
Grammatical Evolution for the Multi-Objective Integration
and Test Order Problem

Thainá Mariani, Giovani Guizzo, Silvia R. Vergilio and Aurora T. R. Pozo
Computer Science Department

Federal University of Paraná
Curitiba, Paraná, Brazil

{tmariani, gguizzo, silvia, aurora}@inf.ufpr.br

ABSTRACT
Search techniques have been successfully applied for solving
different software testing problems. However, choosing, im-
plementing and configuring a search technique can be hard
tasks. To reduce efforts spent in such tasks, this paper
presents an offline hyper-heuristic named GEMOITO, based
on Grammatical Evolution (GE). The goal is to automat-
ically generate a Multi-Objective Evolutionary Algorithm
(MOEA) to solve the Integration and Test Order (ITO)
problem. The MOEAs are distinguished by components and
parameters values, described by a grammar. The proposed
hyper-heuristic is compared to conventional MOEAs and to
a selection hyper-heuristic used in related work. Results
show that GEMOITO can generate MOEAs that are statis-
tically better or equivalent to the compared algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; D.2.5 [Software Engineering]: Test-
ing and Debugging

Keywords
search based software engineering, multi-objective, gram-
matical evolution, hyper-heuristic, evolutionary algorithm

1. INTRODUCTION
In the Search-Based Software Engineering (SBSE) field,

search based optimization techniques are used to automate
the search for optimal or near-optimal solutions to software
engineering problems. We can find SBSE approaches for
solving problems related to many software engineering tasks,
such as requirements, design, maintenance and testing [17].
This last task has received many attention and several test-
ing problems have been successfully solved in the Search
Based Software Testing (SBST) [31].

Among such problems, we can mention the ITO (Integra-
tion and Testing Order) problem [1, 5], a hard software test-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN .

DOI:

ing problem that consists in finding a sequence of units to
be tested, such that the stubbing cost is minimized. A unit
is the smallest part of a software (procedure, class, method,
aspect) that will be tested eventually. The problem starts
when a unit A under test requires a unit B for a given func-
tionality, but B is not yet implemented. What the tester
must do in this situation is to develop a stub for B, which
increases the testing cost. A stub is an emulation of a unit
that is later discarded when such a unit is developed, thus
it might be considered a waste of resources to develop un-
necessary stubs. If the tester is smart enough, he/she will
develop unit B first and then unit A (sequence of {B, A}),
thus no stubs are required. However, in large systems it
is not that simple since there are a lot of units and poten-
tially several cyclic that cannot be broken without a stub.
The idea is to reduce the testing cost by minimizing the re-
sources employed into developing stubs. There are several
objective functions for evaluating the stubbing cost of the
solutions (orders of units). For instance, the number of re-
quired stubs, methods of stubs, attributes of stubs, classes,
interfaces and so on [1]. In this sense, approaches based on
Multi-Objective and Evolutionary algorithms (MOEAs) are
the most promising. By the way, surveys on SBSE [17] show
that MOEAs are the most used and preferred.

Nevertheless, the use of MOEAs involves many decisions
[13]. Firstly, it is necessary to choose the algorithm to be
used. Then, each parameter value must be chosen from
a lot of possible values. Furthermore, the choice may de-
pend on the problem representation and particularities. For
instance, in a simple genetic algorithm, the software engi-
neer needs to configure the population size, crossover and
mutation operator, and respective probabilities. Therefore,
making a decision taking into account all these aspects is a
hard task that can be considered an optimization problem
by itself [13]. Hyper-heuristics [7] are heuristics to select or
generate heuristics for solving hard search problems, thus
they can be used to select or generate MOEAs. A learning
mechanism can be used by the hyper-heuristic for updating
the heuristic preference based on its historical performance.
The learning can be online, which is performed while the
problem is being solved. The learning can also be offline,
when it is first performed in a set of training instances and
then the resulting heuristic is used to solve other instances.
Hence, hyper-heuristics can be classified according to the
nature of the heuristic search space (selection or generation)
and the source of feedback (online, offline or no-learning) [7].

In the SBSE context, hyper-heuristics can contribute to
obtain a holistic and generic SBSE [16], and have already

been explored by some works [2, 15, 18, 19, 21], including in
the context of SBST [15, 18, 19]. Guizzo et al. [15] mention
that the application of hyper-heuristics to the ITO problem
is very suitable. There are many operators that can be used,
given the permutation representation of the problem (each
gene is the ID of a unit). In addition to this, experiments [1]
show that no algorithm has been proved to be the best to
solve ITO in different problem instances and contexts.

The work of Guizzo et al. [15] proposes a hyper-heuristic
to solve the ITO problem. It automatically selects the best
low-level heuristic that is a combination of crossover and
mutation operators generally used by Evolutionary Algo-
rithms (EAs). Nevertheless, the proposed hyper-heuristic
presents a limitation: the tester still has to choose a spe-
cific algorithm, select the other components and tune some
parameter values. Moreover, the hyper-heuristic is online,
resulting in resources being allocated for the training mech-
anism during the problem solving. A good way to avoid
this is to train the algorithm before solving the problem and
reuse the trained heuristic.

