmark from DOE [25] to proxy full applications us-
ing adaptive mesh refinement. Multigrid solvers typically
imply a division/multiplication by 2 of the box size (data
space) computed on a processor. As such, domain decompo-
sition into boxes typically uses power-of-two box sizes. We
evaluate on the most time-consuming part of the applica-
tion, a Chebychev smoother implementing a 3D stencil with
four time iterations on which we implemented parametric
time-tiling.

DGEMM is a classical BLAS3 routine implemented in C
using parametric tiling and code massaging to ensure good
AVX/AVX2 vectorization by the compiler. Tiles are scanned
in the classical i, j, k order, but within a tile, we permuted
the loops to k, i, j for efficient vectorization and data reuse.
In our experiments, we cannot use the equivalent BLAS
functions from Intel MKL: the tiling / tile size implemented
within MKL is not exposed to the user, preventing the ability
to compute a meaningful padding for out-of-cache problems.

Finally, Stencil-2D and Stencil-3D are two highly tuned
codes we have developed to compute iterative Jacobi sten-
cils (typical in image processing), PDE solving, or function
smoothing. Each implements a cross stencil (i.e., computes

the average of all neighbors along each orthogonal direc-
tion) with fixed coefficients. We made a particular effort to
achieve high performance using explicit SIMD vectoriza-
tion, register tiling, etc.

5.1 Experimental Setup

Experimental Protocol We evaluated the performance of
a variety of problem and tile sizes (when applicable) on two
machines. SB is a Sandy Bridge single-socket 4-core Intel
Core i7-2600K CPU running at 3.40 GHz, and HSW is a
Haswell single-socket 4-core Intel Core i7-4770K CPU run-
ning at 3.50 GHz. Each runs Linux and has L1 of 32 KB
(8-way associativity, S = 64), L2 of 256 KB (8-way as-
sociativity, S = 512), and L3 of 8192 KB (16-way asso-
ciativity, S = 8192). At all levels, the cache line size is
64 B, and we used double-precision floating point, mean-
ing 8 elements per cache line. For each problem/tile size ex-
plored, we timed the program’s execution with and without
padding. Five runs were performed and averaged for each
case. Programs were compiled with GCC 4.9.2, using flags
-Ofast -fstrict-aliasing -march=native and
-fopenmp for multicore experiments.

We used huge pages (2 MB, with explicit mmap), running
RedHat Linux with kernel 2.6.32. TLB misses are negligible
in these experiments. In addition, as the computed padding
sizes are typically small, there is only a marginal increase
in TLB accesses, and TLB misses actually decrease due to
reduced cache misses. We also conducted full evaluation
using small pages [11], and observed very similar trends and
improvements as the one detailed below.

Padding Computation To compute the padding value, we
calculated the hot reuse space footprint (e.g., a column of
data for MKL-FFT and ADI; a tile of data for Stencil-xx)
for each problem size/tile size by manual analysis and com-
puted padding for the smallest cache level fully enclosing
this data space. That is, we did not pad systematically for the
largest cache but instead padded for the smallest cache con-
taining the data space. The benefit is that a smaller conflict-
free padding can be found (having less space overhead)
while still ensuring (by definition) a conflict-free space at
a higher cache level. Note the reverse is not true: a conflict-
free padding for the largest cache does not ensure the data
tile is conflict-free for a smaller cache with fewer sets. Auto-
matically computing the data space footprint is out of this
paper’s scope. Notably, there are numerous techniques to
compute this data space, exactly or by over-approximation,
such as the distinct line (DL) model [7].

5.2 Experimental Results

MKL-FFT Tables 2-3 show the performance impact of
padding for a variety of 2D FFT problem sizes, ran on both
machines and in either single- or multi-core settings. Perfor-
mance is reported in pseudo GF/s, and the padding improve-
ment Imp is shown. We observe that the impact of padding is
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greater on Sandy Bridge, higher with larger problem sizes,
and usually higher in the parallel case—all expected results.
It can reach 40% or more for sizes exceeding 2048 on Sandy
Bridge, demonstrating the need for effective padding. In
all cases, a padding of 8 elements (i.e., one line size of 64
bytes), the smallest padding producible by our scheme, was
the smallest (optimal) padding needed to ensure a lack of
conflicts between a row and column of data.

