
Adaptive Parameter Selection in Evolutionary Algorithms
by Reinforcement Learning with Dynamic Discretization

of Parameter Range

Arkady Rost
ITMO University

49 Kronverkskiy ave.
Saint-Petersburg, Russia
arkrost@gmail.com

Irina Petrova
ITMO University

49 Kronverkskiy ave.
Saint-Petersburg, Russia
petrova@rain.ifmo.ru

Arina Buzdalova
ITMO University

49 Kronverkskiy ave.
Saint-Petersburg, Russia

abuzdalova@gmail.com

ABSTRACT
Online parameter controllers for evolutionary algorithms ad-
just values of parameters during the run of an evolutionary
algorithm. Recently a new efficient parameter controller
based on reinforcement learning was proposed by Karafo-
tias et al. In this method ranges of parameters are dis-
cretized into several intervals before the run. However, per-
forming adaptive discretization during the run may increase
efficiency of an evolutionary algorithm. Aleti et al. proposed
another efficient controller with adaptive discretization.

In the present paper we propose a parameter controller
based on reinforcement learning with adaptive discretiza-
tion. The proposed controller is compared with the existing
parameter adjusting methods on several test problems using
different configurations of an evolutionary algorithm. For
the test problems, we consider four continuous functions,
namely the sphere function, the Rosenbrock function, the
Levi function and the Rastrigin function. Results show that
the new controller outperforms the other controllers on most
of the considered test problems.

CCS Concepts
•Computing methodologies→ Control methods; Re-
inforcement learning; Bio-inspired approaches; •Theory
of computation → Bio-inspired optimization;

Keywords
evolutionary algorithms; parameter control; reinforcement
learning

1. INTRODUCTION
Let us denote efficiency of an evolutionary algorithm (EA)

as the number of fitness function evaluations needed to find
the optimal solution. Efficiency of EA is strongly correlated
with its parameters. Common examples of such parameters
are mutation and crossover probabilities. Optimal values of
the parameters not only depend on the type of EA but also
on the characteristics of the problem to be solved. Values of
the parameters can be set before a run. However, optimal
parameter values can change during a run, so an approach
for adaptive parameter adjustment is required.

We consider parameters with continuous values. When
adjusting such parameters, parameter ranges are usually dis-
cretized into some intervals. We can discretize parameter
ranges a priori and keep the resulting segmentation during

a run. However, it was shown that adaptive discretization
during optimization process may improve the performance
of the algorithm [1, 2]. A possible explanation of this fact
is as follows. The dynamic discretization allows to split the
intervals into smaller subintervals. If the size of an interval
is small, it is more likely to choose a good parameter value.
Aleti et al. proposed entropy-based adaptive range param-
eter controller (EARPC) [1]. This method uses adaptive
discretization.

Recently Karafotias et al. proposed another efficient pa-
rameter controller based on reinforcement learning [7, 8].
However, this method was not compared to EARPC. In the
method proposed by Karafotias et al. a priori discretization
is used. A new method which combines usage of reinforce-
ment learning and dynamic discretization is proposed in this
work.

The rest of the paper is organized as follows. First, the
basic ideas used in EARPC and the method proposed by
Karafotias are described. It is necessary to describe these
ideas in order to explain how the proposed controller works.
Second, two different versions of a new controller are pro-
posed. Then the experiments are described. Finally, the
new parameter controllers are compared with the other con-
sidered controllers.

2. RELATED WORK
Let us give the formal description of the adaptive parame-

ter control problem. We have a set of n parameters v1, ..., vn.
The goal of the parameter controller is to select parameter
values which maximize efficiency of EA. The first parameter
controller to be considered is EARPC.

2.1 Entropy-based adaptive range parameter
controller

The EARPC method [1] adjusts parameters separately.
Let us denote a set of the selected parameter values as v =
(v1, . . . , vn). The efficiency of EA with parameters set to v
is denoted as q(v). During a run of the algorithm we save
pairs of v and q(v).

To select a new set of parameter values, we split the saved
values of v into two clusters. For example, it can be done
by k-means algorithm. Next, the range of each parameter
vi is split into two intervals. To select a split point, all
saved values of vi are sorted in ascending order. Candidates
to be a split point are mid-points between two consecuent
values of vi in the sorted list. For each candidate sk to be

ar
X

iv
:1

60
3.

