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ABSTRACT

Online parameter controllers for evolutionary algorithms ad-
just values of parameters during the run of an evolutionary
algorithm. Recently a new efficient parameter controller
based on reinforcement learning was proposed by Karafo-
tias et al. In this method ranges of parameters are dis-
cretized into several intervals before the run. However, per-
forming adaptive discretization during the run may increase
efficiency of an evolutionary algorithm. Aleti et al. proposed
another efficient controller with adaptive discretization.

In the present paper we propose a parameter controller
based on reinforcement learning with adaptive discretiza-
tion. The proposed controller is compared with the existing
parameter adjusting methods on several test problems using
different configurations of an evolutionary algorithm. For
the test problems, we consider four continuous functions,
namely the sphere function, the Rosenbrock function, the
Levi function and the Rastrigin function. Results show that
the new controller outperforms the other controllers on most
of the considered test problems.
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1. INTRODUCTION

Let us denote efficiency of an evolutionary algorithm (EA)
as the number of fitness function evaluations needed to find
the optimal solution. Efficiency of EA is strongly correlated
with its parameters. Common examples of such parameters
are mutation and crossover probabilities. Optimal values of
the parameters not only depend on the type of EA but also
on the characteristics of the problem to be solved. Values of
the parameters can be set before a run. However, optimal
parameter values can change during a run, so an approach
for adaptive parameter adjustment is required.

We consider parameters with continuous values. When
adjusting such parameters, parameter ranges are usually dis-
cretized into some intervals. We can discretize parameter
ranges a priori and keep the resulting segmentation during
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a run. However, it was shown that adaptive discretization
during optimization process may improve the performance
of the algorithm |1L/2]. A possible explanation of this fact
is as follows. The dynamic discretization allows to split the
intervals into smaller subintervals. If the size of an interval
is small, it is more likely to choose a good parameter value.
Aleti et al. proposed entropy-based adaptive range param-
eter controller (EARPC) [1]. This method uses adaptive
discretization.

Recently Karafotias et al. proposed another efficient pa-
rameter controller based on reinforcement learning [7,8].
However, this method was not compared to EARPC. In the
method proposed by Karafotias et al. a priori discretization
is used. A new method which combines usage of reinforce-
ment learning and dynamic discretization is proposed in this
work.

The rest of the paper is organized as follows. First, the
basic ideas used in EARPC and the method proposed by
Karafotias are described. It is necessary to describe these
ideas in order to explain how the proposed controller works.
Second, two different versions of a new controller are pro-
posed. Then the experiments are described. Finally, the
new parameter controllers are compared with the other con-
sidered controllers.

2. RELATED WORK

Let us give the formal description of the adaptive parame-
ter control problem. We have a set of n parameters vy, ..., Up.
The goal of the parameter controller is to select parameter
values which maximize efficiency of EA. The first parameter
controller to be considered is EARPC.

2.1 Entropy-based adaptive range parameter
controller

The EARPC method [1] adjusts parameters separately.
Let us denote a set of the selected parameter values as v =
(v1,...,vn). The efficiency of EA with parameters set to v
is denoted as ¢(v). During a run of the algorithm we save
pairs of v and ¢(v).

To select a new set of parameter values, we split the saved
values of v into two clusters. For example, it can be done
by k-means algorithm. Next, the range of each parameter
v; is split into two intervals. To select a split point, all
saved values of v; are sorted in ascending order. Candidates
to be a split point are mid-points between two consecuent
values of v; in the sorted list. For each candidate s; to be



a split point, the set of the saved values of v; is split into
two subsets p1 and p2. The subset p; contains values which
are less than or equal to sx. The subset p2 contains values
greater than s;. Denote the number of the saved values of
v; which are contained in the cluster ¢; and the subset p; as
ci(p;j). The entropy H is calculated according to Eq. [1] for
each candidate sg.
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The split point s with the minimal value of entropy is se-
lected. Two intervals [min,s] and (s,max] are obtained,
where min and max are the minimal and the maximal pos-
sible values of v; correspondingly. Values from the set p;
correspond to the first interval, values from the set pa2 cor-
respond to the second interval.