To overcome this limitation, we propose an offline hy-
per-heuristic to generate MOEAs for solving the ITO prob-
lem. The generated MOEAs are distinguished by many com-
ponents and parameters, including initialization, selection,
mating, operators, replacement and archiving. We chose the
generation of MOEAs because, as mentioned before, they
are multi-objective algorithms and because existing MOEAs
have already been explored for this problem. That way, we
believe that a new MOEA, trained specifically for the ITO
problem, can obtain good results. Furthermore, MOEAs
have a great number of components and parameters that
can be explored by the hyper-heuristic, resulting in many
MOEAs possibilities. In addition, some works in the lit-
erature already used the generation of EAs in other con-
texts [3, 4, 25], presenting promising results.

Our hyper-heuristic is based on Grammatical Evolution
(GE) [32]. It is called GEMOITO (Grammatical Evolu-
tion hyper-heuristic for the Multi-objective Integration and
Test Order problem). GE is a type of Genetic Programming
(GP) [20] that uses a grammar to generate programs. The
grammar defines rules to be used in the GE evolutionary pro-
cess. There are several works in the literature using GE to
generate search algorithms [8, 24–26, 28–30], few of them are
related to the generation of EAs [24–26]. Results obtained
by these works encouraged us to use GE as the heuristic for
generating MOEAs. The GE grammar is composed by sev-
eral values for the components and parameters of MOEAs,
thus the GE algorithm can generate a MOEA containing the
best combination of components and parameters values.

GEMOITO is experimentally evaluated and compared with
the MOEAs used in the literature: Nondominated Sorting
Genetic Algorithm II (NSGA-II) [10] and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [34], and with the on-
line hyper-heuristic proposed by Guizzo et al. [15]. The ob-
tained Pareto fronts were evaluated using the hypervolume
indicator [35], the Kruskal-Wallis statistical test [11] and
the Effect Size statistical test [9]. GEMOITO results are
statistically equivalent or better than the compared hyper-
heuristic, NSGA-II and SPEA2 results.

This paper is organized as follows. Section 2 summarizes
related work. Section 3 presents GEMOITO, describing the
grammar, defined components and parameters values. Sec-
tion 4 describes the empirical evaluation: the research ques-

tions, the performed experiments and the obtained results.
Finally, Section 5 contains conclusions and some future re-
search works.

2. RELATED WORK
Hyper-heuristics have been explored by many works in

the literature [6]. However, we find few works addressing
hyper-heuristics and SBSE. They are presented next.

Basgalupp et al. [2] proposed a hyper-heuristic to gen-
erate an algorithm for the creation of effort-prediction de-
cision trees. The algorithm is generated based on exist-
ing heuristic blocks. Kumari et al. [21] proposed a hyper-
heuristic based on multi-objective genetic algorithm to solve
the software module clustering problem. During the execu-
tion of the genetic algorithm, the hyper-heuristic selects a
low-level heuristic to be applied. Twelve low-level heuristics
are available, which are combinations of different selection,
crossover and mutation operators. Jia et al. [19] investigate
a simulated annealing hyper-heuristic that performs online
learning in order to dynamically apply the best Combinato-
rial Interaction Testing (CIT) strategy in the testing activ-
ity. Jia [18] describes a selection hyper-heuristic framework
for Search Based Software Testing (SBST). A set of meta-
heuristics can be used to provide a global framework for the
hyper-heuristic. The hyper-heuristic selects the heuristics to
be applied by the meta-heuristic, which are changed based
on the problem being solved. No experimentation was per-
formed and just an idea of the framework is presented.

Guizzo et al. [15] propose HITO (A Hyper-heuristic for
the Integration and Test Order Problem), an online selec-
tion hyper-heuristic. This is the work most related to ours.
HITO selects, at each mating of a MOEA algorithm, the
best low-level heuristic to be applied. In this context, a low-
level heuristic is a combination of a crossover and a mutation
operator, which are specific for the permutation representa-
tion of the problem. HITO implements two selection func-
tions: Choice Function (CF) [27] and Multi-Armed Bandit
(MAB) [22]. A quality measure is used to assess the per-
formance of each low-level heuristic, taking into account the
dominance concept and the number of matings of the algo-
rithm. HITO was implemented using NSGA-II and evalu-
ated in seven instances of the ITO problem, where it out-
performed the ones obtained by some conventional MOEAs.

There are some works in the literature [8, 24–26, 28–30]
using GE for the generation of search algorithms. Lourenço
et al. [24–26] focus on the automatic generation and tuning
of mono-objective EAs. However, we have not found works
addressing the generation of multi-objective algorithms us-
ing GE. Some works address the automatic design of multi-
objective algorithms using other techniques [3, 4, 12, 23, 33].
In the MOEA context, most works are related to the parame-
ter tuning [12, 33]. The generation of MOEAs is explored by
Bezerra et al. [3, 4], that use Iterated Racing algorithms and
combine different MOEAs components, such as replacement,
archiving and fitness assignment. None of these works gen-
erate algorithms for solving software engineering problems.
As far as we know, our approach is the first one that uses
a hyper-heuristic based on GE for solving a multi-objective
software engineering problem.

The results of the presented works encouraged us to pro-
pose GEMOITO. We believe that changing MOEA compo-
nents and parameters is an effective way to obtain special-
ized algorithms that can outperform generic ones in the ITO

problem. The next section presents this hyper-heuristic and
how the MOEA generation is done.