06
78

8v
1

 [
cs

.N
E

]
 2

2
M

ar
 2

01
6

a split point, the set of the saved values of vi is split into
two subsets p1 and p2. The subset p1 contains values which
are less than or equal to sk. The subset p2 contains values
greater than sk. Denote the number of the saved values of
vi which are contained in the cluster ci and the subset pj as
ci(pj). The entropy H is calculated according to Eq. 1 for
each candidate sk.

ep1 = −|c1(p1)|
|p1|

ln

(
|c1(p1)|
|p1|

)
− |c2(p1)|
|p1|

ln

(
|c2(p1)|
|p1|

)
,

ep2 = −|c1(p2)|
|p2|

ln

(
|c1(p2)|
|p2|

)
− |c2(p2)|
|p2|

ln

(
|c2(p2)|
|p2|

)
,

(1)

H =
|p1|
|c1|

ep1 +
|p2|
|c2|

ep2

The split point s with the minimal value of entropy is se-
lected. Two intervals [min, s] and (s,max] are obtained,
where min and max are the minimal and the maximal pos-
sible values of vi correspondingly. Values from the set p1
correspond to the first interval, values from the set p2 cor-
respond to the second interval.

To decide from which interval we should choose a new
value for the parameter vi, we calculate the average quality
of the parameter values in each interval. Let Q1 and Q2

denote the average quality of the values in the first and the
second intervals correspondingly. Qj is calculated according
to Eq. 2.

Qj =
1

|pj |
∑
v∈pj

q(v) (2)

Then we randomly select interval, the probability of selec-
tion of interval j is proportional to Qj . A new value of vi
is randomly chosen from the selected interval. The pseu-
docode of EARPC is presented in Algorithm 1. We wrote
this pseudocode based on the description of EARPC given
in [1].

Algorithm 1 EARPC algorithm proposed by Aleti et al.

1: Earlier selected and saved values of v are split into two
clusters c1 and c2

2: for each parameter vi do
3: Sort saved values of vi in ascending order
4: Hbest ←∞
5: for split point sk =

vij+vi(j+1)

2
do

6: Split saved values of vi into two sets p1 and p2 ac-
cording to sk

7: Calculate entropy H according to Eq. 1
8: if Hbest < H then
9: Hbest ← H

10: s← sk
11: Split saved values of vi into two sets p1 and p2 accord-

ing to s
12: Q1 = 1

|p1|
∑

v∈p1
q(v), Q2 = 1

|p2|
∑

v∈p2
q(v)

13: Randomly select interval, the probability of selection
of interval [min, s] is proportional to Q1, the proba-
bility of selection of interval (s,max] is proportional
to Q2

14: Randomly select value of vi from the selected interval

Reinforcement Learning
 Agent

 Environment
(Evolutionary Algorithm)

action
 a(t)

reward
r(t)

state s(t)

r(t+1)

s(t+1)

Figure 1: Reinforcement learning scheme

2.2 Parameter selection by reinforcement learn-
ing

Let us describe the general scheme of using reinforcement
learning for parameter control in EA [3, 5, 10, 11]. In rein-
forcement learning (RL) [6, 12], the agent applies an action
to the environment, then the environment returns some rep-
resentation of its state and a numerical reward to the agent,
and the process repeats. The goal of RL is to maximize the
total reward [12].

While adjusting parameter of EA by RL, EA is treated as
an environment. An action is selection of parameter values.
EA generates new population using the selected parameter
values. The obtained reward is based on the difference of
the maximal fitness in two sequential iterations.

Let us describe how the agent selects parameter values.
The parameter range is discretized into several intervals.
Each interval corresponds to agent’s action. To apply an
action, the agent selects an interval and sets a random value
from this interval as the parameter value. The method is
illustrated in Fig. 1, where t is the number of the current
iteration.

In the method proposed by Karafotias et al. [7,8], a mod-
ification of the ε-greedy Q-learning algorithm is used. Let k
denote the number of parameters being adjusted. The range
of parameter vi is discretized a priori into mi intervals. An
action of the agent consists of selection of intervals for each
parameter and random selection of parameters values from
the selected intervals. Thus the number of possible actions

of the agent is
k∏

i=1

mi. The obtained reward is calculated ac-

cording to Eq. 3, where ft is the best fitness function value
obtained on the iteration t and c is a constant.

r = c ·
(
ft+1

ft
− 1

)
(3)

Note that reward is always positive unless EA worsens the
best obtained solution. To reduce the learning rate in the
case of zero reward, the learning rate α is changed to α0

according to Eq. 4. Note that α0 � α.

α(r) =

{
α, if r > 0

α0 � α, in other cases
(4)

To define the state of the environment, the following ob-
servables derived from the state of the EA are used [9]:

• genotypic diversity;

• phenotypic diversity (when different from genotypic);

• fitness standard deviation;

• stagnation counter (the number of iterations without
fitness improvement);

• fitness improvement.

The dynamic state space segmentation method is used [13].
In this method, states are represented as a binary decision
tree. Each internal node contains a condition on an observ-
able. Leaf nodes represent environment states. For each
state s array of Q(s, a) is stored, where Q(s, a) is the ex-
pected reward for each action in the state s. The expected
reward in this state is denoted as V (s) = max

a
Q(s, a).