To decide from which interval we should choose a new
value for the parameter v;, we calculate the average quality
of the parameter values in each interval. Let @1 and Q2
denote the average quality of the values in the first and the
second intervals correspondingly. @); is calculated according
to Eq. [2}

Q= | > av) 2
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Then we randomly select interval, the probability of selec-
tion of interval j is proportional to @;. A new value of v;
is randomly chosen from the selected interval. The pseu-
docode of EARPC is presented in Algorithm We wrote
this pseudocode based on the description of EARPC given
in 1]

Algorithm 1 FARPC algorithm proposed by Aleti et al.

1: Earlier selected and saved values of v are split into two
clusters ¢1 and co

2: for each parameter v; do

3 Sort saved values of v; in ascending order

4: Hpest +— o0

5: G

6

for split point s = % do
Split saved values of v; into two sets p1 and p2 ac-
cording to si
7 Calculate entropy H according to Eq.
8: if Hpest < H then
9: Hbest — H
0: S < Sk
1 Split saved values of v; into two sets p1 and ps accord-
ing to s
= o 2 a(v)
VEP2

12: Q= ﬁ > q(v), Q2
vEp1

13:  Randomly select interval, the probability of selection
of interval [min, s] is proportional to @1, the proba-
bility of selection of interval (s, maz] is proportional
to Q2

14: Randomly select value of v; from the selected interval

state s(t)

Reinforcement Learning
Agent

reward
r(t)

action
a(t)

r(t+1)

Environment
(Evolutionary Algorithm)

s(t+1)

Figure 1: Reinforcement learning scheme

2.2 Parameter selection by reinforcement learn-
ing

Let us describe the general scheme of using reinforcement
learning for parameter control in EA [3}/5,[10,[11]. In rein-
forcement learning (RL) [6,[12], the agent applies an action
to the environment, then the environment returns some rep-
resentation of its state and a numerical reward to the agent,
and the process repeats. The goal of RL is to maximize the
total reward [12].

While adjusting parameter of EA by RL, EA is treated as
an environment. An action is selection of parameter values.
EA generates new population using the selected parameter
values. The obtained reward is based on the difference of
the maximal fitness in two sequential iterations.

Let us describe how the agent selects parameter values.
The parameter range is discretized into several intervals.
Each interval corresponds to agent’s action. To apply an
action, the agent selects an interval and sets a random value
from this interval as the parameter value. The method is
illustrated in Fig. [I} where ¢ is the number of the current
iteration.

In the method proposed by Karafotias et al. [7}[8], a mod-
ification of the e-greedy Q-learning algorithm is used. Let k
denote the number of parameters being adjusted. The range
of parameter v; is discretized a priori into m; intervals. An
action of the agent consists of selection of intervals for each
parameter and random selection of parameters values from

the selected intervals. Thus the number of possible actions
k
of the agent is H m;. The obtained reward is calculated ac-

cording to Eq. l 13l where f; is the best fitness function value
obtained on the iteration ¢ and c is a constant.

= (%) .

Note that reward is always positive unless EA worsens the
best obtained solution. To reduce the learning rate in the
case of zero reward, the learning rate « is changed to ao
according to Eq. @] Note that ap < a.

a?
a(r) =
{CMO < «a,

To define the state of the environment, the following ob-
servables derived from the state of the EA are used [9]:

ifr>0
in other cases

(4)

e genotypic diversity;
e phenotypic diversity (when different from genotypic);

e fitness standard deviation;



e stagnation counter (the number of iterations without
fitness improvement);

e fitness improvement.

The dynamic state space segmentation method is used |13].

In this method, states are represented as a binary decision
tree. Each internal node contains a condition on an observ-
able. Leaf nodes represent environment states. For each
state s array of Q(s,a) is stored, where Q(s,a) is the ex-
pected reward for each action in the state s. The expected
reward in this state is denoted as V(s) = max Q(s, a).

a

Initially, the tree consists of one leaf which corresponds
to a single state s and V(s) = 0. Each iteration of the
algorithm consists of two phases: the data gathering phase
and the processing phase. In the data gathering phase we
obtain values of observables I = {01 ...0m} from EA, where
m is the number of observables. Then we go down the tree
using I and get the state s of the environment. The agent
selects an action a using e-greedy strategy, obtains reward r
and new values I’ of observables. Then the agent refreshes
Q(s, a) and stores the resulting tuple (I,a,I’, 7).