3. OUR HYPER-HEURISTIC
Grammatical Evolution hyper-heuristic for the Multi-Ob-

jective Integration and Test Order Problem (GEMOITO) is
an offline generation hyper-heuristic, based on GE, to auto-
matically generate MOEAs to solve the ITO problem. An
offline hyper-heuristic uses a feedback mechanism for the
training of the low-level heuristics before solving the prob-
lem, as opposed to online hyper-heuristics that employ the
training during the problem solving (dynamically) [7]. An
advantage of such hyper-heuristics is that, even though they
usually need a great amount of resources to train the low-
level heuristics, no extra resource is wasted during the prob-
lem solving. Moreover, the trained heuristics are expected to
be reusable throughout other problem instances. Generation
hyper-heuristics are used to generate low-level heuristics, in-
stead of selecting existing ones as selection hyper-heuristics
do [7]. The generated heuristics are expected to perform well
on unknown instances of the problem, thus usually some sort
of training is employed to find such robust heuristics.

GE [32] algorithms are a type of GP [20] capable of sup-
porting such hyper-heuristics, given their main purpose of
generating programs (that can be heuristics). GE uses a
grammar to guide its evolutionary search. This grammar
contains several rules, each one containing several possibili-
ties. In the GP terminology, a rule is a non-terminal node,
whereas each of its options can be a terminal or a non-
terminal node. What the GE algorithm does is to map the
chromosome into a tree using such a grammar. The chromo-
some is usually an integer vector, where each gene is mapped
into an option (terminal or non-terminal) of one grammar
rule. The algorithm keeps decoding genes into rules until a
full solution is built. At the end, the tree is transformed into
a phenotypic representation according to the mapper. The
grammar is the most important artifact of a GE algorithm,
since it dictates the possible nodes for the solution.

The choice of using GE to generate MOEAs was mainly
inspired by [24–26], where the idea of generating EAs using
GE obtained better results when compared with traditional
EAs. However, when dealing with MOEAs, there are many
components and parameters that can be explored. Bezerra
et al. [3, 4] did this and obtained good results when com-
pared with conventional MOEAs, but without using GE.
Based on their works, we modeled these components and
parameters in the GEMOITO grammar. In addition, we
implemented the selection of other ones, such as population
initialization, source of parent selection, type of replacement
and more. Furthermore, we also implemented a widest range
of possible values for them. Such a grammar is presented in
Figure 1. Each item between “〈” and “〉” is a rule (non-
terminal node), everything after “::=” represents its options,
“|”divides the possible options to fulfill this rule, values with-
out “〈” and “〉” are terminal nodes and λ is a null option.

The grammar is used to generate different MOEAs, but
their template is always the same as shown in Algorithm 1.
The rules of the grammar are all components or parameters
usually present in MOEAs and each terminal node is a value
for the parameter or an implementation for the component.
For instance, 〈populationSize〉 denotes the population size
parameter and everything after “::=” are values that can
be used for this parameter. Similarly, 〈crossoverOperator〉

〈GA〉 ::= 〈populationSize〉 〈initialization〉 〈selection〉 〈mating〉
〈replacement〉 〈archive〉

〈populationSize〉 ::= 50 | 100 | 150 | 200 | 250 | 300

〈initialization〉 ::= Random | Parallel Diversification

〈selection〉 ::= 〈selectionOperator〉 〈source〉 〈fitnessAssignment〉

〈selectionOperator〉 ::= K Tournament 〈tournamentSize〉 | Random

| Roulette Wheel | Ranking

〈tournamentSize〉 ::= 2 | 4 | 6 | 8 | 10

〈source〉 ::= Population | Archive and Population

〈fitnessAssignment〉 ::= 〈convergenceStrategy〉 〈diversityStrategy〉

〈convergenceStrategy〉 ::= λ | Dominance Rank | Dominance Strength

| Dominance Depth | Raw Fitness

〈diversityStrategy〉 ::= λ | Crowding Distance

| K-th Nearest Neighbor | Adaptive Grid

| Hypervolume Contribution

〈mating〉 ::= 〈matingOperators〉 〈matingStrategy〉

〈matingOperators〉 ::= 〈crossoverOperator〉 〈crossoverProbability〉
〈mutationOperator〉 〈mutationProbability〉

〈crossoverOperator〉 ::= λ | Two Points Crossover

| Single Point Crossover | PMX Crossover | Cycle Crossover

〈crossoverProbability〉 ::= 1.0 | 0.95 | 0.9 | 0.8 | 0.5

〈mutationOperator〉 ::= λ | Swap Mutation | Insert Mutation

| Scramble Mutation | Inversion Mutation

〈mutationProbability〉 ::= 0.01 | 0.02 | 0.05 | 0.1 | 0.2

| 0.5 | 0.7 | 0.8 | 0.9 | 1.0

〈matingStrategy〉 ::= Steady State | Generational Two Children

| Generational One Child

〈replacement〉 ::= Generational 〈elitismSize〉 〈fitnessAssignment〉
| Ranking 〈fitnessAssignment〉

〈elitismSize〉 ::= 0 | N * 0.01 | N * 0.05 | N * 0.1 | N * 0.5

〈archive〉 ::= Ranking 〈fitnessAssignment〉 〈archiveSize〉

〈archiveSize〉 ::= 0 | N | N * 1.5 | N * 2

Figure 1: Grammar used by GEMOITO

is a rule representing the crossover operator of the MOEA
that can be none (λ), “Two Points Crossover”, “Single Point
Crossover”,“PMX Crossover”or“Cycle Crossover”[14]. Note
that, because ITO is a permutation problem, all the crossover
and mutation operators available in the grammar are for per-
mutation solutions. The first rule of the grammar (〈GA〉)
defines the rules that can be used by the GE algorithm to
generate a MOEA.