Initially, the tree consists of one leaf which corresponds
to a single state s and V (s) = 0. Each iteration of the
algorithm consists of two phases: the data gathering phase
and the processing phase. In the data gathering phase we
obtain values of observables I = {o1 . . . om} from EA, where
m is the number of observables. Then we go down the tree
using I and get the state s of the environment. The agent
selects an action a using ε-greedy strategy, obtains reward r
and new values I ′ of observables. Then the agent refreshes
Q(s, a) and stores the resulting tuple (I, a, I ′, r).

In the processing phase, we try to split the state s into
two new states, which means that the leaf corresponding to
the state s becomes an internal node and two new leaves
are added as its children. To convert the leaf into a deci-
sion node, we have to choose an observable and a splitting
value. For each saved tuple (I, a, I ′, r) in the leaf we cal-
culate an estimated reward obtained after applying the ac-
tion a to EA with the values I of observables. We denote
this reward as q(I, a). The value of q(I, a) is calculated as
q(I, a) = r + γV (s′), where s′ corresponds to the values I ′

of observables, and γ is a constant called discount factor.
For each observable o the tuples saved in the leaf are sorted
in ascending order according to the value of o taken from
I. Candidates to be chosen as a split point are mid-points
between two consecuent values of o in the sorted list. The
saved values I taken from tuples stored in the leaf are divided
into two subsets according to a candidate split point. We
form two samples by dividing the calculated q(I, a) accord-
ing to obtained subsets of I. A Kolmogorov-Smirnov crite-
rion is run on these two samples and the obtained p-value
is saved. After all split point candidates for all observables
are checked, the smallest obtained p-value is selected. If it is
smaller than 0.05, then the node is split at the corresponding
observable and the corresponding split point.

The authors of the article where dynamic state space seg-
mentation method was proposed [13] suggest that Q values
should be recalculated after each split of a state. However,
it is not obvious how to do it. So in the method proposed
by Karafotias et al. Q and V values of two new nodes are
set to the values of the parent node. The tuples saved in
the parent node are split according to the chosen split point
and the resulting parts are given to the corresponding chil-
dren nodes. The pseudocode of the algorithm proposed by
Karafotias et al. is presented in Algorithm 2. We wrote this
pseudocode based on the description of this algorithm given
in [7].

3. PROPOSED METHODS
We propose two new controllers. The first of them com-

bines the EARPC algorithm and the approach proposed by
Karafotias et al. The second one is based on reinforcement

Algorithm 2 Algorithm proposed by Karafotias et al.

Data gathering phase

1: Initialize binary search tree: state s, V (s) = 0,
Q(s, a)← 0 for each action a

2: Obtain I — values of observables from EA
3: Go down the tree using I and find environment state s
4: Select action a using ε-greedy strategy
5: Apply action a to environment, obtain reward r
6: Obtain I ′ — values of observables from EA
7: Go down the tree using I ′ and find environment state s′

8: Store tuple (I, a, I ′, r) in state s
9: Q(s, a)← Q(s, a) + α(r + γmax

a′
Q(s′, a′)−Q(s, a))

10: V (s) = max
a

Q(s, a)

Processing phase

1: for each tuple (I, a, I ′, r) in state s do
2: Calculate q(I, a) = r + γV (s′)
3: best← +∞
4: for observable o do
5: Sort tuples stored in state s according to value of o

from I.
6: tuples count← number of tuples
7: for j ← 1 to tuples count do
8: Ij ← j-th tuple in the sorted list
9: oj ← value of observable o in Ij

10: candidate← oj+oj+1

2
11: x← {q(Ij , a)|oj ≤ candidate}
12: y ← {q(Ij , a)|oj > candidate}
13: Calculate p-value for x and y using Kolmogorov-

Smirnov criterion
14: if p-value< best then
15: best← p-value
16: best observable← o
17: best split← candidate
18: if best < 0.05 then
19: Create two new states s1 and s2
20: Split tuples stored in s to s1 and s2 corresponding to

best observable and best split
21: Copy Q(s, a) into Q(s1, a) and Q(s2, a)
22: Replace node corresponding to state s with internal

node with two new leafs, corresponding to states s1
and s2

learning and splitting of parameter ranges using Kolmogorov-
Smirnov criterion.

3.1 Method which combines Karafotias et al.
and EARPC

In the method proposed by Karafotias et al., dynamic
state space segmentation is used. However, ranges of param-
eters being adjusted are discretized a priori. We propose to
improve the method proposed by Karafotias et al. by using
EARPC method for dynamic discretization of ranges of pa-
rameters. When we change discretization of the parameter
range, we change the set of agent actions. So we have to
change the process of selection of the parameter values in
the method proposed by Karafotias et al.