In the processing phase, we try to split the state s into
two new states, which means that the leaf corresponding to
the state s becomes an internal node and two new leaves
are added as its children. To convert the leaf into a deci-
sion node, we have to choose an observable and a splitting
value. For each saved tuple (I,a,I’,7) in the leaf we cal-
culate an estimated reward obtained after applying the ac-
tion a to EA with the values I of observables. We denote
this reward as g(I,a). The value of ¢(I,a) is calculated as
q(I,a) = r +~V(s'), where s’ corresponds to the values I’
of observables, and ~ is a constant called discount factor.
For each observable o the tuples saved in the leaf are sorted
in ascending order according to the value of o taken from
1. Candidates to be chosen as a split point are mid-points
between two consecuent values of o in the sorted list. The
saved values I taken from tuples stored in the leaf are divided
into two subsets according to a candidate split point. We
form two samples by dividing the calculated ¢(I,a) accord-
ing to obtained subsets of I. A Kolmogorov-Smirnov crite-
rion is run on these two samples and the obtained p-value
is saved. After all split point candidates for all observables
are checked, the smallest obtained p-value is selected. If it is
smaller than 0.05, then the node is split at the corresponding
observable and the corresponding split point.

The authors of the article where dynamic state space seg-
mentation method was proposed [13] suggest that @ values
should be recalculated after each split of a state. However,
it is not obvious how to do it. So in the method proposed
by Karafotias et al. @ and V values of two new nodes are
set to the values of the parent node. The tuples saved in
the parent node are split according to the chosen split point
and the resulting parts are given to the corresponding chil-
dren nodes. The pseudocode of the algorithm proposed by
Karafotias et al. is presented in Algorithm[2] We wrote this
pseudocode based on the description of this algorithm given
in [7].

3. PROPOSED METHODS

We propose two new controllers. The first of them com-
bines the EARPC algorithm and the approach proposed by
Karafotias et al. The second one is based on reinforcement

Algorithm 2 Algorithm proposed by Karafotias et al.

Data gathering phase

1: Initialize binary search tree: state s, V(s) = 0,
Q(s,a) < 0 for each action a
Obtain I — values of observables from EA
Go down the tree using I and find environment state s
Select action a using e-greedy strategy
Apply action a to environment, obtain reward r
Obtain I’ — values of observables from EA
Go down the tree using I’ and find environment state s’

8: Store tuple (I,a,I’,r) in state s

9: Q(s,a) < Q(s,a) + a(r + ymax Q(s',a’) — Q(s, a))
10: V(s) = max Q(s,a)
Processing phase

1: for each tuple (I,a,I’,r) in state s do
2:  Calculate q(I,a) =7 +~V(s)

3: best < 400

4: for observable o do

5.

Sort tuples stored in state s according to value of o
from 1.

6:  tuples_count < number of tuples

7:  for j < 1 to tuples_count do

8: I; < j-th tuple in the sorted list

9: 0; < value of observable o in I;

10: candidate < %

11: x + {q(I,a)|o; < candidate}

12: y < {q(I;,a)|o; > candidate}

13: Calculate p-value for x and y using Kolmogorov-
Smirnov criterion

14: if p-value< best then

15: best < p-value

16: best_observable < o

17: best_split < candidate

18: if best < 0.05 then

19:  Create two new states s; and sa

20:  Split tuples stored in s to s; and sz corresponding to
best_observable and best_split

21:  Copy Q(s,a) into Q(s1,a) and Q(s2,a)

22:  Replace node corresponding to state s with internal
node with two new leafs, corresponding to states si
and so

learning and splitting of parameter ranges using Kolmogorov-
Smirnov criterion.

3.1 Method which combines Karafotias et al.
and EARPC

In the method proposed by Karafotias et al., dynamic
state space segmentation is used. However, ranges of param-
eters being adjusted are discretized a priori. We propose to
improve the method proposed by Karafotias et al. by using
EARPC method for dynamic discretization of ranges of pa-
rameters. When we change discretization of the parameter
range, we change the set of agent actions. So we have to
change the process of selection of the parameter values in
the method proposed by Karafotias et al.

The values of parameters are selected as in the EARPC
method. Therefore, on each iteration of the algorithm we
obtain values I of observables of EA and go down the binary



decision tree of states (see Section to find a state s
corresponding to I. Then we select values v of parameters,
get new values of observables I’ and save the tuple (I,v,I’,r)
in the state s, where v are selected values of parameters
and r is calculated according to Eq. [J] The values v of
parameters are selected by EARPC method using the tuples
saved earlier in the state s. To apply the EARPC algorithm,
we have to calculate ¢(v) which is the efficiency measure of
EA with the parameters set to v. We use r from the tuple
(I,v,T',7) as the efficiency measure q(v).