What the GE mapper does is to select the rule options
according to the genotype and to replace the abstract op-
eration in the MOEA template with a concrete value (pa-
rameter value or implementation for the component). At
the end, the mapper returns a fully constructed and config-
ured MOEA. GEMOITO receives this MOEA and executes

Algorithm 1: Template of the generated MOEAs

1 begin
2 population← Population initialization;
3 Evaluate (population);
4 Archive (population);
5 while stop criteria is not achieved do
6 matingPopulation← Selection (population);
7 offspringPopulation← Crossover

(matingPopulation);
8 offspringPopulation← Mutation

(offspringPopulation);
9 Evaluate (offspringPopulation);

10 Replacement (offspringPopulation, population);
11 Archive (offspringPopulation);

it by using a training instance of the problem. The result-
ing Pareto front is then evaluated using hypervolume [35]
to assess the performance of the MOEA. The hypervolume
result is the “fitness” of the MOEA, which is then used, as
in other Evolutionary Algorithms (EAs), to determine the
parents, surviving solutions (MOEAs) and so on. During
the GE search process, several MOEAs are generated using
the grammar, but at the end only the best MOEA is given
as result to solve the ITO problem.

One important thing to note is that when dealing with
multiple objectives, there might be incomparable solutions,
as known as non-dominated ones. However, these solu-
tions are still compared by the algorithm during decision
points. For example, the algorithm must decide which of
two non-dominated solutions will survive for the next gen-
eration. In this sense, the MOEAs might employ some
sort of fitness assignment strategy to assess the quality of
solutions in a multi-objective environment. For instance,
NSGA-II [10] uses Dominance Depth and Crowding Dis-
tance, whereas SPEA2 [34] uses Raw Fitness and K-th Near-
est Neighbor. GEMOITO’s grammar has rules for fitness as-
signment strategies for three procedures of the evolutionary
process such as done in [3]: i) selection; ii) replacement; and
iii) archiving. These rules encompass both convergence and
diversity strategies. Therefore, GEMOITO lets the gener-
ated MOEAs evaluate each solution in three different ways
(one for each procedure), focusing more on convergence or
diversity, depending on the selected strategy. We expect to
obtain more robust MOEAs using such an approach.

4. EMPIRICAL EVALUATION
In order to evaluate GEMOITO, we conducted exper-

iments performing comparisons with existing approaches.
These experiments are guided by two research questions:

RQ1: Can the MOEAs generated by GEMOITO outper-
form MOEAs used in the literature? To answer this ques-
tion, we compared the MOEAs generated by GEMOITO
with two conventional MOEAs used by [1]: Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) [10] and Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [34].

RQ2: How do GEMOITO results compare to HITO? HITO
is the hyper-heuristic proposed by Guizzo et al. [15] that
also solves the same problem. HITO is an online selection
hyper-heuristic, which contrasts with GEMOITO, an offline
generation hyper-heuristic. Therefore, we can observe the
benefits and disadvantages of both kinds of hyper-heuristics.

We used 7 real world systems for this evaluation: My-
Batis (v3), AJHSQLDB (v18), AJHotDraw (v0.4), BCEL
(v5.0), JHotDraw (v7.5.1), HealthWatcher (v9) and JBoss
(v6.0.0M5). These are the same systems used in related
work [1, 15] for which the data sets were provided by the
authors of [1]. They vary in the implemented paradigm (Ob-
ject Oriented – OO, or Aspect Oriented – AO), number of
units, number of dependencies and lines of code.

The evaluation is divided in two phases: i) training (Sub-
section 4.1); and ii) testing (Subsection 4.2). In the former,
we executed GEMOITO 10 times in order to generate 10
MOEAs. We also used GEMOITO to automatically tune
the conventional MOEAs in order to obtain a fair compar-
ison between them. In the testing phase, the generated al-
gorithms, the tuned conventional MOEAs and HITO were
executed in the 7 systems in order to test their performance.
Similarly to related work and to allow comparisons, the gen-
erated MOEAs use two objective functions: number of oper-
ations (O) and number of attributes (A) [1, 15]. These two
functions can be used in object-oriented and aspect-oriented
software to measure the number of required operations and
number of attributes to be emulated. The results were eval-
uated using the obtained Pareto fronts, the hypervolume in-
dicator [35], the Kruskal-Wallis statistical test [11] and the
Cohen’s d effect size [9].

4.1 Training
We fixed the parameters of GEMOITO after a preliminary

experimentation using similar values to the work of Lourenco
et al. [25]. Table 1 presents these parameters.