Table 2: MKL-FFT on SB

1 core 4 cores
N no pad pad Imp. no pad pad Imp.
512 8.94 9.14 2.3% 18.72 21.25 13.5 %
640 7.80 7.95 1.9% 21.21 21.94 3.4%
768 7.78 7.92 1.7% 22.43 23.27 3.7%
896 7.49 7.56 0.9% 21.69 21.87 0.8%
1024 8.46 9.08 7.3% 18.02 22.26 23.6%
1280 6.90 7.40 7.1% 16.78 18.85 12.4%
1536 6.27 6.91 10.3% 16.42 17.56 7.0%
1792 6.55 7.24 10.5% 16.46 17.94 9.0%
2048 6.20 8.14 31.1% 13.65 19.37 41.9%
2560 5.87 6.86 16.7% 12.92 19.07 47.6%
3072 5.78 7.04 21.6% 11.54 16.99 47.3%
3584 5.54 6.53 17.8% 12.18 17.58 44.3%
4096 6.40 7.98 24.6% 14.55 19.61 34.7%

Table 3: MKL-FFT on HSW
1 core 4 cores

N no pad pad Imp. no pad pad Imp.
512 10.04 11.13 11.0% 24.73 24.76 0.1%
640 8.47 9.23 9.0% 23.53 24.55 4.3%
768 8.49 9.31 9.6% 17.88 26.07 45.8%
896 8.67 9.04 4.3% 22.05 26.84 21.7%
1024 9.90 11.33 14.5% 24.86 28.62 15.1%
1280 8.50 8.62 1.5% 21.18 23.33 10.1%
1536 7.88 8.10 2.8% 20.19 22.37 10.8%
1792 8.46 8.49 0.4% 22.00 23.66 7.5%
2048 7.40 10.38 40.3% 15.62 25.70 64.6%
2560 7.36 8.10 10.1% 18.80 22.68 20.6%
3072 7.35 8.09 10.0% 18.57 22.96 23.6%
3584 7.05 7.77 10.2% 18.46 22.69 22.9%
4096 8.41 9.63 14.4% 21.07 25.23 19.7%

ADI Figures 5-6 summarize the performance improvement
of padding versus no padding for the ADI benchmark. Per-
formance is reported in GF/s. ADI reflects the impact of
padding amplified compared to MKL-FFT, an effect particu-
larly exacerbated when running on multi-core architectures.
This stems from the inherent repeated row-first and column-
first data access pattern of ADI, where even when the spa-
tial reuse space (N rows each of 1 cache line worth of data)
fits in cache Lx, cache Lx+1 does not contain enough sets
to act like a victim cache and ensure evictions from con-
flict misses in Lx are kept in Lx+1, incurring in high miss
penalty. Using padding, spatial reuse can be implemented
in the smallest cache whose capacity is larger or equal to
the reused data footprint because no conflict miss will occur.
Therefore, maximal cache utilization is realized. Similar to
MKL-FFT, the padding used for each case was 8 elements,
the minimal padding in our framework.

DGEMM Fig. 7 reports the results of tile size exploration
for the DGEMM benchmark. For clarity, the focus is on 1-
core data on HSW, and only a selection of 20+ tile sizes we
found to perform best after more extensive exploration. Each
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Figure 6: ADI: Impact of padding on HSW

implements a hierarchical tiling (2-level), and we report the
achieved GF/s for a problem size N = 2048. HT/HPad

is hierarchical tiling that uses the nested padding scheme
presented in the previous section. We also report the per-
formance achieved for the exact same tiling in: HT/PadL3,
padding only for the outer tiles / L3; HT/PadL1, padding
only for the inner tiles / L1; and HT/nopad with no padding.

We make several key observations. First, the nested
padding approach consistently outperforms all other padding
schemes. This clearly motivates the need for hierarchical
padding, e.g., applying Song and Li’s padding scheme to
only one of the two tiling levels would lead to decreased per-
formance. Second, the performance ordering of different tile

sizes without padding is not the same as with padding. This
is a crucial aspect for the tile size exploration framework:
the problem of tile size exploration and padding cannot be
decoupled, i.e., first explore to find the best tile then pad for
it. Based on these experiments, it would lead to selecting
a tile size that is about 10% slower after padding than the
optimal padded tile size. We argue this is an essential ob-
servation for auto-tuning frameworks, motivating the need
to have very fast and automated solutions for computing the
(hierarchical) padding values such as the method proposed
in this paper. Indeed, contrary to the previous benchmarks,
here, the computed padding differs between tile sizes, rang-
ing from 8 to 128. Frameworks like ATLAS [3, 24] that
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perform a moderate level of auto-tuning on the target ma-
chine are perfect candidate users of our PAdvisor tool. We
will show this observation holds not only for DGEMM but
also for iterative stencils.