The values of parameters are selected as in the EARPC
method. Therefore, on each iteration of the algorithm we
obtain values I of observables of EA and go down the binary

decision tree of states (see Section 2.2) to find a state s
corresponding to I. Then we select values v of parameters,
get new values of observables I ′ and save the tuple (I, v, I ′, r)
in the state s, where v are selected values of parameters
and r is calculated according to Eq. 3. The values v of
parameters are selected by EARPC method using the tuples
saved earlier in the state s. To apply the EARPC algorithm,
we have to calculate q(v) which is the efficiency measure of
EA with the parameters set to v. We use r from the tuple
(I, v, I ′, r) as the efficiency measure q(v).

To split the states, we have to calculate q(I, a) = r +
γV (s′), where s′ corresponds to I ′. In the proposed method
actions of the agent are changing during the run. So we
cannot calculate V (s′) as max

a
Q(s′, a). In this case we use

the expected value of the reward obtained in the state s′ as
V (s′). The EARPC algorithm splits the parameter range
into two intervals. One of these intervals is selected with
probability proportional to average reward on this interval.

So V (s′) is calculated as
2∑

i=1

Q2
i

Q1+Q2
, where Q1 and Q2 are

average rewards on the two intervals.
To the best of our knowledge, there is no specific method

of recalculatingQ-values after splitting a state. In the method
proposed by Karafotias et al., Q and V values of two new
nodes are set to the values of the parent node. In this
method we do not store Q-values in leafs. So we do not
need to recalculate Q and V for two new states after split-
ting.

3.2 Method with adaptive selection of action
set

Preliminary experiments showed that there was no signif-
icant improvement of the EA efficiency when high number
of states was used. Thus the second proposed method de-
scribed in this section does not use the binary decision tree
of states, although it is used in the first proposed method
and the method proposed by Karafotias et al. In the second
proposed method we have a single state of the environment.
In the method proposed by Karafotias et al., values of all
parameters to be adjusted are set simultaneously by the Q-
learning agent. In the second proposed method the value of
each parameter is set independently of the other parameters.
So we have a separate Q-learning agent for each parameter.

Initially, for each parameter vi we have only one action of
the agenti which corresponds to the selection of parameter
value from the range [min,max], where min and max are
the minimal and the maximal possible values of the param-
eter vi. Each agenti applies this action and sets the value
of vi. Then we use the selected values v = (v1 . . . vn) in EA
and calculate the reward r according to Eq. 3. We store the
tuple of the selected values v and the obtained reward r.
These tuples are used for splitting the parameter range and,
as a consecuence, they are used for changing sets of actions
of the agents. The agents apply the single possible action
until enough tuples for splitting of the range are stored.

After enough tuples are stored, we search a split point
for the range of each parameter using Kolmogorov-Smirnov
criterion. The criterion is used in the same way as it was
used by Karafotias et al. when splitting states. If the split
point is not found, we do not split the range. If the split
point is found, we obtain two intervals L and R. Then we
try to split L and R in the same way. We repeat this process
i times. So the maximum number of the intervals is 2i.

An agent selects an action using ε-greedy strategy until Q-
values become almost equal for all actions. In this case the
expected rewards for all actions are almost equal, therefore
the agent can not select which action is the most efficient. So
the range of the parameter is re-discretized. The pseudocode
of the proposed method for the case when i = 2 is presented
in Algorithm 3.

Algorithm 3 Algorithm with adaptive selection of action
set

1: State s← single state
2: for each parameter vi to be adjusted do
3: Pi ← {[vmin

i , vmax
i]}

4: Ai ← actions corresponding to partition Pi, where Ai

is a set of actions for agenti adjusting parameter vi
5: Qi(s, a)← 0
6: for each parameter vi to be adjusted do
7: if Pi = {[vmin

i , vmax
i]} then

8: Split of range (vi)
9: else if Ai contains two or more actions and Q(s, a)−

Q(s, a′) < δ then
10: Split of range (vi)
11: Agenti selects action ai from Ai using ε-greedy strat-

egy
12: Apply actions a1 . . . an to environment, obtain reward r

13: for each selected action ai do
14: Q(s, ai)← Q(s, ai) + α(r+ γmax

a′
i

Q(s, a′i)−Q(s, ai))

Split of range of vi

1: Sort saved tuples of (v, r) according to vi
2: tuples count← number of tuples
3: best← +∞
4: for j ← 1 to tuples count do
5: vi,j ← value of vi in j-th tuple in sorted list

6: candidate← vi,j+vi,j+1

2
7: for j ← 1 to tuples count do
8: x← {r|vi,j ≤ candidate}
9: y ← {r|vi,j > candidate}