Table 1: GEMOITO parameters

Parameter Value

Population Size 100
Number of GE Fitness Evaluations 10.000
Number of Training Fitness Evaluations 2.000
Crossover Operator Single Point Crossover
Crossover Probability 90%
Mutation Operator Integer Mutation
Mutation Probability 1%
Selection Operator Binary Tournament
Pruning Operator Probability 1%
Duplication Operator Probability 1%
Minimum of Genes in the Init. Pop. 10
Maximum of Genes in the Init. Pop. 20
Replacement Strategy Ranking

Table 2: Components and parameters of ALG 6

Population size 50
Initialization Random

Selection Op.
Ranking
Converg. Strategy: Dominance Strength
Divers. Strategy: K-th Nearest Neighbor

Source Archive and Population
Mating Strategy Steady State
Crossover Op. -
Mutation Op. Swap Mutation (100%)

Replacement
Generational
Elitism Size: 5
Converg. Strategy: Raw Fitness
Divers. Strategy: K-th Nearest Neighbor

Archive
Ranking
Converg. Strategy: Raw Fitness
Divers. Strategy: Hypervolume Contribution

Archive size 75

Table 3: Parameters of HITO, NSGA-II and SPEA2

Parameter HITO NSGA-II SPEA2

Population Size 300 50 50
Maximum Fitness Evaluations 60,000 60,000 60,000
Crossover Operator All PMX PMX
Crossover Probability - 100% 95%
Mutation Operator All Swap Swap
Mutation Probability - 1% 5%
Archive Size - - 50
CF α 1.0 - -
CF β 0.00005 - -

With these parameters, GEMOITO was executed 10 times
using the largest instance (AJHSQLDB), resulting in 10 dif-
ferent MOEAs named ALG 0 to ALG 9. Each MOEA was
trained with a budget of 2,000 fitness evaluations. The best
algorithm found is ALG 6. Its components and parameters
are presented in Table 2. Due to space restrictions, we omit-
ted the other algorithms, but we observed only few changes
from one algorithm to another. For instance, ALG 3 differs
from ALG 6 by using the Cycle Crossover operator with 80%
probability, no elitism, no convergence strategy for archiv-
ing and using Crowding Distance rather than K-th Nearest
Neighbor as diversity for selection.

Similarly, we used GEMOITO with slightly different gram-
mars for automatically tuning both NSGA-II and SPEA2.
The HITO parameter configuration is the same as presented
in [15], however, with the addition in its dynamic selection of
the crossover and mutation operators available in our gram-
mar (Figure 1). Moreover, we used only the version of HITO
with NSGA-II and CF, since it obtained the best results
[15]. The parameters of HITO, NSGA-II and SPEA2 are
presented in Table 3. HITO does not use crossover and mu-
tation probabilities because it dynamically applies the op-
erators according to the search stage. Furthermore, HITO
has more individuals in the population when compared to
the other algorithms, since it is online and because of that,
requires more solutions for the training.

4.2 Testing
In the testing phase, first we executed all 13 algorithms

(NSGA-II, SPEA2, HITO and the 10 MOEAs generated by
GEMOITO) in the 7 real world systems for 30 independent
runs using 60,000 fitness evaluations each run. As a result,
each algorithm generated one Pareto front for each system in
each independent run. At the end, each algorithm had its 30
obtained fronts merged, excluding repeated and dominated
solutions. Therefore, each merged Pareto front contains all
the non-dominated solutions found by an algorithm for a
given system. This front is the best known Pareto front of
the algorithm for that system (PFknown). The true Pareto
fronts are not known for these problems.

The PFknown fronts can be seen in Figures 2-6. The fronts
of HealthWatcher and JBoss were omitted, because they had
only one solution. These are the smallest systems used in
this work, thus have unit orders easy to find.

The fronts found by NSGA-II, SPEA2 and HITO for AJH-
SQLDB (Figure 3) are dominated by at least one algorithm
generated by GEMOITO, but it is rather an unfair compar-
ison since the algorithms were trained with this instance.
However, although not entirely visible due to the great num-
ber of solutions, the same thing happens for other instances,
such as MyBatis (Figure 2) and AJHotDraw (Figure 4). We

Figure 2: PFknwon fronts found for MyBatis

Figure 3: PFknwon fronts found for AJHSQLDB

Figure 4: PFknwon fronts found for AJHotDraw

Figure 5: PFknwon fronts found for BCEL

Figure 6: PFknwon fronts found for JHotDraw

observed that the fronts of HITO and the generated algo-
rithms (mostly ALG 6) remain relatively close when com-
pared to the fronts of NSGA-II and SPEA2. Thus, we can
state that both hyper-heuristics found the best results.

Since most fronts are mixed in the objective space, we also
used the hypervolume indicator [35] to calculate the quality
of the fronts of each algorithm. This indicator was chosen
due to its capability of evaluating both the convergence and
diversity. Besides, it does not need a true Pareto front for
the assessment. Table 4 shows the hypervolume averages
found by each algorithm in each system. These values were
normalized using the worst possible point for the respective
results. Moreover, values in bold represent the best values,
or equivalent to the best ones, according to the Kruskal-
Wallis statistical test with 95% of confidence.