To split the states, we have to calculate ¢(I,a) = r +
vV (s"), where s’ corresponds to I’. In the proposed method
actions of the agent are changing during the run. So we
cannot calculate V(s') as max Q(s’,a). In this case we use

the expected value of the reward obtained in the state s’ as
V(s"). The EARPC algorithm splits the parameter range
into two intervals. One of these intervals is selected with
probability proportional to average reward on this interval.

2 2
nos Q7
So V(s') is calculated as i; . PETorE where Q1 and Q2 are

average rewards on the two intervals.

To the best of our knowledge, there is no specific method
of recalculating Q)-values after splitting a state. In the method
proposed by Karafotias et al., @ and V values of two new
nodes are set to the values of the parent node. In this
method we do not store @)-values in leafs. So we do not
need to recalculate @) and V for two new states after split-
ting.

3.2 Method with adaptive selection of action
set

Preliminary experiments showed that there was no signif-
icant improvement of the EA efficiency when high number
of states was used. Thus the second proposed method de-
scribed in this section does not use the binary decision tree
of states, although it is used in the first proposed method
and the method proposed by Karafotias et al. In the second
proposed method we have a single state of the environment.
In the method proposed by Karafotias et al., values of all
parameters to be adjusted are set simultaneously by the Q-
learning agent. In the second proposed method the value of
each parameter is set independently of the other parameters.
So we have a separate Q-learning agent for each parameter.

Initially, for each parameter v; we have only one action of
the agent, which corresponds to the selection of parameter
value from the range [min, max], where min and maz are
the minimal and the maximal possible values of the param-
eter v;. Each agent; applies this action and sets the value
of v;. Then we use the selected values v = (v1...v,) in EA
and calculate the reward r according to Eq.[3] We store the
tuple of the selected values v and the obtained reward r.
These tuples are used for splitting the parameter range and,
as a consecuence, they are used for changing sets of actions
of the agents. The agents apply the single possible action
until enough tuples for splitting of the range are stored.

After enough tuples are stored, we search a split point
for the range of each parameter using Kolmogorov-Smirnov
criterion. The criterion is used in the same way as it was
used by Karafotias et al. when splitting states. If the split
point is not found, we do not split the range. If the split
point is found, we obtain two intervals L and R. Then we
try to split L and R in the same way. We repeat this process
i times. So the maximum number of the intervals is 2°.

An agent selects an action using e-greedy strategy until Q-
values become almost equal for all actions. In this case the
expected rewards for all actions are almost equal, therefore
the agent can not select which action is the most efficient. So
the range of the parameter is re-discretized. The pseudocode
of the proposed method for the case when i = 2 is presented
in Algorithm [3]

Algorithm 3 Algorithm with adaptive selection of action
set

1: State s < single_state

2: for each parameter v; to be adjusted do

30 P {0}

4: A, < actions corresponding to partition P;, where A;
is a set of actions for agent, adjusting parameter v;

5. Qi(s,a)«0

6: for each parameter v; to be adjusted do

7 if Py = {[o™™ 0]} then

8: Split of range (v;)

9: else if A; contains two or more actions and Q(s,a) —
Q(s,a’) < & then

10: Split of range (v;)

11:  Agent, selects action a; from A; using e-greedy strat-

egy
12: Apply actions a1 ... an to environment, obtain reward r

13: for each selected action a; do
1 Qs ai) « Q(s,a5) + alr + ymax Q(s,af) — Q(s,a:))

Split of range of v;
1: Sort saved tuples of (v,r) according to v;
2: tuples_count <— number of tuples
3: best < 400
4: for j < 1 to tuples_count do
vj,; <— value of v; in j-th tuple in sorted list
candidate < W#
for j < 1 to tuples_count do
x + {r|v;,; < candidate}
y < {rlvi; > candidate}
Calculate p-value for z and y using Kolmogorov-
Smirnov criterion
11:  if p-value< best then
12: best < p-value
13: best_split < candidate
14: if best > 0.05 then
15:  Split saved tuples into sets L and R according to
best_split
16:  Find split point s; for L
17:  Find split point s, for R
18:  if Split points s; and s, are not found then

—_

19: P; + {[Vmin, 9], (8, Umax]}

20:  else if split point s; is not found then
21: P; + {[vmin, S, (8, sr], ($r, Umax] }