10: Calculate p-value for x and y using Kolmogorov-
Smirnov criterion

11: if p-value< best then
12: best← p-value
13: best split← candidate
14: if best > 0.05 then
15: Split saved tuples into sets L and R according to

best split
16: Find split point sl for L
17: Find split point sr for R
18: if Split points sl and sr are not found then
19: Pi ← {[vmin, s], (s, vmax]}
20: else if split point sl is not found then
21: Pi ← {[vmin, s], (s, sr], (sr, vmax]}
22: else if split point sr is not found then
23: Pi ← {[vmin, sl], (sl, s], (s, vmax]}
24: else
25: Pi ← {[vmin, sl], (sl, s], (s, sr], (sr, vmax]}
26: Set Ai ← actions corresponding to partition Pi

4. EXPERIMENTS AND RESULTS
The proposed methods were compared with the EARPC

algorithm, the approach proposed by Karafotias et al. and
the Q-learning algorithm. In the Q-learning algorithm a
single state is used and the ranges of parameter values are
discretized a priori on five equally sized intervals as in the al-
gorithm proposed by Karafotias et al. The considered meth-
ods were tested on several real-valued functions with differ-
ent landscapes and different number of local optima. We
implemented the EARPC algorithm ourselves and we used
the implementation of the method proposed by Karafotias
et al. kindly given by the authors of [7].

4.1 Experiment description
Let us denote the optimized function as F (x1, . . . , xn) :

Rn → R, xi ∈ [mini,maxi]. Then the goal of EA is to find a
vector x1 . . . xn, such as the global minimum of the function
with ε precision is reached on this vector. The algorithms
were tested on the sphere function (Eq. 5), the Rosenbrock
function (Eq. 6), the Levi function (Eq. 7) and the Rastrigin
function (Eq. 8).

f(x1, .., xn) =

n∑
i=1

x2i (5)

f(x1, x2) = (a− x21)2 + b(x2 − x21)2 (6)

f(x1, x2) = sin2(3πx) + (x− 1)2(1 + sin2(3πy))+

+ (y − 1)2(1 + sin2(2πy))
(7)

f(x1, .., xn) = A · n+

n∑
i=1

[
x2i −A cos (2πxi)

]
(8)

An individual of EA is a real vector x1 . . . xn. Mutation
operator is defined as in the work by Karafotias et al. For
each xi in a vector we apply the following transformation:

xi =


maxi, if xi + σdxi > maxi

mini, if xi + σdxi < mini

xi + σdxi, in other cases

(9)

where 1 ≤ i ≤ n, dxi ∼ N (0, 1), and σ is the parameter
to be adjusted. We expect that the closer to the global
optimum EA is, the smaller σ should be. The range of σ
is [0, k], where k is a constant. As the range of σ grows,
it becomes harder to find the optimal value of σ.We used
different values of k presented in Table 1. Note that the
higher k is, the greater range of σ is.

We used (µ+λ) evolution strategy with different values of
µ and λ presented in Table 1. All the considered algorithms
were run 30 times on each problem instance, then the results
were averaged. Parameters of EA are presented in Table 1.

The reward function in reinforcement learning was defined

as follows: r = c · (ft−ft+1

ft+1
), where ft is the minimal fitness

function value in the generation t and c is a constant taken
from [7]. Value of c is presented in Table 2. Note that when
we solve minimization problem with elitist selection, ft+1 is
less than or equal to ft, so the reward is always positive.
Parameters of reinforcement learning were taken from [7].
They are presented in Table 2.

4.2 Results and discussion
The results are presented as follows. First, we present and

analyze the obtained average number of generations needed

Table 1: EA parameters

Parameter Description Value
k maximal value of σ {1, 2, 3}
µ the number of parents {1, 5, 10}
λ the number of children {1, 3, 7}
ε precision 10−5

Table 2: RL parameters

Parameter Description Value
α learning rate 0.9
α0 learning rate in case of zero reward 0.02
γ discount factor 0.8
ε exploration probability 0.1
c coefficient in reward 100

to reach the optimum using the two proposed methods, the
EARPC algorithm, the approach proposed by Karafotias et
al. and the Q-learning algorithm. Second, we analyze the
selected values of the adjusted parameter. Also for the al-
gorithm with dynamic discretization of the parameter range
we analyze values of selected split points.

4.2.1 Influence on efficiency of EA
The average number of generations needed to reach the

optimum using different parameter controllers is presented
in Table 3. The first three columns contain values of EA pa-
rameters k, µ and λ correspondingly. The next 20 columns
contain results of optimizing the following functions: the
sphere function, the Rastrigin function, the Levi function
and the Rosenbrock function. In each run we adjust σ, the
parameter of mutation from Eq. 9. We expect that the closer
to the global optimum EA is, the smaller σ should be. For
each function, we present the results of the following parame-
ter controllers: the proposed method with adaptive selection
of action set (A), the Q-learning algorithm (Q), the approach
proposed by Karafotias et al. (K), the EARPC algorithm
(E) and the proposed method which combines Karafotias et
al. and EARPC (E+K). In the last row, for each algorithm
the total number of the EA configurations on which this
algorithm outperformed all other algorithms is presented.