Fig. 8 demonstrates the benefit of hierarchical tiling in
our experiments. We compare HT/HPad to single-level tiling
only for the L3 cache ST/L3 and single-level tiling only for
the L1 cache ST/L1. In all cases, the optimal padding is ap-
plied. Using AVX2 FMAs, the single-core DP peak perfor-
mance of this machine is 56 GF/s, and our best performance
in this plot is 10 GF/s, indicating that while there is room
for improvement, our code achieves solid performance. Of
note, the impact of padding relates to the quality of the opti-
mized code. For inefficient codes where conflict misses are
not the dominant bottleneck, padding does not provide much
improvement. This is not the case in our examples, given the
strong improvements via padding only.

HPGMG Fig. 9 provides a comparative plot for a tile size
exploration on HPGMG, running on a core of HSW mirror-
ing the Message Passing Interface (MPI)-based distribution
of the full HPGMG code. We display a larger number of tile
sizes to show the impact of intra-array padding only ST/pad

versus intra- and inter-array padding ST/pad+inter, against
no padding ST/nopad.

As with GEMM, we see the performance ordering of tiles
is not the same whether or not padding is applied and that
padding significantly improves performance. We also ob-
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Figure 9: HPGMG: Impact of intra/inter array padding

serve the high impact of inter-array padding in this case.
HPGMG uses 5 different arrays, and inter-array conflicts oc-
cur frequently, even if the data tile is conflict-free for one
array. Indeed, when computing padding for set-associative
caches individually for each array, we aim to find the small-
est padding that ensures no conflicts, assuming only this ar-
ray occupies the cache. In contrast, considering both intra-
and inter-array padding as depicted in the previous section
is key for performance in this situation—with up to 4× im-
provements for certain tile sizes over intra-padding alone.
Similarly to DGEMM, the padding (both intra and inter) val-
ues computed by our approach differ between tile sizes with
inter-array padding values ranging from 573 KB to 2.6 MB.

Stencils Table 4 summarizes the best performance that
can be achieved after an extensive auto-tuning of tile sizes
on two stencil computations. We display the best perfor-
mance achieved in GF/s (the higher, the better), to empha-
size the high-performance nature of our customized imple-
mentations. We integrated PAdvisor in the tile size selection
process and report the performance for the best tile found.
For each case, the tile achieving the best performance in the
nopad case is not the same as the one for the intra case,
representing intra-array padding only. We also show the im-
pact of inter-array padding on performance in the intra+inter

columns.

Table 4: Stencil-2D (top three entries) and Stencil-3D (bot-
tom three entries), in GFlop/s using 4 cores

SB HSW

N no pad intra intra+inter no pad intra intra+inter
1024 10.22 21.54 25.22 20.23 32.16 32.30
1536 13.03 27.44 33.52 26.23 39.23 39.89
2048 13.06 27.66 32.02 26.19 37.97 38.54
256 13.74 22.42 24.76 20.19 27.94 30.45
384 18.63 21.86 22.11 24.06 27.00 27.29
512 17.74 20.29 20.31 22.28 27.08 27.08

PAdvisor Running Time We conclude our experimental
study with a display of the execution time of our PAdvisor

implementation using scenarios requiring the most compu-
tation: 3D data space, non-power-of-two data tiles using L3
16-way set-associative cache. Fig. 10 shows the time, in mil-
liseconds, for a variety of tile sizes. Each series depicts a
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different inner-most tile size (varying other tile sizes), em-
pirically illustrating that our algorithm’s complexity is not
driven by the data space size but by the size of the inner-
most tile dimension. In any case, the our implementation’s
execution time is in the milliseconds range, making it suit-
able for integration both in production compilers and auto-
tuning frameworks.
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Figure 10: PAdvisor execution time

5.3 Discussion

Padding Versus Data Copying An alternative to padding
is data copying, where data to be loaded in the cache is
explicitly copied into contiguous smaller temporary arrays,
improving conflict misses. This approach has trade-offs. The
cost of copying data has to be amortized by making a high
number of uses of the copied block, which would otherwise
have suffered a high number of conflict misses. Copying is
used in Intel MKL, for instance, for their BLAS3 DGEMM
implementation, but not for code with a lower reuse factor,
such as MKL FFT routines. Assessing the profitability of
data copying is difficult and implementation-specific, but for
codes with low arithmetic intensity, such as FFTs, ADIs, and
simple stencils, the copy cost is unlikely to be amortized.
In contrast, padding does not incur any copy, but it does
require the user to pad the data structure across complete
functions or programs, and does increase the amount of
virtual memory needed for the padded data structures.