22: else if split point s, is not found then
23: P+ {['Umiru 51]7 (Sh 5}7 (57 vmax]}

24:  else

25: P+ {[Uminale(5175}7(5757‘]7(5“1&0&)(]}

26:  Set A; < actions corresponding to partition P;

4. EXPERIMENTS AND RESULTS
The proposed methods were compared with the EARPC



algorithm, the approach proposed by Karafotias et al. and
the @Q-learning algorithm. In the @-learning algorithm a
single state is used and the ranges of parameter values are
discretized a priori on five equally sized intervals as in the al-
gorithm proposed by Karafotias et al. The considered meth-
ods were tested on several real-valued functions with differ-
ent landscapes and different number of local optima. We
implemented the EARPC algorithm ourselves and we used
the implementation of the method proposed by Karafotias
et al. kindly given by the authors of [7].

4.1 Experiment description

Let us denote the optimized function as F(x1,...,2n) :
R" — R, z; € [min;,maxz;]. Then the goal of EA is to find a
vector &1 ... Zn, such as the global minimum of the function
with e precision is reached on this vector. The algorithms
were tested on the sphere function (Eq. [5]), the Rosenbrock
function (Eq.[6), the Levi function (Eq.[7) and the Rastrigin
function (Eq. [8).

fxlwyxn Z'xz (5)

flar,a2) = (a — %) + b(zz — 21) (6)

f(z1,22) :sin2(37rw) + (z — 1)*(1 + sin®*(37y))+
1)?(1 4 sin®(27y))

=A. n—i—z

An individual of EA is a real vector xi ...x,. Mutation
operator is defined as in the work by Karafotias et al. For
each x; in a vector we apply the following transformation:

flx1, ., xn) — Acos (2mw;)] (8)

max;,if x; + odr; > max;
x; = § ming, if x; + odx; < min; 9)
z; + odx;,in other cases

where 1 < i < n, dz; ~ N(0,1), and o is the parameter
to be adjusted. We expect that the closer to the global
optimum EA is, the smaller o should be. The range of o
is [0, k], where k is a constant. As the range of o grows,
it becomes harder to find the optimal value of o.We used
different values of k presented in Table Note that the
higher k is, the greater range of o is.

We used (114 A) evolution strategy with different values of
w and X presented in Table[I} All the considered algorithms
were run 30 times on each problem instance, then the results
were averaged. Parameters of EA are presented in Table

The reward function in reinforcement learning was defined
(ftf f“) where f; is the minimal fitness
function value in the generation ¢ and c is a constant taken
from [7]. Value of ¢ is presented in Table[2] Note that when
we solve minimization problem with elitist selection, fi11 is
less than or equal to f:, so the reward is always positive.
Parameters of reinforcement learning were taken from |[7].
They are presented in Table

as follows: r =c¢-

4.2 Results and discussion

The results are presented as follows. First, we present and
analyze the obtained average number of generations needed

Table 1: EA parameters

Parameter Description Value

k maximal value of ¢ {1,2,3}
I the number of parents  {1,5,10}
A the number of children {1, 3,7}
€ precision 1075

Table 2: RL parameters

Parameter Description Value
« learning rate 0.9
Qo learning rate in case of zero reward 0.02
y discount factor 0.8

€ exploration probability 0.1

c coefficient in reward 100

to reach the optimum using the two proposed methods, the
EARPC algorithm, the approach proposed by Karafotias et
al. and the Q-learning algorithm. Second, we analyze the
selected values of the adjusted parameter. Also for the al-
gorithm with dynamic discretization of the parameter range
we analyze values of selected split points.

4.2.1 Influence on efficiency of EA

The average number of generations needed to reach the
optimum using different parameter controllers is presented
in Table[3] The first three columns contain values of EA pa-
rameters k, p and A\ correspondingly. The next 20 columns
contain results of optimizing the following functions: the
sphere function, the Rastrigin function, the Levi function
and the Rosenbrock function. In each run we adjust o, the
parameter of mutation from Eq.[0] We expect that the closer
to the global optimum EA is, the smaller o should be. For
each function, we present the results of the following parame-
ter controllers: the proposed method with adaptive selection
of action set (A), the Q-learning algorithm (Q), the approach
proposed by Karafotias et al. (K), the EARPC algorithm
(E) and the proposed method which combines Karafotias et
al. and EARPC (E+K). In the last row, for each algorithm
the total number of the EA configurations on which this
algorithm outperformed all other algorithms is presented.