For each problem instance, the average number of gener-
ations needed to reach the optimal value is presented. The
gray background corresponds to the best result for each EA
configuration. Note that we do not compare EA algorithms
characterized by different values of µ and λ. We only com-
pare methods of parameter control on the same EA con-
figuration. For each set of k, µ, λ values the number of
fitness function evaluations in a generation is the same for
all parameter control methods. So using the number of gen-
erations instead of the number of fitness evaluations does
not affect results of comparison within a row.

The deviation of the average number of generations needed
to reach the optimum in the proposed method with adaptive
selection of action set is less than 5%. For the Q-learning
algorithm and the approach proposed by Karafotias et al.
the deviation is about 10%. For the EARPC algorithm and
the proposed method which combines Karafotias et al. and
EARPC the deviation is about 40%.

Table 3: Averaged number of runs needed to reach the optimum using the the proposed method with adaptive selection of
action set (A), the Q-learning algorithm (Q), the approach proposed by Karafotias et al. (K), the EARPC algorithm (E) and
the proposed method which combines Karafotias et al. and EARPC (E+K)

Sphere function Rastrigin function Levi function Rosenbrock function
k µ λ A Q K E E+K A Q K E E+K A Q K E E+K A Q K E E+K
1 1 1 2434 8769 8048 5258 4830 3631 9653 8385 7794 8689 3496 7200 7265 7986 14092 5124 15058 13418 9003 12905
1 1 3 2207 4221 2683 3942 3070 1776 2226 2069 3148 3610 1980 3305 2903 2789 3688 2301 3914 4167 3553 2701
1 1 7 878 1085 2620 1653 2247 1226 1605 1757 1422 1422 1321 1584 1600 1923 3820 1411 1791 2330 2296 1941
1 5 1 1450 1664 2076 4472 3893 1666 1706 2281 4341 4530 1778 1898 1865 2372 2246 1859 2311 2809 5730 4453
1 5 3 569 706 824 1589 845 918 894 942 1958 2197 855 862 794 1632 2171 1053 869 748 1393 2749
1 5 7 368 390 473 642 568 502 570 675 1679 1329 356 606 444 1426 1236 401 533 665 1130 1258
1 10 1 703 959 747 1438 728 1008 1103 1105 2681 2926 884 840 804 2353 1451 1617 1497 1593 2213 3085
1 10 3 331 378 358 534 400 622 604 665 1460 1485 533 502 624 1491 1134 683 488 616 1161 1225
1 10 7 186 195 167 142 422 358 489 473 1103 1858 308 331 294 510 766 483 290 235 391 429
2 1 1 4342 25192 28523 31738 16182 4744 23663 21043 27865 19142 4947 13420 14789 25721 30653 5165 23371 27239 20005 20819
2 1 3 2333 7681 6478 5152 4233 1839 6405 6825 9748 8997 2020 6884 6601 7477 4612 3461 7295 7169 7166 13342
2 1 7 1464 3360 3739 1688 2956 1160 2388 2183 3806 4085 1205 3521 2370 2533 2967 1753 3488 2968 5874 7870
2 5 1 1891 3814 3468 4908 5173 2467 3944 4029 5961 5750 1935 3517 3369 7222 5365 1990 8076 5810 11153 11856
2 5 3 974 994 1163 1631 946 1128 1614 1780 2293 1720 1085 1231 1326 3039 2943 1396 2116 2705 3775 4542
2 5 7 616 716 756 1511 626 967 1012 1461 933 1180 770 792 1089 1153 2180 934 1001 1247 1775 2584
2 10 1 1164 2397 1833 778 876 1722 2108 2255 2411 2807 1803 1884 2197 5139 3072 2022 3415 2787 8768 4603
2 10 3 459 445 465 719 788 988 1420 1116 1486 1234 887 988 1006 1045 2381 1181 1037 1106 3719 1648
2 10 7 188 320 252 380 413 615 856 712 627 922 618 731 564 806 1064 707 811 666 1740 2558
3 1 1 8055 36698 29112 54868 30710 5159 29082 23305 24249 27327 5216 21470 21953 28900 35119 6535 28702 36597 32533 43832
3 1 3 2826 7845 9115 12446 11985 2821 7977 10726 6541 16040 2900 9029 7071 6966 10883 3391 11427 9873 13061 10068
3 1 7 1427 3907 4813 10118 9207 1517 4680 4266 4144 5408 1700 4139 4019 3375 2062 2573 5820 6462 9797 9775
3 5 1 2447 8328 5886 3348 12313 2704 6208 5419 5953 7665 3105 6966 6742 10480 9059 3148 12438 6791 8952 11581
3 5 3 1445 2790 2222 1379 1848 1544 2514 2096 2823 2304 1808 2467 2664 4593 3714 1721 2289 3673 4434 6799
3 5 7 896 919 777 1424 1105 902 1120 1629 1033 1055 1017 1929 1788 594 1439 1231 1626 1255 3951 4914
3 10 1 1996 2398 2531 3173 3745 2048 3747 3258 5095 3873 2071 2901 2943 5210 4814 2352 4473 6531 8320 10539
3 10 3 1053 1074 1206 1114 171 1296 1740 1523 1013 1028 1330 1462 1832 3140 2389 1677 2000 1650 2611 2479
3 10 7 409 391 427 410 537 955 995 1203 779 839 667 1117 799 521 845 1101 1137 1098 1742 1907
Summary 20 2 2 2 1 22 2 0 3 0 19 1 4 2 0 19 3 5 0 0