Replacement Policy While the cache replacement policy
can clearly affect the number of cache misses for an appli-
cation, it is not expected to make much of a difference when
repeated accesses to a data tile occur in a padded array—
as long as the replacement policy is some approximation of
the Least Recently Used (LRU) (as is the case in practice).
This is because the padding guarantees that all accessed data
can fit without conflict in the cache. The only possibility of
encountering misses via conflict among tile data is if pre-
existing data in some cache lines are retained, and more re-
cently accessed tile data are replaced instead. This scenario
is possible with a random replacement policy. Regardless,
even with such a policy, the probability of conflict misses
among tile data will decrease asymptotically with repeated
accesses.

Our analysis does not account for non-tile data accessed,
e.g., due to register spill code introduced by the compiler,
or access to data on the stack. In this case, conflict-freedom
cannot be guaranteed by padding. Therefore the replacement
policy may have an impact on performance. However, in
such a scenario, padding to utilize a capacity of (A-1)S in-
stead of the full capacity of AS should be able to guaran-
tee freedom from conflict misses, assuming that all data ac-
cessed on the stack are less than SB bytes.

6. Conclusion

Array padding is a well-known technique for application de-
velopers, especially for the rather commonly encountered
scenario in scientific/engineering computing where natu-
ral extents of multidimensional dense arrays are powers-
of-two. For example, Intel provides an “FFT Length and
Layout Advisor” [12] to use in conjunction with the In-
tel MKL FFT library. This tool uses heuristics to determine
suitable padding for the user-specified array size for multidi-
mensional FFTs. Rather than a heuristic, PAdvisor provides
conflict-free padding solutions with minimal padding space
overhead for arbitrary multidimensional tile data footprints,
and nested hierarchical tiles.

In this work, we have made several contributions, includ-
ing: 1) developed optimal analytical solutions for the array
padding problem for set-associative caches when tile sizes
divide the number of cache sets, 2) developed efficient com-
putational solutions for the general case of arbitrary-sized
tiles and multiple arrays with set-associative caches, 3) pre-
sented a first solution for interference-free padding of hier-
archical tiles in a multi-level cache hierarchy, 4) integrated
these new developments in a tool called PAdvisor, and 5)
provided an experimental evaluation with a variety of bench-
marks to demonstrate the impact of conflict misses and the
effectiveness of PAdvisor.

Experimental data clearly showed many cases with a
tight coupling between tile size optimization and padding.
If tile size selection is done first without padding and op-
timal padding is performed for that tile size, the achieved
performance is not as high as with co-tuning, where opti-
mal padding is done for each tile size in the auto-tuning
run. PAdvisor is very fast and can be effectively used for
such co-tuning of padded data layout and tile size optimiza-
tion in auto-tuning environments, such as OpenTuner [1, 2],
CHiLL [23], Active Harmony [22], and a number of other
auto-tuning frameworks [5, 8, 24].
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A. Appendix

We first prove the main result of Sec. 3: Theorem 2. We use
the following notation: Ni is the padded size of an array along
dimension i, Di is the tile size along dimension i, S is the number
of sets in the cache, A is the associativity, and B is the cache
block size. For the case of “divisible tiles” assumed in Sec. 3,
N1 and D1 are multiples of B. We will simplify the notation
without loss of generality and assume that N1 and D1 have been
normalized by dividing by B, i.e., consider B = 1. Let gi =
(

S/
∏

1≤k<i gk
)

∧Ni, for all 1 ≤ i < d. Finally, let ni = Ni/gi

and si = S/
∏

1≤k≤i gk for 1 ≤ i < d, and σ = sd−1.

Lemma 7. Consider a set-associative cache of capacity C. If the

following conditions are met, then a loop nest whose tiles have a d-

dimensional array footprint can fully utilize the cache and remain

free of self-interference:

1. ∀i, 1 ≤ i < d, gi divides Di.

2. S divides Dd

∏

1≤i<d gi.