As seen in Table 4, the conventional MOEAs NSGA-II
and SPEA2 could only find statistically equivalent values
for 2 systems. Still, these are the smallest systems and al-
most all algorithms were able to find values close to 1 (best
possible value). For the bigger problems, HITO and the gen-
erated algorithms have the best results. Furthermore, for
all systems, at least one algorithm generated by GEMOITO
obtained greater hypervolume averages than both NSGA-II
and SPEA2. The HITO results are similar as obtained in
[15] regarding the comparison with the conventional MOEAs.

Comparing HITO and GEMOITO, for 2 systems (out of
7), HITO was not able to obtain equivalent results to the
best one, which also happened to some generated algorithms
(ALG 1, ALG 2, ALG 5 and ALG 8). In addition, some
generated algorithms obtained results not so good as HITO
did, e.g., ALG 0, ALG 3, ALG 4, ALG 7 and ALG 9. No-
tably, ALG 6 always obtained the best results, or results
equivalent to the best ones. Summing it up, 5, out 10 al-
gorithms generated by GEMOITO, presented worse results
than HITO in terms of number of best or equivalent fronts. 4
of the generated MOEAs presented equal results and ALG 6
outperformed or equaled all the other algorithms.

As another source of comparison, we executed the Cohen’s
d [9] effect size. This statistical test gives the difference
magnitude between two groups of values. In our work, the
groups are the algorithms and each group has a set of 30
hypervolume values, one for each front obtained with the 30
independent runs. Table 5 presents the Effect Size results
regarding each binary comparison. Negative values mean
that the left algorithm (in the column header) performed
worse than the right algorithm.

The Effect Size results show something similar as we ob-

served using the Kruskal-Wallis test, with some slight dif-
ferences since the effect size calculation is done in pairs of
groups rather than using all groups at once. For instance,
the Kruskal-Wallis test showed equality between HITO and
ALG 6 for MyBatis, BCEL and JHotDraw. However, the
effect size test showed large differences between these two
algorithms for these instances, in favor of ALG 6 for My-
Batis, and in favor of HITO for BCEL and JHotDraw.

Nevertheless, ALG 6 obtained large or medium differences
when compared to SPEA2 and NSGA-II for the 5 biggest
problems. The same does not occur to HITO, since it lost
to SPEA2 with large difference in the AJHSQLDB instance
and to NSGA-II in the AJHSQLDB instance with small dif-
ference. This emphasizes even more that GEMOITO can
overcome the results of both conventional MOEAs. When
comparing to HITO, ALG 6 is able to obtain large and favor-
able differences for the 3 biggest instances, while obtaining
worse results for the next 2 biggest ones. Even though this
showed that HITO is better in some instances, these results
do not get far from what we observed using the Kruskal-
Wallis test: ALG 6 is, overall, a more robust algorithm.

An interesting point we noted is that HITO was able
to outperform all other algorithms (with statistical differ-
ence sometimes) in the BCEL instance. Even though the
PFknown fronts are a bit mixed for this instance, it has a
different search space when compared to the other ones, and
obtaining the best solutions in this case may require differ-
ent configurations. This was noted by Guizzo et al. [15],
since, only for this instance, the most selected operators
were different from the most selected operators of the other
instances. What happens is that HITO can dynamically se-
lect the best operators for different instances. GEMOITO
does not have this ability, since it was trained in a rather
conventional instance (AJHSQLDB) of the problem, thus
it could not adapt so well as HITO did. Ultimately, how-
ever, GEMOITO can generate powerful algorithms that can
outperform such dynamism of an online hyper-heuristic.

The major drawback of GEMOITO is that it can gener-
ate very powerful algorithms that can perform similarly to
HITO (ALG 1, ALG 2, ALG 5 and ALG 7), and even al-
gorithms (ALG 6) that can outperform both conventional
MOEAs and also HITO. However, GEMOITO can also gen-
erate algorithms that perform badly (ALG 7 and ALG 9)
when compared to the others. In a real world situation,
the engineer might execute GEMOITO only once, which
can result in a very powerful algorithm or a not so good
one. A solution for this would be to improve the training
process in order to consider multiple instances, which can
prevent over-fitting to one instance of the problem and then
turning the obtained algorithm more generic. In spite of
that, GEMOITO seems a more plausible approach than us-
ing conventional algorithms, since even the worst generated
algorithms obtained PFknown fronts and hypervolume val-
ues very close or even better than the conventional MOEAs.

4.3 Answering the Research Questions
We can positively answer the first question of this empir-

ical evaluation: GEMOITO can generate MOEAs that are
better than conventional ones. This is true for the problem
instances in which we executed GEMOITO and using the
hypervolume quality indicator with both statistical tests. If
other indicators or statistical tests were used, then other re-
sults could be achieved. However, we still expect to obtain

Table 4: Hypervolume averages
Problem NSGA-II SPEA2 HITO ALG 0 ALG 1 ALG 2 ALG 3 ALG 4 ALG 5 ALG 6 ALG 7 ALG 8 ALG 9

MyBatis 0.65 0.62 0.71 0.69 0.66 0.65 0.62 0.63 0.73 0.74 0.48 0.76 0.69
AJHsqldb 0.34 0.37 0.31 0.54 0.65 0.64 0.66 0.65 0.65 0.70 0.53 0.60 0.57