Overall, when k increases, the range of σ increases and
selection of the optimal value of σ becomes harder. The
proposed method with adaptive selection of action set out-
performed all other considered methods on most problem
instances. According to multiple sign test [4], the proposed
method with adaptive selection of action set is distinguish-
able from the other methods at the level of statistical signif-
icance α = 0.05.

Let us discuss the possible reasons why the proposed method
with adaptive selection of action set outperformed the other
considered methods. In the method proposed by Karafotias
et al., in the case of zero reward, for some consecuent itera-
tions Q-values become zero. So the experience of the agent
is lost. The proposed method with adaptive selection of ac-
tion set does not have this drawback because experience is
not saved only in Q-values.

In EARPC and the proposed method which combines
Karafotias et al. and EARPC, the range of parameter σ is
split into two almost equal intervals. The proposed method
with adaptive selection of action set splits interval using an-
other criterion which allows to split the range more precisely.

Consider the efficiency of using binary decision tree of
states. The Q-learning algorithm and the algorithm pro-
posed by Karafotias et al. demonstrate similar performance.
The same is also true for the EARPC algorithm and the
proposed method which combines Karafotias et al. and
EARPC. Therefore, applying dynamic state space segmen-
tation algorithms in parameter controllers does not seem to
increase efficiency of EA when solving the considered prob-
lems.

4.2.2 Selected parameter values and split points
In the Fig. 2 values of σ selected by the two proposed

methods and the method proposed by Karafotias et al. dur-
ing Rastrigin function optimization are presented. For the
other considered functions plots are similar. For brevity,
they are not presented. The horizontal axis refers to the
number of an iteration, the vertical axis refers to the se-
lected value of σ.

We can see that method which combines Karafotias et al.
and EARPC (Fig. 2a) in the end of optimization selects σ
almost randomly. The algorithm proposed by Karafotias et
al. (Fig. 2c) continues selection of an action if it has achieved
positive reward for application of this action. However, if the
algorithm has not obtained positive reward in some conse-
quent iterations, it loses information about efficient action
selected earlier. We can see that the proposed method with
adaptive selection of action set (Fig. 2b) in the beginning
of the optimization selects σ randomly, but during the opti-
mization process the selected σ convergences to the optimal
value.

For the two proposed methods, the selected split points
are shown in Fig. 3. The algorithm proposed by Karafo-
tias et al. discretizes the parameter range a priori, so the
considered type of plot is not applicable. The split points
selected by EARPC are not presented because EARPC and
the first proposed method demonstrate similar performance.
The horizontal axis in Fig. 3 refers to the number of an iter-
ation, the vertical axis refers to the selected split points of
the σ range.

We can see that in the proposed method which combines
Karafotias et al. and EARPC (Fig. 3a), the parameter range

(a) (b) (c)

Figure 2: Selected values of σ in the proposed method which combines Karafotias et al. and EARPC (a), the proposed method
with adaptive selection of action set (b) and the method proposed by Karafotias et al. (c) on Rastrigin function.

(a) (b)

Figure 3: Split point values in the proposed method which combines Karafotias et al. and EARPC (a) and the proposed
method with adaptive selection of action set (b) on Rastrigin function.

is split into two almost equal intervals on each iteration of
EA. The proposed method with adaptive selection of action
set (Fig. 3b) does not split interval until enough tuples of
experience are obtained. Then (after about 750 iterations)
the σ range is split into four intervals by three split points.
Discretization of the σ range is not changed until Q-values
become almost equal for all actions (after about 3150 it-
erations). Then the range is discretized again into three
intervals. Note that the intervals after re-discretization are
shrunk and the number of intervals is reduced. So the agent
can select a good value of σ more precisely. This effect is
reflected in Fig. 2b. After about 3150 iterations of the al-
gorithm the agent almost always selects the value of σ close
to the optimal value. The outliers can be explained by the
fact that ε-greedy exploration strategy is used in Q-learning.
According to this strategy, a random action is applied with
probability ε.