Proof. Let υ =
(

∏

1≤i<d gi
)

Dd/S. We have σ = Dd/υ. Partition

the Dd×Dd−1×. . .×D1 tile into sub-tiles of size σ×gd−1×. . .×
g1. We show that no two memory blocks within a sub-tile can map
to the same cache set. The total number of sub-tiles is exactly the

cache associativity A because
∏

1≤i≤d Di

Dd/υ
∏

1≤i<d gi
=

υ
∏

1≤i≤d Di

Dd

∏
1≤i<d gi

=
υ
∏

1≤i≤d Di

υS
= A. Consider two blocks of the same sub-tile with

respective index (id, . . . , i2, i1) and (jd, . . . , j2, j1). Supposing
they map to the same cache set, then:



i1 +
∑

2≤ℓ≤d

iℓ
∏

1≤k<ℓ

Nk





S

≡S



j1 +
∑

2≤ℓ≤d

jℓ
∏

1≤k<ℓ

Nk





S
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Denoting δk = ik − jk for each 1 ≤ k ≤ d, as S = g1s1,



δ1 +N1



δ2 + · · ·+ δd
∏

2≤k<d

Nk









g1

≡g1 0g1

Since N1 = g1n1 and |i1 − j1| < g1, necessarily i1 = j1. The
previous equation becomes



N1



δ2 + δ3N2 + · · ·+ δd
∏

2≤k<d

Nk









S

≡S 0S

i.e., (as N1 = n1g1 and S = s1g1),



n1



δ2 + δ3N2 + · · ·+ δd
∏

2≤k<d

Nk









s1

≡s1 0s1

which reduces (as g1 = S ∧N1, i.e., 1 = s1 ∧ n1) to,



δ2 + δ3N2 + · · ·+ δd
∏

2≤k<d

Nk





s1

≡s1 0s1

Applying the same reasoning iteratively on all dimensions, we
conclude that for all 1 ≤ i ≤ d, δi = 0.

Lemma 8. Consider a set-associative cache of capacity C. Let

gd = S/
∏

1≤k≤d−1 gk, i.e., S =
∏

1≤k≤d gk. If the following

condition is met, then a loop nest whose tiles have a d-dimensional

array footprint can fully utilize the cache and remain free of self-

interference:

1. ∀q, 1 ≤ q ≤ d, ∃p, 1 ≤ p ≤ q,
∏

1≤k≤q gk divides

Dp

∏

1≤k<p gk.

Proof. We observe that the above condition implies (for all q) the
existence of p such that

∏

p≤k≤q gk divides Dp. This allows to
partition the interval [1 : d] into consecutive intervals [1 : q1],
[p2 : q2], . . . , [pe : d] (we have ∀l, ql + 1 = pl+1), where
∏

pl≤k≤ql
gk divides Dpl . For each interval, we define g′pl =

∏

pl≤k≤ql
gk, and for all other pl < i ≤ ql, g′i = 1. We have

∏

pl≤k≤ql
gk =

∏

pl≤k≤ql
g′k.

By definition of pe,
∏

1≤k≤d gk (also equal to S) divides
Dpe

∏

1≤k<pe
gk = Dpe

∏

1≤k<pe
g′k.

Let υ =
(

Dpe

∏

1≤i<pe
g′i

)

/S and partition the Dd × Dd−1 ×

. . . × D1 data tile into sub-tiles of size 1 × . . . 1 × (Dpe/υ) ×
g′pe−1 × . . .× g′1. Similar to Lemma 8, we show that no two mem-
ory blocks within a sub-tile can map to the same cache set. The
total number of sub-tiles is the cache associativity A because∏

1≤i≤d Di

1d−pe (Dpe/υ)
∏

1≤i<pe
g′
i

=
υ
∏

1≤i≤d Di

Dpe

∏
1≤i<pe

g′
i

=
υ
∏

1≤i≤d Di

υS
=

A. Consider two blocks of the same sub-tile with index (id, . . . , i2, i1)
and (jd, . . . , j2, j1). Supposing they map to the same cache set, and
denoting δk = ik − jk for each 1 ≤ k ≤ d, then:



δ1 +N1



δ2 + · · ·+ δd
∏

2≤k<d

Nk









S

≡S 0S (1)

We have |δpe | < Dpe/υ, |δpl | < g′pl for 0 ≤ l < e, and
δi = 0 otherwise. Eq. 1 can be rewritten, merging terms interval
by interval, as follows:



δ1 +
∏

1≤k≤q1

Nk



δp2 + · · ·+ δpe
∏

p2≤k<d

Nk









S

≡S 0S

As
∏

1≤k≤q1
Nk = g′1

∏

1≤k≤q1
nk, and because the previous

equation also holds modulo g′1, necessarily δ1 = 0. Similar to the
proof of Lemma 8 (now iterating on l), we conclude that for all
1 ≤ i ≤ d, δi = 0.