AJHotDraw 0.24 0.48 0.69 0.68 0.87 0.86 0.80 0.84 0.64 0.87 0.52 0.58 0.50
BCEL 0.73 0.70 0.78 0.74 0.73 0.68 0.72 0.69 0.75 0.76 0.47 0.75 0.64

JHotDraw 0.43 0.60 0.85 0.67 0.77 0.74 0.67 0.67 0.57 0.69 0.50 0.60 0.55
HealthWatcher 0.89 0.98 0.99 0.94 1.0 1.0 1.0 1.0 0.99 0.99 0.97 0.99 0.98

JBoss 0.88 0.95 1.0 0.92 1.0 1.0 0.98 1.0 0.89 0.94 0.95 0.94 0.89

Table 5: Effect Size results
System NSGA-II/SPEA2 NSGA-II/HITO NSGA-II/ALG 6 SPEA2/HITO SPEA2/ALG 6 HITO/ALG 6

MyBatis 0.49 (small) -1.22 (large) -1.81 (large) -2.08 (large) -2.66 (large) -0.97 (large)
AJHsqldb -0.30 (small) 0.30 (small) -3.54 (large) 0.89 (large) -4.62 (large) -5.69 (large)

AJHotDraw -1.92 (large) -3.86 (large) -6.63 (large) -1.65 (large) -3.64 (large) -1.87 (large)
BCEL 0.62 (medium) -1.34 (large) -0.96 (large) -6.06 (large) -4.63 (large) 2.82 (large)

JHotDraw -0.83 (large) -2.21 (large) -1.30 (large) -1.47 (large) -0.51 (medium) 0.90 (large)
HealthWatcher -1.07 (large) -1.31 (large) -1.32 (large) -0.42 (small) -0.44 (small) -0.040 (negligible)

JBoss -0.36 (small) -0.64 (medium) -0.30 (small) -0.51 (medium) 0.077 (negligible) 0.53 (medium)

better results given the robustness of the generated algo-
rithms. We intend to investigate this in future works.

Regarding the second question and taking into account
only the quality of the results, then yes, GEMOITO can
generate MOEAs that can generally outperform an online
hyper-heuristic (such as HITO). However, there are other
factors that must be taken into account. HITO is more dy-
namic and thus can adapt to different instances of the prob-
lem, which enables it to obtain more balanced results, but
sometimes worse than the results of the generated MOEAs.
On the other hand, GEMOITO does not require the selec-
tion of a MOEA, which can reduce the testers’ effort. Hence,
the choice depends on the preferences of the engineer, and
all of these differences should be evaluated when deciding
which hyper-heuristic will be used.

5. CONCLUDING REMARKS
This paper presented an offline hyper-heuristic for gen-

erating MOEAs to solve the ITO problem. GEMOITO is
based on GE, and includes a grammar with several compo-
nents and parameters related to the MOEA design. During
the evolution, GEMOITO executes the generated MOEAs
and the best ones survive according to the hypervolume
quality indicator. At the end, the best trained MOEA is
returned and can be used to solve the problem.

For assessing the GEMOITO applicability, we conducted
an empirical evaluation in two phases: i) training; and ii)
testing. In the training phase we executed GEMOITO 10
times, which resulted in 10 MOEAs. After that, in the test-
ing phase we compared the generated algorithms with two
conventional MOEAs (NSGA-II and SPEA2) and with an-
other hyper-heuristic applied to the same problem (HITO)
using 7 real world systems. The empirical evaluation showed
that, even though not all generated algorithms can outper-
form HITO, all of them obtained good results when com-
pared to the conventional MOEAs. Furthermore, some gen-
erated MOEAs at least equaled HITO and one of them was
able to obtain the best results in all systems. We positively
answered the research questions stating that GEMOITO is
viable and can generate robust algorithms.

As future works we intend to change some aspects of the
training procedure used in GEMOITO, mainly to balance
the behavior of the generated MOEAs. Another possibil-
ity is to use other quality indicators as fitness functions for

this training. We want to perform other experiments, with
a greater number of large systems, other MOEAs and other
hyper-heuristics (such as [3, 4]). Finally, some changes could
be made in the proposed grammar to allow more intelligent
choices of numeric parameters, such as a percentage of the
population as tournament size or a search space-based func-
tion for population size.

References
[1] W. K. G. Assunção, T. E. Colanzi, S. R. Vergilio, and

A. Pozo. A multi-objective optimization approach for
the integration and test order problem. Information
Sciences, 267(0):119 – 139, 2014.

[2] M. P. Basgalupp, R. C. Barros, T. S. da Silva, and
A. C. Carvalho. Software Effort Prediction: A
Hyper-heuristic Decision-tree Based Approach. In
Symposium on Applied Computing, pages 1109–1116,
2013.

[3] L. Bezerra, M. Lopez-Ibanez, and T. Stuetzle.
Automatic component-wise design of multi-objective
evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, PP(99):1–1, 2015.

[4] L. C. T. Bezerra, M. López-Ibáñez, and T. Stützle.
Automatic Design of Evolutionary Algorithms for
Multi-Objective Combinatorial Optimization. In
Parallel Problem Solving from Nature - PPSN, volume
8672, pages 508–517. Springer, 2014.

[5] L. C. Briand, J. Feng, and Y. Labiche. Using genetic
algorithms and coupling measures to devise optimal
integration test orders. In Conference on Software
Engineering and Knowledge Engineering, July 2002.