For each problem instance, the average number of gener-
ations needed to reach the optimal value is presented. The
gray background corresponds to the best result for each EA
configuration. Note that we do not compare EA algorithms
characterized by different values of p and A. We only com-
pare methods of parameter control on the same EA con-
figuration. For each set of k, u, A values the number of
fitness function evaluations in a generation is the same for
all parameter control methods. So using the number of gen-
erations instead of the number of fitness evaluations does
not affect results of comparison within a row.

The deviation of the average number of generations needed
to reach the optimum in the proposed method with adaptive
selection of action set is less than 5%. For the Q-learning
algorithm and the approach proposed by Karafotias et al.
the deviation is about 10%. For the EARPC algorithm and
the proposed method which combines Karafotias et al. and
EARPC the deviation is about 40%.



Table 3: Averaged number of runs needed to reach the optimum using the the proposed method with adaptive selection of
action set (A), the Q-learning algorithm (Q), the approach proposed by Karafotias et al. (K), the EARPC algorithm (E) and
the proposed method which combines Karafotias et al. and EARPC (E+K)

Sphere function Rastrigin function Levi function Rosenbrock function
ko {p |A K E E+K] K E E+K K E E+K] K E E+K
11 1 8048 5258 4830 8385 |7794 |8689 7265 |7986 14092 13418{9003 {12905
111 |3 2683 (3942 (3070 2069 (3148 (3610 2903 (2789 (3688 4167 [3553 |2701
1 (1 |7 2620 (1653 |2247 1757 |1422 [1422 1600 (1923 |3820 2330 [2296 (1941
1[5 |1 2076 |4472 |3893 2281 |4341 |4530 1865 (2372 |2246 2809 4453
115 (3 824 |1589 (845 942 1958 |2197 1632 |2171 2749
115 |7 473 1642 |568 675 |1679 (1329 1236 1258
1 (10 1 747 |1438 |728 1105 [2681 [2926 1451 3085
1 1103 358 [534 |400 665 1460 |1485 1134 1225
1 (10 |7 142|422 473 |1103 |1858 766 429
2 1 |1 28523|31738|16182 21043|27865|19142 14789]25721(30653 27239(20005{20819
2 (1 |3 6478 |5152 (4233 6825 (9748 (8997 6601 (7477 (4612 7169 |7166 (13342
2 1 |7 3739 |1688 2183 |3806 |4085 2370 2533 |2967 2968 |5874 |7870
2 5 |1 3468 (4908 4029 (5961 (5750 3369 (7222 (5365 5810 [11153{11856
2 15 |3 1163 (1631 1780 |2293 |1720 1326 |3039 (2943 2705 |3775 (4542
2 15 |7 756 |1511 1461 1180 1089 |1153 |2180 1247 (1775 |2584
2 (101 1833 2255 12411 |2807 2197 |5139 (3072 2787 (8768 (4603
2 (10 |3 465 |719 1116 |1486 |1234 1006 |1045 (2381 1106 |3719 |1648
2 |10 |7 252|380 712|627 [922 806 [1064 1740 [2558
311 |1 29112|54868(30710 23305(24249(27327 21953(28900(35119 36597(32533[43832
311 |3 9115 |12446|11985 10726{6541 {16040 7071 |6966 |10883 9873 |13061|10068
3|1 |7 4813 [10118(9207 4266 (4144 (5408 4019 (3375 |2062 6462 (9797 (9775
315 |1 5886 (3348 (12313 5419 [5953 [7665 6742 |10480{9059 6791 (8952 (11581
315 |3 2222 1848 2096 (2823 |2304 2664 4593 |3714 3673 |4434 6799
315 |7 1424 |1105 1629 (1033 (1055 1788 1439 1255 (3951 (4914
3 |10 |1 2531 3173 (3745 3258 (5095 (3873 2943 (5210 (4814 6531 (8320 (10539
3 |10 |3 1206 (1114 |171 1523 1028 1832 |3140 |2389 2611 |2479
3 |10 |7 410 |537 1203 839 799 H845 1742 1907
Summary 2 2 1 0 3 0 4 2 0 3 5 0 0

Overall, when k increases, the range of ¢ increases and
selection of the optimal value of o becomes harder. The
proposed method with adaptive selection of action set out-
performed all other considered methods on most problem
instances. According to multiple sign test , the proposed
method with adaptive selection of action set is distinguish-
able from the other methods at the level of statistical signif-
icance a = 0.05.