Lemma 9. Assume that n ∧ S = 1, and let us consider kS ∈
Z/SZ, such that k | S. Let for some pS ∈ Z/SZ, define in Z/SZ:

P =
⋃

α∈Z
((p+ αk)n)S , and P ′ =

⋃

α∈Z
(pn+ αk)S . Then,

P = P ′

Proof. We have that n ∧ S = 1, and therefore n ∧ (S/k) =

1. P rewrites as (pn)S +
⋃

α∈Z
(αnk)S , and P ′ as (pn)S +

⋃

α∈Z
(αk)S . We need to prove that

⋃

α∈Z
(αnk)S =

⋃

α∈Z
(αk)S .

As k | S, this is equivalent to prove that
⋃

α∈Z
(αn)S/k =

⋃

α∈Z
(α)S/k, which is true as n ∧ (S/k) = 1.

Lemma 10. Define the occupancy of iS ∈ Z/SZ as occyx(iS) =
∣

∣{(y, x) : (N1y + x)S ≡ iS ∧ 0 ≤ y < D2, 0 ≤ x < D1}
∣

∣.

Suppose that g1 ∤ D1 or (S ∤ D1, and S ∤ g1D2). Then, this

occupancy is not uniform. In other words, there exists iS 6≡ jS
such that occyx(iS) 6= occyx(jS).

Proof. First, suppose that g1 ∤ D1. Define CCg1(ig1) = {(y, x) :

(N1y + x)g1 ≡ ig1 ∧ 0 ≤ y < D2, 0 ≤ x < D1}. For ig1 6≡

i′g1 , CCg1(ig1) ∩ CCg1(i
′
g1) = ∅. Assuming (by contradiction)

the occupancy (occyx()) of cache sets to be uniform, then the
occupancy of CC’s set also must be uniform. In other words,
∀iS 6≡ jS , CCg1(iS) = CCg1(jS). Because g1 | N1, if (y, x) ∈
CCg1(ig1), then ∀0 ≤ y′ < D2, (y′, x) ∈ CCg1(ig1). In other
words, |CCg1(ig1)| = D2|{xg1 ≡ ig1 ∧ 0 ≤ x < D1}| =
D2

⌊

(D1 − ig1)/g1
⌋

. Hence, for this to be equal for any value of
ig1 , we must have g1 | D1, which is a contradiction.

Now, suppose g1 | D1, S ∤ D1, and S ∤ g1D2. Because g1 =
S ∧N1 divides both S, N1 and D1, we have that occyx(i)S/g1 =
∣

∣{(y, x′) : (yN1/g1 + x′)S/g1 ≡ iS/g1 ∧ 0 ≤ y < D2, 0 ≤ x′ <

D1/g1}
∣

∣ = g1occyx(iS). The consequence is that without loss
of generality, we can essentially consider that g1 = S ∧ N1 = 1.
Thus, the last (D1−(D1 mod S)) columns uniformly occupy the
cache sets. Observe that D1 mod S 6= 0. We can assume, without
loss of generality, that 0 < D1 < S. Also, as N1 is a generator
of Z/SZ, the last (D2 − (D2 mod S)) rows uniformly occupy
the cache sets. Similarly, we assume that 0 < D2 < S. Let n′

denote the inverse of (N1)S in Z/SZ. We have that occyx(iS) =
∑

0≤x<D1

∣

∣{(y, x) : yS ≡ (i− x)Sn
′ ∧ 0 ≤ y < D2}

∣

∣.
Let us define δ (yS) as 1 if 0 ≤ y < D2 and 0 if D2 ≤

y < S: ∀iS , occyx(iS) =
∑

0≤x<D1
δ
(

(i− x)Sn
′
)

. We get,

∀i, occyx(iS)−occyx((i− 1)S) = δ
(

iSn
′
)

−δ
(

(i−D1)Sn
′
)

.

Suppose now that occyx() is uniform. We have occyx(iS) =

occyx((i− 1)S), i.e., ∀iS , δ
(

iSn
′
)

= δ
(

(i−D1)Sn
′
)

. Setting

k = D1 ∧ S (observe that k 6= S and k | S), we have that
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for any iS ∈ Z/SZ, ∀α ∈ Z, δ
(

iSn
′
)

= δ
((

iS + αk
)

n′
)

.
By Lemma 9, ∀α ∈ Z, δ

(

iSn
′
)

= δ
(

iSn
′ + αk

)

. By definition

of δ (), we have δ
(

(S − 1)S

)

= δ
(

−1S
)

= 0, which leads to

δ
(

(−1 + k)S

)

= 0 i.e. k − 1 ≥ D2. We also have δ
(

0S
)

= 1,

leading to δ
(

kS

)

= 1. This implies k < D2, which is absurd. So
occyx() cannot be uniform.