[6] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall,
G. Ochoa, E. Özcan, and R. Qu. Hyper-heuristics: A
survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695–1724, 2013.

[7] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and J. R. Woodward. A Classification of
Hyper-heuristic Approaches. In Handbook of
Metaheuristics, v. 146, pages 449–468. Springer, 2010.

[8] E. K. Burke, M. R. Hyde, and G. Kendall.
Grammatical evolution of local search heuristics.
IEEE Transactions on Evolutionary Computation,
16(3):406 – 417, 2012.

[9] J. Cohen. A power primer. Psychological bulletin,
112(1):155, 1992.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[11] J. Derrac, S. Garćıa, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 3–18, 2011.

[12] J. Dréo. Using performance fronts for parameter
setting of stochastic metaheuristics. In Conference on
Genetic and Evolutionary Computation: Late Breaking
Papers (GECCO’09), pages 2197–2200, 2009.

[13] A. Eiben and S. Smit. Parameter tuning for
configuring and analyzing evolutionary algorithms.
Swarm and Evolutionary Computation, 1(1):19–31,
March 2011.

[14] A. E. Eiben and J. E. Smith. Introduction to
evolutionary computing. Springer, 2003.

[15] G. Guizzo, G. M. Fritsche, S. R. Vergilio, and A. T. R.
Pozo. A Hyper-Heuristic for the Multi-Objective
Integration and Test Order Problem. In Genetic and
Evolutionary Computation Conference, 2015.

[16] M. Harman, E. Burke, J. Clarke, and X. Yao.
Dynamic adaptive search based software engineering.
In Proceedings of the 6th ESEM, 2012.

[17] M. Harman, S. A. Mansouri, and Y. Zhang.
Search-based software engineering: Trends, techniques
and applications. ACM Computing Surveys, 45(1),
2012.

[18] Y. Jia. Hyperheuristic search for SBST. In
International Workshop on Search-Based Software
Testing, pages 15–16, 2015.

[19] Y. Jia, M. Cohen, M. Harman, and J. Petke. Learning
combinatorial interaction test generation strategies
using hyperheuristic search. In International
Conference on Software Engineering (ICSE’15), 2015.

[20] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[21] A. C. Kumari, K. Srinivas, and M. P. Gupta. Software
module clustering using a hyper-heuristic based
multi-objective genetic algorithm. In Proceedings of
the 3rd IACC, pages 813–818, Feb. 2013.

[22] K. Li, A. Fialho, S. Kwong, and Q. Zhang. Adaptive
operator selection with bandits for a multiobjective
evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation,
18(1):114–130, Feb 2014.

[23] M. Lopez-Ibanez and T. Stutzle. The Automatic
Design of Multiobjective Ant Colony Optimization
Algorithms. IEEE Transactions on Evolutionary
Computation, 16(6):861–875, 2012.

[24] N. Lourenço, F. B. Pereira, and E. Costa. The
optimization ability of evolved strategies. In Progress
in Artificial Intelligence, v. 9273, pages 226–237. 2015.

[25] N. Lourenço, F. Pereira, and E. Costa. Evolving
evolutionary algorithms. In Companion of the Genetic
and Evolutionary Computation Conference
(GECCO’12), page 51, 2012.

[26] N. Lourenço, F. B. Pereira, and E. Costa. The
Importance of the Learning Conditions in
Hyper-heuristics. In Companion of the Genetic and
Evolutionary Computation Conference (GECCO’13),
pages 1525–1532, 2013.

[27] M. Maashi, E. Özcan, and G. Kendall. A
multi-objective hyper-heuristic based on choice
function. Expert Systems with Applications,
41(9):4475–4493, 2014.

[28] R. Marshall, M. Johnston, and M. Zhang. Developing
a hyper-heuristic using grammatical evolution and the
capacitated vehicle routing problem. In Simulated
Evolution and Learning, volume 8886, pages 668–679.
Springer, 2014.

[29] R. J. Marshall, M. Johnston, and M. Zhang.
Hyper-heuristics, grammatical evolution and the
capacitated vehicle routing problem. In Companion of
the Genetic and Evolutionary Computation
Conference (GECCO’14), pages 71–72, 2014.

[30] F. Mascia, M. Lopez-Ibanez, J. Dubois-Lacoste, and
T. Stutzle. Grammar-based generation of stochastic
local search heuristics through automatic algorithm
configuration tools. Computers & Operations
Research, 51:190 – 199, 2014.

[31] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[32] C. Ryan, J. J. Collins, and M. Neill. Grammatical
evolution: Evolving programs for an arbitrary
language. In Genetic Programming, volume 1391,
pages 83–96. Springer, 1998.

[33] S. K. Smit, A. E. Eiben, and Z. Szlávik. An
MOEA-based method to tune EA parameters on
multiple objective functions. In Proceedings of the 2nd
International Joint Conference on Computational
Intelligence (IJCCI’10), 2010.

[34] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
improving the strength Pareto evolutionary algorithm.
Technical report, Dep. of Electrical Engineering, Swiss
Federal Institute of Technology, 2001.

[35] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca,
and V. G. da Fonseca. Performance assessment of
multiobjective optimizers: an analysis and review.
IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