Let us discuss the possible reasons why the proposed method

with adaptive selection of action set outperformed the other
considered methods. In the method proposed by Karafotias
et al., in the case of zero reward, for some consecuent itera-
tions @-values become zero. So the experience of the agent
is lost. The proposed method with adaptive selection of ac-
tion set does not have this drawback because experience is
not saved only in @Q-values.

In EARPC and the proposed method which combines
Karafotias et al. and EARPC, the range of parameter o is
split into two almost equal intervals. The proposed method
with adaptive selection of action set splits interval using an-
other criterion which allows to split the range more precisely.

Consider the efficiency of using binary decision tree of
states. The Q-learning algorithm and the algorithm pro-
posed by Karafotias et al. demonstrate similar performance.
The same is also true for the EARPC algorithm and the
proposed method which combines Karafotias et al. and
EARPC. Therefore, applying dynamic state space segmen-
tation algorithms in parameter controllers does not seem to
increase efficiency of EA when solving the considered prob-
lems.

4.2.2 Selected parameter values and split points

In the Fig. [2] values of o selected by the two proposed
methods and the method proposed by Karafotias et al. dur-
ing Rastrigin function optimization are presented. For the
other considered functions plots are similar. For brevity,
they are not presented. The horizontal axis refers to the
number of an iteration, the vertical axis refers to the se-
lected value of o.

We can see that method which combines Karafotias et al.
and EARPC (Fig. in the end of optimization selects o
almost randomly. The algorithm proposed by Karafotias et
al. (Fig. continues selection of an action if it has achieved
positive reward for application of this action. However, if the
algorithm has not obtained positive reward in some conse-
quent iterations, it loses information about efficient action
selected earlier. We can see that the proposed method with
adaptive selection of action set (Fig. in the beginning
of the optimization selects o randomly, but during the opti-
mization process the selected o convergences to the optimal
value.

For the two proposed methods, the selected split points
are shown in Fig. The algorithm proposed by Karafo-
tias et al. discretizes the parameter range a priori, so the
considered type of plot is not applicable. The split points
selected by EARPC are not presented because EARPC and
the first proposed method demonstrate similar performance.
The horizontal axis in Fig. [3]refers to the number of an iter-
ation, the vertical axis refers to the selected split points of
the o range.

We can see that in the proposed method which combines
Karafotias et al. and EARPC (Fig. , the parameter range
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Figure 2: Selected values of ¢ in the proposed method which combines Karafotias et al. and EARPC (a), the proposed method
with adaptive selection of action set (b) and the method proposed by Karafotias et al. (¢) on Rastrigin function.
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Figure 3: Split point values in the proposed method which combines Karafotias et al. and EARPC (a) and the proposed
method with adaptive selection of action set (b) on Rastrigin function.

is split into two almost equal intervals on each iteration of 5. CONCLUSION

EA. The proposed method with adaptive selection of action We proposed two new parameter controllers based on re-
set (Fig. does not split interval until enough tuples of inforcement learning. These algorithms discretize parameter
experience are obtained. Then (after about 750 iterations) range dynamically. One of the proposed methods is based
the o range is split into four intervals by three split points. on two existing parameter controllers: EARPC and the al-

Discretization of the o range is not changed until Q-values gorithm proposed by Karafotias et al. In the second ap-
become almost equal for all actions (after about 3150 it-

erations). Then the range is discretized again into three
intervals. Note that the intervals after re-discretization are

proach the parameter range is discretized using Kolmogorov-
Smirnov criterion and it is re-discretized if the expected re-
ward is almost equal for all actions of the agent.

shrunk and the number of intervals is reduced. So the agent The proposed methods were compared with EARPC, the
can select a good value of o more precisely. This effect is algorithm proposed by Karafotias et al. and the Q-learning
reflected in Fig. 26 After about 3150 iterations of the al- algorithm. We tested controllers with 27 configurations of
gorithm the agent almost always selects the value of o close EA on four test problems. On the most problem instances,
to the optimal value. The outliers can be explained by the the second proposed approach outperformed the other con-
fact that e-greedy exploration strategy is used in Q-learning. sidered methods. We showed that this method improves the
According to this strategy, a random action is applied with parameter value during the whole optimization process con-
probability e. trary to the other methods. It also may be noticed that

application of dynamic state space segmentation algorithms
in parameter controllers does not seem to increase efficiency
of EA when solving the considered test problems.
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