Lemma 11. Let occ’x(ig1) = |{(x) : xg1 ≡ ig1 , 0 ≤ x < D1}|,
occ’zyx(ig1) =

∣

∣{(z, y, x) : (N2N1z +N1y + x)g1 ≡ ig1 ∧ 0 ≤

z < D3, 0 ≤ y < D2, 0 ≤ x < D1}
∣

∣, and occzyx(iS) =
∣

∣{(z, y, x) : (N2N1z +N1y + x)S ≡ iS ∧ 0 ≤ z < D3, 0 ≤
y < D2, 0 ≤ x < D1}

∣

∣. If the occupancy occ’x() is not uniform,

then the occupancies occ’zyx() and occzyx() also are not uniform.

Proof. Because g1 | N1, occ’zyx(ig1) =
∣

∣{(z, y, x) : xg1 ≡ ig1 ∧
0 ≤ z < D3, 0 ≤ y < D2, 0 ≤ x < D1}

∣

∣ = D3D2occ’x(ig1).
In other words, if occ’x() is not uniform, then occ’zyx() cannot
be uniform. Moreover, S is a multiple of g1. So, occzyx() is not
uniform.

Lemma 12. Let occ’yx(ig1g2) =
∣

∣{(y, x) : (N1y + x)g1g2 ≡

ig1g2 ∧ 0 ≤ y < D2, 0 ≤ x < D1}
∣

∣, occ’zyx(ig1g2) =
∣

∣{(z, y, x) : (N2N1z +N1y + x)g1g2 ≡ ig1g2 ∧ 0 ≤ z <

D3, 0 ≤ y < D2, 0 ≤ x < D1}
∣

∣, and occzyx(iS) =
∣

∣{(z, y, x) :

(N2N1z +N1y + x)S ≡ iS ∧ 0 ≤ z < D3, 0 ≤ y < D2, 0 ≤
x < D1}

∣

∣. If the occupancy occ’x() is not uniform, then the

occupancies occ’zyx() and occzyx() also are not uniform.

Proof. Similar to the proof for Lemma 11.

Lemma 13. Suppose that g1|D1 and D2 < S/g1. Let occyx(iS) =
∣

∣{(y, x) : (N1y + x)S ≡ iS ∧ 0 ≤ y < D2, 0 ≤ x < D1}
∣

∣.

Suppose this occupancy to be non-uniform (occyx(iS) is not con-

stant over Z/SZ). Then, ∀kS 6≡ 0S ∈ Z/SZ, ∃jS ∈ Z/SZ s.t.

occyx(jS) 6= occyx((j + k)S).

Proof. Because g1 = S ∧ N1 divides both S, N1 and D1, we
have that occyx(i)S/g1 =

∣

∣{(y, x′) : (yN1/g1 + x′)S/g1 ≡

iS/g1 ∧ 0 ≤ y < D2, 0 ≤ x′ < D1/g1}
∣

∣ = g1occyx(i)S .
The consequence is that without loss of generality, we can consider
that S ∧ N1 = 1 and D2 < S. We also can assume (because
of non-uniform occupancy) that D2 6= 0. Also, occyx(iS) can
be rewritten as

∑

0≤x<D1

∣

∣{(y, x) : (N1y + x)S ≡ iS ∧ 0 ≤

y < D2}
∣

∣. Denoting n′ as the inverse of (N1)S in Z/SZ, it
then can be rewritten as occyx(iS) =

∑

0≤x<D1

∣

∣{(y, x) :

yS ≡ (i− x)Sn
′ ∧ 0 ≤ y < D2}

∣

∣. For the rest of this
proof, all variables (but α) belong to Z/SZ. To simplify the
notations, modulo arithmetic—overline and S-subscript—is left
implicit below. Let us define δ (y) as 1 if 0 ≤ y < D2 and
0 otherwise: ∀i, occyx(i) =