5. CONCLUSION
We proposed two new parameter controllers based on re-

inforcement learning. These algorithms discretize parameter
range dynamically. One of the proposed methods is based
on two existing parameter controllers: EARPC and the al-
gorithm proposed by Karafotias et al. In the second ap-
proach the parameter range is discretized using Kolmogorov-
Smirnov criterion and it is re-discretized if the expected re-
ward is almost equal for all actions of the agent.

The proposed methods were compared with EARPC, the
algorithm proposed by Karafotias et al. and the Q-learning
algorithm. We tested controllers with 27 configurations of
EA on four test problems. On the most problem instances,
the second proposed approach outperformed the other con-
sidered methods. We showed that this method improves the
parameter value during the whole optimization process con-
trary to the other methods. It also may be noticed that
application of dynamic state space segmentation algorithms
in parameter controllers does not seem to increase efficiency
of EA when solving the considered test problems.

6. REFERENCES
[1] A. Aleti and I. Moser. Entropy-based adaptive range

parameter control for evolutionary algorithms. In
Proceedings of Genetic and Evolutionary Computation
Conference, pages 1501–1508, 2013.

[2] A. Aleti, I. Moser, and S. Mostaghim. Adaptive range
parameter control. In Proceedings of Congress on
Evolutionary Computation, pages 1–8, 2012.

[3] F. Chen, Y. Gao, Z.-q. Chen, and S.-f. Chen. SCGA:
Controlling genetic algorithms with sarsa (0). In
Computational Intelligence for Modelling, Control and
Automation, 2005 and International Conference on
Intelligent Agents, Web Technologies and Internet
Commerce, International Conference on, volume 1,
pages 1177–1183. IEEE, 2005.

[4] J. Derrac, S. Garcia, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms.
Swarm and Evolutionary Computation, 1(1):3–18,
2011.

[5] A. E. Eiben, M. Horvath, W. Kowalczyk, and M. C.
Schut. Reinforcement Learning for Online Control of
Evolutionary Algorithms. In Proceedings of the 4th
international conference on Engineering
self-organising systems, pages 151–160.
Springer-Verlag, Berlin, Heidelberg, 2006.

[6] A. Gosavi. Reinforcement Learning: A Tutorial
Survey and Recent Advances. INFORMS Journal on
Computing, 21(2):178–192, 2009.

[7] G. Karafotias, Á. E. Eiben, and M. Hoogendoorn.
Generic parameter control with reinforcement

learning. In Proceedings of Genetic and Evolutionary
Computation Conference, pages 1319–1326, 2014.

[8] G. Karafotias, M. Hoogendoorn, and A. Eiben.
Parameter control in evolutionary algorithms: Trends
and challenges. Evolutionary Computation, IEEE
Transactions on, PP(99):1–1, 2014.

[9] G. Karafotias, S. K. Smit, and A. E. Eiben. A generic
approach to parameter control. In Proceedings of the
2012T European Conference on Applications of
Evolutionary Computation, EvoApplications’12, pages
366–375, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] J. E. Pettinger and R. M. Everson. Controlling
Genetic Algorithms with Reinforcement Learning. In
Proceedings of Genetic and Evolutionary Computation
Conference, page 692, San Francisco, CA, USA, 2002.
Morgan Kaufmann Publishers Inc.

[11] Y. Sakurai, K. Takada, T. Kawabe, and S. Tsuruta. A
Method to Control Parameters of Evolutionary
Algorithms by Using Reinforcement Learning. In
Proceedings of 2010 Sixth International Conference on
Signal-Image Technology and Internet-Based Systems
(SITIS), pages 74–79, 2010.

[12] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, USA, 1998.

[13] W. T. B. Uther and M. M. Veloso. Tree based
discretization for continuous state space reinforcement
learning. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial
Intelligence/Innovative Applications of Artificial

Intelligence, AAAI ’98/IAAI ’98, pages 769–774,
Menlo Park, CA, USA, 1998.

	1 Introduction
	2 Related work
	2.1 Entropy-based adaptive range parameter controller
	2.2 Parameter selection by reinforcement learning

	3 Proposed methods
	3.1 Method which combines Karafotias et al. and EARPC
	3.2 Method with adaptive selection of action set

	4 Experiments and results
	4.1 Experiment description
	4.2 Results and discussion
	4.2.1 Influence on efficiency of EA
	4.2.2 Selected parameter values and split points

	5 Conclusion
	6 References