∑

0≤x<D1
δ ((i− x)n′). We get,

∀i, occyx(i) − occyx(i − 1) = δ (in′) − δ ((i−D1)n
′). Be-

cause δ (y) ∈ {0, 1}, |occyx(i)− occyx((i− 1))| ≤ 1. Also,
∑

i∈Z/SZ occyx(i) − occyx((i − 1)) = 0. As a consequence,

because we considered non-uniform occupancy in the hypothe-
sis, there exists p ∈ Z/SZ such that occyx(p) − occyx((p −
1)) = 1. To prove our lemma, we assume by contradiction
that ∃k 6≡ 0 s.t. ∀j, occyx(j) = occyx(j + k). We have that
∀α ∈ Z, occyx(j) = occyx(j + α(k ∧ S)). We can assume,
without loss of generality, that k ∧ S = k, i.e., k | S. Re-
call that ∀i, δ (in′) − δ ((i−D1)n

′) = occyx(i) − occyx(i −
1). In particular, ∀α, δ ((p+ αk)n′) − δ ((p−D1 + αk)n′) =
occyx(p + αk) − occyx(p + αk − 1) = occyx(p) − occyx(p −
1) = 0. Because δ (y) ∈ {0, 1}, ∀α, δ ((p+ αk)n′) = 1,
and δ ((p−D1 + αk)n′) = 0. Applying Lemma 9, we get that
∀α, δ (pn′ + αk) = 1, and δ ((p−D1)n

′ + αk) = 0. This means
that there exists 0 ≤ y < k such that δ (y) = 0 and k ≤ y′ < 2k
(recall that k | S and k 6≡ 0S) such that δ (y′) = 1. By definition
of δ (), this means that y ≥ D2 and y′ < D2, which contradicts
the fact that y < k ≤ y′.

Lemma 14. Define the occupancy of iS ∈ Z/SZ as occzyx(iS) =
∣

∣{(z, y, x) : (N2N1z +N1y + x)S ≡ iS ∧ 0 ≤ z < D3, 0 ≤
y < D2, 0 ≤ x < D1}

∣

∣. Suppose that S ∤ D1, and S ∤ g1D2, and

S ∤ g1g2D3. Then, this occupancy is not uniform. In other words,

there exists iS 6≡ jS such that occzyx(iS) 6= occzyx(jS).

Proof. First, we will assume that g1|D1. Indeed, if this occupancy
is uniform, then similarly to the proof for Lemma 10, we can prove
that g1|D1. Let occyx(iS) =

∣

∣{(y, x) : (N1y + x)S ≡ iS ∧ 0 ≤
y < D2, 0 ≤ x < D1}

∣

∣. First, observe that for any iS ∈ Z/SZ,
occzyx(iS) =

∑

0≤z<D3
occyx((i− zN1N2)S). So, for any

iS ∈ Z/SZ, occzyx(iS) − occzyx((i−N1N2)S) is equal to
occyx(iS) − occyx((i−D3N1N2)S). Suppose by contradiction
that occzyx(iS) is constant (uniform occupancy). A direct con-
sequence is that occyx(iS) = occyx((i−D3N1N2)S). In other
words, this means that there exists kS (equal to (−D3N1N2)S ∈

Z/SZ) such that for all iS ∈ Z/SZ, occyx(iS) = occyx((i+ k)S).
Now, the hypothesis that S ∤ D1, and S ∤ g1D2 implies (from
Lemma 10) that occyx(iS) is not constant (non-uniform occu-
pancy). In order to apply Lemma 13 to prove the contradiction,
we need to prove that kS 6≡ 0S . By definition of g1, (S/g1) ∧
(N1/g1) = 1, and in particular, (S/(g1g2))∧ (N1/g1) = 1. Also,
(S/(g1g2))∧(N2/g2) = 1. By hypothesis (S/(g1g2)) ∤ D3. Thus,
S/(g1g2) ∤ (N1/g1)(N2/g2)D3. In other words, (D3N1N2)S 6≡
0S .

Theorem 2 (Set-associative cache). Consider a set-associative

cache of capacity C = SAB. For all 1 ≤ i ≤ d − 1, let

gi = S/
∏

1≤k≤i−1 gk ∧ Ni. A loop nest whose tiles have a d-

dimensional array footprint can fully utilize the cache and remain

free of self-interference if and only if the following conditions are

met:

1. ∀i, 1 ≤ i ≤ d − 1, ∃j, 1 ≤ j ≤ i,
∏

1≤k≤i gk divides

Dj

∏

1≤i≤j−1 gi.

2. ∃i, 1 ≤ i ≤ d, S divides Di

∏

1≤k≤i−1 gk.

Proof. Lemma 8 proved the sufficient condition, and the necessary
condition follows from Lemma 14.
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